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Foreword
Apibuov, Eéoyov copioudtwy
Alay., Hpop. Asou.

The first part of this volume is based on a course taught at Princeton
University in 1961-62; at that time, an excellent set of notes was prepared
by David Cantor, and it was originally my intention to make these notes
available to the mathematical public with only quite minor changes.
Then, among some old papers of mine, I accidentally came across a
long-forgotten manuscript by Chevalley, of pre-war vintage (forgotten,
that is to say, both by me and by its author) which, to my taste at least,
seemed to have aged very well. It contained a brief but essentially com-
plete account of the main features of classfield theory, both local and
global; and it soon became obvious that the usefulness of the intended
volume would be greatly enhanced if I included such a treatment of this
topic. It had to be expanded, in accordance with my own plans, but its
outline could be preserved without much change. In fact, I have adhered
to it rather closely at some critical points.

To improve upon Hecke, in a treatment along classical lines of the
theory of algebraic numbers, would be a futile and impossible task. As
will become apparent from the first pages of this book, I have rather
tried to draw the conclusions from the developments of the last thirty
years, whereby locally compact groups, measure and integration have
been seen to play an increasingly important role in classical number-
theory. In the days of Dirichlet and Hermite, and even of Minkowski,
the appeal to “continuous variables” in arithmetical questions may well
have seemed to come out of some magician’s bag of tricks. In retrospect,
we see now that the real numbers appear there as one of the infinitely
many completions of the prime field, one which is neither more nor less
interesting to the arithmetician than its p-adic companions, and that
there is at least one language and one technique, that of the adeles, for
bringing them all together under one roof and making them cooperate
for a common purpose. It is needless here to go into the history of these
developments; suffice it to mention such names as Hensel, Hasse,
Chevalley, Artin; every one of these, and more recently Iwasawa, Tate,
Tamagawa, helped to make some significant step forward along this
road. Once the presence of the real field, albeit at infinite distance, ceases
to be regarded as a necessary ingredient in the arithmetician’s brew, it
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goes without saying that the function-fields over finite fields must be
granted a fully simultaneous treatment with number-fields, instead of
the segregated status, and at best the separate but equal facilities, which
hitherto have been their lot. That, far from losing by such treatment,
both races stand to gain by it, is one fact which will, I hope, clearly emerge
from this book.

It will be pointed out to me that many important facts and valuable
results about local fields can be proved in a fully algebraic context,
without any use being made of local compacity, and can thus be shown
to preserve their validity under far more general conditions. May I be
allowed to suggest that I am not unaware of this circumstance, nor of
the possibility of similarly extending the scope of even such global results
as the theorem of Riemann-Roch? We are dealing here with mathematics,
not with theology. Some mathematicians may think that they can gain
full insight into God’s own way of viewing their favorite topic; to me,
this has always seemed a fruitless and a frivolous approach. My intentions
in this book are more modest. I have tried to show that, from the point
of view which I have adopted, one could give a coherent treatment,
logically and aesthetically satisfying, of the topics I was dealing with.
I shall be amply rewarded if I am found to have been even moderately
successful in this attempt.

Some of my readers may be surprised to find no explicit mention of
cohomology in my account of classfield theory. In this sense, while my
approach to number-theory may be called a “modern” one in the first
half of this book, it may well be described as thoroughly “unmodern” in
the second part. The sophisticated reader will of course perceive that a
certain amount of cohomology, and in fact no more and no less than is
required for the purposes of classfield theory, hides itself in the theory
of simple algebras. For anyone familiar with the language of “Galois
cohomology”, it will be an easy and not unprofitable exercise to translate
into it some of the definitions and results of our Chapters IX, XII and
XIII; in one or two places (the most conspicuous case being that of the
“transfer theorem” in Chapter XII, § 5), this even makes it possible to
substitute more satisfactory proofs for ours. For me to develop such an
approach systematically would have meant loading a great deal of
unnecessary machinery on a ship which seemed well equipped for this
particular voyage; instead of making it more seaworthy, it might have
sunk it.

In charting my course, I have been careful to steer clear of the arith-
metical theory of algebraic groups; this is a topic of deep interest, but
obviously not yet ripe for book treatment. Partly for this reason, I have
refrained from discussing zeta-functions of simple algebras beyond what
was needed for the sake of classfield theory. Artin’s non-abelian L-func-
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tions have also been excluded; the reader of this book will find it easy
to proceed to the study of Artin’s beautiful papers on this subject and
will find himself well prepared to enjoy them, provided he has some
knowledge of the representation theory of finite groups.

It remains for me to discharge the pleasant duty of expressing my
thanks to David Cantor, who prepared from my lectures at Princeton
University the set of notes which reappears here as Chapters I to VII
of this book (in many places with no change at all), and to Chevalley,
who generously allowed me to make use of the above-mentioned manus-
cript and expand it into. Chapters XII and XIII. My thanks are also
due to Iwasawa and Lazard, who read the book in manuscript and offered
many suggestions for its improvement; to H. Pogorzelski, for his assis-
tance in proofreading; to B. Eckmann, for the interest he took in its
publication; and to the staff of the Springer Verlag, and that of the
Zechnersche Buchdruckerei, for their expert cooperation and their
invaluable help in the process of bringing out this volume.

Princeton, May 1967. ANDRE WEIL

Foreword to the third edition

The text of the first edition has been left unchanged. A few correc-
tions, references, and some brief remarks, have been added as Notes at
the end of the book; the corresponding places in the text have been
marked by a * in the margin. Somewhat more substantial additions will
be found in the Appendices, the first four of which were originally
prepared for the Russian edition (M.I.R., Moscow 1971). The reader’s
attention should be drawn to the collective volume: J.W.S. Cassels and
A.Frohlich (edd.), Algebraic Number Theory, Acad. Press 1967, which
covers roughly the same ground as the present book, but with far greater
emphasis on the cohomological aspects.

Paris, June 1974 ANDRE WEIL



Contents

Chronologicaltable . . . . . . . . . . . . . . . .. ... XII
Prerequisites and notations. . . . . . . . . . . . . . . .. XIII
Table of notations . . . . . . . . . . . . . . .. ... XVII

PART I. ELEMENTARY THEORY

Chapter I. Locally compactfields. . . . . . . . . . . . .. 1
§1. Finitefields . . . . . . . . . . . . . . .. ... 1
§ 2. The module in a locally compact field . . . . . . . . . 3
§ 3. Classification of locally compact fields . . . . . . . . . 8
§4. Structureof p-fields . . . . . . . . ... .. 12
Chapter I1. Lattices and duality over local fields . . . . . . . 24
§1. Norms . . . . . . . . . . . o 24
§2. Lattices . . . . . . . . . . ..o 27
§ 3. Mulitiplicative structure of local fields . . . . . . . . . 31
§4. Latticesover R . . . . . . . . . . . . .. ... 35
§ 5. Duality over localfields . . . . . . . . . . . . . .. 38
Chapter III. Placesof A-fields . . . . . . . . . . . . . .. 43
§ 1. A-fields and their completions . . . . . . . . . . .. 43
§ 2. Tensor-products of commutative fields . . . . . . . . . 48
§3. Tracesandnorms. . . . . . . . . . . . . . . . .. 52
§ 4. Tensor-products of A-fields and local fields . . . . . . . 56
Chapter IV. Adeles . . . . . . . . . . . . .. . ... .. 59
§1. Adelesof Afields . . . . . . . . . . . . .. . ... 59
§2. The main theorems . . . . . . . . . . . . . . . .. 64
§3. Ideles . . . . . . . . ..o Lo 71

§4. Idelesof A-fields . . . . . . . . . .. ... 75



X Contents

Chapter V. Algebraic number-fields . . . . . . . . . . . .. 80
§ 1. Ordersin algebrasoverQ . . . . . . . . . . . . .. 80
§ 2. Lattices over algebraic number-fields. . . . . . . . . . 81
§3. Ideals . . . . . . . . . .. oo 85
§4. Fundamentalsets . . . . . . . . . . . .. ... .. 89
Chapter VI. The theorem of Riemann-Roch . . . . . . . . . 96
Chapter VII. Zeta-functions of A-fields . . . . . . . . . .. 102
§ 1. Convergence of Euler products . . . . . . . . . . . . 102
§ 2. Fourier transforms and standard functions . . . . . . . 104
§ 3. Quasicharacters. . . . . . . . . . . . ... 114
§ 4. Quasicharactersof Afields . . . . . . . . . . . ... 118
§ 5. The functional equation . . . . . . . . . . . . . .. 120
§ 6. The Dedekind zeta-function . . . . . . . . . . . .. 127
§7. L-functions . . . . . . . . . ..o 130
§ 8. The coefficients of the L-series . . . . . . . . . . . . 134
Chapter VIII. Tracesand norms . . . . . . . . . . . . . . 139
§ 1. Traces and normsinlocal fields . . . . . . . . . . .. 139
§ 2. Calculation of the different . . . . . . . . . . . . .. 143
§ 3. Ramificationtheory . . . . . . . . . . . . . . . .. 147
§ 4. Traces and normsin A-fields . . . . . . . . . . . .. 153
§ 5. Splitting places in separable extensions . . . . . . . . . 158
§ 6. An application to inseparable extensions . . . . . . . . 159

PART II. CLASSFIELD THEORY

Chapter IX. Simple algebras . . . . . . . . . . . . . . .. 162
§ 1. Structure of simple algebras . . . . . . . . . . . .. 162
§ 2. The representations of a simple algebra. . . . . . . . . 168
§ 3. Factor-sets and the Braver group . . . . . . . . . . . 170
§4. Cyclicfactor-sets . . . . . . . . . . . . .. . ... 180
§ 5. Special cyclic factor-sets . . . . . . . . ... 0L 185
Chapter X. Simple algebras over local fields . . . . . . . . . 188
§ 1. Orders and lattices . . . . . . . . . B, 188
§2. Tracesandnorms . . . . . . . . . . . . . . . . .. 193

§ 3. Computation of some integrals



Contents X1

Chapter XI. Simple algebras over A-fields . . . . . . . . .. 202
§ 1. Ramification . . . . . . . . . . . . .. ... 202
§ 2. The zeta-function of a simple algebra . . . . . . . . . 203
§ 3. Norms in simple algebras . . . .- . . . . . . . . .. 206
§ 4. Simple algebras over algebraic number-fields . . . . . . 210
Chapter XII. Local classfield theory. . . . . . . . . . . .. 213
§ 1. The formalism of classfield theory . . . . . . . . . . . 213
§ 2. The Brauer group of alocalfield . . . . . . . . . . . 220
§ 3. The canonical morphism . . . . . . . . . . . . . .. 226
§ 4. Ramification of abelian extensions. . . . . . . . . . . 230
§5. Thetransfer . . . . . . . . . . . . . .. .. .. 240
Chapter XIII. Global classfield theory. . . . . . . . . . . . 244
§ 1. The canonical pairing . . . . . . . . . . . . . . .. 244
§2. Anelementarylemma . . . . . . . . . . . ... L. 250
§ 3. Hasse’s “law of reciprocity” . . . . . . . . . . . . . 252
§ 4. Classfield theoryforQ. . . . . . . [ . . . . . . .. 257
§5. The Hilbert symbol . . . . . . . . . . . . . . . .. 260
§ 6. The Brauer groupofanA-field . . . . . . . . . . .. 264
§ 7. The Hilbert p-symbol . . . . . . . . . . . . . . .. 267
§ 8. The kernel of the canonical morphism . . . . . . . . . 271
§9. The main theorems . . . . . . . . . . . . . . . .. 275
§ 10. Local behavior of abelian extensions . . . . . . . . . 277
§ 11. “Classical” classfield theory . . . . . . . . . . . .. 281
§12. “Coronidis loco™. . . . . . . . . . . ... ... 288
Notestothetext. . . . . . . . . . . . . . . . . . . . .. 292
Appendix 1. The transfer theorem . . . . . . . . . . . . .. 295
Appendix [1. W-groups for local fields . . . . . . . . . . . .. 298
Appendix I11. Shafarevitch’s theorem . . . . . . . . . . . .. 301
Appendix IV. The Herbrand distribution . . . . . . . . . . . 308
Appendix V. Examples of L-Functions . . . . . . . . . . .. 313

Index of definitions. . . . . . . . . . . . . . . . ... 323



Chronological table

(In imitation of Hecke’s “Zeittafel” at the end of his “Theorie der
algebraischen Zahlen, and as a partial substitute for a historical survey,
we give here a chronological list of the mathematicians who seem to
have made the most significant contributions to the topics treated in
this volume.)

Fermat (1601-1665)
Euler (1707-1783)
Lagrange (1736-1813)
Legendre (1752-1833)
Gauss (1777-1855)
Dirichlet (1805-1859)
Kummer (1810-1893)
Hermite (1822-1901)
Eisenstein (1823-1852)
Kronecker (1823-1891)

Riemann (1826-1866)
Dedekind (1831-1916)
H. Weber (1842-1913)
Hensel (1861-1941)
Hilbert (1862-1943)
Takagi (1875-1960)
Hecke (1887-1947)
Artin (1898-1962)
Hasse (1898- )
Chevalley (1909— )



Prerequisites and notations

No knowledge of number-theory is presupposed in this book, except
for the most elementary facts about rational integers; it is useful but not
necessary to have some superficial acquaintance with the p-adic valua-
tions of the field Q of rational numbers and with the completions Q,
of Q defined by these valuations. On the other hand, the reader who
wishes to acquire some historical perspective on the topics treated in the
first part of this volume cannot do better than take up Hecke’s unsur-
passed Theorie der algebraischen Zahlen, and, if he wishes to go further
back, the Zahlentheorie of Dirichlet-Dedekind (either in its 4th and final
edition of 1894, or in the 3rd edition of 1879), with special reference
to Dedekind’s famous “eleventh Supplement”. For similar purposes, the
student of the second part of this volume may be referred to Hasse’s
Klassenkorperbericht (J. D. M. V| Part I, 1926; Part 11, 1930).

The reader is expected to possess the basic vocabulary of algebra
(groups, rings, fields) and of linear algebra (vector-spaces, tensor-
products). Except at a few specific places, which may be skipped in a
first reading, Galois theory plays no role in the first part (Chapters I
to VIII). A knowledge of the main facts of Galois theory for finite and
for infinite extensions is an indispensable requirement in the second
part (Chapters IX to XIII).

Already in Chapter I, and throughout the book, essential use is made
of the basic properties of locally compact commutative groups, including
the existence and unicity of the Haar measure; the reader is expected to
have acquired some familiarity with this topic before taking up the
present book. The Haar measure for non-commutative locally compact
groups is used in Chapters X and XI (but nowhere else). The basic facts
from the duality theory of locally compact commutative groups are
briefly recalled in Chapter II, § 5, and those about Fourier transforms
in Chapter VII, § 2, and play an essential role thereafter.

As to our basic vocabulary and notations, they usually agree with
the usage of Bourbaki. In particular, this applies to N (the set of the
“finite cardinals” or “natural integers” 0,1,2,...), Z (the ring of rational
integers), Q (the field of rational numbers), R (the field of real numbers),
C (the field of complex numbers), H (the field of “classical”, “ordinary”
or “Hamiltonian” quaternions). If p is any rational prime, we write F,
for the prime field with p elements, Q, for the field of p-adic numbers
(the completion of Q with respect to the p-adic valuation; cf. Chapter I,
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§3), Z, for the ring of p-adic integers (i.e. the closure of Z in Q). The
fields R, C, H, Q, are always understood to be provided with their usual
(or “natural”) topology; so are all finite-dimensional vector-spaces over
these fields. By F, we understand the finite field with g elements when
there is one, i.e. when q is of the form p", p being a rational prime and
n an integer =1 (cf. Chapter I, § 1). We write R, for the set of all real
numbers =0.

All rings are assumed to have a unit. If R is a ring, its unit is written
1, or 1 when there is no risk of confusion; we write R* for the multi-
plicative group of the invertible elements of R; in particular, when K is
a field (commutative or not), K* denotes the multiplicative group of
the non-zero elements of K. We write R} for the multiplicative group
of real numbers >0. If R is any ring, we write M,(R) for the ring of
matrices with n rows and n columns whose elements belong to R, and
we write 1, for the unit in this ring, i.e. the matrix (d;;) with é;;=1, or 0
according as i=j or i#j. We write ‘X for the transpose of any matrix
XeM,(R), and tr(X) for its trace, i.e. the sum of its diagonal elements;
if R is commutative, we write det(X) for its determinant. Occasionally
we write M,, ,(R) for the set of the matrices over R with m rows and n
columns.

If R is a commutative ring, and T is an indeterminate, we write R[T']
for the ring of polynomials in T with coefficients in R; such a polynomial
is called monic if its highest coefficient is 1. If S is a ring containing R,
and x an element of § commuting with all elements of R, we write R[x]
for the subring of § generated by R and x; it consists of the elements of
S of the form F(x), with FeR[T]. If K is a commutative field, L a field
(commutative or not) containing K, and x an element of L commuting
with all elements of K, we write K(x) for the subfield of L generated by
K and x; it is commutative. We do not speak of a field L as being an
“extension” of a field K unless both are commutative; usually this word
is reserved for the case when L is of finite degree over K, and then we
write [ L: K] for this degree, i.e. for the dimension of L when L is regarded
as a vector-space over K (the index of a group ¢’ in a group g is also
denoted by [g:¢'] when it is finite; this causes no confusion).

All topologies should be understood to be Hausdorff topologies,
i.e. satisfying the Hausdorff “separation” axiom (“separated” in the sense
of Bourbaki). The word “homomorphism”, for groups, rings, modules,
vector-spaces, should be understood with the following restrictions:
(a) when topologies are involved, all homomorphisms are understood to
be continuous; (b) homomorphisms of rings are understood to be * uni-
tary” ; this means that a homomorphism ofaring Rinto a ring S is assumed
to map 1z onto 15. On the other hand, in the case of groups, homo-
morphisms are not assumed to be open mappings (i.€. to map open sets
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onto open sets); when necessary, one will speak of an “open homo-
morphism”. The word “morphism” is used as a shorter synonym for
“homomorphism”; the word “representation” is used occasionally, as a
synonym for “homomorphism”, in certain situations, e.g. when the
homomorphism is one of a group into C*, or for certain homomorphisms
of simple algebras (cf. Chapter IX, § 2). By a character of a group G, com-
mutative or not, we understand as usual a homomorphism (or “represen-
tation”) of G into the subgroup of C* defined by zz=1; as explained
above, this should be understood to be continuous when G is given as
a topological group. The words “endomorphism”, “automorphism”,
“isomorphism” are subject to the same restrictions (a), (b) as “homo-
morphism”; for “automorphism” and “isomorphism”, this implies, in
the topological case, that the mapping in question is bijective and bi-
continuous. Occasionally, when a mapping f of a set A into a set B,
both with certain structures (usually fields), determines an isomorphism
of A onto its image in B, we speak of it by “abuse of language” as an
“isomorphism” of 4 into B.

In a group G, an element x is said to be of order n if n is the smallest
integer =1 such that x"=e, e being the neutral element of G. If K is a
field, an element of K™ of finite order is called a root of 1 in K; in
accordance with a long-standing tradition, any root of 1 of order divid-
ing n is called an n-th root of 1 in K it is called a primitive n-th root of
1 if its order is n. Thus the n-th roots of 1 in K are the roots of the
equation X"=1 in K.

If a, b are in Z, (a, b) denotes their g.c.d., i.e. the element d of N such
that dZ=aZ+ bZ. If R is any ring, the mapping n—n-1, of Z into R
maps Z onto the subring Z-1, of R, known as “the prime ring” in R;
the kernel of the morphism n—n-1; of Z onto Z- 1 is a subgroup of Z,
hence of the form m-Z with meN; if R is not {0} and has no zero-divisor,
m is either 0 or a rational prime and is known as the characteristic of R.
If m=0, n—n-1g is an isomorphism of Z onto Z-1, by means of which
Z -1, will frequently be identified with Z. If the characteristic of R is a
prime p> 1, the prime ring Z- 1, is isomorphic to the prime field F,,.

We shall consider left modules and right modules over non-commu-
tative rings, and fix notations as follows. Let R be a ring; let M and N
be two left modules over R. Then morphisms of M into N, for their
structures as left R-modules, will be written as right operators on M ; in
other words, if « is such a morphism, we write it as m—ma, where meM ;
thus the property of being a morphism, apart from the additivity, is
expressed by r(mo)=(rm)a for all reR and all me M. This applies in
particular to endomorphisms of M. Morphisms of right R-modules are
similarly written as left operators. This notation will be consistently
used, in particular in Chapter IX.
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As morphisms of fields into one another are assumed to be “unitary”
(as explained above), such morphisms are always injective; as we have
said, we sometimes refer to a morphism of a field K into a field L as an
“isomorphism”, or also as an embedding, of K into L. In part of this
book, we use for such mappings the “functional” notation; beginning
with Chapter VIII, § 3, where the role of Galois theory becomes essential,
we shall use for them the “exponential” notation. This means that such
a mapping A is written in the former case as x—A(x) and in the latter
case as x—x*. If L is a Galois extension of K, and A, u are two auto-
morphisms of L over K, we define the law of composition (4, u)—»>Au in
the Galois group g of L over K as being identical with the law (4, u)— Ao
in the former case, and as its opposite in the latter case; in other words,
it is defined in the former case by (1 u)x=A(ux), and in the latter case
by x* =(x**. For instance, if K’ is a field between K and L, and b is the
corresponding subgroup of g, consisting of the automorphisms which
leave fixed all the elements of K’, the automorphisms of L over K which
coincide on K’ with a given one A make up the right coset Al when the
functional notation is used, and the left coset hA when the exponential
notation is used.

When A, B, C are three additively written commutative groups
(usually with some additional structures) and a “distributive” (or “bi-
additive”, or “bilinear”) mapping (a,b)—ab of Ax B into C is given,
and when X, Y are respectively subgroups of A and of B, it is customary
to denote by XY, not the image of X x Y under that mapping, but the
subgroup of C generated by that image, i.e. the group consisting of the
finite sums Y x;y; with x;€X and y;eY for all i. This notation will be
used occasionally, e.g. in Chapter V.

For typographical reasons, we frequently write exp(z) instead of ¢,
and e(z) instead of exp(2niz)=e*"", for ze C; ordinarily e(z) occurs only
for zeR.

Finally we must explain the method followed for cross-references;
these have been inserted quite generously, with a view to helping the
inexperienced reader; the reader is advised to follow them up only when
the argument is not otherwise clear. Theorems have been numbered
continuously throughout each chapter; the same is true for propositions,
for lemmas, for definitions, for the numbered formulas. Each theorem
and each proposition may be followed by one or several corollaries.
Generally speaking, theorems are to be regarded as more important
than propositions, but the distinction between them would hardly stand
a close scrutiny. Lemmas are merely auxiliary results. Not all new con-
cepts are the object of a numbered definition; all concepts, except those
which are assumed to be known, are listed in the index at the end of the
book, with proper references. Formulas are numbered only for purposes
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of quotation, and not as an indication of their importance. When a
reference is given thus: “by prop. 2”, “by corollary 1 of th. 3", etc,, it
refers to a result in the same §; when thus: “by prop. 2 of § 27, “by th. 3
of § 37, etc,, it refers to another § of the same chapter; when thus: “by
prop. 2 of Chap.1V-2”, it refers to proposition 2 of Chapter IV, § 2.
Numbers of Chapter and § are given at the top of every page. A table of
the most frequently used notations is given below, in the order of their
first appearance.

Table of notations

Chapter 1.
§ 2: modg, mod,,, mody.
§ 3¢ Ixlp 1X|w» Qu =R, |x],, Q, (v=rational prime or co).
§ 4: K (any p-field), R, P, , g, ordy, ord, M ™, M.

Chapter II.
§ 3: 1+ P" (as subgroup of K™ for n>1).
§5:€9.9%>6.<9:9%), G* H,, V¥, L, V', [0,v']y, [0,v'], %, ord(»).

Chapter III.
§ 1: (for a place v of an A-field k) |x|,, k,, r,,, p, (for q,, see Chap. VII-1);
oo (as a place of Q), wjv, E,=E® k,, &,, &, &,
§ 3: End(E), Trop, Ny Triopes Ny e

Chapter 1V.
§ 1: P7 Poo’ kA(P)5 kAa X’ Xvs EA(P’B): EA, dAa ‘Q{A(P7a)) (k,/k)A’ (E/k)A
§ 3 AUt(E)a 'Q{Axa 152‘{A(})’a)x, IalA'
§4: ki& Ma Q(P)=kA(P)xs'Ql(P)5 E(P)

Chapter V.
§2: k., E,,x, L,
§3: p,, I(k), id(a), P(k), h, N(a).
§4: |[dx AdX|, R, ¢,.

Chapter VI.
deg(a)’ a >b’ diV(a), D(k)7 P(k)’ DO(k)’ g, le(X)
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§1:

§3:
§5:
§7:
§9:

Chapter VII.

: qw Ck(Cf' §6)

: OF, I—[(Dv, nfxv.

. Q(G), Q,, o,

D Ge=ky kY, Q(GY, 04, 0, G, 2, M, N, 0, [ |w,, Z(w,d).

. G(5), Ga(s), ¢, (cf. Chap. V-8), G,,(s), Co(s), Z.(s).

: f), s,, A, B, Ny, @, k=[]x,, a=(a,), b=(b,), G, A(v), n,, L(s,w),

f, A (s, ).

: Gp, I(P), D(P).

Chapter VIII.

: K, K',n,q,R,P,n,q,R, P, 7, f,e, Tr, N, R, d, D(K'/K), D, 1'.
: A

: v(4), g,

. D, I, mk:/k, m, m.

Chapter IX.

: A, AQB, A°.

T,V

: Cl(A), B(K), K, K., ®, 9, K', K', K., &, p, H(K).
: {X’G}’ [L/K,)Oe]

e 180} Xp, e (.0},

sep?

Chapter X.
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Chapter I
Locally compact fields

§ 1. Finite fields. Let F be a finite field (commutative or not) with the
unit-element 1. Its characteristic must clearly be a prime p> 1, and the
prime ring in F is isomorphic to the prime field F,=Z/pZ, with which
we may identify it. Then F may be regarded as a vector-space over F;
as such, it has an obviously finite dimension f, and the number of its
elements is g=p’. If F is a subfield of a field F’ with ¢ =p’" elements, F’
may also be regarded e.g. as a left vector-space over F; if its dimension
as such is d, we have f'=df and q'=q*=p".

THEOREM 1. All finite fields are commutative.

This theorem is due to Wedderburn, and we will reproduce Witt’s
modification of Wedderburn’s original proof. Let F be a finite field of
characteristic p, Z its center, g=p’ the number of elements of Z; if n is
the dimension of F as a vector-space over Z, F has ¢" elements. The
multiplicative group F* of the non-zero elements of F can be partitioned
into classes of “conjugate” elements, two elements x,x" of F ™ being called
conjugate if there is ye F* such that x'=y~'xy. For each xeF*, call
N(x) the set of the elements of F which commute with x; this is a sub-
field of F containing Z; if (x) is its dimension over Z, it has g°* elements.
As we have seen above, n is a multiple of 6(x), and we have §(x)<#n unless
xeZ. As the number of elements of F* conjugate to x is clearly the index
of N(x)* in F*, i.e. (¢"— 1)/(g°* — 1), we have

(1) g"—1=qg—-1+)

*q
where the sum is taken over a full set of representatives of the classes of
non-central conjugate elements of F*. Now assume that n>1, and call
P the “cyclotomic” polynomial [[(T—{), where the product is taken
over all the primitive n-th roots of 1 in the field C of complex numbers.
By a well-known elementary theorem (easily proved by induction on n),
this has integral rational coefficients; clearly it divides (T"—1)/(T°—1)
whenever 4 is a divisor of n other than n. Therefore, in (1), all the terms
except g — 1 are multiples of P(g), so that P(q) must divide g— 1. On the
other hand, each factor in the product P(q)=][](g—{) has an absolute
value >g—1. This is a contradiction, so that we must have n=1 and
F=2Z.

q"—1
ox) _ 1’
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We can now apply to every finite field the following elementary result:

LemMA 1. If K is a commutative field, every finite subgroup of K*
is cyclic.

In fact, let I" be such a group, or, what amounts to the same, a finite
subgroup of the group of all roots of 1 in K. For every n> 1, there are at
most n roots of X"=1 in K, hence in I'; we will show that every finite
commutative group with that property is cyclic. Let « be an element of I’
of maximal order N. Let f§ be any element of I', and call n its order. If n
does not divide N, there is a prime p and a power g=p’ of p such that ¢
divides n and not N. Then one verifies at once that the order of a g4 is
the l.c.m. of N and g, so that it is > N, which contradicts the definition of
N. Therefore n divides N. Now X"=1 has the n distinct roots «’¥" in T,
with 0 <i<n;as fis a root of X"=1, it must be one of these. This shows
that o generates I'.

THEOREM 2. Let K be an algebraically closed field of characteristic
p>1. Then, Jor every f21, K contains one and only one field F=F,
with q=p’ elements; F consists of the roots of X=X in K; F* conszsts
of the roots of X~ '=1in K and is a cyclic group of order q—1.

If F is any field with g elements, lemma 1 shows that F* is a cyclic
group of order g— 1. Thus, if K contains such a field F, F* must consist
of the roots of X9~ ! =1, hence F of the roots of X9— X =0, so that both
are uniquely determined. Conversely, if g = p/, x - x? is an automorphism
of K, so that the elements of K which are fixed under it make up a field F
consisting of the roots of X?—X =0; as it is clear that X?— X has only
simple roots in K, F is a field with g elements.

CorOLLARY 1. Up to isomorphisms, there is one and only one field
with q=p’ elements.

This follows at once from theorem 2 and the fact that all algebraic
closures of the prime field F, are isomorphic. It justifies the notation F,
for the field in question.

COROLLARY 2. Put q=p’, ¢’ =p’', with f>1, {'>1. Then F,, contains
a field ¥, with q elements if and only if f divides f'; when that is so, F,
is a cyclic extension of F, of degree f'/f, and its Galois group over ¥, is
generated by the automorphism x — x4,

We have already said that, if F contains F,, it must have a finite
degree d over F,, and then q'=¢* and f=df. Conversely, assume that
Jf'=df, hence ¢'= q and call K an algebraic closure of F.; by theorem 2,
the fields F,, F ., contained in K, consist of the elements of K respectively
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invariant under the automorphisms «, 8 of K given by x — x%, x —» x% ; as
p=0o, F, contains F,. Clearly o maps F, onto itself; if ¢ is the auto-
morphism of F,, induced by a, F, consists of the elements of F, invariant
under ¢, hence under the group of automorphisms of F . generated by ¢;
this group is finite, since ¢ is the identity; therefore, by Galois theory,
it is the Galois group of F,, over F_ and is of order d.

COROLLARY 3. Notations being as in corollary 2, assume that ' =df.
Then, for every n>1, the elements of ¥, invariant under x— x%", make
up the subfield of F, with q" elements, where r=(d,n).

Let K be as in the proof of corollary 2; the elements of K, inva-
riant under x —x?", make up the subfield F’ of K with ¢" elements; then
F'nF, is the largest field contained both in F' and F,; as it contains
F,, the number of its elements must be of the form ¢", and corollary 2
shows that r must be (d,n).

§ 2. The module in a locally compact field. An arbitrary field, provided
with the discrete topology, becomes locally compact; thus the question
of determining and studying locally compact fields becomes significant
only if one adds the condition that the field should not be discrete.

We recall the definition of the “module” of an automorphism, which
is basic in what follows. For our purposes, it will be enough to consider
automorphisms of locally compact commutative groups. Let G be such
a group (written additively), 4 an automorphism of G, and « a Haar
measure on G. As the Haar measure is unique up to a constant factor, A
transforms o into ca, with ceR X ; the constant factor ¢, which is clearly
independent of the choice of «, is called the module of A and is denoted by
modg(A). In other words, this is defined by one of the equivalent formulas

(2) (A(X)=modg(au(X), [f(A™ (x)da(x)=mods(4) | f(x)da(x),

where X is any measurable set, f any integrable function, and
O<a(X)< + 0, j fda #+0;the second formula may be written symbolical-
ly asda(A(x))=mod;(A)d a(x). If G is discrete or compact, the first formula
(applied to X={0}, X =G, respectively) shows that the module is
1. Obviously, if 4, A’ are two automorphisms of G, the module of 1o’
is the product of those of 1 and 1'. We shall need the following lemma:

LEMMA 2. Let G’ be a closed subgroup of G, and A an automorphism
of G which induces on G' an automorphism ' of G'. Put G"=G/G’, and
call 2" the automorphism of G" determined by A modulo G'. Then:

modg(4)=modg (4)modg.(1").
In fact, it is well-known that one can choose Haar measures o, o, 0"

on G, G, G” so as to have, for every continuous function f with compact
support on G:
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[ f)data) = [ (] f(x+p)da()do (s
here x denotes the image of x in G”, and the function | f(x+ y)do'(y),
which is written as a function of xeG, but is constant on the classes
modulo G’ in G, is to be understood as a function of x on G” in the obvious
manner. Applying 4 to both sides, one gets the conclusion of the lemma,

Now, if K is any topological field, and aeK™, x—ax and x—xa
are automorphisms of the additive group of K; if K is locally compact,
we may consider their modules. Similarly, if V is a topological left vector-
space over K, v—av is an automorphism of V for every aeK™; if V is
locally compact, we may consider the module of this automorphism;
this will be denoted by mody(a); we also define mod,(0) to be 0. In other
words, if ¢ is a Haar measure on V' and X any measurable subset of V
with 0 <u(X) < + o0 (e.g. any compact neighborhood of 0 in V), mod, (a)
is defined, for all ae K, by

ulaX)
wX)

In particular, for any locally compact field K, we define modg(a) to be
the module of x> ax in K if a £0, and 0 if a=0. It will be seen later that
the module of x—xa is always the same as that of x—ax. Clearly, if
K =R, CorH, modg(a)is equal, respectively, to|al, |a|> =aaor|a|* = (aad)>.

In the rest of this section, K will denote, once for all, a nondiscrete
locally compact field (commutative or not), and « a Haar measure on
the additive group of K.

mod,(a) =

PROPOSITION 1. The function mody is continuous on K, and modg(ab)=
=modg(aymodg(b) for all ac K, be K.

The latter assertion is obvious. Now let X be a compact neighborhood
of 0in K. For any ae K and any £>0, there is an open neighborhood U
of the compact set a X such that a(U)<a(aX)+¢: let W be a neighbor-
hood of a such that WX < U. Then, for all xe W, we have

modg(x) <modg(a)+a(X) e

This shows that mody is upper semicontinuous. In particular, it is con-
tinuous at 0. As modg(x)=modg(x )~ ! for x #0, it is also lower semi-
continuous everywhere on K, hence continuous on K *.

As K is not discrete, prop. 1 shows that there is, for every ¢ >0, aeK
such that 0 <modg(a)<e, hence also, for every M >0, beK such that
modg(h)= M. As mody is not bounded, K cannot be compact.

PrROPOSITION 2. For all m>0, the set B,, of the elements x of K such
that modg(x)<m is compact.
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Let V be a compact neighborhood of 0 in K ; let W be a neighborhood
of 0 such that WV<V. As above, we can choose re VAW such that
0 <modg(r)<1; by induction on r, we have r*e V for all n= 1. If ¥ is any
limit point of the sequence {r"}, ., modg(r') must be 0, since modg(r")
has the limit O for n— + co. Therefore that sequence can have no other
limit point than 0; as it is contained in the compact set V, it has the limit 0.
Now take m>0 and aeB,,; as r"a tends to 0, there is a smallest integer
v>0such that r’aeV;if ais not in V, then »* " a¢V, hence r’ac V—(r V).
Call X the closure of V—(rV); clearly X is compact, and 0 is not in X;
therefore, if we put p=1nf, y modg(x), we have p>0. Let N be an integer
such that mod g(r)" < u/m. Then, if ae B,,, a¢ V, and v is defined as above,
we have

modg(rNm<u< modg(r*a)=modg(r)’ modg(a) < modg(r)’' m,

hence v< N. This proves that B,, is contained in the union of the com-
pact sets V, r"1V,...,r "NV. As prop. 1 shows that B,, is closed, this
completes the proof.

COROLLARY 1. The sets B,,, for m>0, make up a fundamental system
of neighborhoods of 0 in K.

Let ¥V be any compact neighborhood of 0 in K; take
m>sup, ., modg(x), so that B,, o V; call X the closure of B,,— V, and put
m'=inf,_ymodg(x). Then 0¢X and X <B,, so that, by prop. 2, X is
compact; therefore 0 <m’'<m. Take O<u<m’; then B,cB,, B,nX =9,
hence B, V.

COROLLARY 2. For aeK, lim, . . a"=0 if and only if modg(a)<1.
COROLLARY 3. A discrete subfield of K is finite.

Let L be such a field. If ae L, we must have mody(a)< 1, since other-
wise, by corollary 2, the sequence {a "}, ., would be contained in L and
not discrete. Therefore L is a discrete subset of the compact set B,
hence finite. Of course this cannot happen if K is of characteristic O.

THEOREM 3. Let V be a topological left vector-space over K, and
let V' be a finite-dimensional subspace of V, with a basis {v,, ..., v,}. Then
the mapping

n
(xla (] xn)_> z xivi
i=1

of K" onto V' is an isomorphism for the structures of K" and V' as topological
left vector-spaces; V' is closed in V and locally compact.

Let f be the mapping defined above; it is bijective, K-linear, and
continuous by the definition of a topological vector-space. In order to
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show that it is an isomorphism, it is enough to prove that f~! is conti-
nuous, i.¢. that f is an open mapping; in view of corollary 1 of prop. 2
and of the linearity of f, we need only show that the image of (B,,)" by f
contains an neighborhood of 0 in V' for every m>0. Call S the subset
of K" defined by

Supi mOdK(Xl) = 1.

Then 04S; by prop. 1, S is closed; it is contained in (B,)", hence compact
by prop. 2. Therefore 04 f(S), and f(S) is compact. Hence there exists a
neighborhood W of 0 in ¥, and a neighborhood of 0 in K which we may
assume to be of the form B, with £ >0, such that B, Wc V—f(S), i.e.
yWnf(S)=0 whenever modg(y)<e. Now take m>0, and take acK
such that 0 <modg(a)<me. Let v= x;v; be any point in V'~ a W, other
than 0, and take h such that sup,mod(x;)=modg(x,); then x,#0. Put
xi=x, x; for 1<i<n, and

As (x,...,x,) is in S, we have v'ef(S); as vea W, we have v'ey W with
y=x; 'a; by the definition of W and ¢, this implies mod,(y) > ¢, hence
modg(x;) <& 'modyg(a)<m. Therefore (xy,...,x,) is in (B,)", and v is
in the image of that set by f. We have thus shown that this image contains
V'~ a W, which is a neighborhood of 0 in V. Let now w be in the closure
of V' in V, and apply what we have proved to the finite-dimensional
subspace V" of V generated by V' and w; we see then that 7’ must be
closed in V”. As this implies that weV’, it completes the proof of the
theorem.

CoROLLARY 1. Every finite-dimensional left vector-space over K can
be provided with one and only one structure of topological left vector-
space over K.

In fact, if V is of dimension n, one can define such a structure on V by
means of any K-linear bijective mapping of K" onto V; the unicity is an
immediate consequence of th. 3 applied to V. From now on, every such
vector-space will tacitly be assumed to carry the structure defined by
this corollary.

COROLLARY 2. If V is a locally compact topological left vector-space
over K, then V has a finite dimension d over K, and mod, (a)=mod(a)’
Jor every acK.

The latter assertion, for a space of dimension d, is an immediate
consequence of Fubini’s theorem and of the fact that such a space is
isomorphic to K? by corollary 1. Now assume merely that V is locally
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compact, and take ae K such that 0 <modg(a)< 1. Then, by corollary 2
of prop. 2, lima"=0, hence mod,(a)<1. Let V' be a subspace of V of
finite dimension J; by th. 3, it is closed in V; put V"= V/V'. By lemma 2
we have then

mody (a)=mod, (a)mod,.(a) = modg(a)’ mod,.(a),

and therefore, since mod,.(a) also must be <1 if ¥ #{0}, and is 1 if
V'={0}:
mody(a) < modg(a)°.

This gives an upper bound for 4. valid for the dimension of all finite-
dimensional subspaces of V; therefore V itself has a finite dimension.

If V is a left vector-space over K, of finite dimension n, topologized
as we have said above, Fubini’s theorem shows at once that every sub-
space of V of dimension n’ <n is of measure 0. Now let 4 be any K-linear
mapping of V into V; if it is of rank &, it is an automorphism of V also in
the topological sense, and we may consider its module mod,(A). If it is
of rank n' <n, it maps ¥ onto a subset of V of measure 0, and we define
mod,(A4) to be 0.

COROLLARY 3. Let A be an endomorphism of a left vector-space V of
finite dimension over K. If K is commutative, then mod, (A)=modg(det A).

Call n the dimension of V. If 4 is of rank <n, the assertion is clear.
H not, identify V with K" by choosing a basis for V. It is well-known that
every automorphism of K" can be written as a product of automorphisms
of the following three types: (a) permutations of the coordinates;
(b) mappings of the type

(x13x2’ ""xn)_)(axl’x2> “-axn)

with ae K*; (¢) mappings of the type

i=

n
(x1,%5, ...,xn)—>(x1+ Y a;x;,x,, ...,x,,).
i=2

For type (a), the assertion is obvious; for types (b) and (c), it follows
from a straightforward application of Fubini’s theorem, just as in classi-
cal analysis (where one proves the theorem for the case K=R).

PROPOSITION 3. The function modg induces on K* an open homomor-
phism of K™ onto a closed subgroup T' of R

Call I, I'" the images of K™ and of K under the mapping mody;
clearly I' is a subgroup of R}, and I''=I"u{0}. For every m>0, the
intersection of I"” with the closed interval [0,m] is the image of B,, under
modg; by prop. 1 and 2, this is compact; therefore I is closed in R,
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and I is so in R%. Now call U the kernel of mod, in K*, i.e. the set
{xeK|modg(x)=1}. Let V be any neighborhood of 1 in K*, and V' its
image under mody; in order to prove the openness of the homomorphism
mody of K* ento I', we have to show that V' is a neighborhood of 1 in I".
Assume that this is not so; then there is a sequence (y,) in I'— V" such
that limy,=1. For each n, let a,e K™ be such that y,=modg(a,). By
prop. 2, the sequence (a,) has at least one limit point a; clearly mod(a)=1,
i.e. aeU. But UV is a neighborhood of U, and so there must be some n
such that a,e UV, hence y,e V'. This contradicts the assumption.

THEOREM 4. There is a constant A >0 such that
3) mody(x + ) < A sup(mod(x), modx(y))

for all xeK, ye K. If (3) is valid for A=1, then the image I of K™ under
mody is discrete in RY. Morever, (3) is valid for

A=SUP, g modg(xy<1 MOdg(14x),

and this is the smallest value of A for which it is valid.

Define A by the last formula; clearly 1< A< + o. For x=y=0, (3)
is obvious; otherwise we may, after interchanging x and y if necessary,
assume that x # 0 and modg(y) <modg(x). Putz=yx~!; then modg(z)< 1,
hence modg(1 + z)< A4, and therefore

mody(x + y)=modg(1 + z)modg(x) < A mod (x).

This proves (3). Also, taking y=1 and x€ B, in (3), with B, as in prop. 2,
we see that the value we have chosen for A is the smallest for which (3)
can be valid. Now assume A=1. Then the image of 1+ B; by mody is
contained in the interval [0,1]; as this, by prop. 2 and 3, must contain a
neighborhood of 1 in I', I must be discrete.

COROLLARY. If (3) is valid with A=1, then modg(x + y)=mod(x)
whenever modg(y) < modg(x).

As (—1)*=1, we have mody(—1)=1, hence modg(— y)=mod(y).
As x=(x+y)+(—y), our assumptions imply

modg(x) <sup(mod(x + y), modg(y)) < mod g(x),

hence the conclusion.

DEFINITION 1. The inequality (3) with A=1 is called the ultrametric
inequality; if this is valid, then mody, and K itself, are said to have the
ultrametric property, or to be ultrametric.

§ 3. Classification of locally compact fields. Here we shall need the
following elementary lemma:
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LEMMA 3. Let F be a function on the set N of natural integers, with
values in R . Assume that F(mn)=F(m)F(n) for all m, n, and that there is
A >0 such that

F(m+n)< Asup(F(m), F(n))
for all m, n. Then either F(m)<1 for all m, or there is A>0 such that

F(m)=m* for all m.

The first assumption on F implies, for m=0, that F(0)=0 unless F
is the constant 1, and, for m=1, that F(1)=1 unless F is the constant 0;
it also implies that F(m*)=F(m)* for all integers k> 1. Leaving aside the
trivial cases where F is the constant 0 or 1, we may assume that F(0)=0
and F(m*)=F(m)* for all integers k>0. Put f(m)=sup(0,logF(m)), this
being understood to mean in particular that f(m)=0 whenever F(m)=0.
Our lemma amounts now to saying that f(m)=Alogm for all m>2, with
some constant 4=0. Put a=sup(0,log 4); then we have, for all m, n, k:

f)=kf(m), fmm)<f(m)+f(n), f(m+n)<a-+sup(fim), f(n).

The last relation gives, by induction on r:

@ f(li mi) <ra+sup,(f(my).

Now let m, n be integers >2; m may be expressed in the form
m=Y en,
i=0
with " <m<n"*!, and 0<e;<n for 0<i<r. Put
b= Sup(f(O), f(l)s vees f(n - 1))
Then we have, for every i:
flen)<b+if(n),
and therefore, in view of (4):
Sm)y<ra+b+rf(n).

Asn"<m,ie. rlogn<logm, this gives

f(m) _a+f() , b

logm = logn logm

In this inequality, replace m by m*; this does not change the left-hand side,
and, for k— + o0, we get

Son) _ a+f(n).

logm ~ logn
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Now replace n by n*; for k— + oo, we get

fim) _ f()

logm ~ logn "
Interchanging m and n, we see that f(m)/logm is constant for m=>2; as
we have observed above, this proves the lemma.

Now we consider again a non-discrete locally compact field K. For
greater clarity, in the rest of this section, we shall denote by 1 (not by 1)
the unit-element of K; then the prime ring in K consists of the elements
m- 15 with meZ; if K is of characteristic p> 1, then p- 1,=0. For meN,
we write F(m)=modg(m - 15); then, for every meZ and every xeK, we
have modg{(mx)=F(lm|)modg(x).

LemMa 4. Assume that F is bounded, i.e. that mody is bounded on
the prime ring in K. Then F <1, and mody is ultrametric on K.

Since F(mn)=F(m)F(n), the first assertion is obvious. Now let 4
beasinth.40of§2;taken>1, put N=2" and let x,, ..., x5 be N eclements
of K. By induction on s, one gets the inequality

N

modK< Y xi) < A" sup;(modg(x;)).

i=1

Replacing some of the x; by 0, one sees that this same inequality remains
valid whenever N <2". Applying this to the relation

(x+ )2"_ % <2n> xi n—i
Y _i=0 i Y ’
we get

modg(x+y)?"< A"t 'sup; (F <(2’n>> modK(x)imodK(y)Z"‘i> :
Assume for instance that modg(y) <modg(x); as F <1, we get:
modg(x+y)*" < A" ' modg(x)*".
This is so for all n=1; for n— + oo, we get
modg(x + y) <mod(x),
i.e. the ultrametric inequality.

Next we recall the definition of the usual “valuations” on the field Q
of rational numbers. Let first p be a rational prime. Every xe Q™ can be
written in one and only one way in the form x=p"a/b, where n, a, b are
integers, b>0, and a and b are relatively prime to each other and to p;
when that is so, put |x|,=p~"; also, put |0|,=0. The function x—|x|,
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defined in this way on Q is known as the p-adic valuation on Q; clearly it
satisfies the ultrametric inequality; it determines a topology on Q, viz.
the one defined by the distance function

o(x, y)=|x—yl,.

The completion of Q for this metric is the field of p-adic numbers and is
denoted by Q,,; the closure of Z in that field is the ring of p-adic integers
and is denoted by Z . Clearly the p-adic valuation on Q can be extended
by continuity to Q, and remains ultrametric on Q,; this extension is
still denoted by |x],. It is easily seen that Z, is compact (the reason for
this may be expressed by saying that Z, is the “projective limit” of the
finite groups Z/p"Z for n— + c0); as it is a neighborhood of 0 in Q,,Q,
is locally compact; clearly it is not discrete.

On the other hand, we shall write {x|,, whenever convenient, instead
of |x|, for the “ordinary” absolute value on Q and on R. As R is nothing
else than the completion of Q for the distance function {x — |, we shall
sometimes write Q_, for R. Thus the symbol Q,, where v may be either oo
or a rational prime, denotes any one of the completions Q=R and

Q,of Q.

THEOREM 5. Let K be a non-discrete locally compact field; put
F(m)=modg(m- 1) for meN. Then: either (a) K is of characteristic
p>1, and then F(m)=0 for m=0 (mod. p) and F(m)=1 for (m,p)=1; or
(b) K is a division algebra of finite dimension é over a field Q,, and then
F(m)=|ml.

By prop. 1 and th. 4 of § 2, F satisfies the assumptions in lemma 3;
hence, by that lemma, it is of the form m—m?* with A>0, or it is <1.
Assume that we are in the latter case; with B, as in prop. 2 of §2, this
means that the sequence (m - 1), for me N, is contained in B;; as B, is
compact, it must have at least one limit point a. Then, by corollary 1 of
prop. 2, there are, for every &>0, infinitely many meN such that
modg(m - 1y —a)<e. Let m, m be two such integers, with m<m’. Since
F <1 implies, by lemma 4, that mody is ultrametric, we have then

modg(m' - 1gx—m- 1) <¢,

i.e. F(m'—m)<e. In particular, this shows that there are integers n>1
such that F(n)<1; let p be the smallest of such integers. Since F(mn)=
= F(m) F(n) for all m, n, clearly p must be a prime. For any xe N, we have
F(px)<1, hence F(1+px)=1 by the corollary of th. 4, §2. For any
integer m>1, prime to p, we have m?~'=1 (p), hence F(m?~)=1 by
what we have just proved, and therefore F(m)= 1. If K is of characteristic
p’'>1, then F(p')=0, so that p’ can be no other than p; then F is as stated
in case (a) of our theorem. If K is of characteristic O, F(p) cannot be 0,
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and we may put F(p)=p~* with 1>0; then F(m)=|m;, for all m, as one
sees at once by writing m=p"m’ with (m',p)=1. Accordingly, whenever
K is of characteristic 0, F must be of the form m— |m|? with 1>0. The
mapping n—n - 1 of Z onto the primering Z - 1 of K is then an algebraic
(not necessarily a topological) isomorphism, which can be extended to
an isomorphism of Q onto the prime field in K; to simplify the language,
identify the latter with Q by means of that isomorphism. From what we
have found about F, it follows at once that mody induces the function
x—|x|? on Q; therefore, by corollary 1 of prop. 2, § 2, the topological
group structure induced on Q by that of K is the one determined by the
distance function |x—y|,. As the closure of Q in K is locally compact,
hence complete for that structure, it follows that this closure is isomorphic
to the completion Q, of Q for the valuation v. As the prime ring, hence
also the prime field, are clearly contained in the center of K, the same is
true of Q,. Now K can be regarded as a vector-space over Q,; as such,
by corollary 2 of th. 3, § 2, it must have a finite dimension J, and we have,
for every xeQ,, modg(x)=modg (x)’. To complete the proof, it only
remains to be shown, in the case v=o0, that modg(m)=m for meN,
which is clear, and, in the case v=p, that modg,(p)=p~"'; this follows
at once from the fact that Z, is a compact neighborhood of 0 in Q,, and
that its image p-Z,, under x->px, is a compact subgroup of Z, of
index p, so that its measure, for any Haar measure o on Q,, is p~ ' a(Z,).
It will be convenient to formulate separately what has just been proved:

COROLLARY. In the case (b) of theorem 5, modg(x)=|x|? for x€Q,.

DEFINITION 2. A non-discrete locally compact field K will be called
a p-field if p is a prime and modg(p- 1x) <1, and an R-field if it is an algebra
over R.

By lemmas 3 and 4 and th. 4 of § 2, the image I" of K* under mody is
discrete when K is a p-field, so that such a field cannot be connected; this
shows that a topological field is an R-field if and only if it is connected and
locally compact. It is well known that there are no such fields except R,
C and the field H of “ordinary” (or “classical”) quaternions; a proof for
this will be included in Chap. 1X-4.

§ 4. Structure of p-fields. In this section, p will be a prime and K will
be a p-field with the unit element 1.

THEOREM 6. Let K be a p-field; call R, R* and P the subsets of K
respectively given by

R={xeK|modg(x)<1}, R™={xeK|modg(x)=1},
P={xeK|modg(x)<1}.
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Then K is ultrametric; R is the unique maximal compact subring of K,
R ™ is the group of invertible elements of R; P is the unique maximal left,
right or two-sided ideal of R, and there is neP such that P=nR=Rn.
Moreover, the residual field k=R/P is a finite field of characteristic p;
if q is the number of its elements, the image T of K™ in R under mody

is the subgroup of R generated by q; and mody(m)=q 1.

The set R is the same as the one previously denoted by B, ; it is com-
pact, and so is R™. By th. 5 of § 3, modg is <1 on the prime ring of K;
therefore, by lemma 4 of § 3, K is ultrametric. This, by th. 4 of § 2, is the
same as to say that R+ R=R; as R is obviously closed under multipli-
cation, it is a ring. Clearly every relatively compact subset of K which is
closed under multiplication is contained in R; therefore R is the maximal
compact subring of K. The invertible elements of R are those of R™.
By th. 4 of § 2, I' is a discrete subgroup of R ; let y be the largest element
of I' which is <1, and let ze K™ be such that modg(n)=y. Clearly y
generates I'; therefore, for every xe K™, there is one and only one neZ
such that modg(x)=7y" then x2~" and 7~ "x are in R*. It is clear that
P=nR=Rm; this implies that P is compact. As R—P=R™, P has the
maximal properties stated in our theorem. As R is a neighborhood of 0,
and R=R+R, R is open; so is P; as R is compact, k=R/P is finite. As
p-1eP, the image of p-1 in k is 0, so that k is of characteristic p; if it
has g elements, g is the index of P == R in the additive group of R. There-
fore, if « is a Haar measure on K, a(R)=qa(nR), hence modg(r)=¢q".
This completes the proof. .

DEFINITION 3. With the notations of theorem 6, g will be called the
module of K; any element m of K™ such that P=n R= R will be called
a prime element of K. For any xe K™, the integer n such that mod g(x)=q "
will be denoted by ordg(x). For each neZ, one writes P*=n"R=Rx".

We will write ord(x), instead of ordg(x), when there is no danger of
confusion. We also put ord(0)= + co; then P" is the set of the elements
x of K such that ord(x) > n. With these notations, we can state as follows
some corollaries of theorem 6:

COROLLARY 1. Let (xg,Xy,...) be any sequence with the limit 0 in K.
+

Then the series Z X; is commutatively convergent in K.
0

For each neN, put
&, =Ssup;» ,modg(x,).

Our assumption means that lime,=0. Let now S, §' be two finite sums
of terms in the series z X;, both containing the terms x,,x,, ..., x, and
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possibly some others. The ultrametric inequality gives modg(S —S')<e,.
The conclusion follows from this at once (the “filter” of finite sums of
the series ) x; is a “Cauchy filter” for the distance-function modg(x — y)).

COROLLARY 2. Let £ be an element of P, other than 0; put n=ord(&),
and let A be a full set of representatives of the classes modulo P" in R.
Then, for all veZ, every xe P™ can be expressed in one and only one way
in the form

+ o 3
x=) a;&
with a;e A forallizv.

Writing x=x"£* with x'e R, we see that it is enough to deal with the
case v=0. Then one sees at once, by using induction on N, that one can
determine the g;€ 4 in one and only one way by the condition

N
x= 2 aiii (Pn(N+ 1))
i=0
for N=0,1, ... This is equivalent with the assertion in our corollary.

COROLLARY 3. Every automorphism of K (as a topological field)
maps R onto R, P onto P, and has the module 1 when it is viewed as an auto-
morphism of the additive group of K.

COROLLARY 4. For every acK”™, the automorphisms x—ax and
x—xa of the additive group of K have the same module.

This follows at once from corollary 3, applied to the automorphism
x—a~ ' xa. As the same fact is easily verified for the field H of “ordinary”
quaternions, it holds for all locally compact fields.

COROLLARY 3. Let K be a commutative p-field, and K’ a division
algebra over K. Then K’ is a p-field; every automorphism of K’ over K in
the algebraic sense is a topological automorphism; and, if R and R’ are
the maximal compact subrings of K and of K', and P and P’ are the maximal
ideals in R and in R, then R=KANR' and P=KnP'.

Regarding K’ as a finite-dimensional vector-space over K, we provide
it with its “natural” topology according to corollary 1 of th. 3, §2. As
this is unique, it is invariant under all K-linear mappings of K' onto
itself, and in particular under all automorphisms of K’ over K. Identifying
K, as usual, with the subfield K - 1. of K', we see that K’ is not discrete.
By corollary 2 of th. 3, § 2, and th. 5 of § 3, it is a p-field. The rest is obvious.

COROLLARY 6. Assumptions and notations being as in corollary 5,
call g and q' the modules of K and of K', respectively; let m be a prime
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element of K, and put e=ordg.(n). Then ¢ =q’, where f is an integer > 1,
and the dimension of K’ over K is ef.

Put k=R/P and k' = R'/P’; in view of the last assertion of corollary 5,
we may identify k with the image of R in k'=R’/P’; if then f is the degree
of k" over k, we have ¢’ =q/. Now apply corollary 2 of th. 3, § 2, to modg(r)
and to modg.(n); we get the result stated above.

The last corollary shows in particular that ordg.(m) is =1 and is
independent of the choice of the prime element = in K. This justifies the
following definition:

DEFINITION 4. Let assumptions and notations be as in corollaries 5
and 6 of theorem 6. Then e is called the order of ramification of K' over
K, and f the modular degree of K' over K; K' is said to be unramified
over K if ¢ =1, and to be fully ramified over K if f=1.

PROPOSITION 4. Let K be a commutative p-field; let K' be a fully
ramified division algebra of finite dimension over K; let R, R’ be the
maximal compact subrings of K and of K', respectively, and let n' be a
prime element of K'. Then K'=K(n'), R’ =R[n’], and K’ is commutative.

Let P, P’ be the maximal ideals in R and in R, respectively, and
let A be a full set of representatives of the classes modulo P in R. As
K is fully ramified over K, corollaries 5 and 6 of theorem 6 show at once
that A is also a full set of representatives of the classes modulo P’ in R'.
Applying corollary 2 of th. 6 to K, R', P’ and 4, and to {=n', we see

e— 1
that the elements of R’ of the form Z a;n", with a;e A for 0<i<e—1,

make up a full set of representatlves A’ of the classes modulo P in R'.
Take now a prime element = of K, and put e=ordg.(n); e is the order
of ramification of K’ over K, hence also the dimension of K’ over K,
by corollary 6 of th. 6. Applying now corollary 2 of th. 6 to K', R’, P*, A’

and to ¢é=m, we see that every element of P'® can be written in one
+ oo
and only one way in the form Z a;nf, with aje A’ for all j>v. As K is

. . j=v . .
contained in the center of K',n commutes with 7’; therefore, in view of
the definition of A4’, every such element can be written as

e=1 + o0 i .
2 <Z a,-jn1> L
i=0 i=v
with a;;e A for 0<i<e—1, j>v, or, what amounts to the same in view
e—1
of corollary 2 of th. 6, as Y a;n"* with o;e P* for 0<i<e—1. This shows
i=0

that K'= K (), and, for v=0, it shows that R'=R[7']. As K is contained
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in the center of K', 7" commutes with all elements of K; therefore K’ is
commutative.

CoORrROLLARY 1. Let K be a commutative p-field of characteristic p;
call K? its image under the endomorphism x—x?, and let m be a prime
element of K. Then K is a fully ramified extension of K” of degree p, and
K=K?(n).

Put K'=K?; x—xF is an isomorphism of K onto K’, which we may
use to transfer to K’ the topology of K; K may then be regarded as a
topological vector-space over K'; as such, by corollary 2 of th. 3, § 2, it
must have a finite dimension. This shows that K is of finite degree over
K'. As K and K’ are isomorphic, they have the same module, so that
the modular degree of K over K' is 1. By proposition 4, this implies
that K=K'(n); as n?e K’, the degree of K over K’ must be p or 1. As
ordg(n)=1, m is not in K?, so that K+ K’. Therefore K is of degree p
over K.

COROLLARY 2. Let K be as in corollary 1, and let K be an algebraic
closure of K. Then, for every n>0, K contains one and only one purely
inseparable extension of K of degree p"; this is the image K* " of K
under the automorphism x—x? " of K.

It follows at once from corollary 1 that K?™" is of degree p over K;
by induction on n, one sees then that K? " is of degree p" over K. On
the other hand, it is well-known, and easily proved, that, if K’ is purely
inseparable of degree <p”" over K, it must be contained in K? . Our

conclusion follows from this at once.

THEOREM 7. Let K be a p-field; call q its module, R its maximal com-
pact subring and P the maximal ideal of R. Then K* has at least one
subgroup of order q—1; every such subgroup is cyclic; if M™ is such a
subgroup, the set M=M>U{0} is a full set of representatives of the
classes modulo P in R, and there is a prime element n of K such that
aM* =Mz If K is commutative, there is only one such group M* ;
it is the group of the roots of 1 of order prime to p in K.

The construction of M* depends upon the following lemma:
LEMMA 5. For all n20, (1+Py¥"c1+P"* 1.

This can be immediately verified by induction on n. It amounts to
saying that,if x=1 (P),x”"=1 (P"*1),

Now call p the canonical homomorphism of R onto k=R/P. By th. 2
of §1, k™ is cyclic of order g—1. In particular, for all xeR™, we have
p(x)P1=1, ie. x37'=1 (P). If g=p’. lemma 5 shows now that
x4™ V=1 (P/"*1); this can also be written as

xq"* = x7" (Pf"+ 1)'
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Applying now corollary 1 of th. 6 to the series
x4 (x4 —x)+ (xT —x9)+---,
we see that it is convergent for all xe R, so that we may write
w(x)=lim,_, ; , x7°

for xeR™, and of course also for xeP, hence for all xeR. Clearly
w(xy)=w(x)w(y) whenever x y=yx; in particular, we have w(x")=w(x)"
forall xe R*, veZ. As the above series for w(x) shows, we have w(x)=x (P)
for all xeR; obviously w(x)=0 for xe P, and lemma 5 shows that ¢ (x)=1
for xe1+4P. Therefore @ *(0)=P and o '(1)=1+P. As x*" '€l +P
for all xeR*, we have w(x)?"!=1 for xeR*. Take a representative x,
in R* of a generator of the cyclic group k™ =(R/P)*, and put pi; =w(x,);
for neZ, we have y} =1 if and only if w(x])=1; as this is equivalent to
x}=1 (P), hence to n=0 (g—1) in view of our choice of x,, this shows
that p, generates a cyclic subgroup of R* of order g—1. Conversely,
let I be any finite subgroup of K™ of order n prime to p; clearly it is a
subgroup of R*. The image of ¢, in the multiplicative group (Z/nZ)* of
the integers prime to n modulo n, must have a finite order N; then
g¥=1(n). As z"=1 for every zeI', we get now z%" =z for all v>0 and all
zel', hence w(z)=z, so that z=1 (P) implies z=1. This shows that the
morphism of I into k* =(R/P)™ induced by p is injective, and therefore
that I' is cyclic, that its order divides g — 1, and that, if it is of order g —1,
I'u{0} is a full set of representatives of R/P in R. In particular, if K is
commutative, we see that w induces on R* a morphism of R™ onto the
group M™ of the (g—1)-th roots of 1 in K, that it maps R onto
M =M * U {0},and that it determines a bijection of R/P onto M ; moreover,
every subgroup I' of K* of order prime to p is then contained in M*; in
particular, M ™ contains all the roots of 1 of order prime to p in K. As to
the existence of a prime element of K with the property stated in our
theorem, it is trivial if K is commutative. Assume that this is not so,
and take any prime element 7 of K. For every acK*, x—»axa™ ' is an
automorphism of K; by corollary 3 of th. 6, it maps R onto R, P onto P,
so that it determines an automorphism A(a) of k= R/P; clearly a - A(a)
is a homomorphism of K™ into the group of automorphisms of k. For
acR*, Aa) is E—p(a)é p(a)” !, which is the identity since k is commu-
tative. Therefore, if a is any element of K™, and ord(a)=n, A(a)=/(n)".
By corollary 2 of th. 2, § 1, applied to k and to the prime field in k, A(rn)
must be of the form ¢ — £77; this means that we have, for every xeR:

axn l=x" (P),
or, what amounts to the same:

nx=x"n (P?).
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Take now M ™ as above, and put

n=— Y wmpt
peM>
In view of the above congruences, each one of the g — 1 terms in the sum
in the right-hand side is = modulo P2, Since q - 1€P, this gives

w=(l-gqn=n (P,

which implies that n’ is a prime element of K. At the same time, the
definition of ' gives

mp=p"n
for all ueM ™, and therefore 7'M ™ =M > n’. This completes the proof.
One could show, by a similar argument, that,if M and N* are two

subgroups of K™ of order g—1, there is a prime element = of K such
that tM* =N"n.

COROLLARY 1. If K and M are as in theorem 7, and K is of charac-
teristic p, then M is a subfield of K. If at the same time K is commutative,
M is the algebraic closure of the prime field in K.

Let k, be the prime field in K, and let u be a generator of the group
M. Then ky(u) is a commutative field of characteristic p in which the
equation X?— X =0 has q roots, viz., the elements of M; therefore, by
th. 2 of § 1, M is a field. If K is commutative, every element, other than 0,
of the algebraic closure of k, in K is a root of 1 of order prime to p,
again by th. 2 of § 1; therefore, by theorem 7, it must be in M.

COROLLARY 2. Let K be a commutative p-field, q its module, and K’
an extension of K of finite degree, generated by roots of 1 of order-
prime to p. Then K’ is unramified and cyclic over K, and its Galois group
over K is generated by an automorphism ¢ which induces the permutation
— p? on the group of roots of 1 of order prime to p in K'.

By corollary 5 of th. 6, K' is a p-field. Let R, P, ¢, k, p, M™ be as in
theorem 7 and its proof, and let R', P, ¢', k', p’, M'™ be similarly defined
for K'. By theorem 7, K’ is generated over K by M’*, i.e. by the roots of
X7~ 1=1; therefore it is a Galois extension of K, and an automorphism
of K’ over K is uniquely determined by the permutation it induces on
M'*. By corollary 5 of th. 6, we have R=KnR', P=KnP'; we may
therefore identify k with a subfield of k', and then p is the mapping
induced by p’ on R. Let o be an automorphism of K’ over K; as it maps
R’ onto R’, P’ onto P’, and leaves fixed every element of R, it determines
an automorphism A{x) of k' over k. Then 4, i.e. the mapping a— A(x), is
a morphism of the Galois group of K’ over K into that of k" over k. By
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corollary 2 of th. 2, § 1, A(x) must be of the form &— £%°. Therefore we
have, for all peM'>:

p'(a(m)=p'(W)*=p'(u7).
As p’ induces on M'*, by theorem 7, an isomorphism of M'* onto k',
this implies that a(u)=u?". In particular, if s=0, i.e. if A() is the identity,
o is the identity; this shows that A is injective; therefore, if n is the degree
of K’ over K, and f that of k' over k, we have n< f. As ¢'=q’, corollary 6
of th. 6 shows now that K’ is unramified over K and that n={ so that 4

is an isomorphism of the Galois group of K’ over K onto that of k" over k.
In view of corollary 2 of th. 2, § 1, this completes our proof.

CoROLLARY 3. Let K and q be as in corollary 2; then a division
algebra of finite dimension over K is unramified if and only if it is commu-
tative and can be generated over K by roots of 1 of order prime to p. For
every f=1, K has one and (up to an isomorphism) only one unramified
extension of degree f; this is the extension generated over K by a primitive
(g —1)-th root of 1.

Let K’ be an unramified division algebra of dimension f over K; let
g, ¢ be the modules of K and of K', respectively; then ¢’ = ¢, by corollary 6
of th. 6. Take a subgroup M'* of K’* of order ¢'—1; by theorem 7, it is
cyclic; take a generator pof M’ ™, and put K" = K(u). Clearly K" is commu-
tative; as it contains M, its module is at least ¢’, so that, by corollary 6
of th. 6, its degree over K is at least f; therefore K" =K', which, together
with corollary 2, proves the first part of our corollary. Now take any
f=1; put ¢ =¢’, and call K’ the extension of K generated by a primitive
(¢ —1)-th root of 1, or, what amounts to the same, by the set M’ ™ of all
the roots of X7 ~!=1; by theorem 7, its module is at least ¢, so that, by
corollary 6 of th. 6, its degree over K is at least f. On the other hand, by
corollary 2, it is unramified and cyclic over K, and its Galois group over
K is generated by the automorphism ¢ defined there; as ¢/ induces the
identity on M'*, it is the identity, so that the degree of K’ over K is at
most f. Thereforeitis f. As the foregoing results show that every unrami-
fied extension of K of degree f must contain an extension isomorphic
to K, this completes our proof.

COROLLARY 4. Let K' be a finite extension of a commutative p-
field K; call f its modular degree over K, and e its order of ramification
over K. Then there is a unique maximal unramified extension K, of K,
contained in K'; it is of degree f over K, and K' is fully ramified of degree
e over K.

This follows at once from the foregoing results, K; being generated
by the roots of 1 of order prime to p in K.
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DEFINITION 5. Let K be a commutative p-field, and K' an unramified
extension of K; the generator ¢ of the Galois group of K' over K which
is defined by corollary 2 of theorem 7 is called the Frobenius automorphism
of K’ over K.

In corollary 2 of theorem 6, one can take for £ a prime element =
of K, and then take for A the set M defined in theorem 7. For commu-
tative fields of characteristic p, this gives the following:

THEOREM 8. Every commutative p-field of characteristic p is iso-
morphic to a field of formal power-series in one indeterminate with coeffi-
cients in a finite field.

Take notations as in theorem 7; corollary 1 of th. 7 shows that M is
a field with ¢ elements. Taking é=n and A=M in corollary 2 of th. 6,
we get for every xe K with ord(x)>n a unique series expansion

+ o .

_ i

x_é wmn,
i=n

with ;e M for all i = n. One verifies at once that the rules for the addition
and multiplication of such series are the usual ones for formal power-
series in algebra (or for convergent power-series in classical analysis).
Moreover, this is an isomorphism also in the topological sense if the
field of formal power-series is provided with its usual topology, that for
which the ring R, of “integral” power-series (those containing no power
of the indeterminate with an exponent <0), and the ideals generated
in it by the powers of the indeterminate, make up a fundamental system
of neighborhoods of 0. We recall that, for this topology, the ring R, of
integral formal power-series in one indeterminate over any finite field F
is compact, since the additive group of R, is clearly isomorphic to the
product of enumerably many groups isomorphic to F; therefore the
corresponding field is locally compact. Thus theorem 8 shows that the
commutative p-fields of characteristic p are all of that type, so that (up
to an isomorphism) they are in a one-to-one correspondence with the
finite fields F,, with g=p", n>1.

By a local field, we will understand a commutative non-discrete
locally compact field. We have thus obtained a complete list of the local
fields of characteristic p> 1, while those of characteristic 0 are given by
theorem 5 of § 3; they are R, C and the finite algebraic extensions of the
fields Q,, for all p.

Using the same idea as in the proof of theorem 8, we give now one
more result for the non-commutative case.

PROPOSITION 5. Let K be a p-field, commutative or not, with the
maximal compact subring R. Then the center K, of K is a p-field; if d
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is the modular degree of K over K, its order of ramification over K, is
also d, and its dimension over K is d*; it contains a maximal commutative
subfield K | which is unramified and of degree d over K,. Moreover, if K,
is such, and if R, is its maximal compact subring, K has a prime element
with the following properties: (a) n' is a prime element of Kg;
(b){1,...,n"" '} isa basis of K as a left vector-space over K | , and generates
R as a left R -module; (c) the inner automorphism x —>n ' xn of K induces
on K, an automorphism o« which generates the Galois group of K, over K.

Let notations be as in theorems 6 and 7; choose M and = as in theo-
rem 7, and apply corollary 2 of th. 6 to = and M; this shows that, for every
neZ, each xe P" can be uniquely written as

+ o0 X
(5) x= Y g

with p,e M for all i > n. Therefore an element of K is in the center K, of K
if and only if it commutes with = and with every element of M for, what
amounts to the same, with some generator of the cyclic group M ™). As
x— 7~ !x7 induces a permutation on M, some power of it must induce
the identity on M; this amounts to saying that there is v>0 such that
7’ commutes with every element of M. Then K, contains =" for all
neZ; this proves that it is not discrete; as it is clearly closed in K, it is
locally compact; if now we consider K as a vector-space, hence an algebra,
over K, we see, by corollary 2 of th. 3, § 2, that it has a finite dimension
over K,; corollary 5 of th. 6 shows then that K, is a p-field. Call g the
module of K, d the modular degree of K over K, and K the field gen-
erated over K, by M, or, what amounts to the same, by any generator of
the cyclic group M*; as M* is of order ¢°—1, such a generator is a
primitive (¢° — 1)-th root of 1, so that, by corollary 3 of th. 7, K, is unrami-
fied of degree d over K. As x—»n~ 'x= induces a permutation on M,
and the identity on K,, it induces on K, an automorphism « of K;
over K,. An element of K, commutes with all the elements of M; it
commutes with 7 if and only if it is invariant under o; in other words, the
elements of K, which are invariant under « are those of K, so that «
generates the Galois group of K, over K,; it is therefore of order d, so
that, as we have seen above, 7¢is in K, and n* is not in K, unless v is a
multiple of d. Now take xe K and pe M ; write x in the form (5). Then we
have

where we have put

pi=p e (dipn ).



22 Locally compact fields I

In this last formula, the last factor on the right-hand side belongs to
M™, so that g} is in M. In view of the unicity of the expansion (5) for
xeK, this shows that x=p~!xp, i.e. that x commutes with g, if and only
if y; =y, for all i. Now clearly, for each i, u; =y, if and only if either y,=0
or n' commutes with u. Consequently, x commutes with all elements of
M™ if and only if 7' does so whenever u;#0. In view of what has been
proved above, this is so if and only if y;=0 whenever i is not a multiple
of d; we have then

X= Z Hai(?)'.

As neK,, x is then in the closure of K, hence in K| itself, which is
therefore a maximal commutative subfield of K. It is also clear now, in
view of (5) and of the unicity of (5), that {1,#,...,n° '} isa basisof K asa
left vector-space over K, that it generates R as a left R,-module, and
that % is a prime element of K, hence also of K, since it lies in K. As
this implies that the order of ramification of K over K, is d, it completes
the proof.

Notations being as in proposition 5, let ¢ be the Frobenius auto-
morphism of K; over K; as this also generates the Galois group of K,
over K, we must have ¢ =«’, with r prime to d and uniquely determined
modulo d. It will be shown in Chapter XII that, when K, is given, d and
r may be chosen arbitrarily, subject to these conditions, and characterize
the structure of the division algebra K uniquely; in other words, two
division algebras of finite dimension over K, with the center K,, are
isomorphic if and only if they have the same dimension d? over K, and
the integer r has the same value modulo d for both.

We conclude this Chapter with a result about the maximal compact
subrings in p-fields. We recall that, if R is any commutative ring, and x
an element of a ring containing R, x is called integral over R if and only
if it is a root of some monic polynomial over R, i.e. of some polynomial
with coefficients in R and the highest coefficient equal to 1.

PROPOSITION 6. Let K be a p-field and K, a p-field contained in the
center of K; let R, R, be the maximal compact subrings of K and of K,,.
Then R consists of the elements of K which are integral over R,.

Let x be in K and integral over Ry; this means that it satisfies an
equation
X*+a, x"" '+ +a,=0

with a;eR,, for 1 <i<n. Assume that x is not in R, i.e. that ordg(x)<0.
Then x+0, and we have

= “1_ ... -n,
l=—a;x "= —a,x™ "
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here all the terms in the right-hand side are in the maximal ideal P of
R, so that 1P, which is absurd. Conversely, let x be any element of R.
By corollary 2 of th. 3, § 2, K has a finite dimension over K,; therefore,
if we put K’ = K,y(x), this is a commutative field and a finite extension of
K,. Call F the irreducible monic polynomial, with coefficients in K, such
that F(x)=0; in some algebraic closure of K, call K" the field generated
over K, by all the roots of F, so that F splits into linear factors in K”. As
K’, K” are finite extensions of K, they are p-fields; call R’, R” their maxi-
mal compact subrings. Then R’ =K'nR=K'nR";as x isin R, itisin R’
and in R". As F is irreducible, every root x’ of F in K" is the image of x
under some automorphism of K” over K,; as such an automorphism
maps R” onto R”, all such roots are in R”. Therefore all the coefficients
of Farein R”; as they are in K, they are in R,. This completes the proof.

If K is commutative, proposition 6 may be expressed by saying that
R is the integral closure of R in K.



Chapter 11
Lattices and duality over local fields

§ 1. Norms. In this § and the next one, K will be a p-field, commu-
tative or not. We shall mostly discuss only left vector-spaces over K;
everything will apply in an obvious way to right vector-spaces. Only
vector-spaces of finite dimension will occur; it is understood that these
arealways provided with their “natural topology” according to corollary 1
of th. 3, Chap. I-2. By th. 3 of Chap. I-2, every subspace of such a space V
18 closed in V. Taking coordinates, one sees that all linear mappings of
such spaces into one another are continuous; in particular, linear forms
are continuous. Similarly, every injective linear mapping of such a space
V into another is an isomorphism of V onto its image. As K is not com-
pact, no subspace of V' can be compact, except {0}.

DEFINITION 1. Let V be a left vector-space over the p-field K. By
a K-norm on V, we understand a function N on V, with values in R, such
that: (i} N(v)=0 if and only if v=0; (ii) N(xv)=modg(x)N(v) for all
xeK and all ve V; (iii) N satisfies the ultrametric inequality
)] N(v+w)< sup(N(v), N(w))
forallv,win V.

On K", one defines a K-norm N, by putting Ny(x)=
SUP; <;<n (Modg(x))) for all x=(x,,...,x,) in K" As every vector-space
of finite dimension over K is isomorphic to a space K", this shows that
there are K-norms on all such spaces.

One can obviously use any K-norm on V in order to topologize V, by
taking N(v—w) as distance-function.

PROPOSITION 1. Let V be a left vector-space of finite dimension over
the p-field K. Then every K-norm N on V defines the natural topology
on V. In particular, every such norm N is continuous, and the subsets L,
of V defined by N(v) < r are compact neighborhoods of 0 for all r>0.

As to the first assertion, in view of corollary 1 of th. 3, Chap. I-2, we
need only show that the topology defined by N on V makes V into a
topological vector-space over K. This follows at once from the inequality

N(x'v'—xv)< sup(modg(x') N(v' —v), modg(x'— x) N(v))

which is an immediate consequence of def. 1. Therefore N is continuous,
and the sets L, make up a fundamental system of closed neighborhoods
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of 0; in particular, L, must be compact for some r>0. Now, for any
s>0, take ae K™ such that modg(a) <r/s; then, as one sees at once, L
is contained in a~ ! L,; therefore it is compact.

COROLLARY 1. There is a compact subset A of V—{0} which con-
tains some scalar multiple of every v in V—{0}.

Call g the module of K, and take a K-norm N in V. If = is a prime
element of K, we have modg(m)=q~ ', by th. 6 of Chap. I-4, hence
N(n"v)=q "N(v)for allne Z and all ve V. Let A be the subset of V defined
by ¢~ ' < N(v) < 1; by proposition 1, it is compact; and, for every v+0,
one can choose neZ so that n"ve A.

Corollary 1 implies the fact that the “projective space” attached
to V is compact.

COROLLARY 2. Let ¢ be any continuous function on V—{0}, with
values in R, such that ¢(av)=¢(v) for all ac K™ and all ve V—{0}. Then
@ reaches its maximum at some point v, of V—{0}.

In fact, this will be so if we take A4 as in corollary 1 and take for v,
the point of A4 where ¢ reaches its maximum on 4.

COROLLARY 3. Let f be any linear form on V, and N a K-norm on V.
Then there is v; #0 in V, such that

) N(v)~* modg(f(v)) < N(v;)~ ' modg(f(vy))
forallv#£0in V.

This is a special case of corollary 2, that corollary being applied to
the left-hand side of (2). If one denotes by N*(f) the right-hand side of (2),
then N*(f) is the smallest positive number such that

mod(f(v)) < N*(f)- N()

for allveV, and f— N*(f)is a K-norm on the dual space of V; i.e. on the
right vector-space made up of the linear forms on V (where the addition
is the obvious one, and the scalar multiplication is defined by putting
(fa)(v)=f(v)a when f is such a form, and aeK).

By a hyperplane in V, one understands a subspace of V' of codimen-
sion 1, i.e. any subset H of V defined by an equation f(v)=0, where f
is a linear form other than 0; when H is given, f is uniquely determined
up to a scalar factor other than 0. Now, if (2) is valid for all v#0, and for a
given norm N, a given linear form f#0 and a given v #0, it remains so
if one replaces f by fa, with ae K*, and v, by bv, with beK™; in other
words, its validity for all v 0 depends only upon the hyperplane H
defined by f=0 and the subspace W of V generated by v;; when it
holds for all v#0, we shall say that H and W are N-orthogonal to each
other.
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PROPOSITION 2. A hyperplane H and a subspace W of V of dimen-
sion 1 are N-orthogonal if and only if V is the direct sum of H and W, and
N(h+w)=sup(N(h), N(w)) for all he H and we W,

Let H be defined by f(v)=0, and assume first that H and W are
N-orthogonal. Then (2) is satisfied if one replaces v, in it by any we W
other than 0. This implies that f(w) is not 0, for otherwise f would be 0;
therefore V is the direct sum of H and W. Now replace v in (2) by h+w
with heH; as f(h-+w)=f(w)#0, (2) gives N(h+w)>N(w). Applying
the ultrametric inequality (1) to h=(h+ w)+(—w), we get N(h) < N(h+w);
applying it to h+w, we get the formula in our proposition, for w#0; as
it is trivial for w=0, this proves the necessity of the condition stated there.
Now suppose that V is the direct sum of H and W; take any v+0, and
write it as v=h+w with he H and we W, so that f(v)=f(w). If w0 and
N(h+w)= N(w), then we have

N(®)~ " modg(f(v) < N(w)™ mod(f (w).

As the right-hand side does not change if we replace w by any generator
v, of W, this shows that (2) holds for any such v,, and any v not in H. For
veH,i.e. w=0, it holds trivially. This completes the proof.

Accordingly, we shall also say that two subspaces V', V” of V are
N-orthogonal to each other whenever V is the direct sum of V' and V7,
and N(v'+v")=sup(N(v),N(v")) for all v’e V" and all v"eV".

PROPOSITION 3. Let V be of dimension n over K, and let N be a
K-norm on V. Then there is a decomposition V=V, + - +V, of V into
a direct sum of subspaces V; of dimension 1, such that N(} v;)=sup;N(v;)
whenever v,eV; for 1 <i<n. Moreover, if W, =V, W,, ..., W, is a sequence
of subspaces of V such that W, is a subspace of W,_, of codimension 1 for
2<i<n, then the V; may be so chosen that W,=V,+ -+ V, for all i.

This is clear for n=1. For n>1, use induction on n. By corollary 3 of
prop. 1, we may choose v, so that the space V; generated by v, is N-
orthogonal to W, ; then, by prop. 2, N(v} +w,)=sup(N(v}), N(w,)) when-
ever vy eV;, w,eW,. Applying the induction assumption to the K-norm
induced by N on W,, and to the sequence W,, ..., W,, we get our result.

COROLLARY. To every subspace W of V, there is a subspace W' which
is N-orthogonal to W.

Take a sequence W, ..., W,, as in proposition 3, such that W is one
of the spaces in that sequence, say W,. Take the V; as in proposition 3.
Then the space W=V, + -- + V,_, is N-orthogonal to W,

PROPOSITION 4. Let N, N’ be two K-norms in V. Then there is a
decomposition V=V, +---+V, of V into a direct sum of subspaces V; of



§2. Lattices 27

dimension 1, such that N(} v)=sup;N(v) and N'(} v)=sup;N'(v;)
whenever v,eV, for 1<i<n.

For n=1, this is clear. For n>1, use induction on n. Applying co-
rollary 2 of prop. 1 to ¢ =N/N’, we get a vector v, #0 such that

N@N'(@)' < N@)N'@)™"

for all v+ 0; call V, the space generated by v, . By the corollary of prop. 3,
there is a hyperplane W which is N-orthogonal to V;; then, if f=0 is
an equation for W, we have

N~ ' modk(f(v)) < N(v,)™ ' modg(f(v,))
for all v+ 0. Multiplication of these two inequalities gives
N'(v)” 'modg(f(v)) < N'(vy)” ' modg(f(vy)),

which means that W is N’-orthogonal to V;. Applying now prop.2to N,
¥, and W, and also to N', ¥, and W, and applying the induction assump-
tion to the norms induced by N and N’ on W, we get the announced
result.

One should notice the close analogy between propositions 3 and 4,
and their proofs, and the corresponding results and proofs for norms
defined by positive-definite quadratic forms in vector-spaces over R,
or hermitian forms in vector-spaces over C or H. For instance, prop. 4
corresponds to the simultaneous reduction of two quadratic or hermitian
forms to “diagonal form”.

§ 2. Lattices. In this section, K will again be a p-field, and we shall
use the notations introduced in Chapter I. In particular, we write R
for the maximal compact subring of K, P for the maximal ideal in R,
q for the module of K, and = for a prime element of K. For neZ, we
write P"=n"R=Rn".

We shall be concerned with R-modules in left vector-spaces of finite
dimension over K; if V is such a space, an R-module in V is a subgroup
M of V such that R- M =M.

PROPOSITION 5. Let V be a left vector-space of finite dimension over K.
Let M be an R-module in V, and call W the subspace of V generated
by M over K. Then M is open and closed in W; it is compact if and only if
it is finitely generated as an R-module.

Let m,,...,m, be a maximal set of linearly independent elements
over K in M; they make up a basis of W over K. By th. 3 of Chap. I-2,
the set Rm, + -~ + Rm, is an open subgroup of W; as both M and W— M
are unions of cosets with respect to that subgroup, they are both open.
If M is compact, it is the union of finitely many such cosets and therefore
finitely generated; the converse is obvious.
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On the other hand, in view of corollary 2 of th. 6, Chap. 1-4, a closed
subgroup X of V satisfies R- X=X ifand only if tXcX and a X <X
for every a in a full set A of representatives of R/P in R. In particular, if
q=p, i.e. if R/P is the prime field, we may take 4={0,1,...,p—1}, and
then a X < X for all ae A, so that X is then an R-module if and only if
nX <X. In the case K=Q,, we may take n=p, and then every closed
subgroup of V is a Z -module.

In K itself, viewed as a left vector-space over K, every R-module,
if not reduced to {0}, is a union of sets P", and thus is either K or one of
these sets.

DEerFINITION 2. By a K-lattice in a left vector-space V of finite dimen-
sion over K, we understand a compact and open R-module in V.

When no confusion can occur, we say “lattice” instead of K-lattice.
If Lis a p-field contained in K, every K-lattice is an L-lattice; the converse
is not true unless L=K.

Clearly, if L is a lattice in V, and W is a subspace of V, LnW is a
lattice in W; similarly, if f is an injective linear mapping of a space V'
into ¥, f~(L) is a lattice in V'; if f” is a surjective linear mapping of V
onto a space V", f'(L) is a lattice in V.

If N is a K-norm in V, the subset L, of V defined by N(v)< ris a
K-lattice in V for every r>0. In fact, (iii), in def. 1 of § 1, together with (ii)
applied to x= —1, shows that it is a subgroup of V; then (ii) shows that
it is an R-module, and prop. 1 of § 1 shows that it is a compact neighbor-
hood of 0 in ¥, hence open since it is a subgroup of V. This has a converse;
more generally, we prove:

PROPOSITION 6. Let M be an open R-module in V; for every veV, put

Ny (v)=inf__gx peprmodg(x)™ L

2 XUE

Then the function N, on V satisfies conditions (ii) and (iii} in definition 1
of §1, and M is the subset of V defined by N, (v) <1; N, is a K-norm if
and only if M is a K-lattice in V.

For aeK*, we have x-aveM if and only if x=ya~ ' with yveM;
this gives N,(av)=modg(a)N,,(v); as N, (0)=0, this is also true for
a=0. Therefore N, satisfies (ii) of def. 1. For each veV, call M, the set
of the elements x of K such that xve M; as this is an open R-module in K,
it is either K or a set P" with some neZ. If M,=K, N,,(v)=0; if M,=P",
we have xve M if and only if modg(x) < g7 so that N,,(v)=4¢". In parti-
cular, we have N (v) < 1 if and only if M, > R, hence if and only if ve M.
Let v, w be in V and such that N(v) = N, (w); then M,cM,, so that
xveM implies xweM, hence also x(v+w)eM; therefore M,, ,>M,,
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hence N, (v+w)< N (v); this proves (iii) of def. 1. Finally, M is a
K-lattice if and only if it is compact, and N,, is a K-norm if and only if
Ny(0)>0forall v#0,i.c. if and only if M, +# K for v=£0. By prop. 1 of § L,
if N,,is a K-norm, M is compact. Conversely, assume that M is compact,
and take v#0; then M, is the subset of K corresponding to (Kv)nM
under the isomorphism x—xv of K onto Kv; therefore M, is compact
and cannot be K. This completes our proof.

COROLLARY 1. An open R-module M in V is a K-lattice if and only
if it contains no subspace of V other than 0.

It has been shown above that, if M is not compact, N, cannot be a
K-norm, so that there is v 0 in V such that N,,(v)=0, hence M,=K, i.e.
Kvc=M. Conversely, as every subspace of V, other than 0, is closed in V
and not compact, no such subspace can be contained in M if M is compact.

COROLLARY 2. Let M be an open R-module in V; let W be a maximal
subspace of V contained in M, and let W' be any supplementary subspace
to Win V. Then MW is a K-lattice in W, and M =(MnW)+ W.

The first assertion is a special case of corollary 1; the second one is
obvious.

Proposition 6 shows that every K-lattice in V' may be defined by an
inequality N(v)<1, where N is a K-norm; this was our chief motive in
discussing norms in § 1. For a given K-lattice M, the norm N,, defined
in prop. 6 may be characterized, among all the norms N such that M is
the set N(v)<1, as the one which takes its values in the set of values
taken by modg on K, i.e. in the set {0}U{q"},.z-

PROPOSITION 7. If V has the dimension 1 over K, and if Lis a K-lattice
in V, then V has a generator v such that L= Ruv.

Take any generator w of V; the subset L, of K defined by xwelL
must be of the form P”; taking v=n"w, we get L=Ruv.

THEOREM 1. Let L be a K-lattice in a left vector-space V of dimen-
sion n over K. Then there is a basis {v,,...,v,} of V such that L=) Ru,.
Moreover, if W, =V, W,,...,W, is any sequence of subspaces of V such
that W, is a subspace of W._, of codimension 1 for 2<i<n, the v; may
be so chosen that, for each i, {v,,...,v,} is a basis of W,.

Take a K-norm N such that L is defined by N(v)< 1. Choose sub-
spaces V;,...,V, of V as in prop.3 of §1; then L=) (LNV,). Applying
prop. 7 to V; and LV, for each i, we get the basis (v).
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Theorem 1 may be applied for instance whenever K’ is a p-field con-
taining K, and R’ is the maximal compact subring of K'. Clearly, if K’
is viewed as a left vector-space over K, R’ is a K-lattice in K’. Therefore
there is a basis {y,...,y,} of K’ over K such that R'=) Ry;; then, if
we write, for any yeR/, yyi=2aijyj, with g;;€K for 1<i,j<n, all the
a;; must be in R. In particular, if K is commutative, these relations, which
hold in the commutative field K(y), imply det(y-1,— A)=0, where 1,
is the unit matrix and A=(a;;), so that we get an alternative proof for
the second part of prop. 6, Chap. I-4.

THEOREM 2. Let L, L’ be two K-lattices in a left vector-space V of
finite dimension over K. Then there is a basis {v,,...,v,} of V, and a
sequence of integers (vy,...,v,), such that L=) Rv, and L'=Y P" v,

Take K-norms N, N’ such that L is defined by N(v)<1 and L’ by
N'(v)< 1. Choose subspaces Vi,...,V, of V as in prop.4 of §1; then
L=)(LnV) and L'=Y (L'n¥). For each i, apply prop.7 to V; and
LV, and also to V, and L'nV; this gives v; such that LnV,=Rv, and
v; such that L'nV,=Rui. Writing v;=x;v; with x,e K™, and putting
v;=ord(x,), we get integers v; with the required property.

COROLLARY 1. Let V and L be as in theorems 1 and 2, and let M be
an R-module in V. Then there is a basis {vy,...,v,} of V over K, and there
are integers r, s and v,,...,v,, such that 0<r<s<n, L=ZRU,- and

M=) Pvi+ ) Ku,
ji=1 h=r+1

Let W be the subspace of V generated by M, and W’ the maximal
subspace contained in M call s the dimension of W, and r the codimen-
sion of W’in W. In th. 1, choose the sequence W,,..., W, so that it includes
W and W'. Then th. 1 gives us a basis {w,,...,w,} of V which generates L
as an R-module and contains bases for W and for W’; renumbering this
basis in an obvious manner, we may assume that {w,,...,w,} is a basis
for W and that {w,,,...,w} is one for W'. Call W” the subspace of V
with the basis {w,,...,w,}. By prop.5, M is open in W; therefore, by
corollary 2 of prop. 6, we have M=M'+ W', where M'=MnW" is a
K-lattice in W”. Applying now th.2 to M’ and to L'=LnW", we get a
basis {v,,...,v,} for W”, and integers v,...,v,, such that L’:ZRvj and
M’=} P, Taking v;=w, for i>r, we get the basis required by our
corollary.

COROLLARY 2. Every finitely generated R-module IR is the direct
sum of finitely many summands, each of which is isomorphic either to R
or to a module R/P"® with v>0. Moreover, the number of summands of
type R, and, for each v, the number of summands of type R/P®, are uniquely
determined when M is given.
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Let 9 be generated by elements m,,...,m,. Take a vector-space V
of dimension n over K, with a basis {v,,...,v,}; put L=) Ru;. Then

the formula
invi - inmi’

where the x; are taken in R for 1 <i<n, defines a morphism of L onto I;
therefore M is isomorphic to L/M, where M is the kernel of that mor-
phism. Apply now corollary 1 to L and M; as M c L, we have v;>0 for
1<j<r, and r=s. Our first assertion follows from this at once. As to
the second one, put M, =='M for all i >0; as these are R-modules, their
quotients M;=M,/M,, , are R-modules; as an=0 for all neN;, N; may
be regarded as a module, i.e. as a vector-space, over the field k=R/P;
as such, it has a dimension n;, which depends only upon 9t and i. Write
now M as a direct sum of modules R and R/P*, in numbers respectively
equal to N, and N,; then one sees at once that n,=N,+ Y N,. There-

v>i

fore Ny=n, for i large enough, and N,=n,_; —n,.

COROLLARY 3. In corollary 1, the integers r,s,v,,...,v, depend only
upon L and M.

As s is the dimension of the subspace W generated by M, and s—r is
the dimension of the maximal subspace contained in M, they depend
only upon M. Now put L, =LnW, and take i>0 such that n'L, c M;
our assertion follows now at once from the application of corollary 2
to the R-module M/(n'L,).

In corollary 2, the number of summands of M isomorphic to R is
called the rank of 9i; with this definition, we have:

COROLLARY 4. Let M be a finitely generated R-module, and M’ a sub-
module of M. Then the rank of M is the sum of those of M’ and of NV/IN’.

As in the proof of corollary 2, write 9% as L/M, where L is the lattice
Y Rv; in the vector-space ¥V with the basis {v;,...,0,}, and M is an
R-module. Then the inverse image of ' in L is an R-module L, and the
three modules in our corollary are respectively isomorphic to L/M,
L/M and L/L! Let W, V' be the subspaces of V respectively generated
by M and by L’ then, as corollary 1 shows at once, the ranks of L/M,
L/M and L/L are respectively the codimensions of Win V, of Win V'
and of V'in V.

§ 3. Multiplicative structure of local fields. Let notations be as above;
then, for each integer n>1, the set 1+ P" of the elements x of R which
are =1 (P") is clearly an open and compact subgroup of R*, and these
subgroups make up a fundamental system of neighborhoods of 1 in R™.
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Moreover, th. 7 of Chap. I-4 shows that R*=M" - (1+P) if M™ is any
subgroup of order g—1 of R, and th.6 of Chap.I-4 shows that
K*=1II-R* if II is the discrete subgroup of K*, isomorphic to Z,
which is generated by any prime element 7 of K. In these formulas, the
products are “semidirect”.

From now on, until the end of this §, it will be assumed that K is
a commutative p-field; then the above products are direct products, so
that we may write K*=II x R* and R* =M™ x (1 + P); moreover, by
th. 7 of Chap. I-4, M ™ is now the group of roots of 1 of order prime to p
in K. Consequently, the investigation of the structure of K™ amounts
to that of 1+ P.

Take any xe 1+ P; then, for every aeZ, x* is in 1+ P, and the map-
ping a—x* is a homomorphism of the additive group Z into the multi-
plicative group 1+ P; as lemma 5 in the proof of th. 7, Chap. I-4, shows
that x*e1+P"* " whenever a=0 (p"), i.e. |a|,<p~", this homomorphism
is continuous when Z is provided with the p-adic topology, i.e. that
induced on Z by Q,; as 1+ P is compact, it can therefore be uniquely
extended to a continuous homomorphism, which we again denote by
a—x° of the additive group Z, into the multiplicative group 1+P. If
xel+P" x%isin 1+ P" for all ae Z, hence for all aeZ,. From this, using
the formula y*(x*)™ ' =(yx~ ')’ x" "%, one concludes at once, in the usual
manner, that the mapping (a,x)—x* of Z,x(1+P) into 1+P is con-
tinuous. One verifies then immediately that this mapping defines, on
the group 1+ P, a structure of Z,module (the “addition” of vectors
being written multiplicatively, and the “scalar multiplication” by elements
of Z, being written exponentially).

PROPOSITION 8. If n is any integer prime to p, and v any integer 21,
x—x" induces on 1+ P an automorphism of 1+ P”;(K™)" is an open sub-
group of K*, of index n-(n,q—1)in K> ; if n divides q— 1, that index is n*.

The first assertion is a special case of the fact that x—Xx?® is an auto-
morphism of 1+ P” whenever a is an invertible element of Z,,; it implies
that (K*)" is open in K. Moreover, as we have seen above, K™ is the
direct product of the group 11, which is isomorphic to Z, of the cyclic
group M ™ of order g—1, and of 1+ P; therefore the index of (K™)" in
K™ is the product of the similar indices for I, M™ and 1+ P; clearly,
these are respectively equal to n, to the g.c.d. (n,g—1) of n and g—1,
and to 1. This proves our proposition.

We will now determine the structure of the Z -module 1+ P; this
depends upon the characteristic of K. If K is of characteristic 0, it is
a finite algebraic extension of Q,, so that, as we have observed, its
maximal compact subring may be regarded as a Q,-lattice in K; th. 1
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of § 2 shows then that it is the direct product of factors, all isomorphic
to Z,, whose number is equal to the degree of K over Q,,.

PROPOSITION 9. Let K be a commutative p-field of characteristic 0,
with the maximal compact subring R. Then there is an integer m>=0 such
that 14 P, as a (multiplicatively written) Z ,-module, is isomorphic to the
(additively written) Z -module R x(Z,/p™ Z,); m is then the largest integer
such that K contains a primitive p™-th root of 1.

For any xeR and acN, the binomial formula may be written as:
4 — .
(1+x)1=1 +ax+0wci;2 (‘;_ }) x'THi

For i>2, call p" the largest power of p dividing i; if h=0, i—1>h; if
h>0, then, as i > p", one verifies at once that i — 1> h except for i=p=2,
so that 2(i—1)>h in all cases. Therefore, in the above formula, the sum
in the last term in the right-hand side is in pR whenever xep®R. This
gives, for xep? R, aeN:

3) (I1+x)¥=1+ax (raxR),

which must remain valid, by continuity, for all xep?R and ae Z,, since
N is dense in Z,. Now call d the degree of K over Q,; by th.1 of §2,
we can find a basis {v,,...,v,} of K over Q, such that R=)Z,v,. By (3),
we have now, for 1<i<d, v=1,a,€Z,:

(L+p20)""  =14p g, (P°PR),

and therefore:

d d
4 [TA+p*v)?" " =14+p""* Y ayv; (p**?R).
i=1 i=1

It follows from this that, if x, e p? R, we can define by induction a sequence
(xq,%3,...), with x,ep"* 1 R for all v>1, by putting, for each v:

—pnvtl
Xy=p Zavivi
;

with a,,€Z, for 1<i<d, and then

Lxe =) [J(+pio) ~7 7o
It is now clear that we have

(5) 14 x, =[J(1+ p o)
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where the b; are given, for 1 <i<d, by
+ w
b= z pv_lavi .
v=1

This shows that, as a multiplicative Z,-module, the group 1+p’R is
generated by the d elements 1+p2v,; as it is an open subgroup of the
compact group 1+ P, hence of finite index in 1+ P, and as 1+P, as a
Z ,module, is generated by the elements 1+p?v; and by a full set of
representatives of the classes modulo 1+ p?R in 1+ P, this implies that
1+ P is finitely generated. Now assume that (5) can hold with x, =0
while the b; are not all 0; then, taking for v—1 the smallest of the orders
of the b; in Q,, we can write b;=p*~'a; with v>1, g, Z, for 1<i<d,
and the a;not allin pZ,. Then (4) gives Y a;0,=0 (pR), L.e. > (p~*a)vieR,
which contradicts the definition of the v;. This shows that 1+p*R, as
a Z,-module, is the free module generated by the 1+ p®v,, so that it is
isomorphic to (Z)°. We can now apply corollary 4 of th.2, § 2, to the
Z ,-modules 1+ P and 1 +p?R. As their quotient is finite, it is of rank 0;
as 14 p*R is isomorphic to (Z,)", it is of rank d. Therefore 1+ P is of
rank d, hence, by corollary 2 of th. 2, § 2, the direct product of d factors
isomorphic to Z, and of finitely many factors, each isomorphic to a
module Z,/p"Z,. As the latter are finite groups, their product is the
group of all elements of finite order in 1+ P and is itself a finite group,
whose order is a power of p; it is therefore the group of all roots of 1
in 1+ P; by lemma 1 of Chap.I-1, if p™ is the largest of the orders of
its elements, it is cyclic of order p™, hence, as a Z,-module, isomorphic
to Z,/p"Z,. Finally, writing K™ as the direct product of I1, M™ and
1+ P, we see that any root of 1 in K whose order is a power of p must
be in 1+ P. This completes the proof.

COROLLARY. Let K be as in proposition 9. Then, for every integer
n=1, (K*)" is an open subgroup of K>, of finite index in K™, and that
index is n-(n,r)- modg(n)~* if r is the order of the group of all roots
of 1in K.

Clearly the latter group is the direct product of M™ and of the
group of roots of 1 in 1+ P, which is of order p™; therefore it is cyclic
of order r=(q—1)p™, and K™ is the direct product of I, of that group,
and of a Z,-module isomorphic to R. Now nR is an open subgroup of
the additive group R, whose index in R, by the definition of mody, is
modg(n)~!. The conclusion follows from this at once, by the same
argument as in the proof of prop. 8.

PROPOSITION 10. Let K be a commutative p-field of characteristic p.
Then 1+ P, as a Z,-module, is the direct product of a countably infinite
family of modules isomorphic to Z,.
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By th. 8 of Chap. I-4, we may tegard K as the field of formal power-
series in one indeterminate 7, with coefficients in the field F, with g=p”
elements. Here it is easy to give explicitly a family of free generators
for the Z ,-module 1+ P. In fact, take a basis {oy,...,a,} for F, over the
prime field F,. As generators of 1+ P, we take the elements 1+u;7",
where 1<i< f, n running through the set of all integers >0, prime to p.
For any N >0, put N=np’, with v>0 and n prime to p. For any integers
a;z0(1<i< f), we have

[0 oo =[]0+ =1+ (Ta)n (P
i=1 i i

with B;=a". As x—x?" is an automorphism of F, over F,, the B; also
make up a basis of F, over F; thus, for any given a«€F,, one may, in
one and only one way, choose integers a; such that 0<<a;<p and that
Y a;B;=a. Now take any x,eP; we define inductively a sequence
(%1,X5,...), with xyeP" for all N>1, as follows. For each N, putting
N=np* with n prime to p as above, we choose the integers a; so that
0<a;<pfor 1<i< f and that

yn= 11 +aa) % =1+xy (P¥*1),

which can be done in one and only one way in view of the foregoing
remarks, and put then

T+xy, =(1+xy)

One sees at once, putting these formulas together, that they give for
1+4x, an expression as a convergent infinite product of factors of the
form (1+a;7n"), with 1<i<f, n prime to p, and beZ,. Moreover, the
above calculations show also that this expression is unique, which proves
our assertions.

§ 4. Lattices over R. The concept of lattice, as developed for p-fields
in §§ 1-2, cannot be applied to R-fields. The appropriate concept is here
as follows:

DEFINITION 3. By an R-lattice in a vector-space V of finite dimen-
sion over an R-field, we understand a discrete subgroup L of V such that
V/L is compact.

We have to recall here some elementary facts about discrete sub-
groups. Let G be a topological group, I' a discrete subgroup of G, and
@ the canonical mapping of G onto G/I'. Then, if U is a neighborhood
of the neutral element e in G, such that U~ '- U contains no element
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of I other than e, ¢ induces, on each set of the form gU with geG, a
homeomorphism of that set onto its image in G/I'; one expresses this by
saying that ¢ is a “local homeomorphism”; one may say that it is a
“local isomorphism” in U if I' is normal in G, since in that case it maps
the group law in G onto the group law in G/I'. Assume that G is locally
compact, and let a right-invariant measure o be given on G. Then it is
casily seen that there is one and only one measure «’ on G/I" such that,
whenever X is a measurable subset of G which is mapped by ¢ in a one-
to-one manner onto its image X'=@(X) in G/T', o'(X’) is equal to a(X);
in particular, this will hold for every measurable subset of every set g U,
where U is as above. Then, if f is any continuous function with compact
support in G, we have

(6) [fa)datg)= | (X f(g7)da'@);

here we have put §=¢(g), and the integrand in the right-hand side,
which is written as a function of g but is constant on cosets gTI', is to
be understood as a function of g. This, in fact, is clear if the support of f
Is contained in any set g U, and the general case follows from this at
once; also, as well known in integration theory, the validity of (6) for
continuous functions with compact support implies its validity for all
integrable functions, and for all measurable functions with valuesin R, .
Clearly, «' is invariant under the action of G on G/I' if and only if « is
left-invariant; this will be so, in particular, whenever G/I' is compact,
since then G/I' is a set of finite measure which is invariant under the
action of G. Then, if at the same time I" is normal in G, o is a Haar measure
on G/T.

Things being as above, o’ will be called the image of a in G/I'; we will
denote this image simply by « when no confusion is likely. The following
lemma (which takes the place of what was known as Minkowski’s theo-
rem in classical number-theory) is now obvious:

LemMA 1. Let G be a locally compact group with a Haar measure o;
let I be a discrete subgroup of G, such that G/I is compact; let X be a
measurable subset of G such that o(X)>a(G/I'). Then there are two
distinct elements x, x' of X such that x *x'erT.

One should only note that, since G/I' is compact, any right-invariant
measure on G is also left-invariant; therefore the Haar measure o is
bi-invariant, and its image in G/I" is well-defined.

LeEMMA 2. Let G, « and I be as in lemma 1, and let I} be a discrete
subgroup of G, containing I'. Then I' has a finite index [I',:T'] in I'y, and
this is given by

WG/ T)=[T':I'Ja(G/Ty).
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As G/I" is compact, there is a continuous function f, >0 with compact
support on G, such that

filg)= ero(gv)>0

for all ge G. Then the function f=f,/f; is continuous on G, has the same
support as f,, and is such that ) f(gy), where the sum is extended to
all yerl, is 1 for all g; this implies that the similar sum, extended to all
ye I, has the constant value [I';:I']. If now we apply (6) to G, f and I,
and also to G, f and I';, we get the result in our lemma.

From these facts, we now deduce the following classical result about
R-lattices:

PROPOSITION 11. Let L be a subgroup of a vector-space V of dimen-
sion n over R. Then the following three statements are equivalent: (i) L is
an R-lattice in V; (i) L is discrete in V, finitely generated, and contains
a basis for V over R; (ili) there is a basis {v,,...,v,} of V over R which
generates the group L.

Assume (iii), and consider the isomorphism
(7) (xla"-axn)_‘)zxivi

of R" onto V; L is the image of Z" under that isomorphism; therefore it
is discrete in ¥V, and V/L is isomorphic to (R/Z)", hence compact. There-
fore (iii) implies (i) and (ii). Now assume (i); let W be the subspace of V
generated by L, and call W a supplementary subspace to W in V. Then
V, as a locally compact group, is the direct product of W and W', and L
is a discrete subgroup of W, therefore V/L is isomorphic to the direct
product of W/L and W'. This cannot be compact unless W' is so; then
W' must be {0}, and W=V, so that L contains a basis of V over R. Now
let o be the Haar measure on ¥ which is such that a(V/L)=1. For every
basis B={vy,...,v,} of V, contained in L, call ¢, the isomorphism of
R” onto V defined by (7); this maps Z" onto the sublattice Ly of L gener-
ated by B, and maps the Lebesgue measure 4 on R* onto some scalar
multiple myz ' o of a. As A(R*/Z")=1, we have mz ' a(V/Lg)=1; by lemma 2,
this shows that my is the index of Ly in L. Now choose B so that this
index has the smallest possible value; it will be shown that then Ly=L.
In fact, assume that L contains a vector w, not in Ly, and write w= Zaivi
with coefficients g; in R; as w is not in Lg, at least one of the a;, say ay,
is not in Z; replacing then w by w—mv, with meZ, m<a, <m+1, we
may assume that O0<a,; <1. Now put v]=w, v;j=v; for 2<i<n, and
B'={v},...,v,}; clearly B’ is a basis for V, contained in L. A trivial cal-
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culation shows that ¢ 'o @ is the automorphism of R” given by
(X1, X)) (a1 X, X2+ a2 X5 0 X+ 8, X)),

whose module is a; (cf. corollary 3 of th. 3, Chap. I-2). Take a measurable
set X in R"; put Y=¢5(X) and Y = ¢g.(X). By the definition of my, mp.,
we have a(Y)=mgA(X), a(Y')=mp A(X); therefore @z 0@y ', which maps
Y onto Y, has the module my/mg. Since @z o@5* can be written as
@ oy 'o@g)opyt, it has the same module as ¢z !0 @,. Thus we get
mg./mg=a, <1, which contradicts the definition of B. This completes
the proof, as it shows that (i) implies (ii) and (iii).

§ 5. Duality over local fields. Among the most important properties
of commutative locally compact groups are those which make up the
content of the “duality theory”. We recall that, if G is such a group, a
character of G (in the sense of that theory) is a continuous representation
of G into the multiplicative group of complex numbers of absolute value 1.
If g* is such a character, its value at a point g of G will frequently be written
as {g,9*>¢, for which we write {g,g*) if there is no danger of confusion.
We shall write the group law on G additively; and, on the set G* of the
characters of G, we put a commutative group structure, also written
additively, by writing

(G, 9% +9%>6=X9,9Y>6<9.9%)¢;

one should note that the neutral element of G*, which is denoted by 0
in this additive notation, corresponds to the “trivial” character of G
with the constant value 1 on G. One topologizes G* by assigning to it
the topology of uniform convergence on compact subsets of G; this
makes it into a locally compact group, called the topological dual of G,
or simply its dual if there is no danger of confusion. Conversely, the
characters of G* are the functions g* — {g,9*>¢, for all geG, and this
determines an isomorphism between G and the dual of G*. In other
words, G may be identified with the dual of G* by writing

$9*,906+=X9,9*V¢s

and it will always be tacitly assumed that they are so identified. The
group G is compact if and only if G* is discrete; therefore G is discrete if
and only if G* is compact.

If H is any closed subgroup of G, the characters of G which induce
the trivial character on H make up a closed subgroup of G*, which will
be denoted by H, and is said to be associated with H by duality; it is
isomorphic to the dual of G/H. When G is regarded as the dual of G*,
the subgroup of G associated with H, is then H itself, which is therefore
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isomorphic to the dual of G*/H,. As H is open in G if and only if G/H
is discrete, we see that it is so if and only if H,, is compact; consequently,
H, is open in G* if and only if H is compact. Similarly, H is discrete if
and only if G*/H, is compact, and G/H is compact if and only if H,, is
discrete.

All this may be applied to the additive group of any left vector-
space V of finite dimension over a non-discrete locally compact field K
(commutative or not). In that case, if V* is the topological dual of V, and
if v*e V*, then, for every ae K, the function v—{av,v*),, on V is clearly
again a character of V, which we will denote by v* a; one verifies at once,
by going back to the definitions, that this makes V* into a right vector-
space over K; by corollary 2 of th. 3, Chap. I-2, its dimension must be
finite. In other words, the structure of V* as a right vector-space over K
is defined by the formula

8) {av,v* ), =<{v,v*ady.

Conversely, if V and V* are dual groups, and V* has a structure of right
vector-space over K, (8) may be used in order to define V as a left vector-
space over K. Thus we may still identify V with the dual of V* when their
structures as vector-spaces over K are taken into account. If L is any
closed subgroup of V, the subgroup L, of V* associated with L by
duality consists of the elements v* of V* such that {(v,0*>,=1 for all
ve L; in view of (8), this implies that, if L is a left module for some subring
of K, L, is a right module for the same subring, and conversely. In parti-
cular, if K is a p-field and R is the maximal compact subring of K, Lis a
left R-module if and only if L, is a right R-module. As we have seen that
L is compact and open in V if and only if L, is so in V'*, we see that L
is a K-lattice if and only if L, is one. When that is so, we say that the
K-lattices Land L, are dual to each other; then aLand L a™ ' are dual
to each other for every ae K*. On the other hand, if K is R, C or H,
then, clearly, L is an R-lattice if and only if L, is one.

On the other hand, if V is as above, we may consider its algebraic
dual V', which is the space of K-linear forms on V; as well-known, if we
denote by [v,v'], the value of the linear form v’ on V at the point v of ¥,
we can give to -V’ a “natural” structure of right vector-space over K by
means of the formula

[av,v'b], =a[v,v'], b,

valid forallve V,v'e V' and all g, b in K. If y is any character of the additive
group of K, then, for every v'e V', there is an element v* of the topological
dual V* such that {v,v*),=y([v,v"]y) for all ve V. We shall use this
operation in order to establish the relation between the algebraic and
the topological dual.
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THEOREM 3. Let K be a non-discrete locally compact field, and V
a left vector-space of finite dimension n over K; let y be a non-trivial
character of the additive group of K. Then the topological dual V* of V is
a right vector-space of dimension n over K; the formula

v, v*>,=x([v,07]y) forall veV

defines a bijective mapping v' - v* of the algebraic dual V' of V onto V*;
if x(xy)=yx(yx) for all x, y in K, this mapping is an isomorphism for the
structures of V', V* as right vector-spaces over K.

Let Xy be the topological dual of K. The structure of K as a left
vector-space of dimension 1 over itself determines on X a structure of
right vector-space over K; as such, it has a certain finite dimension d.
Similarly, the structure of K as a right vector-space over K determines
on Xy a structure of left vector-space of a certain dimension d’ over K.
Let V be as in theorem 3; by taking a basis of V over K, V can be written
as the direct sum of n subspaces of dimension 1; therefore its dual V*,
as a right vector-space, is isomorphic to the direct sum of n spaces iso-
morphic to Xg, and has therefore the dimension nd. Similarly, the dual
of V* is a left vector-space of dimension ndd’; as it is isomorphic to V,
with which we have in fact agreed to identify it, we get ndd =n, hence
d=d =1. Now let y be as in theorem 3; this defines an element ¢*+£0 in
the additively written group Xy, so that we have y(t)={t,c*) for all
teK. As d'=1, every element of X, can be uniquely written as xc*, with
xeK; as d=1, every element of X can be uniquely written as c¢*y, with
ye K. Therefore the relation xc*=c*y determines a bijection a« of K
onto itself, and one verifies at once that this is an automorphism of K.
In view of (8), ¢*y is the character t— y(yt) of K, and similarly xc* is
t— y(¢x). Therefore y(t x)= y(a(x)?) for all x, ¢ in K, and this determines «
uniquely; in particular, o induces the identity on the center of K, and it
is the identity if and only if y(tx)= y(x¢) for all x,  in K. Now consider
the mapping v'—v* of V' into V* which is defined in theorem 3; take
xeK, put w'=v"x, and assume that the mapping in question maps w'
onto w*. We have

1([o:w' 1) =x([v.v]y X) = (2 () [, ]y) = x([2(x) v, 0], )
In view of the definition of v* and w*, this gives
(o, WDy =a(x)v,v* )y = (v, 0¥ a(x))y

for all v, hence w* =v*a(x). It is customary to express this by saying that
the mapping v’ —v* is a-semilinear. At the same time, it is clearly injective;
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for v* =0 means that y([v,v'],) is 1 for all ve V, hence also that y(x[v,v'],)
is 1 for all xe K and all ve V; as y is not trivial, this implies [v,0"], =0 for
all v, hence v'=0. As V" and V* have the same dimension n over K, an
a-semilinear mapping of V’ into V* cannot be injective without being
bijective; this completes the proof. For purposes of reference, we formu-
late separately the result about the characters of K:

COROLLARY. Let K and y be as in theorem 3; then every character
of K can be uniquely written as t — x(t x), with xe K, and also as t— x(y1),
with ye K.

A more “intrinsic” way of formulating theorem 3 would be to say
that there is a canonical isomorphism, given by the formula in th. 3,
between V* and the tensor-product V'® X, (and similarly between
V*and X ® V' if V is given as a right vector-space); this will be left
to the reader. One may also note that there is always a non-trivial
character y of K for which x(xy)=y(yx) for all x, y; for instance, one
may take y=y,0t1, where 7 is the “reduced trace” in K over its center K
(cf. Chap. IX-2), and y, is a non-trivial character of K; the same result
could be deduced from the fact that, in view of the Skolem-Noether
theorem (which will be proved as prop. 4 of Chap. IX-1), « in the proof
of th. 3 must be an inner automorphism of K. Of course the distinction
between right and left becomes entirely superfluous if one considers only
commutative fields.

It is frequently convenient, having chosen once for all a character
¢ of K with the properties described in theorem 3, to identify the topo-
logical and algebraic duals of every vector-space over K by means of
the isomorphism described in that theorem; when doing this, one will
refer to x as “the basic character”. In particular, K will then be identified
with its own topological dual, as shown in the corollary of th. 3. When
this is done for a p-field K, the subgroup of K associated by duality with
each subgroup of the form P" must be of the same form, since in general
the dual of a K-lattice is a K-lattice. In order to give a more explicit
statement, we set up a definition:

DEFINITION 4. Let K be a p-field, R its maximal compact subring
and P the maximal ideal of R. Then the order of a non-trivial character
v of K isthe largest integer ve Z such that y is 1 on P™"; it will be denoted
by ord(y).

In other words, P~ is the dual K-lattice to R when K is identified
with its dual by means of y; this shows that v is finite.
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ProrosITION 12. Let K be a p-field and y a non-trivial character
of K of order v. Then, for any neZ, y(xt)=1 for all te P" if and only if
xep™"7Y,

This is obvious, and amounts to saying that the dual K-lattice to
P"is P7"7" when K is identified with its dual by means of .

As to the explicit construction of characters for local fields, the case
of Ris well-known; there one may take as basic character the one given
by xo(x)=e(x)=¢e*"*;in C or H, one may then take as basic any character
Xo©f, where f is an R-linear form other than O (e.g. the trace over R).
If K is a local field of characteristic p, one may write it as a field of formal
power-series x= Y a;T' with coefficients in F,, and take as basic the
character of order 0 given by y(x)=/(a_,), where ¥ is a non-trivial
character of the additive group of F,. For Q,, an explicit construction
will be given in Chap. IV-2, as part of the proof of theorem 3 of that
Chapter.



Chapter II1
Places of A-fields

§ 1. A-fields and their completions. By an algebraic number-field, it
is customary to understand a finite algebraic extension of Q. One main
object of this book, and of number-theory in general, is to study algebraic
number-fields by means of their embeddings into local fields. In the last
century, however, it was discovered that the methods by which this can
be done may be applied with very little change to certain fields of charac-
teristic p>1; and the simultaneous study of these two types of fields
throws much additional light on both of them. With this in mind, we
introduce as follows the fields which will be considered from now on:

DEFINITION 1. A field will be called an A-field if it is either a finite
algebraic extension of Q or a finitely generated extension of a finite
prime field ¥, of degree of transcendency 1 over F,.

Thus, if k is an A-field of characteristic p > 1, it must contain a trans-
cendental element ¢ over F,, and it is then a finite algebraic extension of
F,(t). Therefore, if once for all we denote by T an indeterminate, so that
F,(T) is the field of rational functions in T with coefficients in F,, an
A-field of characteristic p is one which is isomorphic to a finite algebraic
extension of F,(T). One should note that such a field always contains
infinitely many fields isomorphic to F,(T).

We shall study A-fields by means of their embeddings into local
fields. In view of theorems 5 and 8 of Chap. I, it is permissible, up to
isomorphism, to speak of the set of all local fields. In fact, for a given
p>1, the local fields of characteristic p are, up to isomorphism, in a
one-to-one correspondence with the finite fields F, with g=p" elements,
while the local p-fields of characteristic 0 are isomorphic to the subfields
of an algebraic closure of Q, which are of finite degree over Q,. It will
be seen later (as a consequence of lemma 1, Chap. XI-3) that there are
only enumerably many fields of the latter type; this will not be needed
here. It is now legitimate to speak of the set of places of an A-field ac-
cording to the following definition:

DErINITION 2. Let A be an isomorphic embedding of an A-field k
into a local field K; then (4,K) will be called a completion of k if A(k) is
dense in K. Two completions (4,K), (1,K') of k will be called equivalent
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if there is an isomorphism p of K onto K' such that A'=poA. By a place
of k, we shall understand an equivalence class of completions of k.

DEFINITION 3. A4 place of an A-field k, determined by a completion
(%, K) of k, will be called real if K is isomorphic to R, imaginary if K is
isomorphic to C, infinite in both of these cases, and finite in all other cases.

Let v be a place of k, as above; clearly, for all completions (4, K) of k
belonging to v, the function modgo A on k is the same; this will be written
x—|x|,. If v is imaginary, mod.(x— y)!/? is a distance-function on K;
in all other cases, modg(x—y) is such a function. Therefore we can
always obtain a completion of k, belonging to v, by taking the completion
of k with respect to the distance-function |x — y|; with a=1/2 if v is imag-
inary and a=1 otherwise. This completion will be denoted by k, and
will be called the completion of k at v; for all xek,, we shall write
|x|,=mod, (x). If v is a finite place, we write r, for the maximal compact
subring of k,, and p, for the maximal ideal in r,; these are the subsets of
k, defined respectively by |x|,<1 and by |x|,< 1.

As shown by th. 5 of Chap. I-2, Q has one infinite place, corresponding
to the embedding of Q into R=Q; this place will be denoted by .
The same theorem shows that the finite places of Q are in a one-to-one
correspondence with the rational primes, with which they will usually
be identified, the place p corresponding to the embedding of Q into Q,,.

The knowledge of the places of Q provides us with a starting point
for determining the places of algebraic number-fields, considered as
finite algebraic extensions of Q. In order to proceed in the same way
for A-fields of characteristic p> 1, we have to know the places of F,(T).
Before determining them, we first give some general results about places
of algebraic extensions.

PROPOSITION 1. Let k be any field, k, an infinite subfield of k, and A
an isomorphic embedding of k into a local field K. Then the closure
K, of Aky) in K is a local field, and the closure of A(k) in K is the field
generated by A(k) over K.

The first assertion follows at once from corollary 3 of prop. 2, Chap. I-2.
Then, by corollary 2 of th. 3, Chap. I-2, K must have a finite degree over
K, so that, by th. 3, Chap. I-2, every vector-space over K, in K is closed
in K. The field K, generated by A(k) over K, is such a vector-space; on
the other hand, the closure of A(k) in K is clearly a field, and it contains
Alko), hence K, and A(k); therefore it is K.

COROLLARY. Let k be an A-field, k' a finite algebraic extension of k,
and w a place of k'. Let A be the natural injection of k' into its completion
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k., at w. Then k,, is a finite algebraic extension of the closure of A(k) in
k.,, and the injection of k into that closure, induced on k by A, determines a
place v of k.

In view of our definitions, this is a special case of prop. 1; it enables
us to set up the following definition:

DEerFINITION 4. If k, k', w and v are as in the corollary of prop. 1, we
say that v is the place of k which lies below w, and that w lies above v; and
we write wjv.

When that is so, we shall usually identify k, with the closure of k
in k.

THEOREM 1. Let k be an A-field, k' a finite algebraic extension of k,
and v a place of k. Then there is a place of k' which lies above v, and there
are only finitely many such places.

Let K be an algebraic closure of k,, and k” the algebraic closure of k
in K; as k" is algebraically closed, there is at least one isomorphism A
of k" into k" over k. Call K, the field generated by A(k’) over k,; this is a
finite algebraic extension of k,, so that, by corollary 1 of th. 3, Chap. I-2,
we can give it its topological structure as a vector-space of finite dimen-
sion over k,; this makes it into a local field. Then, by prop. 1, (4,K}) is
a completion of k', and it determines a place of k' which clearly lies
abovev. Conversely, let w be any place of k' above v. Then, by the corollary
of prop. 1, k;, is algebraic over k,, so that there is at least one isomorphism
¢ of k,, into K over k,; let A be the isomorphism of k' into K induced on
k' by @; clearly A maps k' into k”. By prop. 1, k;, is generated by k' over
k,, so that p(k;) is the same as the field denoted above by K ,;; moreover,
again by corollary 1 of th. 3, Chap. I-2, ¢ is a topological isomorphism
of k,, onto K, so that w is the same as the place of k' determined by the
completion (4, K;) of k’. Thus there are at most as many places of k" above
v as there are distinct isomorphisms A of k' into k” over k. As k' is a finite
algebraic extension of k, it is well-known (and easily proved) that there
are only finitely many such isomorphisms.

COROLLARY. An A-field has at most a finite number of infinite places;
it has at least one if it is of characteristic 0, and none otherwise.

The last assertion is obvious; the others are a special case of th. 1,
since clearly a place of an A-field of characteristic O is infinite if and
only if it lies above the place «c of Q.

Now we proceed to the determination of the places of F,(T); more
generally, we will determine those of F (T), where F, is any finite field.
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It will be convenient to say that a polynomial = in F [T] is prime if
it is monic and irreducible in F,[T] and if its degree is >0.

THEOREM 2. The field k=F,(T) has one and only one place v for which
|T|,>1; for this place, T™! is a prime element of k,, and the module
of k, is q. For each prime polynomial 7 in F,[T], k has one and only one
place v such that |n|,<1; for this place, n is a prime element of k,, and
the module of k, is q° if & is the degree of m. All these places are distinct,
and k has no other place.

Let v be a place of k. Assume first that |T|,<1; then F [ T] is con-
tained in r,. Call p the canonical homomorphism of r, onto the finite
field r,/p,; it induces on F,[T] a homomorphism of F,[T] onto its
image, whose kernel p,nF [T] is clearly a prime ideal in F,[T]. As
F,[T] is infinite, and r,/p, is finite, this ideal cannot be {0}; therefore
it is the ideal z - F [ T] generated in F,[ T| by some prime polynomial 7.
Then |n|,< 1, and we have |a|,=1 for every polynomial & prime to =
in F,[T]. Every £ek™ can be written in the form {=n"a/o’ with neZ
and a,o’ in F,[ T ] and prime to 7; when ¢ is so written, we have |], =(=|7;
in particular, ¢ isin r, if and only if n >0, i.e. if and only if it can be written
as {=p/a with o, in F,[T] and « prime to 7. As F (T) is dense in k,,
the range of values taken by |x|, is the same on F,(T) as on k,; this im-
plies that 7 is a prime element of &,. Now let J be the degree of n. The
image of F [T] in r /p, is isomorphic to F,[T]/z-F,[T], which is an
extension of F, of degree J, hence a field with ¢° elements; clearly the
image of every element of r,nF,(T) must then be in that same field,
which is therefore no other than r,/p,, since F (T) is dense in k,; this
shows that ¢° is the module of k,, and we have |x|,=q°. Consequently,
the function |&|, on k is uniquely determined by x, so that, when = is
given, there can be at most one place v of k with the properties we have
described. Assume now that|T|, >1; then|T~!|,<1, and we may proceed
exactly as before, substituting the ring F [T '] for F,[T], and T!
for =; then it is easily seen that, if £ = fi/a with polynomials a, § in Fq[T],
other than 0, of respective degrees a,b, we have |&],=¢"% It is now
clear that, if 7 is any prime polynomial, ||, cannot be <1 except for the
place v described above, if there is such a place, and that the same holds
for T~!. In order to show the existence of those places, take first the
case m=T; then the ring F,[ T] can be embedded in an obvious manner

into the ring of formal power-series ) a; T' with coefficients in F; clearly,

0
if we extend this to the corresponding fields, we get a place of k, corre-
sponding to n=T. Exchanging T with T~1, we get the same result for
T '. Now take a prime polynomial 7 of degree ; then F 4(T) contains
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the field F,(n) and is algebraic over it; its degree d over F,(n) is <0. As
we have just proved, there is a place w of F,(n) for which |r], =g '
By th. 1,F,(T)has a place v lying above w. By corollary 2 of th. 3, Chap. I-2,
we have then ||, =|n|% = ¢ % This completes our proof, and shows also,
incidentally, that d =4.

COROLLARY. Notations being as in theorem 2, let v be the place
of k corresponding to the prime polynomial n of degree 6. Then the poly-
nomials of degree <6 in ¥ [T] make up a full set of representatives of
the classes in r, modulo p,,.

This follows at once from what has been proved above and from
the fact that these polynomials make up a full set of representatives of
the classes in F [ 7] modulo 7.

From now on, it will be convenient to say that a property, involving
a place of an A-field k, holds for almost all places of k (or, if no confusion
is likely, that it holds almost everywhere) if it holds for all except a finite
number of such places. This will be of use, for instance, in formulating
our next result.

THEOREM 3. Let k be an A-field and £ any element of k. Then ||, <1
Jor almost all places v of k.

This is clear for k=Q, since we can then write {=a/b with ¢,b in Z
and b#0, and |¢|,<1 for all the primes p which do not divide b. Now
let k be an A-field of characteristic 0, i.e. an algebraic number-field.
Then £ satisfies an equation

&+a &4 +a,=0

with coefficients a; in Q. Let P be the finite set consisting of oo and of
all the primes which occur in the denominators of the a;. By th. 1, the
set P’ of the places of k which lie above the places of Q belonging to P
is finite. Take any place v of k, not in P’; then the place p of Q which
lies below v is not in P, so that |a, <1 for 1 <i<n; therefore £ is integral
over Z,. By prop. 6 of Chap.I-4, this implies that ¢ is in r,, i.e. that
|€l,<1. For an A-field k of characteristic p>1, one could give a
similar proof; one may also proceed as follows. If & is algebraic over
the prime field, we have |£],=1 or O for all v, according as £#0 or £=0.
Ifnot, k is algebraic over F (¢). Let v be a place of k, and let w be the place
of F (&) lying below it. By corollary 2 of th. 3, Chap.I-2, [{],>1 if and
only if |£],>1. By th. 2, F () has only one place w with that property.
In view of th. 1, this completes the proof.
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COROLLARY 1. Let E be a finite-dimensional vector-space over an
A-field k. Let ¢,¢' be two finite subsets of E, both containing bases of E
over k. For each finite place v of k, put E,=E®k,, and call ¢,,¢, the
r,-modules respectively generated by & and by ¢ in E,. Then, for almost
allv, ¢,=¢,.

Here, as on all similar occasions from now on, it is understood that E
is regarded as embedded in E, by means of the injection e—e®1, .
Put e={e,,...,e,} and &' ={e},...,€,}. As ¢ contains a basis for E over k,
we may write (perhaps not uniquely) e;=) c;;e; for 1<j<s, with coeffi-
cients c;; in k. Then ¢, c e, whenever all the |c;], are <1, hence for almost
all v. Interchanging ¢ and ¢', we get the assertion in our corollary.

COROLLARY 2. Let o/ be a finite-dimensional algebra over an
A-field k. Let o be a finite subset of <, containing a basis of «/ over k.
For each finite place v of k, put of ,= . ®,k,, and call a, the r,-module
generated by a in s/, Then, for almost all v, o, is a compact subring
of A,

Put a={a,,...,a,} and o’ ={1,ay,...,a,}. As o contains a basis of o/
over k, we may write a;a;=Y c;;a, for 1<i,j<r, with coefficients ¢,
in k. Then a;, is a subring of .o/, whenever all the |c;;|, are <1, hence
for almost all v; obviously, it is compact; and a, =« for almost all ».

§ 2. Tensor-products of commutative fields. If & is an A-field and
k' a finite algebraic extension of k, the proof of theorem 1 gives a construc-
tion for the places of k' which lie above a given place of k. This will now
be replaced by another one, based on the consideration of the tensor-
product k'®, k. To simplify matters, we shall deal only with the case
where k' is separable over k; this is adequate for our purposes because
of the following lemma;

LEMMA 1. Every A-field of characteristic p>1 is isomorphic to a
separably algebraic extension of ¥,(T) of finite degree.

Let k be such a field; write it as F,(x,,...,x,), where at least one of
the x;, say x,, has to be transcendental over F,. We will prove, by induc-
tion on N, that there is an x; such that k is separable over F,(x;). This
is clear if N=1, and also if x,,...,xy are all algebraic over F,, since in
that case, by th. 2 of Chap. I-1, they are separable over F,, so that k is
separable over F,(x,). If that is not so, then, by the induction assumption,
F,(x,,...,xy) is separable over F,(x;) for some i>2, say over F,(x,), so
that k itself is separable over F,(x;, x,). As k has the degree of trans-
cendency 1 over F,, there is an irreducible polynomial @ in F,[ X, X 2]
such that @(x, x,)=0. Then @ is not of the form ®"? with @' inF,[ X, X, |;
as every element « of F, satisfies a” =a, this is the same as to say that &
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contains at least one term aX{X, where a+0 and a or b is prime
to p. If for instance a is prime to p, x, is separable over F,(x,), so that
also k is separable over F,(x,).

In the rest of this §, we shall be concerned with the purely algebraic
properties of tensor-products of the form k'®, K, where k is any field,
k' a separably algebraic extension of k of finite degree, and K is any
field containing k; in § 4, this will be applied to the case where k is an
A-field and K a completion of k. We dispose first of a side-issue.

LeMMA 2. If a commutative ring B can be written as a direct sum
of fields, it can be so written in only one way; and a homomorphism of B
into a field must be 0 on all except one of the summands of B.

Let B be the direct sum of the fields K,...,K,; put e;=1g,. Then
K;=¢;B, and B has the unit-element 1;=) ¢;. Clearly the solutions of
the equation X2=X in B (the “idempotents” of B) are the partial sums
of the sum ) e;; consequently the ¢; are uniquely characterized as those
among the solutions of X?=X in B which cannot be written as e+¢/,
. where e, ¢ are solutions of X?= X, other than 0. If f is a homomorphism
of B into a field K’, it must map each ¢; onto a solution of X?=X in K’,
hence onto 1 or 0. If f(e)=1, then f(e;)=0 for all j#i, since e;e;=0
for i#j; this implies that f is 0 on K.

PROPOSITION 2. Let k be a field and k'=k(l) a separable extension
of k generated by aroot & of anirreducible monic polynomial F of degree n
in k[ X]. Let K be a field containing k; let F,,...,F, be the irreducible
monic polynomials in K[ X| such that F=F,...F,, and, for each i, let &
be a root of F, in some extension of K. Then the algebra A=k'®, K
over K is isomorphic to the direct sum of the fields K(&)).

As k' is separable over k, F is without multiple roots in all extensions
of k, so that the F, are all distinct. Call p the k-linear homomorphism
of the ring k[ X] onto k', with the kernel F - k[ X'], which maps X onto &;
this can be uniquely extended to a K-linear homomorphism p’ of K[ X]
onto A, which has then the kernel F-K[X] and determines an iso-
morphism of 4'=K[X]/F-K[X] onto A. We will now show that A’
is isomorphic to the direct sum B of the algebras B,=K[X|/F;- K[ X]
over K; as these are respectively isomorphic to the fields K(¢;) in our
proposition, our proof will then be complete Let f be any element
of K[X] call f its image in 4’, and f its image in B, for every i. Clearly
each f; is uniquely determmed by f, so that f—( fl, ,f,) is a homo-
morphism ¢ of A" into B. As the F; are mutually prime, it is well-known
(and easy to prove, by induction on ) that there are polynomials p,,....,p,
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in K[X] such that F~'=Y p,F;"'; this implies, for all i and all j#i:
(1) piFT'F=1  (F); piF ' F=0 (F)).

Take r polynomials f;,..., f. in K[X]; for each i, call f; the image of
fiin Bi; put f=>p,F7'F f,, and call f the image of f in A’; then f is
uniquely determined by the f;, so that (f;,...,f,)— f is a mapping ¥
of Binto A" Clearly yo¢ is the identity on A’, and (1) shows that @oys
is the identity on B. Therefore ¢ is an isomorphism of A" onto B.

Let k, k" and K be as in proposition 2. Clearly an isomorphism A of
k' into an extension K’ of K induces the identity on k if and only if it
is k-linear. Such an isomorphism will be called proper above K if K' is
generated by A(k') over K; then (4, K') will be called a proper embedding
of k' above K. Two such embeddings (1,K’), (4',K") will be called equi-
valent if there is a K-linear isomorphism p of K’ onto K” such that
A'=pol. One will notice that these are the algebraic concepts under-
lying definition 2 and proposition 1 of § 1.

ProposiTION 3. Let k be a field, k' a separably algebraic extension
of k of finite degree n, and K a field containing k; put A=k'®, K. Then,
up to equivalence, there are only finitely many proper embeddings (4;, K,)
(1<i<r) of k' above K ; the sum of the degrees of the K, over K is n. The
mapping (A1,...,4,) of k" into the direct sum B of the fields K, is a k-linear
isomorphism of k' into B, and its K-linear extension ¢ to A is an iso-
morphism of A onto B.

We may write k'=k(£), and then, calling F the irreducible monic
polynomial in k[ X] with the root & apply prop.2 to k, k', &, F and K;;
this shows that there is a K-linear isomorphism ¢ of A onto the direct
sum B of certain fields K;. For each i, call g, the projection from B to
K;; then u,= f,0¢ is a K-linear isomorphism of 4 onto K;, and y; induces
on k' a k-linear isomorphism 4; of k" into K;. Clearly y; is the K-linear
extension of 4; to A, so that ¢, which is the same as (u,,...,4,), is the
K-linear extension of (1,,...,4,) to A. If A, was not proper above K,
there would be a field K"+ K, between K and K;, such that i, would
map k' into K”; then u, would map A into K", and not onto K;. Now
let A be any k-linear isomorphism of k" into a field K’ containing K, and
call y the K-linear extension of A to 4; u is then a homomorphism of 4
into K’, so that go¢ ! is a homomorphism of B into K'. By lemma 2,
this 1s 0 on all except one of the summands K; of B, so that we can write
it as gof3;, where ¢ is a K-linear homomorphism of K; into K’; as these
are fields, and as ¢ is not 0, ¢ must be an isomorphism of K, onto its
image K; in K'. This gives u=0oou;, hence A=004;; if K|+ K', A, which
maps k' into K;, is not proper; therefore, if 1 is proper, ¢ is an iso-
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morphism of K; onto K’, so that (4, K'} is equivalent to (J;, K;). Finally,
if at the same time we had A=0¢"0/; with j#i, ¢’ being an isomorphism
of K; into K', this would imply u=¢’op;, hence pop™'=a'of;, and
po@ ™" would not be 0 on K;. In particular, if 4 is proper, (4, K') is not
equivalent to more than one of the embeddings (4;, K,); this shows that
the latter are all inequivalent, which completes our proof.

CoRrOLLARY 1. Notations being as above, let 1 be any k-linear iso-
morphism of k' into a field K' containing K. Then there is a unique i,
and a unique isomorphism ¢ of K, into K', such that A=c04,.

This was proved above; it is also an immediate consequence of pro-
position 3 and of the fact that, if K” is the subfield of K’ generated by
A(k'y over K, (4, K") is a proper embedding of k' above K, so that it must
be equivalent to one of the (4;, K)).

COROLLARY 2. Notations being as above, assume also that k' is a
Galois extension of k, with the Galois group G. Let (4, K') be any proper
embedding of k' above K. Then K' is a Galois extension of K; to every
automorphism p of K’ over K, there is a unique 6€G such that pol=Aoa,
and p—a is an isomorphism of the Galois group of K' over K onto a
subgroup H of G. The proper embeddings of k' above K, up to equivalence,
are all of the form (loo,K') with 6€G; if o,0 are in G, (Aod’,K’) is equi-
valent to (Ao, K') if and only if 6'e Ho.

Clearly A(k’) is a Galois extension of k; as K' is generated by A(k")
over K, this implies that K’ is a Galois extension of K, and that the
restriction to A(k") of the automorphisms of K’ over K defines an injective
morphism of the Galois group H, of K’ over K into that of A(k') over k;
this is equivalent to the first part of our corollary. For ¢€G, (og, K')
is obviously a proper embedding of &" above K ; if g, 6" are in G, (oo, K')
is equivalent to (loa, K') if and only if there is an automorphism p of K’
over K such that loo’=poloa, i.e. pod=Ao(c’oc™'); this is so if and
only if 6'oc™! is in H. Therefore the number of inequivalent proper
embeddings of that form is equal to the index of H in G, i.e. to n/n’ if
n, n’ are the degrees of k' over k, and of K’ over K, respectively. By pro-
position 3, the sum of the degrees of the fields K; over K, in any set of
inequivalent proper embeddings (4;, K;) of k' above K, must be <n;
therefore, up to equivalence, there can be none except those of the form
(Loa,K').

A useful special case of corollary 2 is that in which k' is a subfield
of K’, generating K' over K; one may then take for 4 the identity; the
proper embeddings of k" above K can all be written in the form (g,K"),
with 6eG, and the morphism p—o¢ of the Galois group of K’ over K
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into that of k' over k is the restriction to k' of the automorphisms of
K’ over K.

CoroLLARY 3. Let k and k' be as in proposition 3, and let K be an
algebraically closed or separably algebraically closed field containing k.
Then there are n, and no more than n, distinct k-linear isomorphisms
Alse.onhy Of K into K; they are linearly independent over K; if A, X are
any two of them, and K is an algebraic closure of k, there is an auto-
morphism o of K such that X' =aol.

A field K is said to be separably algebraically closed if it has no
separably algebraic extension, other than itself. The first assertion in
our corollary, which is obvious, is inserted here for the sake of reference,
and as an illustration of proposition 3, of which it is a special case;
in fact, if K is as in our corollary, all the K, in that proposition must be
the same as K. The second assertion (a well-known theorem, due to
Dedekind, and easily proved directly) can be deduced as follows from
proposition 3. Assume that Y ¢;4,=0, i.e. that ) ¢;4,(6)=0 for all £ek/,
with c;e K for I <i<n. The y; and f; being as in the proof of proposition 3,
this implies ) ¢, ;=0, hence ) ¢; f;=0, which is clearly impossible unless
all the ¢; are 0. The last assertion, also inserted here for the sake of re-
ference, follows at once from the unicity, up to an isomorphism, of the
algebraic closure of k, which implies that each 4; can be extended to an
isomorphism of an algebraic closure k of k’ onto K.

COROLLARY 4. Assumptions and notations being as in corollary 3,
assume also that k' is a Galois extension of k. Then all the A; map k' onto
the same subfield of K.

This follows at once from corollary 2.

§ 3. Traces and norms. We first recall the concept of “polynomial
mapping”. Let E, E’ be two vector-spaces of finite dimension over a field k
with infinitely many elements; let e={e,...,e,} and ¢'={e,...,€,} be
bases for these spaces over k. Then a mapping f of E into E’ is called
a polynomial mapping if there are polynomials P; in k[ X,...,X,] such

that
f(E x,-e,-) =§ Pi(xy,...,x,)e€;
i i

for all values of the x; in k. This is clearly independent of the choice of
the bases ¢,¢'; moreover, since k has infinitely many elements, the poly-
nomials P; are uniquely determined by f, ¢ and ¢ If E'=k, f is called
a polynomial function; the degree of the corresponding polynomial P
is then independent of ¢ and is called the degree of f. If K is any field
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containing k, put Ex=E®,K and Ex=F ®,K; then there is one and
only one polynomial mapping of Eg into Eg which coincides with f
on E; this will be called the extension of f to E, and Eg (or more briefly
to K) and will again be denoted by f; with respect to the bases ¢,¢& of
Ex, Ex over K, it is given by the same polynomials P; as before.

If E is as above, we write End(E) for the ring of endomorphisms of E,
considered as an algebra over k. If ac End(E), we write tr(a) and det(a)
for the trace and the determinant of a; the former is a linear form, and
the latter is a polynomial function of degree equal to the dimension
of E, on End(E) considered as a vector-space over k.

Now let .7 be an algebra of finite dimension over k; as always, it is
tacitly assumed to have a unit element 1. For every ae.o, call p(a) the
endomorphism x—ax of & when .« is viewed as a vector-space over k;
writing End(«/) for the algebra of all endomorphisms of that vector-
space, one may thus consider p as a homomorphism of .7 into End(s/);
it is known as the regular representation of < ; as .o/ has a unit, it is an
isomorphism of &/ onto a subalgebra of End(s). The trace and the
determinant of p are known as the regular trace and the regular norm,
taken in o/ over k, and are denoted by Tr, and N, or (when there
can be no confusion) by Tr and by N, respectively; the former is a linear
form on .o/ viewed as a vector-space over k, and the latter is a poly-
nomial function, of degree equal to the dimension of o/ over k. If K is
a field containing k, and ./ is extended to the algebra &/yx= ®, K
over K, the regular trace and the regular norm in «/x over K are the
extensions of Tr,, and N, to <7k, and will still be denoted by Tr
and N,,. When &/ is a ficld k' of finite degree over k, one drops the
word “regular” and calls Tiy, Ny the trace and the norm in k' over k.
These concepts will now be applied to the situation described in §2.

PROPOSITION 4. Let k be a field, k' a separably algebraic extension
of k of finite degree n, and K a field containing k. Put A=k’ ®,K; let
(4 K)1<i<» be a maximal set of inequivalent proper embeddings of k'
above K, and let p,, for each i, be the K-linear extension of A; to A. Then,
forall ae A:

Trk'/k(a): -21 nK,—/K(ﬂi(a))’ Nk'/k(a): Ijl NKi/K(Aui(a))-

In fact, let notations be the same as in prop. 3 of §2 and its proof,
and put b=¢(a). For every i, b has the projection f;(b)=py;(a) on K,.
Then Tr,(a) and N, ,(a) are the trace and the determinant of y— by
regarded as an endomorphism of B. Taking for B a basis consisting of
the union of bases for the K; over K, we get the formula in proposition 4.



54 Places of A-fields 111

COROLLARY 1. If k and k' are as in proposition 4, the k-linear form
Tr o on k' is not 0.

In proposition 4, take for K an algebraically closed field contain-
ing k; then K;=K for all i, and proposition 4 gives Tr,.,(a)=) u;(a).
With the same notations as before, put b=¢(a), hence f,(b)=pu;(a); as
the projections f5;(b) of b on the summands of B can be chosen arbitrarily,
we can choose them so that Tr,.,(a)is not 0. As Tr,., on A is the extension
to A of the k-linear form Ti,., on k', and the former is not 0, the latter
is not 0.

COROLLARY 2. Notations and assumptions being as in proposition 4,
we have, for all xek':

Trk'/k(x)z Z T"Ki/x(ii(x)), Nk’/k(x)= HNKi/K('li(x))'

COROLLARY 3. Let k, k' be as in proposition 4; let K be an algebru-
ically closed field containing k, and call A, ..., A, the distinct k-linear
isomorphisms of k' into K. Then, for all xek’:

Trk’/k(x) = Z/’Li(x)v Nk'/k(x) = Hli(x)-

This follows at once from proposition 4 and corollary 3 of prop. 3, § 2.

COROLLARY 4. Let k and k' be as in proposition 4, and let k" be a
separably algebraic extension of k' of finite degree. Then:

Tripe= Trepo Ty Ny =Ny o Ny

Take for K an algebraic closure of k”; define the 4; as in corollary 3;
similarly, call n’ the degree of k” over k', and call 4}, for 1<j<n/, the
distinct k'-linear isomorphisms of k” into K. Each 4, can be extended to
an automorphism ¢; of K. Put A};= @04 for 1 <i<n, 1<j<n’; these are
k-linear isomorphisms of k" into K. Clearly A/;=4;, implies i=h, since
A}; induces A; on k', and j=1, since ¢; 'oAj;=1;. Moreover, if 1" is any
k-linear isomorphism of k" into K, it must induce on k' one of the iso-
morphisms A;, and then ¢; *oA” is k'-linear and must be one of the 1},
so that A”=4{;. Now corollary 3 gives, for xek":

T )= 50 = Yo T A500)
= Zq)i( Trk"/k'(x)): Z’li( Trk”/k'(x)): Ty nl T"k",k'(x))-

This proves our first assertion. The formula for the norm can be proved
in exactly the same manner.
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For the sake of completeness, we will also deal briefly with the
trace and the norm for inseparable extensions. Let k' be any algebraic
extension of k of finite degree; it is well known that it contains a unique
maximal separable extension kg of k, and that it is purely inseparable
over it; let g=p™ be the degree of k' over kg, p being the characteristic;
it is easily seen that x?ekj for all xek'. Take a basis {£,,...,{,} of k'
over ky; take aek’. Then k', as a vector-space over k, is the direct sum of
the subspaces ¢k, for 1<i<gq, and these are invariant under x—a%x
since a?eky. Therefore we have

N k'/k(aq) =N ko'/k(aq)q,
which obviously implies
Ny pla)= N -(a®).

Call n, the degree of kj, over k, so that the degree of k' over k is n=nqq.
If K is an algebraically closed field containing k, each k-linear iso-
morphism of ki into K can be uniquely extended to one of k" into K;
therefore, by corollary 3 of prop. 3, § 2, there are n, such isomorphisms
4; (1<i<ny), and the above formula for Ny, together with corollary 3
of prop. 4 applied to ki, and k, gives, for all xek':

Nk’/k(x) = n jhi(x)"/no~

Now let k” be any finite extension of k’. Proceeding exactly as in the
proof of corollary 4 of prop. 4, we get again

Niwpe=Nypo Ny

which is therefore valid, whether k" and k” are separable over k or not.

As to the trace, the elementary properties of the determinant, and
the definition of the trace and the norm, show that, if .o/ is any algebra
over k, Tr,;(x), as a linear form on ¢/, is the sum of the terms of degree 1
in the polynomial function N, (1+x) when the latter is expressed as a
polynomial in the coordinates of xe ./ with respect to some basis of .o/
over k. This, applied to the present situation, shows that Tr,.,(x) is the
sum of the terms of degree 1 in N, ,(1+x). As the latter is equal to
Nya(1+x9), it contains only terms whose degree is a multiple of g.
This shows that Tr,., =0 if > 1, and therefore, in view of corollary 1 of
prop. 4, that Tr,., +0 if and only if k' is separable over k.

PropOSITION 5. Let k' be a separably algebraic extension of k of
degree n, and let {a, ...,a,} be a basis of k' over k. Then the determinant
of the matrix

(Trk’/k(aiaj))i <i,j<n
is not Q.
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In view of corollary 1 of prop. 4, this is contained in the following
lemma, which will also be useful later:

LEMMA 3. Let k' be any extension of k of degree n; let E be the
vector-space over k underlying k', and let A be any linear form on E, other
than 0. Then (x, y)— A(x y) is a non-degenerate bilinear form on E x E; one
can identify E with its algebraic dual E' by putting [x,y]=2A(xy); and, if
yy...,a, is a basis of k' over k, the determinant of the matrix ((a;a;))
is not 0.

As J is not 0, there is aek’ such that A(a)#0. For each yek’, define a
k-linear form 4, on k' by 4 (x)=A(xy) for all xek'. Then y— 4, is a mor-
phism of E into its dual E'. This has the kernel 0, since y+0 implies
A(ay™1)#0, hence 1,#0. As E and E’ have the same dimension over &,
this shows that y— A, is an isomorphism of E onto E’; identifying E and
E’ by means of that isomorphism, we get [x,y]=21(xy). By definition,
this is the same as to say that (x,y)— A(xy) is non-degenerate. Finally,
if the matrix (A(a;a;)) had the determinant 0, one could find y,..., y,
in k, not all 0, so that Zl(aiaj)yj=0, hence, putting y= Zajyj, Aa)=0

j J
for all i, and therefore 4,=0, which contradicts what has been proved
above.

§ 4. Tensor-products of A-fields and local fields. Let k£ be an A-field
and k’ a separable extension of k; let v be a place of k, and k, the completion
of k at v. Then, by prop. 1 of § 1 and its corollary, the completions (4, K")
of k" which induce on k its natural injection into k, are the same as the
“proper embeddings” of k' above k,, as defined in § 2. We may therefore
use propositions 2 and 3 of §2 in order to determine the places of k'
above v; this will be done now.

THEOREM 4. Let k be an A-field, k' a separably algebraic extension
of k of finite degree n, and a a basis of k' over k. For every place v of k,
let k, be the completion of k at v, and put A,=k'®.k,; for every finite
place v of k, call v, the maximal compact subring of k,, and o, the r -module
generated by o in A,. Let w,, ..., w, be the places of k' which lie above v;
for each i, call k; the completion of k' at w;, A; the natural injection of k'
into ki and u; the k,-linear extension of A; to A,. Then the mapping
®,=(uy,..-,14,) is an isomorphism of A, onto the direct sum B, of the fields
k;, and, for almost all v, it maps a,, onto the sum of the maximal compact
subrings r; of the fields k;.

The first assertion is just a special case of prop. 3 of § 2, obtained by
taking K=k, in that proposition; more briefly, but less accurately, it
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can be expressed by saying that the completions k; of k' at the places of
k’ which lie above v are the summands of k'®, k, when this is written as a
direct sum of fields. Now take for v any finite place of k; clearly the sum
of the r} is the maximal compact subring of B,; therefore its image p,
under @, ! is the maximal compact subring of 4,, and we have to show
that this is the same as «, for almost all v. As each of the r} contains r,,
p, is a klattice in A,; by th. 1 of Chap. II-2, we can find a basis
{u,, 1., U,y Of A, over k, such that p, is the r,-module generated by
that basis. For almost all v, by corollary 2 of th. 3, § 1, «, is a compact
subring of A,, hence contained in p,; call P the finite set of places of k
for which this is not so. Put a={a,, ..., a,}; for vnot in P, a, is contained
in p,, so that we can write a;= Y ¢, ;;u, ; with ¢, ;;er, for 1<i,j<n; the
matrix C,=(c, ;;) is then in M,(r,), and we have «,=p, if and only if C,
is invertible in M,(r,), i.e. if and only if its determinant is invertible in r,,.
Now, writing Tr for the trace Tr,,, call 4 the determinant of the matrix

Mz(Tr(aiaj))l <i,j<ns

4 isink, and, by prop. 5 of § 3, it is not 0. Applying th. 3 of § 1 to 4 and to
A71, we see that |4],=1 for almost all v. On the other hand, if u is any
element of 4,, Tr(u) is the trace of x > ux in A,; writing u - u, ;= ) d;;u, ;
with d;;ek, for 1<i,j<n, we get Tr(u)= Y.d;;. As p, is a ring, all the d;;
are in r, if ue p,; this shows that Tr maps p, into r,. Therefore, if we write
N, for the matrix (Tr(u, u,;)), N, is in M,(r,). Substituting now
Y ¢, iUy, ; for a; in the matrix M, we get M=C,N,'C,, hence 4 =
=det(N,)det(C,)>. Here N, is in M,(r,), and so is C, if v is not in P;
and |4|,=1 for almost all v. Clearly this implies that |det(C,)|,=1 for
almost all v, as was to be proved.

in Chap. VIII, it will be shown that theorem 4 remains valid even
if k' is not assumed to be separable over k.

COROLLARY 1. Assumptions and notations being as in theorem 4, the
sum of the degrees over k, of the completions k; of k' at the places w;
of k' which lie above v is equal to the degree n of k' over k.

In fact, this sum is the dimension of B, over k,, while that of A4,
over k,, is n.

COROLLARY 2. Let k be an algebraic extension of Q of degree n;
call r, the number of the real places of k, and r, the number of its imaginary
places. Thenr,+2r,=n.

We get this by replacing k, k', v by Q, k, oo in corollary 1.
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COROLLARY 3. Assumptions and notations being as in theorem 4, the
extensions of Try, and N,., to A, are given by

Trk’/k(x) = z Trk{/k.,(ui(x))’ Nk’/k(x) = n Nkf/kv(ﬂi(x))'

This follows at once from the application of prop. 4 of §3 to the
situation described in theorem 4.

COROLLARY 4. Assumptions and notations being as in theorem 4,
assume also that k' is a Galois extension of k, with the Galois group G.
Let w be one of the places w, of k'. Then the completion k., of k' at w is
a Galois extension of k,; the restriction to k' of the Galois group H of k.,
over k, determines an isomorphism of H onto the subgroup of G, consisting
of the automorphisms of k' over k which leave w invariant; the w; are the
images of wunder G, and all the k; are isomorphic to k.,,.

Let A be any isomorphic embedding of k" into a local field K, such
that A(k’) is dense in K; then, by definition, this determines a place of k',
and the image of that place bty an automorphism ¢ of k' is to be under-
stood as the place determined by the embedding Aos of k" into K. That
being so, we get our corollary by combining theorem 4 with corollary 2
of prop. 3, §2, the latter being applied to the natural injection of k'
into k..



Chapter IV

Adeles

§ 1. Adeles of A-fields. Throughout this Chapter, k£ will denote an A-
field; if v is a place of k, k, will denote the completion of k at v;if vis a
finite place of k, we write r, for the maximal compact subring of k, and
p, for the maximal ideal of r,, these being the subsets of k, respectively
defined by |x|,<1 and by |x|,< 1. We write P, for the set of the infinite
places of k, and P for any finite set of places of k, containing P . For
any such set P, put

) kaP)=[Tk,x [] 7.

veP v¢ P

where the second product is taken over all the places of k, not in P.
With the usual product topology, this is locally compact, since the k,
are so and the r, are compact. On k,(P), we put a ring structure by
defining addition and multiplication componentwise; clearly this makes
k,(P) into a topological ring. Set-theoretically, k,(P) could be defined
as the subset of the product [k, consisting of the elements x=(x,) of
that product such that |x,|,<1 for all v not in P. If P’ is also a finite set
of places of k, and P'> P, then k,(P) is contained in k,(P’); moreover,
its topology and its ring structure are those induced by those of k,(P"),
and k,(P) is an open subset of k,(P’).

Now we define a locally compact topological ring k,, the “ring of
adeles” of k. Set-theoretically, this is to be the union of all the sets k,(P);
in other words, it consists of the elements x=(x,) of the product | [k,
which satisfy |x,|,<1 for almost all v. The topological ring structure of
k, will be defined by prescribing that each k,(P) is to be an open subring
of k,. This means firstly that, if x=(x,) and y=(y,) are in k,, then
x+y=(x,+y,) and xy=(x,y,); it is clear, in fact, that these are both in
k,. Secondly, we get a fundamental system of neighborhoods of 0 in the
additive group of k, by taking such a system in any one of the k,(P), for
instance ink,(P_) which is the smallest one of the sets k , (P); equivalently,
we get such a system by taking all the sets of the form [] U,, where U,
is a neighborhood of 0 in k, for all v,and U,=r, for almost all v.
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DEfFINITION 1. By the adele ring k, of the A-field k, we understand
the union of the sets k,(P) defined by (1), when one takes for P all the
finite sets of places of k which contain the set of all infinite places. The
topological ring structure of k, is that for which each k,(P) is an open
subring of k,.

The elements of k, will be called the adeles of k.

Take a place v of k; when P contains v, one can write k,(P) as the
product of k, with an infinite product; denoting the latter by k) (P,v),
we may proceed with the products k, (P, v) just as we have done for the
products k,(P), taking now for P all the finite sets of places of k which
contain P and v. The union of all the k), (P,v) is then a locally compact
ring k(v), and k, is obviously isomorphic to the product k,x k) (v);
by means of this isomorphism, the first factor k, of the latter product is
obviously mapped onto the set of the adeles x=(x,) for which x,,=0 at
all places w4 v; this set will be called the quasifactor of k, belonging to v,
and will always be identified with k,. The mapping (x,)— x, of k, onto
k,, which corresponds to the projection from the product k,x k) (v)
onto its first factor, will be called the projection from k, onto the quasi-
factor k,; it is obviously continuous. Clearly, too, instead of one place v
of k, one could start with any finite set P, of such places so as to write
k, as the product of the fields k, for ve P, and of one more factor.

Take any character ¥ of the additive group of k,; it induces on
k,(P), for every P, a character yp of k,(P), and on the quasifactor k,,
for every v, a character y, of k. It is well-known that a character of an
infinite product of compact groups must induce the trivial character 1
on almost all the factors; this, applied to the character induced by yx,
on the product [ [r, in (1), shows that y, is trivial on r, for almost all v;
then we have, for all x=(x,) in k,:

() xx)=[]x.(x,);

the product here is taken over all the places v of k; for each x =(x,) in k,,
almost all the factors are equal to 1.

Let & be an element of k. In view of th. 3 of Chap. III-1, we define an
adele x=(x,) by putting x,=¢ for all v; we write this ¢(¢), and call ¢ the
canonical injection of k into k,; we will frequently identify k with its
image in k, by means of ¢ when there is no danger of confusion.

Let E be a vector-space of finite dimension n over k. For each place
v of k, we will write E,= E®,k,; as usual, we take E to be “naturally”
embedded in E, by the injection e—e®1, . On the other hand, since k
has been embedded in k, by the canonical injection ¢ defined above, we
may consider the tensor-product E,=E®,k,, and regard E as being
“naturally” embedded in it by the mapping e—e®@(1). We define the
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topology of E, as the coarsest one for which the extensions to k, of the
linear forms on E are continuous. Equivalently, take a basis ¢ of E
over k; this determines an isomorphism of k" onto E, hence an isomorphism
of (k,)" onto E,; the topology of E, is that which is obtained by trans-
ferring to E, the topology of (k,)" by means of that isomorphism; it
would be easy to verify directly that this does not depend upon &.

Let E and E’ be vector-spaces of finite dimension over k, and let f be
a polynomial mapping of E into E’; then f can be extended in an obvious
manner to a mapping of E, into E),, viz,, the one which is defined by the
same polynomial equations if E, E are identified with spaces k*, k™, and
consequently E,, E, with (k,)", (k)" by the choice of bases for E, E'
over k. This extension of f will again be denoted by f; it is clearly conti-
nuous, since addition and multiplication are continuous in k.

PROPOSITION 1. Let E be a vector-space of finite dimension n over k.
Let ¢ be a finite subset of E, containing a basis of E over k. For each
finite place v of k, call ¢, the r,-module generated by ¢ in E,. For each
finite set P of places of k, containing P, write

E\(P,e)=]]E,x ]]e.-

veP véP

Then each E,(P,¢) is an open subgroup of E,, and E, is the union of these
subgroups.

This should be understood in the sense that each product E,(P,¢) is
endowed with its product-topology, and that the latter coincides with
the one induced by that of E,. Clearly ¢, is a k,-lattice in E,, hence open
and compact in E,, for all finite places v. Therefore E,(P,¢) is an open
subgroup of E,(P’,¢) whenever P< P’. Take a basis ¢ of E over k, and
use it to define an isomorphism of k" onto E, hence one of (k,)" onto E, ;
then our definitions show at once that E, is the union of the sets E , (P, ¢"),
and that these are open in E,. By corollary 1 of th. 3, Chap. 1I1-1, there
is a finite set P, of places of k, containing P, such that ¢,=¢, when v is
not in P,. This shows that E, is the union of the sets E,(P,¢), and also,
for "> PUP,, that E,(Pe) is open in E,(P',¢'), hence in E,. Of course
one could use proposition 1 to define directly the topology of E,, just as
the topology of k, has been defined above; corollary 1 of th. 3, Chap. ITI-1,
would then show this to be independent of &.

COROLLARY 1. Assumptions and notations being as in proposition 1,
let C be a compact subset of E,. Then there is a finite set P of places of k,
such that C< E (P, s).
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As C is contained in the union of the open sets E,(P,¢), it must be
contained in the union of finitely many such sets E,(P,¢), hence in
E.(P,e)for P=J P..

If o/ is any algebra of finite dimension over k, we will denote by <7,
the topological ring obtained by extending the multiplication law of ./
to the space </, in the manner explained above. Clearly this may be
regarded as an algebra over k,, and k, 1, is a closed subspace and a
subring of .&Z,, isomorphic to k,.

COROLLARY 2. Let o/ be an algebra of finite dimension over k, and
o a finite subset of </, containing a basis of </ over k. For each finite place
v of k, call «, the r,-module generated by o in of .. For each finite set P of
places of k, containing P, write

oA \(Po)=[] o, x ]
veP véP

Then there is such a set P, with the property that </ ,(P,x) is an open
subring of </ , whenever P= Py; and </, is the union of these subrings.

This follows at once from corollary 2 of th. 3, Chap. I11-1, and from
proposition 1.

Take now an algebraic extension k’ of k, of finite degree. As k" is an
A-field, we may apply to it our general construction, obtaining thus its
adele ring k). On the other hand, we may regard k' as an algebra over k
and apply to this algebra the construction given above; this gives a ring
which we write as (k'/k),; as we have seen, it is an algebra over k,, and
contains the closed subring k,-1,., which we identify with k, in the
obvious manner. It is a central fact in the theory of adeles that the rings
k', (k'/k), defined in this way are canonically isomorphic; this will be
proved now, but only for the case where k' is separable over k. The
inseparable case will be treated in Chap. VIII-6.

THEOREM 1. Let k be an A-field and k' a separably algebraic exten-
sion of k of finite degree. Then there is a unique isomorphism @ of (k'/k),
onto k), with the following properties: (i) @ induces the identity on k'
when k' is naturally embedded both in (k'/k), and in k), ; (i) on each quasi-
factor (k'/k), of (k'/k)a, @ induces a k,-linear isomorphism @, of (k'/k),
onto the product of the quasifactors k., of k!, corresponding to the places
w of k' which lie above v.

Write .o/ for the algebra k'/k, i.e. for k' considered as an algebra
over k. Then o/, in the notation explained above, is the same as (k'/k),,
and o, the same as (k'/k),, i.e. as the algebra k'®,k, over k, which was
studied in Chap. III-4. For a finite number of summands, a “direct sum”
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is the same as a product; we may therefore interpret th. 4 of Chap. I11-4
as defining an isomorphism @, of (k'/k), onto the product [ [k, of the
fields k., for the places w lying above v; this is k,-linear and maps every
Eek’ onto the element (&, ..., &) of nk(v, and it is uniquely characterized
by these properties. Similarly, if we take a basis o of k' over k, the same
theorem shows that, for almost all v, ®, maps «, onto the product []r,
of the maximal compact subrings of the fields k., ; let P, be a finite set of
places of k, containing P, such that @, has that property for all v not
in P,. For each place w of k', call f(w) the place of k lying below it. Then,
for P> P,, the mappings &, determine in an obvious manner an iso-
morphism @, of o, (P,x) onto k,(f~ '(P)), where <7,(P,a) is the open
subring of &/, =(k'/k), defined as in corollary 2 of prop. 1. As every set
f~Y(P) is finite, and every finite set P’ of places of k' is contained in
f~YP) for P=f(P'), k, is the union of the sets k},(f~'(P)) for P> P,,.
As @, coincides with @, on the domain of definition of @, whenever
P, > P, there is an isomorphism @ of o/, onto k), which coincides with
&, on that domain whenever P> P,. It is now clear that ¢ has the pro-
perties stated in our theorem and that it is uniquely characterized by
these properties.

COROLLARY 1. Assumptions and notations being as in theorem 1,
call f(w), for every place w of k', the place of k lying below w. Then, if
x=(x,) is in k,, D(x) is the element y=(y,) of k), such that y,=Xx, for
every place w of k'.

This follows at once from the fact that @(1)=1 and that @, is k,-linear
for every v.

From now on, k, will usually be identified with its image in k), by
means of the isomorphism, induced on k, by &, which is described in
corollary 1. Clearly k, is thus a closed subring of k.

COROLLARY 2. Let k and k' be as in theorem 1; let E/k’ be a vector-
space of finite dimension over k', and call E/k the underlying vector-space
over k. Then the identity mapping of E/k onto E/k’ can be uniquely extended
to a k,-linear mapping of (E/k), into (E/k'),, and this is an isomorphism
of (E/k), onto (E/k'),.

In view of corollary 1, this is merely a restatement of theorem 1 if
E=Fk'; the case E=k"™ follows from this immediately, hence also the
general case, since E can always be identified with a space k™ by the
choice of a basis.

According to the definitions given above, the k-linear form Tr., and
the polynomial function N,., on the space k', considered as a vector-
space over k, may be extended to mappings Try., Ny of (k'/k), into k,;
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then Tr,,0® ! and N, ,o0® ' are mappings of k, into k,. We will
simplify the formulation of the next corollary by identifying in it (k'/k),
with k, by means of @, so that the latter mappings may be written
simply as Tr,., and Ny.,.

COROLLARY 3. Let x'=(x,) be any element of ki; put y=Tru(x')
and z=Ny.,(X'). Then y,z are the elements (y,), (z,) of k, respectively
given by

Vo= 2 Tre n, (%) zo=[T Ny, (X,)

wlv wlv

for every place v of k, the sum and the product being taken over all the
places w of k' which lie above v.

This is an immediate consequence of prop. 4, Chap. 111-3, and th. 1.

§ 2. The main theorems. In view of lemma 1 of Chap. III-2, every
A-field is a separably algebraic extension of one of the fields Q and
F,(T). Theorem 1 of § 1 enables us now to prove properties of adele
spaces by dealing first with the special cases k=Q and k=F,(T). This
method will presently yield some important results; in stating them, we
simplify notations by identifying A-fields, and vector-spaces over such
fields, with their natural images in the corresponding adele spaces, as
explained in § 1;in the proofs, we shall again use ¢ to denote the canonical
injection of an A-field k into k,.

THEOREM 2. Let k be an A-field and E a vector-space of finite dimen-
sion over k. Then E is discrete in E,, and E,/E is compact.

In view of corollary 2 of th. 1, § 1, and of lemma 1 of Chap. I1I-2, it
is enough to prove this for k=Q and k=F,(T). If n is the dimension
of E, E is isomorphic to k", so that, if the theorem is proved for E=k,
it must be true in general. Thus we need only treat the cases E=k=Q
and E=k=F,(T). We begin with Q.

For each prime p, call Q% the set of the elements ¢ of Q such that
I¢l,» <1 for all the primes p’ other than p. Clearly this is a subring of Q,
consisting of the numbers of the form p~"a with neN and aeZ.

Lemma 1. For every prime p, we have Q ,=QW+Z ,and QVnZ,=Z.

The first assertion follows at once from corollary 2 of th. 6, Chap. 1-4,
applied to Q,, to the prime element p and to the set of representatives
{0,1,...,p—1}. The second one is obvious.

LEMMA 2. Put A,=Rx[][Z,, and call ¢ the canonical injection
of Qinto Q,. Then Q,=¢@(Q)+ A, and p(Q)NA,=p(Z).
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With the notation of (1), § 1, A, is the same as Q,({o0}); it is there-
fore an open subring of Q,. The second assertion in the lemma is obvious.
Now take any x=(x,) in Qy; call P the set of the primes p such that x,
is not in Z,; it is a finite set. For each peP, the first part of lemma 1
shows that we may write x,=¢,+ x), with £,€Q®” and x,€Z,. For p not
in P, put {,=0 and x,=x,. Put now {=) {,, the sum being extended
to all p, and y=x—¢(&). If y=(y,), we have, for every prime p:

Yp=Xp—Cp— Z e Z Cp-
P FEP P +p
By the definition of Q', all the terms in the right-hand side are in Z,,.
This shows that y is in 4, hence x in @(Q)+A4,.

We can now prove our theorem for E=k=Q. As A, is open in Q,,
the first assertion will be proved if we show that ¢(Q)nA4,, i.e. ¢(Z),
is discrete in A ; this is clear, since its projection onto the factor R of
the product 4, is Z, which is discrete in R. Now call I the closed interval
[—1/2,1/2] in R, and put C=Ix[]Z,. Clearly A, =¢(Z)+C, hence
Q.=¢(Q)+C. As C is compact, this completes the proof.

For E=k=F,(T), the proof is similar but simpler. For each place v
of k, call k™ the set of the elements & of k such that |£],, <1 for all the
places w of k, other than v.

LemMA 3. For every place v of k, k,=k®+ r, and kK’ rr,=F,.

The last assertion is obvious in view of the definition of the func-
tions |£{, on k which was given in the proof of th. 2, Chap. III-1. As to
the first one, it is enough to consider a place attached to a prime poly-
nomial n of F,[ T], since otherwise we merely interchange T and T~ .
Then it follows at once from corollary 2 of th. 6, Chap. I-4, applied to k,,
to the prime element n and to the set of representatives supplied by the
corollary of th. 2, Chap. III-1.

LEMMA 4. Put Ag=[]r,. Then ky=q(k)+ A, and p(k)nAy=o(F,).

With the notation of (1), § 1, A, is the same as k,(@); it is a compact
open subring of k,. The last assertion is again obvious. Now take x =(x,)
in k,. For every v for which |x,|,> 1, lemma 3 shows that we may write
=¢,+x, with £, ek™ and x,er,. For all other places v, put £,=0 and
x,=x,. Put £=Y ¢, and y=x—¢(¢). Just as in the proof of lemma 2,
we get yeA,.

The theorem is now obvious for E=k=F,(T), since 4, is compact
and open in k, and F, is finite. This completes the proof.

v
’
v

Now we consider a vector-space E over an A-field k, its algebraic
dual E', and the corresponding adele spaces E,,E,. We write [e,¢'] for
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the value at a point e of E of the linear form determined by a point e’ of E,
and we use the same notation for the extension of this bilinear form to
E, x E;. As the additive group of E, is a locally compact commutative
group, we may consider its topological dual, which we denote by E%;
and we write {e,e*) for the value at ecE, of the character determined
by e*e EX. With these notations:

THEOREM 3. Let k be an A-field and y a non-trivial character of k,,
trivial on k. Let E be a vector-space of finite dimension over k; let E
be its algebraic dual, and E¥ the topological dual of E,. Then the formula

(e,e*>=y([e,e]) forall ecE, (¢'€E,,e*cE})

determines an isomorphism ¢ —e* of E, onto EX. Moreover, if €' is such
that y([e,e'])=1 for all ecE, then ¢'cE'.

The last statement amounts to saying that the isomorphism e'—e*
of E; onto E¥ defined in our thecorem maps E’ onto the subgroup of E%
associated by duality with the discrete subgroup E of E,.

We begin by treating the case E=k=Q. Use again the same nota-
tions as in the first part of the proof of th. 2. In view of lemma 2, every
character of A, trivial on ¢(Z), can be uniquely extended to a character
of Q,, trivial on ¢(Q). We get such a character y by putting y(x)=e(—x)
for x=(x,)e A, (we recall that we write e(t)=e*™" for teR). If we extend
this to a character y of Q,, trivial on ¢(Q), and call y,, for every place v
of Q, the character induced by y on the quasifactor Q, of Q,, then ¥
is obviously characterized by the following facts: it is trivial on @{Q),
¥p1s trivial on Z,, for every prime p, and y,(x)=e(~x) for xeR. In order
to calculate y,, consider again the group Q® defined in the proof of
th.2, and take any £ Q. Then ¢eZ,, for all primes p'#p, so that we
have, by (2) of § 1:

1= 1(p(E)= (&) 1, () =0(— D) 2,(S)

and therefore y,(¢)=e(¢). By lemma 1, x, is completely determined by
this and by the fact that it is trivial on Z,, and its kernel is Z ,; it is there-
fore of order 0 in the sense of def. 4 of Chap. II-5.

Now let ' be any character of Q,; for every place v of Q, call y,
the character induced by y' on the quasifactor Q, of Q,. By the corollary
of th. 3, Chap. lI-5, we can write y, uniquely in the form y,(x)=y,{a, x)
with a,€Q,. As we observed when writing formula (2) of § 1, x, must be
trivial on Z, for almost all p if y is to be continuous on Q,; this implies
x,(a,)=1, hence a,eZ, for almost all p; therefore a=(a,) is in Q,, so
that, by (2) of § 1, ¥ is the character y, of Q, given by y,(x)=y(ax) for
all xeQ,. We have thus shown that the mapping a—y, of Q, into the
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topological dual G=Q% of Q, is surjective. One sees at once that it
is continuous and injective, so that it is a bijective morphism of Q, onto
its dual G. Call I" the subgroup of G associated by duality with ¢(Q),
i.e. consisting of the characters of Q,, trivial on ¢(Q); as y has that
property, the same is true of y, for all ae@(Q), so that a—yx, maps ¢(Q)
into T'. Conversely, let b be such that y,el". As in the proof of th.2
for Q, put C=1Ix HZp with I=[ —1/2,1/2]. We have shown there that
Q,=0¢(Q)+ C; therefore we may write b=@(&)+c with £€Q, ceC, and
then y.el'. Writing c=(c,), we have now, since c,eZ, for all p:

1 ZXC(([)(I))=X(C)=XOO(COO)=€(—-COO),

hence ¢,, =0 since c,el. Therefore y, is trivial on 4, =Rx[[Z,; as
it is trivial on @(Q), lemma 2 shows that it is trivial on Q,, so that ¢=0,
hence be (Q). Therefore a—y, maps ¢(Q) onto I'. Finally, as ¢(Q) is
discrete in Q,, and Q,/¢(Q) is compact, the duality theory shows that I
is discrete in G and that G/I" is compact. Consequently a— y, determines
a bijective morphism of the compact group Q,/@(Q) onto the compact
group G/TI'; it is well-known that this must be an isomorphism. As G is
“locally isomorphic” to G/I', and Q, to Q,/®(Q), this implies that
a—y, is bicontinuous, so that it is an isomorphism. This completes the
proof for E=k=Q.

Now take E=k=F,(T). In analogy with Q, call co the place of &
for which T~! is a prime element (although this is of course not an
infinite place). Then |T~Y_=p~!. We may now apply corollary 2 of
th. 6, Chap. 1-4, to k, to the prime element T~ ! and to the set of re-
presentatives F,, and therefore identify k,, with the field of the formal
power-series

3) x=§oaiT‘i

I=n

where neZ and g;€F, for all i>n. Call ¢ the character of the additive
group of F_ given by y/(1)=e(1/p); call y,, the character of k,,, defined by
putting x,(x)=y (—a,) when x is given by (3); for xeF,[T], we have
a, =0, hence 3, (x)=1. Now put A, =k, x| [r,, the product being taken
over all the places v of k other than oo; with the notation of (1), §1,
this is k,({ o0 }); it is an open subring of k, and contains the set A, defined
in lemma 4, so that, by that lemma, k, =¢@(k)+ A,,. When &ek, ¢(¢) is
in A, if and only if ||, <1 for all the places v of k attached to prime
polynomials in F,[ 7], hence if and only if ¢ is in F,[T]. This means
that p(k)nA,, =(F,[ T]). Accordingly, every character of 4, trivial on
¢(F,[ T]), can be uniquely extended to one of k,, trivial on ¢(k). Applying
this to the character y of 4, given by y(x)=yx,(x,) for x=(x,)eA,,
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we get a character y of k, which can be characterized by the following
facts: y is trivial on @(k); for every v+ oo, the character y, induced by y
on k, is trivial on r,, and y induces on k, the character y,, defined above.
In order to calculate y, for a place v attached to a prime polynomial ©
of degree ¢ in FP[T], call ki the set of the elements ¢ of k such that
|€l, <1 for all the places w of k other than v, and |&|, <1; the same
proof which was given for lemma 3 shows now that k,, is the direct sum
of k) and r,; as y, is trivial on r,, it is therefore completely determined
by its values on k{. Take £ck!?; this can be written as £ =n~"a, where
neN and « is a polynomial of degree <nd in F,[T]. Call a, the coef-
ficient of 7"~ ! in a. As 7 is monic, it can be written as T°®, where @
is in F,[ T~ '] and has the constant term 1. This gives

(=n""a=w "T a=a, T"' (T™?

in the ring r_, hence y. (&)= (—a,) by the definition of y,. Now we
have, by (2) of § 1:

1=1(@(@) =20 (O 1) =¥ (—ay) 1.()

and therefore y, (&)= (a,;), which completes the determination of y,.
Furthermore, if £ is as above and not 0, call d the degree of the poly-
nomial a, and a the coefficient of T in «; then y,(& T~ *~9) has the value
¥ (a), which is not 1 since a+#0. This shows that, if ¢ is in k¥ and not 0,
xo(E1) cannot be 1 for all ter,. As y, is trivial on r,, and as k, =k’ +r,,
we conclude now from prop. 12 of Chap. II-5 that the character y, is
of order (0 in the sense of def. 4 of Chap. II-5. In other words, if x is in k,
and such that y (xt)=1 for all ter,, x must be in r,.

Now we can proceed just as in the case of Q. Let ¥’ be any character
of k,. For each place v of k, the character y, induced by y on k, can be
written as y.,(x)=y,(a,x) with a,€k,; then, from the fact that y, must
be trivial on r, for almost all v, we conclude that a=(a,) must be in k,,
so that y is the character y, defined by y,(x)=y(ax). As before, we sce
that a—y, is a bijective morphism of k, onto the topological dual
G=k% of k,, and that it maps ¢@(k) into the subgroup I" of G associated
by duality with ¢(k). Assume that y,eI" for some bek,; by lemma 4, we
may write b=¢(&)+c with éek, ce Ay; then y, is trivial on ¢(k). Put
c=(c,), so that ¢,er, for all v; then there is yeF, such that ¢, =y (T™!);
replacing & by £+7y and ¢ by c— ¢ (y), we get ¢, =0 (T~ '). We have now

1=x{e(D)=1(O)=1xw(ca),

which implies, in view of the definition of y, that ¢ is in T~ ?r_, and
therefore that y(c,, t)=1 for all ter . Consequently, ¥, is trivial on A,
hence on k, by lemma 4. This gives ¢=0, hence be (k). The proof can
now be completed just as in the case of Q.
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We can now complete the proof of our theorem by a purely formal
argument. Denote by T(E/k,x) the statement in theorem 3. What we
have proved above can be expressed by saying that, for each one of the
fields k=Q and k=F,(T), there is a character y of k, for which T(k/k, x)
is true. Obviously this implies that T'(k"/k,y) is true for every n, so that
T(E/k,y) is true for every vector-space E over k. In particular, take a
finite algebraic extension k' of k; as in lemma 3 of Chap. I11-3, write E
for the underlying vector-space over k; choose a k-linear form 1 on E,
other than 0, and identify E with its algebraic dual E' by putting
[x,y]=A(xy). We can then extend A to a mapping of E, into k,, the
identification between E and E’ to one between E, and E,, and then we
have again [x,y]=A(xy) for x, y in E, = (k'/k),. If we write y' = yo4, this
is clearly a non-trivial character of E,, trivial on E. If now we assume
that k" is separable over k, we can identify E, with k, by means of the
isomorphism @ described in th. 1 of § 1. When this is done, ¥' becomes
a non-trivial character on k,, trivial on k', and the statement T(E/k, )
becomes exactly T(k'/k’, x'). As we can take for k" any A-field, taking for k
either Q or F,(T), we see that, for every A-field k, theorem 3 is true for
at least one choice of y. Now assume T'(k/k, y) for such a field, and let y,
be another character with the properties stated in theorem 3; T'(k/k,y)
implies that y, is of the form y,(x)=y(ax) with aek and a+0. Then
the mapping ¢'—e* defined as in theorem 3, but by means of y,, is
composed of the similar mapping defined by y and of the mapping
¢ —ae' of E, into itself. As the latter is clearly an automorphism of E,,
mapping E’ onto itself, we see that T(E/k, ) is equivalent with T(E/k, x,).
This completes the proof.

COROLLARY 1. Let y be as in theorem 3, and call y,, for every place v
of k, the character induced by y on the quasifactor k, of k. Then, for
every v, ¥, is non-trivial, and, for almost all finite places v of k, yx, is
of order 0 in the sense of def. 4, Chap. 11-5.

For each ack,, call x, the character of k, defined by y,(x)=y(ax).
If y was trivial on the quasifactor k,, that quasifactor would be in the
kernel of the morphism a— y, of k, into its topological dual; as theorem 3
says that this is an isomorphism, this would be a contradiction. In parti-
cular, for every finite place v of k, we may put v(v)=ord(y,) in the sense
of def. 4, Chap. II-5. For each mapping v—n(v) of the set of finite places
of k into Z, call G(n) the group of the elements x=(x,} of k, such that
ord(x,)=n(v) for all finite places v, and H(n) the subgroup of G(n) con-
sisting of the elements x=(x,) of G(n) such that x,=0 for all infinite
places w of k. In view of the definition of the topology in k, in § 1, it is
obvious that G(n) is open in k, if and only if n(r)<0 for almost all v.
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It is also clear that H(n) is compact if n(v) =0 for almost all v; conversely,
by corollary 1 of prop.1, §1, and with the notation of (1), § 1, every
compact subset of k, is contained in one of the sets k,(P), so that H(n)
cannot be compact unless n(r)=0 for almost all v; therefore this is
necessary and sufficient for the compacity of H(n). Now prop.12 of
Chap. II-5, combined with the fact that y,, is not trivial for any infinite
place of k, shows that the set of elements x of k, such that y(xy)=1 for
all yeG(0) is H(—v), and that the set of elements x such that y(xy)=1
for all ye H(0) is G(—v). If we identify k, with its topological dual by
means of the isomorphism described in theorem 3, this means that
H(—v) and G(—v) are the subgroups of k, respectively associated by
duality with G(0) and H(0). As G(0) is open and H(0) is compact, duality
theory shows that H{— v) must be compact and G(—v) open. As we have
seen, this implies that — v(») =0 for almost all » and that —v(v)<0 for
almost all v.

COROLLARY 2. Let E be a vector-space of finite dimension over k,
and let v be any place of k. Then E+E_ is dense in E,.

If this is true for E=k, it is clearly true for E=k" and therefore for
every E. If k+k, were not dense in k,, there would be a non-trivial
character of k, which would be trivial both on k and on k,; this contra-
dicts corollary 1.

As in the case of local fields, it is frequently convenient, having chosen
once for all a “basic character” y with the properties described in theo-
rem 3, to identify the topological dual of E, with the space E, by means
of the isomorphism in that theorem, for all vector-spaces E of finite
dimension over k. For every quasifactor k, of k,, one will then take as
“basic character” the character g, induced by y on k,, and use this to
identify the topological and algebraic duals of vector-spaces over k, as
explained in Chap. II-5. This being understood, we have:

COROLLARY 3. Let assumptions and notations be as in proposition 1
of § 1. Let E be a vector-space over k, and E' its algebraic dual. Let ¢, ¢ be
finite subsets of E and of E', respectively, containing bases of these spaces
over k. For each place v of k, identify E. with the topological dual of E,
as explained above. Then, for almost all finite places v of k, ¢, is the dual
k,-lattice to ¢,

For E=E'=kand ¢=¢ = {1}, this is just a restatement of corollary I;
it is an immediate consequence of that corollary if ¢={ey,...,e,} is a
basis of E and &'={e},...,e,} is the dual basis to ¢ determined by
[e,ef]=11if i=j and 0 if i#j. The general case follows from this at once
by corollary 1 of th. 3, Chap. I1I-1.
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§ 3. Ideles. As before (cf. Chap. ITI-3), if E is a vector-space of finite
dimension over any field k, we write End(E) for the ring of endomorphisms
of E, considered as an algebra over k. We will write Aut(E) for the group
of automorphisms of E; this is the same as the group End(E)* of in-
vertible elements of End(E), and it is the subset of End(E) determined
by det(a)#0; therefore, if k is a topological field, Aut(E) is an open
subset of End(E); clearly it is a topological group for the topology in-
duced on it by that of End(E). If K is a field containing k, End(E) is the
same as End(E)x =End(E) ®, K, and the determinant in End(Ey) is the
extension to that space of the determinant in End(E).

Let o/ be an algebra of finite dimension over k; call p its regular
representation into End(«¥), as defined in Chap. I11-3, and write .o/ >, as
usual, for the group of invertible elements of .«/. Take any ae.«/; then
p(a) is the endomorphism x—ax of the vector-space underlying o ; if
it is an automorphism, it is surjective, so that there is be.oZ such that
ab=1_; then b=a""', and ae.«/*. As the converse is obvious, this
shows that o/ is the subset of .o determined by N, (a)+0. Therefore,
if kis a topological field, o7 * is open in &7 ; moreover, p is then a topologi-
cal isomorphism of &/ onto a subalgebra of End(s/), which maps .«
onto p(«/)NAut(/); this implies that /™ is then a topological group
for the topology induced on it by that of .o7.

Now, &/ being an algebra of finite dimension over an A-field k,
consider the group ./} of invertible elements of the ring </,. The
simplest examples, ¢.g. o/ =k, show that x—»x~' is not continuous on
that group for the topology induced on it by that of .«,. We will give
it the coarsest topology for which the injection into o/, and x—x~!
are both continuous; this is more conveniently stated as follows:

DEFINITION 2. Let 4 be an algebra of finite dimension over the
A-field k. Then we denote by .«  the group of invertible elements of o/ ,
with the topology for which x—(x,x~ ') is a homeomorphism of o § onto
its image in of , X oA ,.

It is customary (particularly in the case .o/ =k) to call .« 5, with this
topology, the idele group of <, and to call its elements the ideles of <.
Obviously (x,y)—xy and x—x~! are continuous on .« S, so that our
definition does make it into a topological group. At the same time, if
we call f the mapping (x,y)—xy of of x & into .27 and its natural exten-
sion to &/, x o,, our definition says that .« 5 is homeomorphic to the
subset f~'({1}) of the latter space; as f is continuous, this is a closed
set, so that &/} is locally compact. It is also clear that o/ * is canonically
embedded in .7 §; as x—(x,x ') maps it onto the intersection of £~ ({1})
with the discrete subset o/ x o/ of o/, x &/, it is a discrete subgroup
of o/ }.
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One can give an alternative definition of the idele group of </, equi-
valent to definition 2, by using corollary 2 of th.3, Chap.III-1, and
corollary 2 of prop. 1, § 1. As in these results, take a finite subset o of .o,
containing a basis of &/ over k, and call a,, for each finite place v of k,
the r,-module generated by a in /. By corollary 2 of th. 3, Chap. II-1,
there is a finite set P, of places of k, containing P_, such that, for all v
not in P, a, is a compact subring of &, (containing the unit element).
For each v, as we have seen, &/ is an open subset of o/, and x—x 1!
is continuous on it; therefore x—(x,x !) maps it homeomorphically
onto its image in o/, x &/,. For v not in Pg, a is the set of the elements
of .o/ which are mapped into «, x &, by x—(x,x!); therefore it is an
open compact subgroup of .2/, and an open compact subset of a,. We
shall now prove the following result, analogous to corollary 2 of prop. 1,
§1:

PROPOSITION 2. Let <, o, o, and P, be as explained above. Let P
be any finite set of places of k, containing P,. Then the group
4) APy =[]y x[]oy

veP v¢P
is an open subgroup of </ . ; the topologies induced on it by those of
and of s/, are both the same as the product topology for the right-hand
side of (4); and £ ; is the union of these groups.

Let o ,(P,a) be defined as in corollary 2 of prop. 1, § 1. The topology
induced on o7, (P,a)* by that of o/, is the same as that induced by that
of o/ ,(P,a), hence the same as the product topology for the right-hand
side of (4). For each v, &/ is open in .&/,, and x—x~! is continuous on
it; therefore x—x ™! is continuous on #Z,, (P, a)* for that product topology.
This implies that x—(x,x~!) is a homeomorphism of .«Z,(P,ax)* onto
its image in o/, X &/,; therefore the product topology on that set is
also that induced by . ;. Furthermore, o/,(P,®)” is the subset of o7 5
which is mapped by x—(x,x~1!) into Z,(P,a)x .«/,(P,a); as the latter
set is open in &7, X &/,, and as o/, X &/, is the union of sets of that form,
this completes the proof.

COROLLARY. An element a=(a,) of k, is in kx if and only if a,+0
for allv and |a,|,=1 for almost all v. For every finite set P of places of k,
containing P, the group

ka(PY*=TTksxT]r:

veP v P

is an open subgroup of k, and kY is the union of these groups.

The first statement is obvious; the rest is a special case of propo-
sition 2.
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For every element a=(qa,) of kJ, we will write
|a|kA :nlavlva

the product being taken over all the places v of k; in view of the corollary
of prop. 2, almost all the factors of that product are equal to 1 whenever
a is in k; . Usually, when there is no danger of confusion about the field
of reference, we will write |a|, instead of |al;, for this product; it is some-
times called the module of a.

ProrOSITION 3. Let E be a vector-space of finite dimension n over k.
Put o =End(E), and let a=(a,) be an element of /,. Then the follow-
ing assertions are equivalent: (i) a is in o 5 ; (i) det(a) is in k ; (iil) e—ae
is an automorphism of E,. When that is so, the module of the latter auto-
morphism is |det(a)| .. Moreover, the mappings a—det(a) and a—|det(a)| ,
are morphisms of o/} into k; and into R, respectively.

Take a basis ¢ for E over k; we will use it to identify E with k" and
o/ with M (k). Then a basis o for 4 over k is given by the “matrix units”
a;, for 1<A,u<n, where a,, is the matrix (x;;) given by x,,=1 and
x;;=0 for (i,j)# (4, ). For every place v of k, an element a, of M,(k,) is
invertible in M, (k,) if and only if det(a,)# 0; for every finite place v of k,
an element a, of M,(r,) is invertible in M,(r,) if and only if det(a,) is
invertible in r,, i.e. if and only if |det(a,)|,=1. With the notations of
prop. 2 and its corollary, this amounts to saying that a is in &7 ,(P,®)™
if and only if det(a) is in k,(P)*; clearly this implies the equivalence of
(i) and (ii)) in our proposition, and it also shows that the mapping
a—det(a) of o75 into kj is continuous on =/, (P,a)* for every P, hence
on /5. As it is clear that the mapping z—|z|, of k; into R} is continu-
ous on k,(P) ™ for every P, hence also on ky, a—|det(a)|, is a continuous
morphism of &/} into R} . If a is in &7}, it has an inverse a™ ! in .«&/,,
and then the endomorphism e—ae of E, has the inverse e—»a™'e, so
that it is an automorphism. Conversely, take any a=(a,) in <, ; prop. 1
of § 1, applied to «f and «, shows that g, is in M, (k) for all v and in M (r,)
for almost all v. The same proposition, applied to E and ¢, shows that a
fundamental system of neighborhoods of 0 in E, is given by the sets
U=[]U,, where U, is a neighborhood of 0 in E,=(k,)" for all v, and
U,=(r,)" for almost all v. If e— ae is an automorphism of E,, it must map
every neighborhood of 0 onto a neighborhood of 0; this implies that a,
is invertible in M, (k,) for all v, and that, for almost all v, the image of
(r,)" under a, contains (r,)", i.e. that a, ! is in M, (r,) for almost all v. As
we have observed above, this is the same as to say that a is in /5. Let
then P be a finite set of places of k, containing P, such that a,is in M, (r,) ™
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for all v not in P. As the set E,(P,¢) is open in E, and invariant under
e —ae, the module of e—ae in E, is the same as its module in that set;
this, in view of the definition of that set in prop. 1 of § 1, is the product
of the modules of the automorphisms e, —a,e, of its factors; these, by
corollary 3 of th. 3, Chap. I-2, are respectively equal to |det(a,)|,, which
completes our proof.

COROLLARY. Let o be an algebra of finite dimension over k, and
let a be an element of </ ,. Then the following assertions are equivalent :
() a is in A ; (i) N, (a) is in ky; (i) x—ax is an automorphism of the
additive group of o/ . When that is so, the module of that automorphism is
IN u(a)ls- Moreover, a—N ,,(a) and a—|N ()|, are morphisms of o/ §
into ki and into R}, respectively.

As we are always assuming that .o/ contains a unit, (iit) implies (i).
All our other assertions follow at once from proposition 3, applied to
the underlying vector-space E of &/ over k and to the embedding of &/
into End(E) given by the regular representation p.

Of course all that has been said about the endomorphisms x —ax of
an algebra &/ applies equally well to the endomorphisms x— xa; the
determinant N'(a) of the latter, sometimes called the “coregular norm”
on &/, 1s again a polynomial function, of degree equal to the dimension
of .o/ over k, and the module of the automorphism x— xa of «7,, for
aedly,isequal to [N'(a)|,. Obviously N'= N, when .o is commutative ;
the same is known to be true for all semisimple algebras and will be
proved in Chap. IX for simple algebras and in particular for division
algebras; this will not be needed here.

THEOREM 4. Let D be a division algebra of finite dimension over k.
For every real number u>1, call D, the set of the elements d of Dy such
that the modules of the automorphisms x—dx and x—xd of D, are
respectively <pand =pu~"'. Then D, is a closed subset of D} whose image
in Dy /D™ is compact.

Write N for the regular norm Np,,, and N’ for the “coregular norm”
as defined above; by the corollary of prop. 3, d—|N(d)|, is continuous
on Dy, and the same is true of d—|N’(d)|, for similar reasons; in view
of that same corollary, this implies that D, is closed. By th. 2 of § 2, D is
discrete in D,, and D,/D is compact; therefore there is a Haar measure
o on D, such that a(D,/D)=1, this being defined in the manner explained
in Chap. I1-4. As D, is not compact, we can choose a compact subset C
of D, such that «(C)> p. Call C’ the image of C x C under the mapping
(x,y)—=»x—y of D, x D, into D,, and C” the image of C’' x C’' under the
mapping (x,y)—xyof D, x D, into D,; as these mappings are continuous,
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C’ and C” are compact. Take any deD,; as the module of x—xd is
=u ! itmaps C onto a set Cd whose measure is > 1 ; therefore, by lemma 1
of Chap. 11-4, there are two elements x, y of C such that xd —yd isin D
and is not 0, i.e. such that it is in D*. Write ¢; =x—y and 0, =c¢,d; then
c,€C’ and 8,eD*. Similarly, x »d ™~ 'x, being the inverse of x>dx. has a
module >u~*!, so that it maps C onto a set d~'C of measure >1; as
before, we conclude that there is ¢,eC’ such that §,=d " '¢, is in D*.
Then 6,8, =c, c,,s0that §, 8, isin D NC”, which is a finite set since D is
discrete and C” compact in D,.Call y,, ..., yy all the distinct elements of
D*NC”; ¢, c, is equal to one of these, say y;, so that y; 1¢,c,=1. This
shows that ¢, is invertible in D, and has the inverse ¢; ' =y '¢;. As
dd,=c,, we see that dd, belongs to the set X of the elements x of Dy
whose image under the mapping x—(x,x 1) is in the union of the sets
C' x (y; *C") for 1<i<N. In view of def. 2, X is a compact subset of D} ;
as D,c X-D*, the image of D, in Dy/D™ is contained in that of X,
which proves our theorem.

§ 4. Ideles of A-fields. We will now consider more in detail the case
A =k.

THEOREM 5. Let k be any A-field; then the morphism z—|z|, of k{
into R’ induces the constant 1 on k™.

If Eek”, x— £x is an automorphism of k, which maps k onto itself.
By th. 2 of §2, k is discrete in k,, and k,/k is compact. Therefore the
module of x — & x, which is |&|, by prop. 3 of §3 (if one takes E=k in
that proposition), is equal to 1, e.g. by lemma 2 of Chap. I-2.

Theorem 5 is known as “Artin’s product formula”. From now on, we
will write k for the kernel of the morphism z—|z|,, i.e. for the subgroup
of k§ given by |z|,=1; by theorem 3, this contains k*.

COROLLARY 1. If k is of characteristic p>1, k) is the direct product
of kiandof a discrete subgroup isomorphic to Z.

For every place v of k, k, is of characteristic p, so that |x|,, for every
xek), is in the subgroup of R} generated by p; therefore the same is
true of |z|, for every zek}. This is the same as to say that the image of
kX under the morphism z—|z|, is a subgroup of the group in question;
as it 1s clearly not reduced to {1}, it is generated by some integer Q =p",
where N is an integer =1. Take z,ek; such that |z,|,=0Q; then kg
is the direct product of k} and of the subgroup generated by z,, which is
clearly discrete and isomorphic to Z.

COROLLARY 2. Assume that k is of characteristic O; for each AeR%,
call z(4) the idele (z,) such that z,=1 for every finite place v and z,,= )
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for every infinite place w of k. Then A—z(J) is an isomorphism of R}
onto a closed subgroup M of k, and k is the direct product of ki and of M.

With the notation of the corollary of prop. 2, §3, it is clear that
A—z(A) is an isomorphism of R} onto a subgroup M of k,(P,)*. The
definition of |z],, together with corollary 2 of th. 4, Chap. 111-4, shows
that |z(A)], = 4", n being the degree of k over Q. The last assertion is now
obvious.

THEOREM 6. Let ki be the subgroup of ky defined by |z|,=1. Then
k> is a discrete subgroup of kj; the factor-group ki/k™ is compact; and
ky/k™ is the direct product of that compact group and of a group isomorphic
to R or to Z according as k is of characteristic 0 or not.

The first assertion is contained in th. 5; the second one is the special
case D=k, u=1o0fth.4 of § 3; the others follow at once from the corollaries
of th. 5.

We will now investigate more closely the structure of various sub-
groups of ki and of k™ and of some of their factor-groups. It will be
convenient to write Q(P) for the group denoted by k,(P)™ in the corollary
of prop. 2, § 3. In other words, we will write, from now on:

(5) QP)=T1k x[]r.

veP véP
As always, P is assumed to be a finite set of places of k, containing the
set P, of the infinite places; it may be empty, but only if k is not of
characteristic 0. We recall that Q(P) is always an open subgroup of
ky; clearly it is compact if and only if P is empty. We will also write:

Q,(P)=Q(P)nk,;

here we may take P=@ if k is of characteristic p> 1, and then we have

Q,@=Q®).

THEOREM 7. If P is not empty, the group ky /k* Q(P) is finite. When k
is of characteristic p>1, ky/k* Q(0) is finite, and kY /k* Q(@) is the direct
product of that group and of a group isomorphic to Z.

In all cases, kj/k* Q,(P) is isomorphic to the quotient of ki/k* by
the image of Q,(P) in k,/k*. As Q,(P) is open in kj, that image is open;
as k}/k* is compact by th. 6, the quotient in question is finite. If k is of
characteristic 0, Q(P) contains the group M defined in corollary 2 of
th. 5; that corollary shows then that Q(P) is the direct product of Q,(P)
and of M, so that ki/k* Q(P) may be identified with ki/k* Q,(P).
Assume now that k is of characteristic p> 1. As ()=, (®), corollary 1
of th. 5 shows that k3 /k™ Q(@) is the direct product of the finite group
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g=kx/k™ Q(9) and of a group y isomorphic to Z. If P+, Q(P) contains
Q(P) and is not contained in kj; therfore kX/k* Q(P) is the quotient
of kx/k* Q(0), 1. e. of g x y, by the image of k* Q(P) in that group, and that
image is not contained in the image g of k}; it is then obvious that this
quotient is a finite group.

COROLLARY. Notations being as in theorem 7, one can choose P so
that ky =k™ Q(P).

Take any non-empty P’, and take a full set of representatives z,,...,zy
for the classes in k5 modulo k* Q(P’). As kj is the union of all the
groups Q(P), one can choose P> P’ so that all the z; are in Q(P). Then P
has the required property.

In the case when k is an algebraic number-field, and P=P_, theorem 7,
as will be seen in the next Chapter, is in substance the classical theorem of
the finiteness of the number of ideal-classes in k.

THEOREM 8. Let F be the set of the elements £ of k such that |&],<1
Jfor all places v of k, and put E=F —{0}. Then E is a finite cyclic group
consisting of all the roots of 1 in k.

The set F is the intersection of k and of the set of the elements (x,)
of k, such that |x,|,<1 for all v; clearly the latter set is compact, and, by
th. 2 of § 2, k is discrete in k,; therefore F is finite. If écE, th. 5 shows
that we must have |¢],=1 for all v; therefore E is a subgroup of k* of
finite order, hence cyclic by lemma 1 of Chap. I-1. Conversely, it is obvious
that every root of 1 in k must be in E.

COROLLARY. If k is of characteristic p> 1, the set F defined in theorem 8§
is a finite field, the algebraic closure of the prime field in k.

Here the definition of F can be written as F=kn\(]]r,), where the
product is taken over all the places v of k; this shows that F is a ring;
as E=F —{0} is a group, F is a field. By th. 2 of Chap. I-1, if an element
of k, other than 0, is algebraic over the prime field, it is a root of 1, so that,
by th. 8, it is in E.

When k is of characteristic p>1, the finite field F defined in the
corollary of th. 8 is called the field of constants of k.

Now, the set P being as before, we define a subgroup E(P) of k* by
putting
ER)=K nQP)=k*n(Tky x []r}).

veP vgP

This consists of the elements & of k* such that |¢|,=1 for all v not in P.
Obviously E(P) contains the group E defined in theorem 8. As k* is
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discrete in k3, E(P) is a discrete subgroup of Q(P), and also, in view of
th. 5, of Q, (P). One may also describe E(P) as the group k(P) ™ of invertible
elements (or, as one says traditionally, of “units”) of the subring k(P)

of k given by
k(P)=kn ([ Tk, x T]r.).

veP vg P

and consisting of the elements & of k such that |&],<1 for all v not in P.
In order to determine the structure of E(P), we need an elementary
lemma:

LEMMA 5. Let G be a group, isomorphic to R" x Z5* 17", with s=r=0.
If r>0, let 2 be a morphism of G into R, non-trivial on R"; otherwise
let A be a non-trivial morphism of G into Z. Let G, be the kernel of 1,
and let I be a discrete subgroup of G, such that G,/I" is compact. Then
I is isomorphic to Z°.

We may assume that G=R"x Zs*!~"; then every element x of G
can be written as (x,,..., x,), with x;eR for O0<i<r and x;,eZ for i>r,
and 4 can be written as

X=(X0, ‘”,xs)—)’l(x): Zaixi
i=0

with g;eR for all i, if » >0, and a;eZ for all i, if r=0; in both cases, in
view of our assumptions about 1, we may assume that a,+0, and in the
former case we may assume that a,=1. Consider G as embedded in the
obvious manner in the vector-space V=R**! over R; then the above
formula defines 4 as a linear form on V; let V] be the subspace of V defined
by A(x)=0, so that G, =GnV,. For 1<j<s, call ¢; the point (x;) in V
given by xo= —a;, X;=a,, and x;=0 for i#0 and i#j. As {e,,..., e}
is a basis for 1}, it generates an R-lattice H in V}, so that V;/H is compact;
as Hc Gy, and G, is closed in V,, this implies that V;/G, is compact.
Consequently, if I' is as in the lemma, V,/I" is compact, so that I is an
R-lattice in V;, hence isomorphic to Z* by prop. 11 of Chap. 11-4.

THEOREM 9. Let P be any finite set of places of k, containing P, ;
let E(P) be the subgroup of k™ consisting of the elements & of k™ such
that |€],=1 for all v not in P. Then E(P) is the direct product of the group E
of all roots of 1 in k, and of a group isomorphic to Z°, with s=0 if P is
empty, and s=card(P)— 1 otherwise.

If P is empty, this is contained in th. 8; therefore we may assume
P+0. Call v the morphism of Q(P) into R induced by z— |z|, ; its kernel
is Q,(P) and is open in kj. The canonical morphism of k. onto kA/k*
induces on Q,(P) a morphism of Q,(P) onto its image in k4/k*, with the
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kernel E(P)since k *n Q,(P)is the same as k “n Q(P). Therefore Q,(P)/E(P)
is isomorphic to an open subgroup of ky/k*, hence compact by th. 6.
On the other hand, for each place v of k, call U, the compact subgroup
of k; defined by |x|,=1, this being the same as r;, when v is a finite
place; put U=]]U,, the product being taken over all the places of k;
this is a compact subgroup of Q(P) and of Q,(P). Put G=Q(P)/U; clearly
this is isomorphic to the product of the groups k; /U, for veP; as k) /U,
1s isomorphic to R}, or, what amounts to the same, to R, when v is an
infinite place, and to Z otherwise, G is isomorphic to R" x Z*! =" where r
is the number of infinite places of k, and s is as defined in our theorem.
As U is contained in the kernel Q,(P) of v in Q(P), v determines on G a
morphism of G into R, or, what amounts to the same, a morphism A
of G into R, which is clearly non-trivial on each one of the factors &k, /U,
of G, and in particular on those which are isomorphic to R if there are
such factors, i.e. if r > 0. On the other hand, ifr =0, we know, by corollary 1
of th. 5, that |z|, takes its values in a group isomorphic to Z, so that, up
to an isomorphism, 4 maps G into Z. Therefore G and 4 satisfy the
assumptions in lemma 5; the kernel G, of 1 is here the image of Q,(P)
in G,i.e. Q,(P)/U. Call now I' the image of E(P) in G. If W is any compact
neighborhood of 1 in Q(P), WU is compact and has therefore a finite
intersection with E(P). As the image of that intersection in G is the inter-
section of I" with the image of WU in G, and as the latter is a neighborhood
of 1 in G, this shows that I' is discrete in G. The factor-group G,/I" is
isomorphic to Q,(P)/E(P)U, hence to a factor-group of the compact
group Q,(P)/E(P), and is therefore compact. We can now apply lemma 5
to G, 4 and [ it shows that I' is isomorphic to Z°. As E(P)nU =E, the
morphism of E(P) onto I', induced by the canonical morphism of Q(P)
onto G, has the kernel E. Let now e, ..., e, be representatives in E(P)
of a set of s free generators of I'; obviously they generate a subgroup of
E(P), isomorphic to Z°, and E(P) is the direct product of E and of that
group. This proves our theorem; we have also proved the following:

COROLLARY. Assume that P is not empty; let E(P) be as in theorem 9;
put Q(P)=Q(P)nk} and G,=Q,(P)/U, where U is the group of the
elements (z,) of ky such that |z,|,=1 for all v. Then the image I" of E(P)
in G, is discrete in G, and G,/T is compact.

In the case when k is an algebraic number-field, and P=P_, theorem 9,
as will be seen in the next Chapter, is Dirichlet’s famous “theorem of the
units”.



Chapter V
Algebraic number-fields

§ 1. Orders in algebras over Q. We shall need some elementary results
about vector-spaces over Q, involving the following concept:

DEFINITION 1. Let E be a vector-space of finite diwension over Q.
By a Q-lattice in E, we understand a finitely generated subgroup of E
which contains a basis of E over Q.

PROPOSITION 1. Let E be a vector-space of finite dimension over Q;
let L, L' be two Q-lattices in E. Then there is an integer m>0 such
that mL<c L.

Let {e;,..., e} and {e}, ..., ¢} be finite sets of generators for L and
for L respectively. As the latter must contain a basis for E over Q, we
can write (perhaps not uniquely) e;=) a;;¢; for 1<i<r, with coeffi-
cients a;;€Q. Take for m an integer >0 such that ma;eZ for all i,j.
Then mL< L.

COROLLARY 1. Let E be as in proposition 1. Then every Q-lattice L
in E has a set of generators which is a basis of E over Q.

. Let B be a basis of E over Q, contained in L; let L' be the Q-lattice
generated by f; by proposition 1, there is an integer m>0 such that
mLcL. Consider E as embedded in Ex=E®qyR. By prop.11 of
Chap. I1-4, L'is an R-lattice in Eg; as L is contained in m™ ! L, the same
proposition shows, firstly, that L is also an R-lattice in Eg, and secondly
that it is generated by a basis of E; over R; as this basis is contained
in E, it is clearly a basis of E over Q.

COROLLARY 2. Let E and L be as in corollary 1. Then every subgroup
L of L which contains a basis of E over Q is a Q-lattice in E.

Let § be a basis of E over Q, contained in L let L” be the Q-lattice
generated by f'. By proposition 1, there is an integer m>0 such that
mLcL” Then m™'L'>L>L>L" Clearly, if n is the dimension of E
over Q, L has the index m" in m™ ! L". Therefore L’ is of finite index
in L as L'is generated by ' and any full set of representatives of the
classes modulo L in L this proves our corollary.
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DEFINITION 2. Let o/ be an algebra of finite dimension over Q. A sub-
ring of </ will be called an order of o if it is a Q-lattice in &/ when of is
viewed as a vector-space over Q.

Here, as always, a subring of & is understood to contain the unit
of of.

PROPOSITION 2. Every algebra s/ of finite dimension over Q con-
tains at least one order.

Let {ay,...,ay} be a finite subset of &/, containing a basis of =/
over Q; then we can write a;a;=) c;;a, for all i, j, with coefficients c;,
in Q. Let m be an integer >0, such that mc;;€Z for all i,j, h. Then the
Q-lattice generated by 1,ma,,...,may is an order.

Take for instance &/ =Q. By corollary 1 of prop. 1, every Q-lattice
in Q is of the form aZ, with aec Q™. If this is an order, we must have
a’ealZ, hence acZ, and 1eaZ, hence a™'eZ; this gives a= + 1, which
shows that Z is the only order in Q.

PROPOSITION 3. Let a be any element of an order in an algebra of
of finite dimension over Q. Then a is integral over Z, and Tr,(a) and
Nyyla) are in Z.

Let R be an order containing a, and let {a,,...,ay} be a finite set
of generators for R. Then we can write a- ai:Zcijaj for 1<i<N, with
coefficients c;;€Z; this can be written as Y (8;;a—c;)a;=0, where (J;)
is the unit matrix 1. Write D(T) for the determinant of the matrix
(6;;T~—c;;), where T is an indeterminate, and D;(T) for its minors for

1<i,j< N; these are polynomials in Z[ T, and we have
ZDih(T) ’ (5ijT“Cij)=5th(T)

for 1<h,j<N. Substitute a for T, multiply to the right with a;, and
sum over j for 1<j<N; we get D(a)a,=0 for all h, hence D(a)x=0 for
all x; for x==1, this gives D(a)=0, which proves our first assertion since
D(T) is monic. By corollary 1 of prop. 1, we may assume that we have
taken for {a,,...,ay} a basis of & over Q; then Tr,,(a) and N, (a) are
the trace and the determinant of the matrix (c;;), so that they are integers.

§ 2. Lattices over algebraic number-fields. From now on, until the end
of this Chapter, k will denote an algebraic number-field. We keep the
notations explained in Chapter IV. In particular, if v is any place of k,
k, is the completion of k at v; if v is a finite place, r, is the maximal
compact subring of k,, and p, the maximal ideal of r,. We write k, for the
adele ring of k, and ¢ for the canonical injection of k into k,. We will write
¢y for the canonical injection of any finite-dimensional vector-space E

~
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over k into its adele space E,, this being defined by e—>e® (1) as
explained in Chap. I'V-1.

Consider now the algebra k ®qR over R; this is the same as (k/Q),,
in the notation of th. 1, Chap. IV-1, and it has an isomorphism @_ onto
the direct product | [k,, of the completions of k at its infinite places w,
this being fully characterized by the properties stated in th. 4 of
Chap. lII-4. We will simplify notations by identifying (k/Q),, with that
product by means of @_, and by writing k,, for both. Similarly, if E is
any finite-dimensional vector-space over k, we will write E,, for E ®qR,
which is the same as (E/Q), in the notation of corollary 2 of th. 1,
Chap. IV-1; as this is also the same as E ®, k., we identify it with the
product [ | E,, taken over the infinite places w of k.

With this notation, the open subgroup k,(P.) of k,, given by for-
mula (1) of Chap.IV-1, can be written as k,, x (] [r,), where the latter
product is taken over all the finite places v of k and is compact. Here,
and in similar situations, the following group-theoretic lemma will be
found useful:

LeMMA 1. Let G be a locally compact group with an open subgroup
G, of the form G, =G'x G", where G’ is locally compact and G" is com-
pact. Let I' be a discrete subgroup of G such that G/T is compact, and
call I'" the projection of I'nG, onto G'. Then I' is discrete in G', and
G'/T"" is compact.

Let W be a compact neighborhood of the neutral element in G’ (we
need not assume that G, G', G” are commutative, although only this case
will be used). As Wx G” is compact, its intersection with I' is finite;
as the projection of that intersection onto G’ is WnI", this shows that I’
is discrete. As G, is open in G, G, I" and G—G,I' are open, since they
are unions of left cosets for G, ; therefore the image of G, in G/I' is open
and closed there, hence compact. As it is isomorphic to G,/I; with
I'y=TI'nG,, this implies that there is a compact subset C of G, such
that G, =C-I. Then, if C' is the projection of C onto G',G'=C'- T,
which shows that G'/I"" is compact.

THEOREM 1. Let k be an algebraic number-field; put r= ) (knr,),

where v runs through all the finite places of k. Then t is an order of k;
it is the unique maximal order of k, and it is the integral closure of Z in k.

As explained above, write k,(P,) as k,, x ([ [r,). Clearly an element &
of k is in v if and only if ¢(¢) is in that product; when that is so, write
®(¢) and y ({) for the projections of ¢(&) onto k,, and onto [ [r,, respec-
tively. Obviously r is a subring of k. Now apply lemma 1 to G=k,,
G =ky(P,), G'=k,, G"=]]r,, I'=¢(k); then, with the notations of

AN
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that lemma, I’ is ¢, (r), and the lemma shows that this is an R-lattice in k.
As @, is also the same as the injection induced on r by the natural
injection of k into k, =k ®¢R, this implies that r is a Q-lattice in k,
hence an order. Let ' be any subring of k whose additive group is finitely
generated; clearly the r -module generated by v’ in k, is a compact sub-
ring of k,; it contains r,, since t' contains 1; therefore it is r,, so that
t'cr,. As this is true for all », we get v’ <t. By prop.3 of § 1, ¢ is con-
tained in the algebraic closure of Z in k. Conversely, if an element of k
is integral over Z, prop. 6 of Chap. I-4 shows that it is in r, for all v,
hence in r.

The mapping ¥ of r into []r,, defined in the proof of theorem 1,
will be called the canonical injection of r into [ [r,; it maps every &ex
onto the element (x,) of that product given by x,=¢£ for all v. It is a ring-
isomorphism of r onto (xr), addition and multiplication in [ [r, being
defined coordinatewise. With this notation, we have:

COROLLARY 1. Let k, v and ¢ be as above defined. Then y (x) is dense
in [[r.. and its projection onto every partial product of that product
is dense there. In particular, r, is the closure of v in k,,.

Let G, G,, G, G", I be as in the proof of theorem 1. By corollary 2
of th. 3, Chap. IV-2, k_, + ¢(k), which is the same as G'I" in that notation,
is dense in G=k,, so that its intersection with G, must be dense in G,;
as that intersection is k. +¢(r), this implies that its projection onto
G"=]]r,, which is the same as the projection y (r) of ¢(xr) onto G”, is
dense there. The other statements in our corollary follow trivially from this.

COROLLARY 2. If k' is a finite algebraic extension of k, the maximal
order of k' is the integral closure of v in k'.

This follows again from prop. 6 of Chap. I-4, just as in the proof of
theorem 1.

DEFINITION 3. Let k be an algebraic number-field, v its maximal order,
and E a vector-space of finite dimension over k. An r-module in E will
be called a k-lattice in E if it is finitely generated and contains @ basis
of E over k.

If k' i1s a finite algebraic extension of k, v’ its maximal order, and E
a vector-space of finite dimension over &, it is clear that an r'-module
in E is a k'’-lattice if and only if it is a k-lattice when E is viewed as a
vector-space over k.

Let E be a vector-space of finite dimension over k. Let L be a k-lattice
in E; let ¢ be a finite subset of E such that L is the r-module generated
by ¢ in E. Then, for every finite place v of k, the r,-module ¢, generated
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by ¢ is the same as the r,-module L, generated by L, and prop. 1 of
Chap. IV-1 shows that E,(P,,&) is the same as E_ x [ [L, and is an open
subgroup of E,.Forevery eeL, we can define an element (e,) of [[L,
by putting e,=e for all v; if we call this element i, (e), ¥, will be called
the canonical injection of L into [ [ L,. Then:

PROPOSITION 4. Let E be a vector-space of finite dimension over k.
Let L be a k-lattice in E; for every finite place v of k, let L, be the r,-
module generated by L in E,; and let y, be the canonical injection of
Linto [[L,. Then (L) is dense in [ | L,; its projection onto every partial
product of [|L, is dense there; in particular, for every v, L, is the closure
of Lin E,.

Let e={e,,...,ey} be a finite subset of L such that L is the r-module
generated by . Take any element (e,) of HL,,; then, for every v, we can
write e,= Y x{"e; with coefficients x? in r,. Put x;=(x¥) for I <i<N;
the x; are elements of | [ ,. By corollary 1 of th. 1, we can find elements ¢
of r such that, for every i,y (&;) is arbitrarily close to x;; clearly, then,
¥ (D& e;) can be made to be arbitrarily close to (e,).

THEOREM 2. Let k be an algebraic number-field, E a vector-space
of finite dimension over k, and L a k-lattice in E. For each finite place v
of k, let L, be the closure of L in E, and M, any klattice in E,. Then
there is a k-lattice M in E whose closure in E, is M, for every v if and
only if M,=L, for almost all v; when that is so, there is only one such
k-lattice, and it is given by M= () (EnM).

Assume that there is such a k-lattice M; in view of prop. 4, the fact
that then M,= L, for almost all v is merely a restatement of corollary 1
of th. 3, Chap. III-1. Now assume that M, =L, for almost all v; in view
of prop. 1 of Chap. IV-1, this implies that E, x [ [M, is open in E,. We
can therefore apply lemma 1to G=E,,G'=E,, G"=[[M,and I'=¢@g(E),
where ¢ is the canonical injection of E into E,. Clearly, if we put
M=\ (EnM,), ¢c(M) is the same as @ (E)"G, with G,=G'x G";
lemma 1 shows now that M is an R-lattice in E_, hence a Q-lattice
in E; as it is obviously an r-module, it is a k-lattice. By corollary 2 of
th. 3, Chap.IV-2, E_ + ¢g(E) is dense in E,; therefore its intersection
E_ +@z(M) with G, is dense in G,. This is the same as to say that the
projection of ¢g(M) onto G”=HMU is dense there, and implies that M
is dense in M, for every v. As above, call ¥, the canonical injection
of M into [|M,. Assume now that there is another k-lattice M’ in E
with the closure M, in E, for every v; clearly M’ is contained in M;
moreover, by prop. 4, ¥,(M’) is dense in /HMU, hence also in ¥, (M).
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By prop. 1, there is an integer m>0 such that M'>mM. Call G,, the
image of G, under the automorphism e— @(m)e of E, ; this can be written
s G,,=G' x G, with G, =[[(mM,); clearly mM,= M, for almost all v
(viz. for all the finite places of k which do not lie above some prime
divisor of m in Z), and G, is an open subgroup of G". Then @z(mM) is
the same as ¢ (E)"G,,, hence also the same as @g(M)~G,, and is con-
tained in @(M"); this is the same as to say that i,,(M)NG, is contained
in ¥yu(M’). Now take any pueM; as ¥, (M’) is dense in (M), there
is p’'e M’ such that Y, (u—y') is in G,,; then it must be in (M), so
that u—p'e M’ and pueM'. This shows that M =M’, which completes
the proof.

COROLLARY. Let L, L' be two k-lattices in E. Then L+ L' and LnL
are k-lattices in E, and, for every finite place v of k, their closures in E,
are given in terms of the closures L,, L, of L, L'by

(L+L),=L,+L,, (LnL),=L,NL,.

The assertions about L+ L' follow at once from prop. 4. As to LAL
put M, =L, nL, for every v; for every v, this is a k,-lattice in E,, and it is
the same as L, for almost all v. Therefore there is a k-lattice M in E
with the closure M, in E, for every v, and it is given by M = () (EnM,);
in view of th. 2, this is the same as LN L.

§ 3. Ideals. In this §, £ will denote an algebraic number-field and
t its maximal order; the results of § 2 will be applied to the case E=k.
Clearly an r-module other than {0} in k is a k-lattice if and only if it is
finitely generated. By prop. 1 of § 1, if a is a k-lattice in k, there is an
integer m> 0 such that ma is contained in r; then, clearly, ma is an ideal
in the ring r. Conversely, by corollary 2 of prop. 1, § 1, every ideal in r,
other than {0}, is a k-lattice. This shows that a subset of k is a k-lattice
if and only if it is of the form £a, where a is an ideal in r, other than {0},
and fek™.

DEerFINITION 4. Any k-lattice in k will be called a fractional ideal in k;
a fractional ideal in k is said to be integral if it is contained in 1.

Accordingly, {0} is not a fractional ideal.

Let a be a fractional ideal in k, and let L be a k-lattice in a vector-
space E of finite dimensiom over k. By aL, one understands the sub-
group of E generated by the elements ae with aca, ecL; this is clearly
a k-lattice in E. Let v be any finite place of k; as before, write a,, for the
closure of a in k,, and L,, (a L), for those of L, aL in E_; by prop. 4 of
§ 2, these are the same as the r,-modules generated respectively by a, L
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and aL; this makes it clear that (a L), is the same as the subgroup a, L,
of E, generated by the elements ae with aca,, ecL,.

In particular, if a, b are two fractional ideals in k, ab is the subgroup
of the additive group of k generated by the elements o f with aea, feb;
it is a fractional ideal, and, for every finite place v of k, we have (ab),=a,b,.
If p, is the maximal ideal in r,, every k -lattice in k, is of the form p}
with neZ; in particular, we can write a,=p?, b,=p’ with aeZ, beZ,
and then it is obvious that a,b,= p?*?.

THEOREM 3. Let k be an algebraic number-field and v its maximal
order. For every finite place v of k, put p,=rnp,. Then v—p, is a bijection
of the set of finite places of k onto the set of the prime ideals in v, other
than {0}. For the law (a,b)—ab, the set of the fractional ideals in k is a
group with the neutral element t; it is the free abelian group generated
by the prime ideals in x; the ideals in x, other than {0}, make up the monoid
generated by these prime ideals.

For every fractional ideal a in k, we can define a mapping v—a(v)
of the set of finite places of k into Z by writing a,=p»”. For a=r, all
the a(v) are 0. Theorem 2 of § 2 shows now that a given mapping v—a(v)
belongs to a fractional ideal a if and only if a(v)=0 for almost all v, and
that it determines a uniquely when that is so, a being then given by
a= () (knp®). If b corresponds similarly to v—b(v), we have seen
above that ab corresponds to v—a(v)+ b(v); it is also clear that acb if
and only if a(v)=b(v) for all v; in particular, a is integral if and only if
a(v)=0 for all v. For any given v, put a(v)=1 and a(v')=0 for all v’ #v;
if we call p, the corresponding ideal, we have p,=rnp,, and it is clear
that the fractional ideals make up the free abelian group generated by
the p,. As p, is prime in r,, p,, is prime in r. As to the converse, take any a
in r, so that a(v) >0 for all v; if it is neither r nor any one of the p,, we
can write it as a’a”, where a/,a” are ideals in r, other than . Then o
contains a and is not a, so that a'—a is not empty; the same is true
of a”—a. Take a’'ea’—a and «"ca”—a. Then «’a” is in a, while neither
o' nor «” is in a, so that a is not prime. This completes the proof.

COROLLARY 1. Let a, b be two fractional ideals in k; for each v, call
a(v) and b(v) the exponents of p, in a and in b when these are expressed
as products of powers of prime ideals of t. Then a+b and anb are fractional
ideals in k, and when they are similarly expressed, the exponents of p,, in
them are min(a(v), b(v)) and max(a(v), b(v)), respectively.

This follows at once from th. 3 and the corollary of th. 2, § 2.
As usual, two ideals a,b in r are called mutually prime if a+b=r.
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COROLLARY 2. Every fractional ideal a in k can be written in one
and only one way in the form bc™ ', where b and ¢ are mutually prime
ideals in t.

This follows at once from th, 3 and corollary 1. By analogy with the
case of Q, the ideals b, ¢ in corollary 2 are called the numerator and the
denominator of a, respectively.

We will denote by 1(k) the group of fractional ideals of k. If a=(a,)
is any element of k., then, by the corollary of prop. 2, Chap. IV-3, we
have ja,|,= 1, hence a,r,=r,, for almost all finite places v of k; therefore,
by th. 3, there is one and only one fractional ideal a of k such that a,=a,r,
for all finite places v; we will write a=id(a) for this ideal. Clearly the
mapping a—id(a) of k; into I(k) is surjective; we will write €, for its
kernel, which is obviously kJ x([]r,), i.e. ka(P,)" in the notation of
the corollary of prop. 2, Chap.IV-3, and £(P,) in the notation of for-
mula (5), Chap.IV-4; as this is an open subgroup of k., a—id(a) is a
morphism of kJ onto I(k) if I(k) is provided with the discrete topology.
We may then identify I(k) with kJ /Q...

In particular, for every ek ™, we have id (&)= £x; this is the r-module
generated by ¢ in k, and is frequently denoted by (&); its numerator and
denominator, as defined above, are called the numerator and the denomi-
nator of &. A fractional ideal is called principal if it is of the form &x with
Eek™; such ideals make up a subgroup P(k) of I(k), which is the image
of k™ under the morphism induced by a—id(a). Identifying I(k) with
ki /., we see that P(k) is the image of k™ in the latter group; therefore
we may identify I(k)/P(k) with kJ/k* Q., which is a finite group by
th. 7 of Chap. 1V-4. The elements of I(k)/P(k), or in other words the classes
modulo P(k) in I(k), are known as the ideal-classes of k. The number of
such classes, i.e. the index of P(k) in I(k), will be denoted by h.

THEOREM 4. Let k be an algebraic number-field, E a vector-space of
finite dimension over k, and L, M two k-lattices in E such that Lo M.
For every finite place v of k, call L,, M,, the closures of L, M in E,, and
call 1, the natural homomorph\fsm of L/M into L ,/M,. Then x—(1,x)),
where v runs through all finite places of k, is an isomorphism of L/M onto
[T(L./M,) for their structures as r-modules, t being the maximal order of k.

Call A that mapping; it is obviously a homomorphism of r-modules.
Let x be any element of L/M, and e a representative of x in L. If (x)=0,
e must be in M, for all v; by th. 2 of § 2, this implies that ee M and x=0.
Therefore J is injective. Now take any element y=(y,) of [[(L/M,);
for every v, take a representative ¢, of y, in L,, and put e=(e,). As
M,=L, for almost all v, [[M, is open in [[L,; therefore prop.4 of
§ 2 shows that there is an element e, of L such that ¥, (ey,)—e is in
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[IM,, ¥, being the canonical injection of L into | L,. This is the same
as to say that A(xq)=y if x, is the image of e, in L/M, which proves
that A is surjective.

COROLLARY 1. Assumptions and notations being as in theorem 4,
we have [L:M]=]][L,:M,].

This is obvious. One should observe that L,=M, for almost all v,
and that, for all v, M, is an open subgroup of the compact group L,,
so that [L,:M,] is always finite and almost always 1. The fact that
[ L: M] is finite is implicit in prop. 1 of § 1, or also in lemma 2 of Chap. [1-4.

COROLLARY 2. Let v be a finite place of k; let p,=tnp, be the prime
ideal in the maximal order t of k, corresponding to v. Then the natural
homomorphism of t/p, into r,/p, is an isomorphism of t/p, onto the residual

fieldr,[p, of r,.

COROLLARY 3. Let a, b be two fractional ideals in k, such that a>b.
Let a='b=[]p"® be the expression of a™'b as a product of prime
ideals of v. Then [a:b]=]][x:p,]"

By corollary 1, [a:b] is the product of the indices [a,:b,] for all v.
For a given v, we can write a,=p% b,=p}, and then we have b—a=n(v).
Corollary 2 of th, 6, Chap. 1-4, shows that [p%:p®]=¢""* with g={r,:p,].
Our conclusion follows at once from this and corollary 2.

DEFINITION 5. Let k be an algebraic number-field and v its maximal
order. Let a > N(a) be the homomorphism of the group of fractional ideals
of k into Q which is such that M(p)=[r:p] for every prime ideal p in .
Then N(a) is called the norm of the fractional ideal a in k.

Corollary 3 of theorem 5 can now-be expressed by saying that, if a
and b are fractional ideals in k, and a b, then [ a:b] is equal to R (b)/MN(a).
In particular, if a is integral, [r:a] =N (a).

PROPOSITION 5. Let a=(a,) be any element of k. Then R(id(a))
is equal to the product [ ]la,l, ', taken over all the finite places v of k.

In view of def. 5, it is enough to verify this for the case when id (@) is a
prime ideal of r; this is so if and only if, for some finite place v of k,
a, is a prime element of k, and |a,|, =1 for all finite places v'#v. Then
it is obvious.

COROLLARY 1. For each Eek™, we have N o($)=(—1)N(id(%)),
p being the number of the real places w of k such that the image of ¢ in
k, is <0.
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Combining proposition 5 with th. 5 of Chap. IV-4, we see at once that
R(id(¢)) is equal to the product []|&,l,, taken over the infinite places
wof k. For edch real place w of k, and each xek;,, we have x =(sgnx)-|x],,;
for each imaginary place w of k, and each xek,, we have Ny p(x)=xXx=
=|x|,,- Our conclusion follows now at once from corollary 3 of th. 4,
Chap. 111-4, applied to k, Q and the place oo of Q.

COROLLARY 2. An element & of the maximal order ¢ of k is invertible
invif and only if Ny o(8)=t1.

Clearly, it is invertible in 1 if and only if £r=r; as 1 is the same as
id(£), our conclusion follows now at once from corollary 1, combined
with the fact that [t:a] =9(a) for every ideal a in the ring .

Traditionally, the elements of v, i.e. the invertible elements of r,
are known as “the units” of k. In the notation of Chap. IV-4, t* is the
same as the group E(P,), as defined in theorem 9 of Chap. IV-4; its
structure is given by that theorem; if r+1 is the number of the infinite
places of k, it is isomorphic to the direct product of the cyclic group E
of the roots of 1 in k, and of a group isomorphic to Z". This is Dirichlet’s
“unit-theorem”.

§ 4. Fundamental sets. Let I' be a discrete subgroup of a locally
compact group G: by a “fundamental set” of G modulo I', one under-
stands traditionally a full set X of representatives of the cosets modulo I’
in G, which at the same time is measurable, and which is usually expected
to have some additional properties, e.g. to be a Borel set, etc. Then
formula (6) of Chap. 11-4, applied to G, I', to a Haar measure o« on G,
and to the characteristic function of X, shows that «(X)=a(G/I'); thus
the calculation of a(G/I') may sometimes be effected by constructing a
convenient fundamental set. More generally, let us say that a measurable
subset X of G is fundamental of order v modulo I if it has exactly v
points in common with every coset modulo I'; then the same formula
gives a(X)=va(G/I'). This will now be applied to k, and to kj.

Let k and r be as before; call n the degree of k over Q. As v is a Q-
lattice in k when k is viewed as a vector-space over Q, prop. 11 of Chap. I1-4
shows that it has a set of generators {£,,..., £,} which is a basis of &
over Q. Then this is also a basis of k,,=k®qR over R; therefore, if we
write, for u=(u,, ..., u,) in R", O(u)= Y u;;, this defines an isomorphism
0 of R" onto k.

PROPOSITION 6. Let k, t and 0 be as above; call I the interval 0<t <1
of R. Then 0(I"yx []r,, where the product is taken over all the finite

placesv of k, is a funvdamental set modulo k in k,.
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Call that set X; it is obviously measurable; we have to show that
every element x of k, can be written in one and only one way as x,+ ¢
with xoe X and ¢ek. By corollary 2 of th. 3, Chap. IV-2, k +k is dense
in k,; as k, x[]r, is open, this shows that, for a given xek,, there is
nek such that x—yn is in k,, x []r,, and the definition of r shows that an
element n’ of k has the same property ifand only if 5’ —ner. Write y=x—#,
and call y,, the projection of y onto k,, in the product k,, x []r,; then we
can write y,, = 6(u) with u=(uy, ..., u,) in R". For each i, take a,e Z such
that a;<u;<a;+1, ie. uy—ael; put E=n—3 a;¢; and xo=x—¢. As

i
¢—nisinr, x, is in k,, x [ [r,; moreover, the projection of x,, onto k., is

Yw_zaiéi:Z(ui_ai)fi

and is therefore in 6(I"). It is also clear that the latter condition could not
have been fulfilled by any other choice of the integers a;. This proves our
assertion.

This will now be applied to the calculation of a(k,/k) for an explicitly
given Haar measure « on k,. Such measures can be constructed as follows.
For each place v of k, choose a Haar measure a, on k,; if a,(r,)=1 for
almost all v, the product measure |]a, is well defined and is a Haar
measure on each one of the open subgroups k,(P) of k, given by for-
mula (1) of Chap. IV-1; clearly there is one and only one Haar measure
on k, which coincides with these measures wherever they are defined;
this will be denoted by [ |a,. In particular, we will write =[], for the
Haar measure obtained by taking f,(r,)=1 for all finite places v of k,
and proceeding as follows at the infinite places. If w is a real place, we
have k=R and we take d f8,,(x)=dx, so that f,, is the Lebesgue measure
on R. If w is an imaginary place, we have k,,=C, and we take df, (x)=
=|dx A dXx|; by this we mean that, if we put x=u+iv with u, v in R, so
that dx Adx= —2i(dundv), p,, is the measure corresponding to the
differential form 2du A dv; in other words, f,,/2 is the Lebesgue measure
in the (u,v)-plane.

In order to calculate f(k,/k), we need another definition. Notations
being as above, consider the matrix

(1) MZ(Trk/Q({ifj))l <i,j<n>

and call D its determinant. By prop. 5 of Chap. III-3, D40; by prop. 3
of§ 1, Misin M (Z),so that DeZ. If k=Q, we have r=Z, so that we have
to take ¢, = +1, hence D=1. If {5, ..., n,} is another set of generators
for r, and N the matrix obtained by substituting the #; for the &; in (1),
we can write ni=Zaijéj with g;;€Z for all i, j; then we have N=AM 4,
where A is the matrix (q;;). Similarly we can write &= b5, with
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b;eZ for all i, j; calling B the matrix (b;;), we have AB=1,, hence
det(A)det(B)=1; as det(4) and det(B) are in Z, this gives det(4)= +1,
hence det(N)=det(M). In other words, the determinant D of M does not
depend upon the choice of the basis (£,). This justifies the following:

DEFINITION 6. Let k and {&,,...,&,} be as above. Then the deter-
minant D of the matrix M given by (1) is called the discriminant of k.

PROPOSITION 7. Let B=[]B, be the Haar measure on k, obtained
by taking B,(r,)=1 for all finite places v, d B,,(x)=d x for all real places w,
and d B, (x)=|dx A dX| for allimaginary places w of k. Then B(k,/k)=|D|*/?,
where D is the discriminant of k.

Call g, the measure []B, on k,=][]k,, the products being taken
over the infinite places of k. By prop. 6, fi(k,/k) is the same as 8, (6(I);
therefore our proposition will be proved if we show that

dB.(0w)=|D|"*du, ...du,.

Call ry, r, the numbers of real and of imaginary places of k, respectively;
put r=r,+r,—1; let wy,...,w, be the infinite places of k, ordered so
that w; is real for i <r, and imaginary for i>r,. For each i, write k; for
the completlon of k at w;, 4, for the natural injection of k into k;, and y;
for the R-linear extension of 4; to k; if we identify k,, with [ | k; as above,
th. 4 of Chap. III-4 shows that u; is the projection from k,, onto k.
By corollary 1 of prop. 3, Chap. III-2, every isomorphic embedding A’
of k into C is of the form 604,;, where & is an R-linear isomorphism of k;
into C; obviously ¢ is the natural injection of k; into C if k;=R, i.e. if
i<ry,and it is one of the two mappings x — x, x > X of C onto C if k;=C,
i.e. i=r,. Therefore, if we put A;=4; for 0<i<r. and /l’,ZJ,,:/T,. for
ri<igr, the 1, for O<h<n-1 are all the distinct isomorphisms
of k into C. Writing now y;, for the R-linear extension of 4; to k, we have,
foru=(u,,...,u,)eR"and 0<h<n—1:

H(B(w) = Z (&) u;.

Call N =(4,(¢;) the matrix of the coefficients in the right-hand sides. By
corollary 3 of prop. 4, Chap. I11-3, we have, for all {ek, T o(&)= Z/l;,(é),
and therefore, since the A, are isomorphisms:

=X A& A(E)="N"N

hence D =det(N)2. At the same time, we have, in the exterior algebra of
differential forms on R™:
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@ [ldm@w)=x TT du@w)n T1 (@n(06)rd7(o6)

0S1<r1 ri<j<r

= tdet(N)duy An...Adu,.

In view of the definition of the measures f8,, this completes the proof.
At the same time, one may note that one gets a real differential form on
R" by multiplying (2) with "% therefore i">det(N) is real, which is the
same as to say that (—1y>D>0.

COROLLARY 1. If k#Q,|D|>1.

Notations being as above, choose ¢;eR’ for 0<i<r, and call Y(c)
the set of the elements y =(y,) of k, such that |y,|, <1 for all finite places v
of k, and |y, |, <c;/2 for 0<i<r. For each infinite place w, and each
ceRY, the subset of k,, given by |x|,<c/2is an interval of length c¢ if
w is real, and a circle of f,,-measure nc if w is imaginary. In view of the
definition of , this gives B(Y(c))=="] [ ¢;. If this is >|D|"/2, lemma 1 of
Chap. II-4, combined with proposition 7, shows that there are y, y' in
Y(c)such that =)' —y is in k™. Then we have |5|,< 1 for all finite places
v of k, |nl,,,<c; if w; is a real place, and, as one sees at once, |r|,,, <2c¢; if
w; is imaginary; in view of th. 5 of Chap. IV-4, this implies 22| [¢;>1
Therefore, if r, >0, we get a contradiction if we assume that |D|=1 and
choose the ¢; so that [Jc¢; is >n7"> and <27". Now assume that r,=0,
hencer, =n,and |D| = 1. Then, for every choice of the ¢; such that [ [ ¢;> 1,
there is ek ™ with the properties stated above. Clearly the set of elements
x =(x,) of k, which satisfy |x,|,<1 for all finite places v, and |x,,}, <2 for
all infinite places w, is compact and therefore contains only finitely many
elements 7, ..., y of k; therefore we can choose ¢’ >1 such that none of
these satisfies 1 <|n,|,,, <c". Choose now the ¢; so that [ [¢;>1, 1 <co <,
co<2,and ¢;<1 for 1 <i<n—1; then there is yek™ such that ||, <1 for
all finite places, and ||, <c; for 0<i<n—1. In view of the definition
of ¢’ and of our assumptions about the c;, this implies |5|,, <1 for i>0,
and |n|,,, < 1. This contradicts th. 5 of Chap. IV-4, unless n=1.

COROLLARY 2. There are only finitely many algebraic number-fields
k of given degree n over Q and given discriminant D.

As this will not be of any further use to us, we merely sketch the proof.
Proceeding just as above, one sees that there is nek™ such that |y|, <1
for all finite places v of k, |n|,, < 1 for all infinite places w except one such
place w,, and the image 44(n) of  in k,, is in the interval |x| <2|D|¥/% if
W, is real, and in the rectangle given by x=u+iwv, |u|<1, [v|<|D|*? if
Wy 1s imaginary. As then we must have ||, >1, the latter condition
mmplies that A4(r) is not real if w,, is imaginary. This implies that k=Q(#);
for, if not, call u the place of Q(#) lying below wy; then ||, > 1 for all the
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places w of k above u, if there is more than one such place, and A,(n)
must be real if u is real and w, imaginary; as this is not so, corollary 1 of
th. 4, Chap. I1I-4, shows that the degree of k over Q(y) cannot be > 1.
This implies that the A,(n), for 0<h<n—1, are all distinct, so that
[ 1(X — A;(n)) is the irreducible monic polynomial in Q[ X | with the root
n; its coefficients are obviously bounded in terms of | D|; they are all in Z
since ||, < 1 for all finite places v of k, which is the same as to say that  is
in r, i.e. integral over Z. Therefore the polynomial in question, hence
also n, can take only finitely many values when D is given.

Now we will treat the corresponding problems for k5 /k*. As above,
we write Q. for the kernel of a—id(a) in k,, this being the group
ky x[]rs; i.e. the same as Q(P ) in the notation of Chap. IV-4. We will
write Q,, instead of Q,(P,), for 2, nk,. As in Chap. V-4, we write U
for the group of the elements (z,) of k5 such that |z|,=1 for all v, finite or
not; this is a compact subgroup of Q,. As we have observed in § 3, ¢ is
the same as the group denoted by E(P,) in the notation of Chap. IV-4.
We again write E for the cyclic group of the roots of 1 in k. Call again
wy, ..., W, the infinite places of k, in any ordering. For each z=(z,) in
Q.. put

©) l(z)=(log(IZwolwo) -+ 10g(z,, |1, ))-

The mapping [ of Q_ into R"*?, defined by (3), is obviously a morphism
of the (multiplicatively written) group Q. onto the (additively written)
group R"*1, with the kernel U. Let 1 be the linear form on R"*! given by
Ax)=) x; for x=(X,, ..., x,). Then, for zeQ,,, we have log(|z|,) = A(/(2));
therefore, if H is the hyperplane defined by A(x)=0 in R""! the set
[71(H), which is the kernel of Aol, is the same as ,, and [ induces on it
a morphism of Q, onto H with the kernel U, which we can use to identify
the group G,=Q,/U with the vector-space H. Put I'=I(xt™); by the
corollary of th. 9, Chap. IV-4, this is a discrete subgroup of H, and H/I" is
compact; in other words, it is an R-lattice in H. It is then obvious (just
as in the proof of th. 9, Chap. IV-4) that, if we take r elements ¢, ..., ¢,
of r*, these will be free generators of a subgroup of t * if and only if their
images I(g;) in R"*! make up a basis for H, and that t* will then be the
direct product of E and of that subgroup if and only if these images
generate I'; when that is so, we will say that the ¢; make up a set of free
generators for t™ modulo E. Assume now that they have been so chosen.
For 0<i<r, call g, the degree of k,,, over R; this is 1 or 2, according as
w; is real or imaginary, and, by corollary 2 of th. 4, Chap. I11-4, we have
Y 8;=n, i.e. A(8)=n if we write § for the vector (8, ..., d,) in R""*. This
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implies that J, together with the vectors l(g;) for 1<i<r, makes up a
basis for R"*!, so that we can define an automorphism F of R"*! by:

“) t=(tg,...,t,) > Ft)=n"1t 6+ itil(si).

i=1

We have then A(F(t))=t,, and also, for n€E and (n,,...,n,) in Z":
(5) l(an?i)=F(0,n1, ey 1)

PROPOSITION 8. Put Q. =k} x[[ry, and let | be the morphism of
Q_ onto R given by (3); let {ay, ..., a,} be a full set of representatives
Jor the cosets modulo k™ Q, in ky. Let E be the group of the roots of 1
in k; call e its order, {¢, ..., &} a set of free generators for v™ modulo E,
and F the automorphism of R**1 given by (4). Then, if I is the interval
0<t<1 in R, the union of the sets a,l” 1 (FR x I")) for 1<i<h is a fun-
damental set of order e modulo k™ in kj.

Take any z=(z,) in kJ ; there is one and only one i such that a; !z is

in k*Q_, and then we can write z=a,;¢z with éek™, z’eQ,; moreover,
Z'is uniquely determined modulo k* nQ_,i.e. modulor*. Put F~!(I(z')) =
=(to, ..., t,); for 1<i<r, take n;e Z such that n;<t;<n,+1; put e=]]e¥,
z'=¢ 'z and &'=¢¢. Then we have z=¢'a,z”, and, in view of (4) and (5),
I(z")e F(R x I"). Moreover, it is clear that z” is uniquely determined
modulo E by these conditions. This proves our proposition. '

As we have seen in § 3, the morphism z—1id(z) of k5 onto I(k) deter-
mines an isomorphism of kx/k*Q _ onto the group I(k)/P(k) of ideal-
classes of k; therefore the number h, occurring in proposition 8, is the
order of that group, and the ideles g; in that proposition may also be
characterized by saying that the fractional ideals id(q;) are representatives
of the ideal-classes of k.

Now we define a Haar measure y on k. Just as in the case of k,,
this may be done by choosing, for each v, a Haar measure y, on £, in
such a way that y,(r;)=1 for almost all v; then we define y by prescribing
that it should coincide with [ [y, on every one of the groups k, (P)*, and
we write y =] [y, for this. As in the case of k,, we need a definition:

DrerFINITION 7. Notations being as above, call L the matrix whose
rows are the vectors n~ '8, l(g,), ..., l(¢,). Then R=|det(L)| is called the
regulator of k.

As L is the matrix of the automorphism F of R"*? given by (4), F has
then the determinant + R. Our definition would have to be justified by
showing that R is independent of the choice of the ¢;; this could be done
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easily by applying the same argument which we used for the discriminant.
As the same fact will emerge presently as a consequence of proposition 9,
we leave it aside for the moment.

PROPOSITION 9. Let y=]|]y, be the Haar measure on ky obtained
by taking y,(rX)=1 for all finite places v of k, dy,(x)=|x|"'dx for each
real place w, and dy,,(x)=(xX)"!|dx AdX| for each imaginary place w.
For each m>1 in R, call C(m) the image in ky/k™ of the subset of kj
defined by 1<|z|, <m. Then we have y(C(m))=c;log(m), with ¢, given by

¢, =2"(2m)2hR/e.

Here, as before, r; and r, are the numbers of real and of imaginary
places of k, respectively; h is the number of ideal-classes; R is the regulator,
as defined above, and e is the order of the group E of roots of 1 in k, this
being always an even integer since +1 are in k. Clearly e=2if r, >0, since
R contains no root of 1 except +1.

We begin by modifying the representatives a; of the cosets modulo
k*Q_ in kj, introduced in prop. 8, by replacing, for each i, a; by a;b; !
with b;eQ,_ and |b;],=|a;s; once this is done, we have |a;],=1 for
1<i<h, and prop. 8 shows that ey(C(m))=hy(X), where X is the inter-
section of I~ }(F(R x I")) with the set 1<|z|, <m in k5. As we have seen
above, if zeQ, and F~'(I(z))=(ty, ..., t,), we have

log(z]x) = 2(l(2)) = A(F () =to.

Therefore the set X can be written as [~ *(F(J x I")), where J is the interval
0<t<log(m) of R. Now [ is a morphism of Q_ onto R"*! with the com-
pact kernel U; therefore, if Y is any compact subset of R"*!, [7}(Y)is a
compact subset of Q,, and Y—y(I”"}(Y)) is a Haar measure on R"*,
hence a multiple ca(Y) of the Lebesgue measure « on R"**, with some
constant ¢>0. This gives y(X)=ca(F(J x I})). By the definition of the
regulator R, it is the module of the automorphism F of R"*!; therefore
we get:
y(X)=ca(F(J x I"))=cRa(J x I")=cRlog(m).

It only remains for us to determine ¢. Take Y=J"*!, so that a(Y)=
=(logm) * 1. Then I~ }(Y) is the set of the elements (z,) of Q, such that
1<|z|,, < m for all infinite places w of k. In view of the definition of y, we
have then y(I~'(Y))=a"'b", with a, b given by

m

a=2 | x *dx=2log(m), b= (xX)"'ldxAdX|=2nlog(m)

1 1<xX<m

This gives ¢=2"(2 ny"?, which completes the proof. Our conclusion shows
that R is independent of the choice of the ¢;, as had been stated above.



Chapter VI

The theorem of Riemann-Roch

The classical theory of algebraic number-fields, as described above
in Chapter V, rests upon the fact that such fields have a non-empty set
of places, the infinite ones, singled out by intrinsic properties. It would
be possible to develop an analogous theory for A-fields of characteristic
p>1 by arbitrarily setting apart a finite number of places; this was the
point of view adopted by Dedekind and Weber in the early stages of
the theory. Whichever method is followed, the study of such fields leads
very soon to results which cannot be properly understood without the
use of concepts belonging to algebraic geometry; this lies outside the
scope of this book. The results to be given here should be regarded
chiefly as an illustration for the methods developed above and as an
introduction to a more general theory.

From now on, in this Chapter, k will be an A-field of characteristic
p>1. In the corollary of th.8, Chap.IV-4, we have defined a finite
field F, which we have called the field of constants of k; this is the algebraic
closure of the prime field in k, and may consequently also be described
as the maximal finite field contained in k; from now on, the number of
its elements will be denoted by ¢, and F will be identified with F . Then,
for every place v of k, the completion k, of k at v contains F,; in view of
corollary 1 of th. 7, Chap. I-4, and of corollary 2 of th. 2, Chap. I-1, this
implies that the module g, of k, is of the form ¢“, where d is an integer > 1
which is called the degree of v and is denoted by deg(v).

By the divisors of k, one understands the elements of the free abelian
group D(k) generated by the places of k; this being written additively,
it consists of the formal sums Y a(v) - v, where a(v)eZ for every place v

of k, and a(v)=0 for almost all v. If a :Za(v) -v is such a divisor, we
will write a>0 when a(v)> 0 for all v; ifa,b are two divisors, we write
a>b for a—b>0. For every divisor a=) a(v)-v, we write deg(a)=
=) a(v) deg(v), and call this the degree of a. Clearly a—deg(a) is a non-
trivial morphism of D(k) into Z; in Chap. VII-5, it will be shown that
it is surjective; its kernel, i.e. the group of the divisors of k of degree 0,
will be denoted by D,(k). Obviously a >0 implies deg(a)>0, and even
deg(a)>0 unless a =0, and a > b implies deg(a)>deg(b).
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Let a=(a,) be any element of k; for each v, we can write a,r,= p2®
with a(v)=ord,(a,); for almost all v, we have |a,|,=1, hence a(v)=0, so
that Y a(v)-v is a divisor of k; this divisor will be denoted by div(a).
Clearly a—div(a) is a surjective morphism of & onto D(k), whose kernel
is [y and is the same as the group denoted by Q(P) in Chap. IV-4;

we may therefore use this morphism to identify D(k) with k5 /Q(®). The
definition of |a|, shows at once that, if aek; and a=div(a), then
lal, =g 99, therefore D, (k) is the image of k} in D(k) under the mor-
phism a—div(a); in particular, the image P(k) of k™ in D(k) under that
morphism is contained in Dg(k). The group P(k) is known as the group
of the principal divisors. Clearly the morphism a-»div(a) determines iso-
morphisms of the groups k1/Q(0), ki/k* Q@) and k/k* Q(0) onto Dy(k),
D,y (k)/P(k) and D(k)/P(k), respectively; D(k)/P(k) is known as the group
of the divisor-classes of k, and Dy(k)/P(k) as the group of the divisor-
classes of degree 0; th. 7 of Chap. IV-4 shows that the latter is finite, and
that the former is the direct product of the latter and of a group iso-
morphic to Z.

Now we consider vector-spaces over k; we have the following result,
a special case of which occurred already in Chapter IV:

ProPOSITION 1. Let E be a vector-space of finite dimension over k.
Let ¢ be a basis of E over k; for each place v of k, let ¢, be the r -module
generated by ¢ in E,, and let L, be any k-lattice in E,. Then [|L, is an
open and compact subgroup of E, if and only if L,=¢, for almost all v.

If P is a finite set of places such that L, ¢, for all v notin P, [ [L, is
a compact subgroup of E,(P,¢), hence of E,; the converse follows at
once from corollary 1 of prop. 1, Chap. TV-1. Now assume that this is so.
Then []L, is a subgroup of E,; it is open if and only if it contains a
neighborhood of 0; prop. 1 of Chap. IV-1 shows that this is so if and only
if L,>¢, for almost all v, which completes the proof.

With the notations of proposition 1, put L=(L,); this will be called a
coherent system of k -lattices, or more briefly a coherent system, belonging
to E, if L,=¢, for almost all v. When that is so, we will write U(L)=] L,
and A(L)=EnU(L). By prop. 1, U(L) is open and compact; it is also a
module over the open and compact subring | [r, of k,. Asto A(L),itisa
finite subgroup of E, since E is discrete and U(L) compact in E,; it is
also a module over the ring k(] [ r,); as this ring, by th. 8 of Chap. IV-4
and its corollary, is the field of constants F, of k, this shows that A(L)
is a vector-space over F , whose dimension will be denoted by A(L).
Then A(L) has ¢**' elements.
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PROPOSITION 2. Put &/ =End(E), and let L=(L,), M=(M,) be two
coherent systems beloning to E. Then there is a=(a,) in o/5 such that
M =a,L, for all v; moreover, the divisor div(det(a)) is uniquely determined
by L and M.

For each v, by th. 1 of Chap. II-2, there are bases a,, i, of E, over k,
such that L,, M, are the r,-modules respectively generated by «, and by
B,. Call g, the automorphism of E, which maps «, onto §,; then M, =a,L,.
Put d,=det(a,); if p, is any Haar measure on E, we have
|d,), = 1M, ) u,(L,), by corollary 3 of th. 3, Chap. I-2, so that |d,|, is
independent of the choice of the bases a,, ff,. Moreover, we have L, =M,
hence |d,|,=1, for almost all v. By prop. 3 of Chap. IV-3, this shows that
a=(a,)is in o7} and d=(d,)=det(a) in k; . As |d,|, depends only upon L,
and M,, we see that div(d) depends only upon L and M.

We will write M =a L. when L, M and a are as in proposition 2.

COROLLARY 1. Let ¢ be a basis of E over k; put Ly=(¢,), and let L be
any coherent system belonging to E. Then there is acs/) such that
L=alLy; the divisor b=div(det(a)) depends only upon L and ¢, and its
class and degree depend only upon L.

Only the last assertion needs a proof. Replace ¢ by another basis
¢'; put Ly=(e,), and call a the automorphism of E over k which maps ¢
onto &. Then Ly=a L, hence L=aa Ly, so that b has to be replaced by
9 +div(det(a)); the second term in the latter sum is a principal divisor, so
that its degree is 0.

COROLLARY 2. There is a Haar measure y on E, such that u([]e,)=1
Jor every basis ¢ of E over k; for this measure, if L and d are as in corollary 1,
we have u(U(L))=q~°® with U(L)=]]L, and 5(L)=deg(b).

Choose one basis ¢, and take u such that u([]e,)=1. If a is as in
corollary 1, U(L) is the image of U(Ly)=] s, under e—ae. Therefore
w(U(L)) is equal to the module of that automorphism, which is |[det(a)|,
by prop. 3 of Chap. IV-3; in view of our definitions, this is ¢~°®), as
stated in our corollary. By corollary 1, this does not depend upon &;
therefore, replacing ¢ by another basis ¢, we get a measure y’ such that
' (U(L)) is the same as u(U(L)); this gives ' =y, so that p([]e,)=1.

As in Chap. I'V-2, choose now a non-trivial character y of k,, trivial
on k, and call y, the character induced by y on k,, which is non-trivial
for every v, by corollary 1 of th. 3, Chap. IV-2. Let E be as above, and
call E' its algebraic dual. As explained in Chap. I'V-2, we use y to identify

, with the topological dual of E, by means of the isomorphism described
in th. 3 of Chap. IV-2, and, for each v, we use y, to identify E; with the
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topological dual of E, by means of the isomorphism described in th. 3 of
Chap. II-5. Let L=(L,) be a coherent system belonging to E; for every v,
call L, the dual lattice to L,. In view of the identifications which have just
been made, L, isa k,-latticein E},,and | | L. is the subgroup of E associated
by duality with the subgroup U(L)=][]L, of E,. As U(L) is compact,
[1L, is open; as U(L) is open, [ 1L, is compact; by prop. 1, this shows
that L' =(L,) is a coherent system belonging to E’ (a fact which is also
implied by corollary 3 of th. 3, Chap. IV-2); we call it the dual system to L.

THEOREM 1. To every A-field k of characteristic p>1, there is an
integer g=0 with the following property. Let E be any vector-space of
finite dimension n over k; let L be any coherent system belonging to E,
and let L be the dual system to L. Then:

ML)=AL)—o(L)—n(g—1).

Put U=U(L), U =U(L); as we have just seen, U’ is the subgroup
of E,, associated by duality with the subgroup U of E,. By definition,
A(L) and A(L') are the dimensions of the vector-spaces A=En U and
A'=E'nU’, respectively, over the field of constants F, of k. By th. 3 of
Chap. IV-2, the subgroup of E), associated by duality with the subgroup
E of E, is E'. Therefore the subgroup of E, associated by duality with
E+U is A', so that E,/(E + U) is the dual group to A" and has the same
number of elements ¢g*L? as A'. Clearly E,/(E+ U) is isomorphic to
(EA/E)/(E+ U/E). Take the Haar measure y on E, defined by corollary
2 of prop. 2, and write again u for its image in E,/E, as explained in
Chap. I1-4. As ¢ is the index of (E+ U)/E in E,/E, we have

HEL/E)=q""" w(E+ UJE).

The canonical morphism of E, onto E,/E maps U onto (E + U)/E, with
the finite kernel A=EnU; as A has ¢*" elements, this gives, e.g. by
lemma 2 of Chap. 1I-4:

w(U)=q"" W(E+ UJE).

Combining these formulas with corollary 2 of prop. 2, which gives
w(Uy=q"%", we get:
HEAE)= g0+,

This shows that u(E,/E) is of the form ¢ with reZ. In particular, if we
apply corollary 2 of prop. 2 to E=k and to the basis e={1}, we get a
Haar measure z, on k,, such that u,([[r,)=1, and we see that we can
write p,(k,/k)=q" with ye Z. Now identify our space E with k" by means
of a basis ¢ of E over k; it is clear that the measure y in E,, defined by
corollary 2 of prop. 2, is the product (u,)" of the measures u; for the n
factors of the product E, =(k,)", and then that ¢g"=(¢")", i.e. r=7yn. This
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proves the formula in our theorem, with g=y+ 1; it only remains for us
to show that g >0. As to this, apply that formula to the case E=k, L,=r,
for all v. Then A=F,, A(L)=1, and clearly 6(L)=0; this gives g=A(L),
which is > 0 by definition.

COROLLARY 1. Let u be the Haar measure in E, defined by corollary 2
of proposition 2; then w(E,/E)=q"9"V. In particular, if p, is the Haar
measure in k, for which p,([[r,)=1, we have p, (ky/k)=¢°"".

This was proved above.

COROLLARY 2. Notations being as in theorem 1, we have E,=E+ U
if and only if A(L)=0.

This is a special case of what has been proved above.
DEFINITION 1. The integer g defined by theorem 1 is called the genus of k.

The results obtained above will now be made more explicit in the
case E=k. Then a coherent system L=(L,) is given by taking L,=p, “*
for all v, with a(v)=0 for almost all v; such systems are therefore in a
one-to-one correspondence with the divisors of k. Accordingly, if
a=Y a(v) v is such a divisor, we will write L(a) for the coherent system
(p; °®)); L(0) being then the coherent system (r,), we see that L(a) is the
coherent system a~ ' L(0) when aek) and a=div(a). For L= L(a), we
will also write U({a), A(a), A(a), 6(a) instead of U(L), A(L), A(L), o(L);
obviously we have 8(a)= —deg(a). The definition of A(a) shows that it
can be written as N (knp, *Y); in other words, it consists of 0 and of

the elements ¢ of k* such that ord,(¢) > — a(v) for all v, or, what amounts
to the same, such that div(&)>> —a. As the degree of div(¢) is O for all
Eek™, this shows that A(a)= {0}, hence A(a)=0, whenever deg(a) <O0.

Now let the “basic” character y of k, be chosen as above; for each
place v of k, call v(v) the order of the character y, induced by y on k,,
this being as defined in def. 4 of Chap. II-5. By corollary 1 of th. 3,
Chap. IV-2, we have v(v)=0 for almost all v, so that ¢c=> v(v)-v is a
divisor of k; we call this the divisor of y, and denote it by div(y). If y, is
another such character, then, by th. 3 of Chap. IV-2, it can be written
as x—x(& x) with éek”™, and one sees at once that div(y;)=div(y)+ div().
Thus, when one takes for y all the non-trivial characters of k,, trivial
on k, the divisors div(y) make up a class of divisors modulo the group
P(k) of principal divisors of k. This is known as the canonical class, and
its elements as the canonical divisors.

As before, identify k, with its topological dual by means of ¥, and
put c=div(y). Using prop. 12 of Chap. 1I-5, one sees at once that the dual
system to L(a)is L(c—a). Theorem 1 gives now:
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THEOREM 2. Let ¢ be a canonical divisor of k. Then, for every divisor a
of k, we have:

a)y=A(c—a)+deg(a)—g+ 1.
COROLLARY 1. If ¢ is as above, deg(¢)=2¢g—2 and A(c)=g.

We get the first relation by replacing a by ¢—a in theorem 2, and
the second one by taking a=0.

COROLLARY 2. If a is a divisor of degree >2g—2, A(a)=deg({a)—g+ 1.

In fact, we have then deg(c — a) <0, and, as we have observed above,
this implies A(c —a)=0, hence our conclusion, by theorem 2.

COROLLARY 3. Let a=Y a(v)- v be a divisor of degree >2g—2. Then
kya=k+([]p.,*).

This is the special case E=k, L=L{a) of corollary 2 of th. [, since
in this case, as shown above, we have L'=L(¢—a) and 4(L)=0.

Theorem 2 is the “theorem of Riemann-Roch” for a “function-field”
k when the field of constants is finite. A proof for the general case can be
obtained on quite similar lines; for the concept of compacity, one has
to substitute the concept of “linear compacity” for vector-spaces over
an arbitrary field K, K itself being discretely topologized; instead of a
Haar measure, one has to use a “relative dimension” for compact and
open subspaces of locally linearly compact vector-spaces over K. This
will not be considered here.

Another point of some importance will merely be mentioned. Instead
of identifying the topological dual G of k, with k, by means of a “basic”
character, consider it as a k,-module by writing, for every x*eG and
every aek,, (x,ax*>={ax,x*) for all xek,. Call I' the subgroup of G
associated by duality with k. Then th. 3 of Chap. IV-2 can be expressed
as follows: if y is any element of I', other than 0, x —» xy is an isomorphism
of k, onto G which maps k onto I'. In particular, I' has an “intrinsic”
structure of vector-space of dimension 1 over k. It is now possible to
define “canonically” a differentiation of k into I', i.¢. a mapping x »>dx
of k into I'" such that d(xy)=x-dy+ y-d x for all x, y in k, and that I" may
thus be identified with the k-module of all formal sums Y yidx,;, where
the x;, v, are in k. This remains true for every separably algebraic extension
of finite degree of any field K(T), where T is an indeterminate over the
groundfield K. Even for the case studied here, that of a finite field of con-
stants, this topic can hardly be dealt with properly except by enlarging
the groundfield to its algebraic closure, and we will not pursue it any
further.



Chapter VII
Zeta-functions of A-fields

§ 1. Convergence of Euler products. From now on, k will be an A-field
of any characteristic, either 0 or p> 1. Notations will be as before; if v
is a place of k, k,, is the completion of k at v; if vis a finite place, r, is the
maximal compact subring of k,, and p, the maximal ideal in r,.. Moreover,
in the latter case, we will agree once for all to denote by g, the module
of the field k, and by =, a prime element of k,, so that, by th. 6 of Chap. I-4,
r./D, is a field with g, elements, and |r,|, =g, !. If k is of characteristic
p>1, we will denote by g the number of elements of the field of con-
stants of k and identify that field with F,; then, according to the defini-
tions in Chap. VI, we have g, = q***" for every place v.

By an Euler product belonging to k, we will understand any product
of the form

[Ta-0,4;97"

where seC, 0,€C and |0,|<1 for all v, the product being taken over all
or almost all the finite places of k. The same name is in use for more
general types of products, but these will not occur here. The basic result
on the convergence of such products is the following:

PrOPOSITION 1. Let k be any A-field. Then the product
Gloy=]](1—q,7)7 1,

where o€ R and v runs through all the finite places of k, is convergent for
o> 1, and tends to the limit 1 for o tending to + c.

Assume first that k is of characteristic 0, and call » its degree over Q.
By corollary 1 of th. 4, Chap. I1I-4, there are at most » places v of k above
any given place p of Q; for each of these, k, is a p-field, so that g, is of
the form p® with v>1 and is therefore > p. This gives, for 6 >0:

I<{@<]]a-p~)"

where the product is taken over all rational primes p. Now write:

o) =TTa—p ) '=[TA+p "+p 27+ ).
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Expanding the last product, we get

+ o

o)=Y v "

v=1

since every integer v>1 can be uniquely expressed as a product of
powers of rational primes. Furthermore, we have, for > 1:

+ w0
+©
[<{o)<1+ ) jt’“dt=1+ j t7dt=1+(c—-1)"",
v=2
v—1

which shows that {(s) is convergent for ¢ > 1 and tends to 1 for 6 > + 0.
This proves our proposition when k is a number-field.

Now assume that k is of characteristic p>1; then, by lemma 1 of
Chap. I1I-2, we may write it as a separably algebraic extension of F,(T)
of finite degree n. By th. 2 of Chap. IiI-1, F,(T) has one place co cor-
responding to the prime element T~!, while its other places are in a
one-to-one correspondence with the prime polynomials n in F,[T]. It
will clearly be enough if we prove the assertion in our proposition, not
for the product (,(o), but for the similar product n(s) taken over the
places v of k which do not lic above the place oo of F,(T). Then, just as
in the case of characteristic 0, we see that 1 <#(s)<{,(0)", where {,(0)
denotes the product

Cp(o-): I_I(l _p—deg(n)a)— 1_ 1—[(1 +p—deg(7r)o+p—2deg(n)a+ )

taken over all the prime polynomials z in F,[ T]. As every monic poly-
nomial in F,[ T] can be uniquely written as a product of powers of prime
polynomials, this gives

(o)=Y péesor

where the sum is taken over all the monic polynomials x in F,[T]. As
there are p° monic polynomials of degree & for every § =0, we get

+ o
o)=Y P =(1—pt o),
=0

which completes the proof in the present case.

COROLLARY 1. Let P be a finite set of places of k, containing P, ; for
every v not in P, take 0,€ C such that |6,|<1. For seC, put:

E(s)=]11—0,4,9"".
v¢P

Then E(s) is absolutely convergent, holomorphic in s, and # 0, for Re(s)> 1,
and it tends to 1, uniformly with respect to Im(s), for Re(s) tending to + co.
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In fact, for c=Re(s), the series logE(s) is majorized by the series
log{,(o). Our conclusion follows now at once from proposition 1 and
the well known elementary theorems on uniformly convergent series of
holomorphic functions.

COROLLARY 2. Let k, be an A-field contained in k; let M be a set of
finite places of k such that, for almost all ve M, the modular degree f(v)
of k, over the closure of ky in k, is > 1. Then the product

p(M,0)=[[(1-g;)7"

veM

is absolutely convergent for o>1/2.

If k is of characteristic 0, both k and k, are of finite degree over Q;
if it is of characteristic p>1, and Tis any element of k,, not algebraic
over the prime field F,, k and k, are of finite degree over F,(T); in both
cases, k has a finite degree n over k. Let v be a finite place of k, and u the
place of kg lying below v; then the closure of kg in k,, is (k,),, and k, is
generated over it by k; therefore the degree of k, over (k,), is <n, so that
1< f(v)<n. This shows that M is the union of the sets M,,...,M,,
consisting respectively of the places veM for which f(v)=f wit
1<f<n. Our assumption about M means that M, is finite, so that it
is enough to prove our assertion for each one of the sets M, with f=>2.
By corollary 1 of th. 4, Chap. I11-4, there are at most n/f places ve M, over
each finite place u of k,. Therefore the product p(M ,,0) is majorized by
{4, (fo)"/; by proposition 1, this is absolutely convergent for ¢ > 1/f.

COROLLARY 3. Let M be as in corollary 2; for every veM, take
0,eC such that |6,) <1; then the product
l_[ (1 mequ_s)—l

veM

is absolutely convergent, holomorphic in s, and # 0, for Re(s)> 1/2.
In view of corollary 2, the proof is similar to that of corollary 1.

§ 2. Fourier transforms and standard functions. The theory of zeta-
functions depends essentially on the concept of Fourier transforms, ap-
plied to the groups k,, k, attached to an A-field k. We begin by recalling
the results to be used here.

As in Chap. 11-5, let G be a commutative locally compact group, G*
its dual, and let {g,g*)> be as defined there. Let @ be a continuous function
on G, integrable for a Haar measure « given on G. Then the function ¢*
defined on G* by

P*(g*)= g ®(9)<g.9*>dalg)
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is called the Fourier transform of ® with respect to o; one verifies at once
that it is continuous on G*. Clearly, if one replaces a by ca, with ceR},
this replaces ®* by ¢ &*.

LEMMA 1. Let g—Ag be an automorphism of G, with the module
modg(4). Let g*— g* A* be the automorphism of G* such that {1g,g*>=
={g,g* A*) for all ge G, g*€ G*. Then, if ®* is the Fourier transform of @,
that of g— ®(A~ 1 g) is g*— mod4(2) D*(g* A*).

In the integral which defines the Fourier transform of &(17!g),
substitute Ag for g; the conclusion follows at once.

By the theory of Fourier transforms, there is a Haar measure o* on
G*, such that, whenever the function @* defined as above is integrable
on G*, @ is given by “Fourier’s inversion formula”

D(g)= £*<1>*(g*)< —g,9*>da*(g*).

Then we say that @ is the inverse Fourier transform of @*. The measure
o* is called the dual measure to o. Clearly, for ceRY, the dual measure
to cois ¢~ 'a*. In particular, assume that G* has been identified with G
by means of some isomorphism of G onto G*; then a* =ma with some
meR?’, and, as the dual of ca is ¢~ ! ma, there is one and only one Haar
measure on G, viz., m*/? a, which coincides with its own dual for the given
identification of G and G*; this is then called the self~-dual Haar measure
on G.

If G is compact, G* is discrete. Then, by taking @=1, one sees at
once that the dual of the Haar measure a given by a(G)=1 on G is the
one given by a*({0})=1 on G*.

A function @ on G will be called admissible for G if it is continuous,
integrable, and if its Fourier transform &* is integrable on G*. Now let
I' be a discrete subgroup of G, such that G/I' is compact. Let I', be the
subgroup of G* associated by duality with I'; as G/I" is compact, T, is
discrete; as I' is discrete, G*/I', is compact. Take for « the Haar measure
on G determined by a(G/I')=1. The function ¢ on G will be called
admissible for (G,I) if it is admissible for G and if the two series

Y O(g+y), Y PHg*+y¥)

vel y*el,
are absolutely convergent, uniformly on each compact subset with
respect to the parameters g, g*. The first one of these series defines then a
continuous function F on G, constant on cosets modulo I'; this may be
regarded in an obvious manner as a function on G/I'. As I, is the dual
group to G/I', F has then the Fourier transform
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7= [ (R 0l+9) 7 du)
G/I' yel
where, as usual, g is the image of g in G/I" under the canonical homo-
morphism of G onto G/I', and the integrand, which is written as a func-
tion of g but is constant on cosets modulo I, is regarded as a function
of g. According to formula (6) of Chap. II-4, this integral has then the
value @*(y*), so that the Fourier transform of F, when F is regarded as
a function on G/T, is the function induced by &* on I',. Since @ has been
assumed to be admissible for (G, I'), this is integrable on I, so that we
get, by Fourier’s inversion formula for G/I" and T, :
F(g)=) ®(g+y)= Y. *G*)<{—g,7*.

yel y*el',
For g =0, this gives:
(1) 2= Y P*(y¥).

yel y*el,

This is known as Poisson’s summation formula, which is thus shown to
be valid whenever @ is admissible for (G, I'), and « is such that «(G/I") = 1.

Assume that there are admissible functions @ for (G, I') for which both
sides of (1) are not 0; this assumption (an easy consequence of the general
theory of Fourier transforms) will be verified by an explicit construction
in the only case in which we are interested, viz., the case G=E,, '=E
when E is a vector-space of finite dimension over an A-field. Call then o*
the dual measure to a; put a*(G*/I',)=c, and interchange the roles of G,
G* in the above calculation, starting with ®* and taking its inverse
Fourier transform by means of the Haar measure ¢~ 'o* on G*; as this
is ¢~ ' @, we find as end-result the same formula as (1), except that & has
been replaced by ¢~ !®. A comparison with (1) gives now c=1. This
shows that the Haar measures a, a* given on G, G* by a(G/IN=1,
a*(G*/T',)=1 are dual to each other. In particular, if there is an isomor-
phism of G onto G* which maps I' onto I',, and this is used to identify G
and G*, the self-dual measure on G is the one given by a(G/IN)=1.

Now we construct special types of admissible functions for the groups
in which we are interested; these will be called “standard functions”.
On any space, a function is called locally constant if every point has a
neighborhood where the function is constant. If f is such, ™ *({a}) is
open for every a; it is also closed, since its complement is the union of
the open sets f ~'({b}) for b#a. In a connected space, e.g. any vector-
space over R, only the constant functions are locally constant.

DEFINITION 1. Let E be a vector-space of finite dimension over a
p-field K. By a standard function on E, we understand a complex-valued
locally constant function with compact support on E.
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It will be enough to consider the case when K is commutative. Let E*
be the “topological dual” of E, i.e. the dual of E when E is regarded as a
locally compact group. On E*, we put a structure of vector-space over K
in the manner described in Chap. II-5; as we proved there, E* has the
same dimension as E over K. With these notations, we have:

PROPOSITION 2. A function @ on E is standard if and only if there are
K-lattices L, M in E such that L> M and that @ is 0 outside L and constant
on cosets modulo M in L. Then, if L, and M are the dual K-lattices to
L and M, we have M, > L, and the Fourier transform ®&* of & is O outside
M, and constant on cosets modulo L, in M.

If @, L, M have the properties stated in our proposition, it is clear
that ¢ is standard. Conversely, assume that it is such. Take a K-norm N
on E, and call u an upper bound for N on the support of @; then, as we
have seen in Chap. II-2, the set L defined by N(e)< uis a K-lattice, and it
contains the support of @. As the sets @~ '({a}), for aeC, are open, and
L is compact, L is contained in the union of finitely many such sets; in
other words, @ takes only finitely many distinct values ay,...,a, on L.
Takee >0suchthat|a; —a;| > ¢ whenever i #j. As @is uniformly continuous
on L, there is >0 such that N(e—¢')<4, for e and ¢ in L, implies
|P(e) - D(e)] <e. Then the set M defined by N(e)<d is a K-lattice, con-
tained in L if we have taken 6 <y, and @ is constant on cosets modulo
M in L. Now consider the Fourier transform

D*(e*)= | Ple)<e,e*>dale),

where o is any Haar measure on E. As ¢ is 0 outside L, this integral is
not changed by taking it over L. Replace e* by e* +ef with efeL,; by
definition, the latter assumption means that {e,e¥>=1 for all ecL, so
that the integral is not changed; therefore ©* is constant on cosets
modulo L, in E*. On the other hand, as M is an open subgroup of the
compact group L, L is the union of finitely many cosets e¢;+ M. As @ is
constant on each one of these, we have

2) P*(e*)=) D(e) [ <e;+e,e*ddale)=) Dl(e) <e,~,e*>_f {e,e*>dale).
i M i M

As the last integral is clearly O unless the character e— {e,e*) is trivial
on M, i.e. unless e¥*e M, we see that ¢* is 0 outside M .

COROLLARY 1. If @ is the characteristic function of the K-lattice L in
E, a(L)” " ®* is the characteristic function of the K-lattice L, dual to
L in E*, and o*(L,)=a(L)~ ! if a* is the dual measure to a.
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The first assertion follows at once from (2) for L=M, &(0)=1. It
implies that the inverse Fourier transform of @* is a*(L,)a(L)®; as this
must be @, we get the last assertion.

COROLLARY 2. Every standard function on E is admissible for E.

This is an obvious consequence of proposition 2 and the definitions.

In the next corollary, we identify K with its topological dual by means
of a character y of K in the manner explained in Chap. 1I-5, i.e. by
writing {x,y> =y(xy) for x, y in K; for this identification, we may then
speak of a self-dual measure on K.

COROLLARY 3. Let R be the maximal compact subring of K, and ¢ the
characteristic function of R. Let y be a non-trivial character of K, of order
v, and let o be the self-dual Haar measure on K for the identification of K
with its dual, based on y. Let acK™ be such that ordg(a)=v. Then
a(R)=mody(a)''?, and the Fourier transform of ¢ is y—mod(a)’? p(ay).

Apply corollary 1 to E=K, L=R; then, by prop. 12 of Chap. II-5,
L,=P7 i.e. L,=a"'Rif ais as defined above; then the characteristic
function of L, is ¢(ay), and we have «(L,)=modg(a)”'«(R). Our
assertions follow now at once from corollary 1.

DEFINITION 2. Let E be a vector-space of finite dimension over R.
By a standard function on E, we understand any function of the form
e— ple)exp(—q(e)), where p is a complex-valued polynomial function on
E and q a real-valued positive-definite quadratic form on E.

PROPOSITION 3. Let E be as in definition 2; then every standard function

on E has a Fourier transform which is a standard function, and is admissible
Jor (E,L) if Lis any R-lattice in E.

Choose a basis for E over R, such that, when E is identified with R”
by means of that basis, the quadratic form ¢ is given by g(x)=n) xZ.
It is clearly enough to prove our first assertion for a function
M(x)exp(—q(x)), where M(x)isa monomial in the x,. By th. 3 of Chap. I1-5,
we may identify R” with its dual by putting {x,y>=e(} x,y,); then we
see that it is enough to deal with the case n=1, i.e. to show that the
Fourier transform of x™exp(—nx?) is standard on R for every integer
m=0. The Fourier transform of exp(—nx?) is exp(—ny?), as shown by
the well-known formula

exp(—ny*)=[exp(—nx?+2mixy)dx.

Differentiating both sides m times with respect to y, one sees at once,
by induction on m, that the left-hand side is of the form p,_(y)exp(—n y?),
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where p,, is a polynomial of degree m, and that the differentiation may
be carried out inside the integral in the right-hand side. This gives

pmy)exp(—ny?)={Q2rix)"exp(—nx*+2nixy)dx,

which proves our first assertion. Now let L be an R-lattice in E. By
prop. 11 of Chap. II-4, there is a basis of E over R which generates the
group L; in other words, identifying E with R* by means of that basis,
we may assume that E=R" and L=2Z". In order to prove that standard
functions in R” are admissible for (R",Z"), it is now enough to show that,
if @ is such a function, ) | #(x+v)|, taken over all veZ", is uniformly
convergent on every compact subset C of R”. Put &(x)=p(x)exp(—g(x))
and r(x)=Y xZ; take 4 >0 such that the quadratic form g —§r is positive-
definite ; this will be so provided é <y, if we call u the lower bound of g
on the sphere r=1. Then the function y— ®(y) exp(dr(y —x)) tends to 0,
uniformly in x for xeC, when r(y) tends to + co. This implies that this
function is bounded for xeC and all yeR” and therefore, replacing y
by x+u, that, for a suitable 4 >0, we have

|B(x+1)] < Aexp(— 5r(u)
for all xeC. This gives

+©

Z|<P(x+v)|<AZexp(—-5Zv,~2)=A( Y exp(——évz))n’

V=00

which completes our proof.

We will also need a more explicit statement for some special cases
of prop. 3, corresponding to E=R or C; in each case we choose a “basic”
character y, and identify R (resp. C) with its topological dual by means
of that character, just as we have done above for p-fields, according to
Chap. II-5. The self-dual measures to be considered now are taken with
reference to that identification.

PROPOSITION 4. On R, the self-dual Haar measure, with reference to
the basic character y(x)=e(—ax) with aeR*, is du(x)=|a|'?dx. If
e (x)=x"exp(—nx?) with A=0 or 1, the Fourier transform of ¢, is
Pa)=i""al"? p4(ay).

Put du(x)=c - dx with ce R} ; then ¢y is given by
Po(y)=cfexp(—nx*—2miaxy)dx.
R
As recalled above, this is equal to c¢,(ay). Applying now Fourier’s
inversion formula and lemma 1, we get c=|a|'/?. Differentiating both

sides of the above formula for ¢ (p) with respect to y, we get the Fourier
transform of ¢,.
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PrROPOSITION 5. On C, the self-dual Haar measure, with reference
to the basic character y(x)=e(—ax—aXx), with acC™, is da(x)=
=(ad)'?|dx Adx|. If @, (x)=x"exp(—2nxX), A being any integer >0,
the Fourier transform of ¢, is i"“*(ad)'’* p(ay), and that of @, is
i~4(aa)'? pylay).

The proof of the assertions about « and about the Fourier transform
of ¢, is quite similar to that in prop.4. Differentiating 4 times, with
respect to y, the formula for the Fourier transform of ¢4, we get that
of ¢; that of @, follows from this at once.

DerINITION 3. Let E be a vector-space of finite dimension over an
A-field k. Let ¢ be a basis of E over k; for each finite place v of k, let ¢,
be the r,-module generated by ¢ in E,. By a standard function on E,, we
understand any function of the form

e=(e,)>Ple)= Hd’(e)

where @, is, for every place v of k, a standard function on E,, and, for
almost every v, the characteristic function of ¢,.

Corollary 1 of th. 3, Chap. ITI-1, shows that the latter condition is
independent of the choice of &. The formula which defines @, for which
we will write more briefly @ =[] ®,, is justified by prop. 1 of Chap. IV-1,
which shows that almost all the factors in the right-hand side are equal
to 1 whenever e is in E,; the same proposition shows also that & is 0
outside E,(P,¢) for a suitable P, and that it is continuous.

Just as in the case of k, in Chap. V-4, a Haar measure on E, can
be defined by choosing a Haar measure o, on E, for each v, so that
a,(e,)=1 for almost all v; when the «, satisfy the latter condition, we
will say that they are coherent. Then there is a unique measure o on E,
which coincides with the product measure []«, on every one of the
open subgroups E,(P,¢) of E,; this will be written as a =] [«,. Clearly,
if a Haar measure « is given on E,, one can find coherent measures «,
such that a=][]a, by choosing any set of coherent measures on the
spaces E, and suitably modifying one of them.

From now on, we also choose, once for all, a “basic” character y
of k,, i.e. a non-trivial character of k,, trivial on k; we denote by y,
the character induced by y on k,, which is non-trivial by corollary 1 of
th. 3, Chap.IV-2. If E is any vector-space of finite dimension over k,
we call E’ its algebraic dual, and we use y and y, for identifying the
topological dual of E, with E,, and that of E, with E, for each v, in the
manner described in Chap. IV-2, 1.e. by applying th. 3 of Chap. IV-2 to
the former space and th. 3 of Chap. I1-5 to the latter.
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THEOREM 1. Let E be a vector-space of finite dimension over the
A-field k. Let the a, be coherent Haar measures on the spaces E,, and
let @=]]®, be a standard function on E,. Then the Fourier transform
of @, with respect to the measure a=||a, on E,, is a standard function
on E,, given by @' =] [ ®,, where ®,,, for every v, is the Fourier transform
of ®, with respect to a,. Moreover, ® is admissible for (E,,E).

Let ¢,¢' be bases for E and for E' over k; for each finite place v, let
g, be as before, and let ¢, be similarly defined for E;. By corollary 3 of
th. 3, Chap. IV-2, there is a finite set P of places of k, containing P,,
such that ¢, is the dual k_-lattice to ¢, when v is not in P; in view of our
assumption on the «,, we may also assume that P has been so chosen
that «,(g,)=1 for v not in P. Then, by corollary 1 of prop. 2, the Fourier
transform of the characteristic function of ¢, is the characteristic function
of &, and the dual measure o to «, is given by a,(e;)=1, for all v not
in P. Now let @=][®, be a standard function on E,; for each v, call &,
the Fourier transform of @, with respect to «,. From what has just been
said, and from propositions 2 and 3, it follows that &'=[[®, is a
standard function on E,; we will show that it is the Fourier transform
of @. Replacing P if necessary by some larger set, we may assume that @,
is the characteristic function of ¢, for v not in P; in particular, the support
of & is contained in E,(P,¢), so that the Fourier transform &” of @ is
given by the integral

" (e'y=[D(e) x([e,€'])dule)

taken on E,(P,e). In view of our definitions, the integrand here, for
e=(e,), ¢'=(e,), is given by

®(e)x([e.€])= l:[( D 2olles€]);

moreover, when ¢’ is given, the factor in the right-hand side corresponding
to v has, for almost all v, the constant value 1 on ¢,. In view of the defini-
tion of E,(P,¢) in prop. 1 of Chap.IV-1, this implies that @"(¢') is the
same as @'(e").

Now, in order to prove that @ is admissible for (E,, E), it is enough
to show that, for each compact subset C of E,, the series

€) Z|¢(6+11)I—Z|l_[‘15(e +1)l

nek
is uniformly convergent for eeC. By corollary 1 of prop. 1, Chap. IV-1,
C is contained in some set E,(P,s); take P such that this is so and that

E,(P,¢) also contains the support of @. For each place v in P, call C,
the projection of C onto E,; for each finite place ve P, call C;, the support
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of @,; for vnot in P, put C,=C,=¢,. As [ | C, is compact and contains C,
it will be enough if we prove our assertion for C=]]C,. Assume first
that k is of characteristic p>1. Then @ is 0 outside the compact set
C'=]]C;, so that all the terms of (3) are 0 for e C except those corres-
ponding to ne EnC”, where C” is the image of C x C' under the mapping
(e,e')—>¢’ —e; as C" is compact, ENC” is finite, and the assertion becomes
obvious. Now let k be of characteristic 0. For each finite ve P, take a
k,norm N, on E,, and call L, the k_-lattice given by N (e,) < u, where p
is an upper bound for the values of N, on the compact set C,uC,. Forv
not in P, put L,=¢,. Put L= () (EnL,), where v runs through all the
finite places of k; by th. 2 of Chap. V-2, this is the k-lattice in E with the
closure L, in E, for all finite v. Clearly, for e=(e,) in C, @, (e, +#) is 0
unless 7 is in ENL,, so that @(e-+#) is 0 unless # is in L. Furthermore,
if A, is the upper bound of |@,| for each finite place v of k, we have 4,=1
for almost all v; putting A4 =I_[Av, we see now that (3), for eeC, is
majorized by the series
A Y []Pu(e,+n)l
nelL w

where the product is taken over the infinite places w of k. As explained
in Chap. V-2, put E,=E ®¢R, and identify this with the product [[E,,
taken over the infinite places of k. It is then obvious that the function &,
on E_, defined for e =/(e,) by

Py (e)=[1Pulen),

is standard. As L is a k-lattice in E, it is a Q-lattice in E regarded as a
vector-space over Q, hence an R-lattice in E_. Our assertion is now
contained in prop. 3.

COROLLARY 1. If the a, are coherent measures on the spaces E,,
their duals o, are coherent; the dual of a=1]a, is o/ =[]e; if A(E\/E)=
=1, then o'(E,/E")=1.

The first assertion has been proved above; the second one follows
at once from theorem 1 and the definitions. As to the last one, we know,
by th. 3 of Chap. IV-2, that E’ is the subgroup of E, associated by duality
with the subgroup E of E,; therefore, as we have seen, our assertion
follows from Poisson’s formula provided we can exhibit a function @,
admissible for (E,,E), for which the left-hand side of (1) is not 0; by
theorem 1, any standard function @>0 such that @(0)>0 has these
properties.

An important special case is that in which E=E' =k, [x,y]=xy;
then we identify k, and k, with their topological duals by means of y, ¥,
as explained before, and we have:
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COROLLARY 2. Let a,a, be the self-dual measures on k,k,. Then the
a, are coherent, o= a,, and a(ky/k)=1.

Take any coherent measures B, on the groups k,; by corollary 1,
their duals f§, are coherent, which implies that §, =, for almost all v;
in other words, B, coincides with the self-dual measure «, for almost
all v; this implies that the «, are coherent. Qur other assertions follow
now at once from corollary 1.

Notations being as in corollary 1, the measure o on E, for which
a(E,/E)=1 is known as the Tamagawa measure on E,; corollary 1 shows
that its dual is the Tamagawa measure on E,. In particular, on k,, the
Tamagawa measure and the self-dual measure are the same.

Now, for each finite place v of k, call v(v) the order of y,, which is 0
for almost all v by corollary 1 of th. 3, Chap. 1V-2, and choose a,ek’
such that ord (a,)=v(v). On the other hand, for each real place v of k,
apply to x—e(—x) the corollary of th. 3, Chap. [I-5; it shows that there
is one and only one a,cek, such that y, (x)=e(—a,x) for all xek,.
Similarly, for each imaginary place v, there is one and only one a,ek)
such that y,(x)=e(—a,x—a,Xx) for all xek,. As v(v)=0 for almost all v,
(a,) is in k.

DErFINITION 4. Let y be a non-trivial character of k,, trivial on k,
inducing y, on k, for every v. An idele a=(a,) of k will be called a differental
idele attached to y if ord,(a,) is equal to the order v(v) of x, for every
finite place v of k, y,(x)=e(—a,x) for every real place v, and y,(x)=
=e(—a,x—a,Xx) for every imaginary place v of k.

Clearly, when y is given, the differental idele a is uniquely determined
modulo [ [ ;. the latter product being taken over all the finite places v
of k. If x, is another character such as g, then, by th. 3 of Chap. IV-2,
it can be written as y,(x)= y(£x) with £ek™ ; if a is as above, £a is then
a differental idele attached to y,. Consequently, the set of all differental
ideles is a coset modulo k™ J]ry in kj. If k is of characteristic p>1,
a is a differental idele attached to y if and only if div(a)=div(y), in the
sense explained in Chap. VI; this implies that div(a) belongs to the
canonical class.

PROPOSITION 6. Let a be a differental idele. Then, if k is of charac-
teristic 0, |al, =|D| ™1, where D is the discriminant of k; if k is of charac-
teristic p>1, and if ¥, is its field of constants and g its genus, la|,=q*~**.

The latter statement is equivalent to deg(div(a)}=2¢g—2; as div(a)
is a canonical divisor, this is corollary 1 of th. 2, Chap. VI. In the case
of characteristic 0, let o, a, be the self-dual measures in k,,k,, so that
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a=]]e, by corollary 2 of th. 1;let =] [ 8, be as in prop. 7 of Chap. V-4.
Applying corollary 3 of prop.2, and propositions4 and 5, we get
a=|a|i?B. As a(k,/k)=1 by corollary 2 of th. 1, and B(k,/k)=|D|/? by
prop. 7 of Chap. V-4, we get |a|,=|D| ™.

§ 3. Quasicharacters. We first insert here some auxiliary results. As
before, if ze C, we denote by Re(z), Im(z) its real and imaginary parts,
and we put |z| =(z2)'/2, |z| , =mod¢(z) =z Z.

LEMMA 2. A character w of a group G is trivial if Re(w(g))>0 for
all geG.

If zeC, |z|=1, z#1 and Re(z)>0, we can write z=e(t) with teR,
O<|t]<1/4. Call n the smallest integer such that n|t]>1/4; then
(n—1)|t] <1/4, hence 1/4 <n|t| <1/2 and Re(z") <0. Therefore the subset
of C determined by |z| = 1,Re(z) > 0 contains no subgroup of C* except {1}.

LeMMA 3. Every homomorphism w of a compact group G into C* is a
character of G.

In fact, g—|w(g)| must map G onto a compact subgroup of R}, and
there is none except {1}.

A group G is called totally disconnected if there is a fundamental
system of neighborhoods of the neutral element in G, consisting of sub-
groups of G. For instance, if K is a p-field, with the maximal compact
subring R, and the maximal ideal P in R, the groups K and K™ are
totally disconnected, since the subgroups P" in K, and the subgroups
1+ P"in K, for n=1, make up such fundamental systems.

LEMMA 4. Let the group G be locally compact and totally disconnected ;
then every representation of G into C™ is locally constant. If G is compact,
every such representation is a character of G of finite order. Conversely,
if Gis a compact commutative group, and if every character of G is of
finite order, G is totally disconnected.

If G is locally compact and totally disconnected, lemmas 2 and 3
show that every representation of G into C* is trivial on some open
subgroup of G, hence locally constant. If G is compact, any open sub-
group of G is of finite index, hence the second assertion. If G is commuta-
tive and compact, its dual G* is discrete. As G may be identified with the
dual of G*, there is then a fundamental system of neighborhoods of 0
in G, consisting of sets defined by conditions of the form |w;(g)—1|<¢
(I<i<N), where the w; are characters of G. If all the w; are of finite
order, we can take ¢ such that these inequalities imply w;(g)=1 for
1 <i< N; then the neighborhood which is so defined is a subgroup of G.
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From now on, we shall be chiefly concerned with representations
into C* of groups of the form K>, where K is a local field, and k3/k™,
where k is an A-field. All these groups have the property stated in the
following definition:

DErFINITION 5. A group G will be called quasicompact if it is the direct
product of a compact commutative group G, and of a group isomorphic
to R or to Z; a representation of G into C™ will then be called a quasi-
character of G.

It would be easy to show that a group G is quasicompact if and only
if it is commutative and locally compact, and its dual G* is locally
isomorphic to R, i.e. if it has an open subgroup isomorphic to R or to
R/Z; the latter condition may even be replaced by the weaker requirement
that G* should have a neighborhood of 0, homeomorphic to R. From
this, one concludes easily that G is quasicompact if and only if it has a
compact subgroup G, such that G/G, is isomorphic to R or Z. These
facts will not be needed in the sequel. It is clear that, if G has the property
described in definition 5, G, is its unique maximal compact subgroup.

DEFINITION 6. If G is a quasicompact group, a quasicharacter of G
will be called principal if it is trivial on the maximal compact subgroup
G, of G.

The quasicharacters of a quasicompact group G make up a group
in an obvious manner; this will be denoted by 2(G) and written multi-
plicatively. In other words, if w, o’ are in Q(G), we write ww’ for the
quasicharacter g — w(g)w’'(g) of G. Clearly the principal quasicharacters
of G make up a subgroup 2, of Q(G).

PrOPOSITION 7. Let G be a quasicompact group and G, its maximal
compact subgroup. Then G has non-trivial representations into RX; if w,
is such a representation, its kernel is G, and every representation of G
into R can be written in one and only one way in the form g— w,(g)°
with ceR.

Put G=G, x N, with N isomorphic to R or Z. By lemma 3, every
representation w of G into R} must be trivial on G,; writing elements
of G as (g,,n) with g, €G,, ne N, we see that w must then be of the form
{(g.,n)— ¢(n), where @ is a representation of N into R7. Identify N with
R or with Z, as the case may be. In the former case, the condition for ¢
amounts to saying that n—loge(n) is an endomorphism of R, hence of
the form n—an with aeR, so that ¢(n)=exp(an). For N=Z, ¢ is
obviously of the form ¢(n)=>»b" with be R} and may still be written as
¢@(ny=exp(an) with a=logh. In both cases, ¢ is non-trivial if a#0.
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Therefore, if , is as in our proposition, it can be written as ©,(g,,n)=
=exp(a, n) with a, % 0. This has obviously the kernel G, ; moreover, if @,
o and a are as above, we have w=(w,)” with 6 =a/a,, and o is uniquely
determined by this.

COROLLARY 1. Let G, G, and w, be as in proposition 7. Then the
group Q, of the principal quasicharacters of G is isomorphic to C or to C*
according as G/G  is isomorphic to R or to Z; every such quasicharacter is
of the form

g—wlg)=w,lgy

with se C; and s— w, is a morphism of C onto Q,, whose kernel is {0} or
of the formiaZ with acR}, according as G/G is isomorphic to R or to Z.

Let o be any quasicharacter of G; with the above notation, proposi-
tion 7, applied to g — |w(g)|, shows that jw| = w, with ge R; then o' = w; '@
is a character of G. If w is trivial on G, so is @’; with the same notations
as in the proof of prop. 7, we may then write w'(g,,n)=y(n), where
is a character of N. As in that proof, identify N with R or with Z, as the
case may be, w, being given by w,(g,,n)=exp(a, n) in both cases. Every
character of N can be written as y(n)=e(tn) with 7eR; this is obvious
for N=7Z and is well known (and a special case of th. 3, Chap. II-5) for
N =R. That being so, we get w=w,, with s=0¢+2nit/a,. Moreover,
and y are uniquely determined by ®; t is uniquely determined by  if
N=R, and uniquely determined modulo Z if N=Z. This shows that
s—w, is an isomorphism of C onto Q, if N=R; if N=Z, we have
w{g,,n)=u" with u=exp(a, s), and u— w is an isomorphism of C* onto
Q,. This completes the proof.

COROLLARY 2. Let G be a quasicompact group, the direct product of
the compact group G, and of a group N, isomorphic to R or Z. Then the
group (G) of quasicharacters of G is the direct product of the group @,
considered in corollary 1, and of the group of the characters of G, trivial
on N ; the latter is isomorphic to the dual of G,.

We have already noted above that every quasicharacter w of G can
be uniquely written as w,{, where  is a character of G, and seR.
Clearly y can be uniquely written as ¥, y,, with ¥, trivial on G, and
W, trivial on N ; then w=(w, ¥ ,)¥,, and o, ¥, is in ,. The last assertion
in our corollary is obvious.

So far we have refrained from mentioning any topology on 2(G). We
will put on Q,, not only the topology, but also the complex structure
determined by the morphism s— w, of C onto Q, defined in corollary 1
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of proposition 7; we define the topology on Q(G) by prescribing that €,
shall be an open subgroup of Q(G), and we define a complex structure
on Q(G) by putting, on every coset modulo Q, in Q(G), the complex
structure deduced from that of Q, by translation. Then Q(G)/Q, is
discrete, hence isomorphic to the dual of G, also as a topological group
since that dual is discrete. The connected components of Q(G) are the
cosets modulo Q,; they are all isomorphic to C or to C*, as the case
may be.

Clearly the above concepts and results can be applied to G=K™ if
K is any local field, with w,(x)=modg(x); we can take for N the sub-
group R of K™ if K is R or C, and the group generated by any prime
element 7 of K if K is a p-field. In the latter case, this gives:

ProrosiTION 8. Let K be a p-field and n a prime element of K. Then
the principal quasicharacters of K™ are those of the form x — modg(x)*
with se C; the group Q(K ™) of quasicharacters of K™ is the direct product
of the group of principal quasicharacters and of the group of the characters
W of K™ such that y(n)=1.

By lemma 4, every quasicharacter of K™ is locally constant. If R
and P have their usual meaning, the groups R™ and 1+ P" for n>1 are
open in K™ and make up a fundamental system of neighborhoods of 1.
This justifies the following definition:

DEFINITION 7. Let K be a p-field, R its maximal compact subring and
P the maximal ideal of R. Let w be a quasicharacter of K*; let f be the
smallest integer >0 such that w(x)=1 for xeR*, x—1eP’. Then P/
is called the conductor of w.

Obviously w is principal if and only if f=0, i.e. if and only if its
conductor is R; when that is so, we will also say that w is unramified.
For K=R or C, we have the following resuit:

PROPOSITION 9. Every quasicharacter of R™ can be written in one and
only one way as x —x~4|x|* with A=0 or 1, and se C. Every quasicharacter
of C* can be written in one and only one way as x—x~1x~B(x X)’, where
A and B are integers, inf(A,B)=0, and seC.

For R*, thisis an immediate consequence of prop. 7 and its corollaries,
since here G,={+1}. For G=C*, G, is the group determined by
xXx=1; as this is the dual of Z, its characters are the functions x— x"
with neZ; this can be written as x —(x/|x])”* with A= —n>0 if n<0,
and as x—(x/|x|)” 8 with B=n>0 if n0. Our assertions follow at once
from this and prop. 7.
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§ 4. Quasicharacters of A-fields. By th. 6 of Chap. IV-4, if k£ is an
A-field, k3 /k™ is quasicompact. From now on, we will write G, =k /k™ ;
this group is known as the “idele-class group” of k. We write Q(G,) for
the group of quasicharacters of G,, provided with its topology and its
complex structure according to our definitions in § 3. The quasicharacters
of G, will be identified in an obvious manner with the representations of
kx into C*, trivial on k™.

As z—|z|, is a non-trivial representation of ki into RJ, trivial
on k*, it determines a non-trivial representation of G, into R, which
will be denoted by w;, and to which we can apply prop. 7 of § 3 and its
corollaries, writing again w,=(w,)’ for seC. In particular, the kernel
Gl=ki/k* of w, is the maximal compact subgroup of C,; s—w, is a
morphism of C onto the group Q, of principal quasicharacters of G;;
if w is any quasicharacter of G,, there is one and only one o€ R such
that |0l =w,.

If k is of characteristic 0, corollary 2 of th. 5, Chap. IV-4, shows that
G, is the direct product of G; and of the image N in G, of the group M
defined in that corollary. On the other hand, if k is of characteristic
p>1, we choose an element z, of k{ among those for which |z|, has its
smallest value Q > 1; as we have seen in Chap. VI that the values of |z|,
are all of the form ¢" with ne Z if F, is the field of constants of k, we have
Q =g’ with v>>1; it will be seen later that v=1, @ =4 (this is corollary 6
of th. 2, § 5). Then we call M the subgroup of k; generated by z,, and
N its image in G,. In all cases, we will identify N with its image in R}
under w,, so that w, may be regarded as the projection from the product
G,=G} x N onto the factor N. Thus N=R7 if k is of characteristic 0;
otherwise it is the subgroup of R} generated by Q; this implies that in
the latter case the morphism s—c; of C onto Q, has the same kernel as
the morphism s— Q° of C onto C*, i.e. 2mi(log Q)" ' Z.

Let w be any quasicharacter of G,; regarding it as a representation
of k5 into C*, trivial on k*, we will, for every place v of k, denote by
w, the quasicharacter of k) induced on k; by w. As the groups k,(P)”™
defined in the corollary of prop. 2, Chap. IV-3, are open in kj, every
neighborhood of 1 in k) contains a subgroup of the form [[,prs;
therefore, by lemma 2 of § 3, w must be trivial on some such group, which
is the same as to say that @, is unramified for almost all v. Consequently,
for all z=(z,) in k5 we have w(z)=]]w,(z,), the product being taken
over all the places v of k; for each z, almost all the factors in that product
have the value 1. We will write this more briefly as 0= | [w,.

The chief purpose of this Chapter can now be stated; it is to investigate
the integrals of the form

4) Z(w,®)= f P(j(z) w(2)d p(z),
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where the notations have the following meaning. For u, we take a Haar
measure on kj ; for w, we take a quasicharacter of G, =k} /k™, regarded
as above as a function on k. For @, we take a standard function on k,.
By j, we denote the natural bijection of k; onto the set of invertible ele-
ments of k,, which is a continuous mapping of k3 into k,, by prop. 2 of
Chap. 1V-3. By abuse of notation, we will usually write &(z) instead of
®(j(2)) in the future.

As to p, it has already been observed in Chap. V-4, in the case of
characteristic 0, that such a measure can be defined by choosing, for
every v, a Haar measure yu, on kj, in such a way that pu,(r;)=1 for
almost all v. Then we write u=]]u, for the measure on k5 which
coincides with the product measure | [, on every one of the subgroups
k,(P)*. The construction of the measures y, is contained in the following:

LeMMA 5. Let K be a local field and « a Haar measure on K. Then the
formula dp(x)=modg(x)” 'du(x) defines a Haar measure pu on K*;
moreover, if K is a p-field, q its module, and R its maximal compact subring,
then w(R*)=(1—q~ Ya(R).

By the definition of modg, x > ax leaves yu invariant for ac K™ ; this
proves the first assertion. The second one follows at once from th. 6 of
Chap. 1-4.

PrOPOSITION 10. Let @ = [ | ®, be a standard function on k,, =[] w,
a quasicharacter of G,=ky/k*, and p=[][p, a Haar measure on kj.
Assume that || = w, with 6 > 1. Then the integral Z(w,®) in (4) is absolutely
convergent, and its value is also given by the absolutely convergent product

(5) Z(0,®)=[1({ 2. 0,(x)dp,(x).
v kX

For each finite place v of k, put ¥,=|®,|; for each infinite place w
of k, choose a standard function ¥, on k,, such that ¥, >|®,|; then,
clearly, Y=[] ¥, is a standard function on k,, majorizing |®|, and
Z(w,P) is majorized by Z(w,, V). Call I(P), J(P) the integrals of dwdu
and of ¥ w,d pi, respectively, on k, (P)*. Call I ., J . the integrals of @ .w,d u,
and of ¥, |w,|d u,, respectively, on &k, and, for every finite v, call I, J,
the same integrals taken on r;, instead of k;; I, is the factor correspond-
ing to v in the right-hand side of (5). For almost all finite places v of k,
&, is the characteristic function of r,, w, is unramified, and p,(r;)=1;
let P, be a finite set of places, containing. P,, such that this is so for v
not in Py. Then, for v not in Py, I, =J,=1. This implies that we have, for
all Po Py:

1P =111, JP)=[]J..

veP veP
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Therefore Z(w,, P)is < + oo provided all the integrals J,, and the infinite
product ]—[JU, are convergent; moreover, if we show that this is so, it
will imply that Z(w,®), the integrals I, and the product []I, are all
absolutely convergent, and that Z(w,®) is equal to that product, which
is what we have to prove. For any v, take a Haar measure o, on k,;
then, by lemma 5, d u,(x)=m,|x|, * da,(x) with some m,eR. This gives

Jo=m, [ ¥ (x)x]77" day(x).
ko

In view of our definition of a standard function, one sees at once that
this is convergent for ¢ >1; it would still be so even for ¢ >0, but this is
not needed here. On the other hand, for v not in P, we have, since k; nr,
is the disjoint union of the sets u,==)r) for v0:

+ oo

+ o
J,=Y [Ixlzdux)=Y g, =(1—q,; 7).
v=0

v=0 u,

Prop. 1 of § 1 shows now that []J, is convergent, which completes the
proof.

The method of calculation which we have just given for J, can be
applied to I,; we formulate this as follows:

PrOPOSITION 11. Let K be a p-field, q its module, R its maximal
compact subring, and u the Haar measure on K™ such that p(R*)=1.
Call ¢ the characteristic function of R. Then, for Re(s)>0:

[ e(ymodg(xydp(x)=(1~q7%~".
kA

In fact, we can write K*nR as the disjoint union of the sets U,=
=n"R*=P*—P"*! for v=0. Then our integral can be written as

+w +
Y [modg(xydpx)=Y g7,
v=0 U, v=0

which is absolutely convergent for Re(s)>0 and has the value stated
above.

§ 5. The functional equation. We will first choose a Haar measure
on kx. On the compact group G, take the Haar measure p, given by
4, (GY)=1. On the group N, take the measure v given by dv(n)=n""' dn
if N=R} and by v({1})=1 otherwise. On G,=Gj x N, we take the
measure p=pu, X v. Finally, on kj, as explained in Chap. 11-4, we choose
as p the measure whose image in G,=k;/k* is the one we have just
defined.
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LEMMA 6. Let F, be a measurable function on N such that 0<F,<1;
assume also that there is a compact interval [to,t,] in RY such that
F(n)=1 for neN, n<ty, and Fy(n)=0 for ne N, n>t,. Then the integral

A(s)= | n*Fy(n)dv(n)
N

is absolutely convergent for Re(s)>0. The function A(s) can be continued
analytzcally in the whole s-plane as a meromorphic function. If we put
do(s)=s"1if N=R}, and Ao(s)=3(1+Q)(1-0Q7%)" ' if N={Q"}.z,
then J.— A, is an entire function of s. Finally, if F(n)+F,(n"')=1 for
all neN, then (s)+ A(—5)=0.

Take first for F; the function f; given by fi(n)=1 for n<l,
f (1)=1/2, f,(n)=0 for n>1. Then A becomes, for N=R7, the integral

+ w

jns 'dn, and, for N={Q"}, the series 3+ Z Q~*; in both cases it

is absolutely convergent for Re(s)>0, and equal to Aq(s). This gives, for
any Fi:

As)—Ao(s)= [ n*(Fy(n)—fi(n))d v(n).

As F, —f; is a bounded measurable function with compact support on N,
the last integral is absolutely convergent for all s, uniformly on every
compact subset of the s-plane; this implies that it is an entire function
of s. Assume now that F,(n)+ F;(n"')=1; as f; has the same property,
the function F,=F, —f, satisfies F,(n~')= — F,(n). Replacing n by n™!
in the last integral, and observing that A (—s)= —A4,(s), we get
A(—8)=—A(s).

Lemma 6 implies that A has at s=0 a residue equal to 1 if N=RZ}
and to (logQ)~! if N={Q"}. Here, and also in the next results, it is
understood that residues are taken with respect to the variable s; in other
words, if a function f(s) of s has a simple pole at s=s,, its residue there
is the limit of (s —s,) f(s) for s—s,.

THEOREM 2. Let & be a standard function on k,. Then the function
w— Z(w, ) defined by formula(4) of § 4 when the integral in (4) is absolutely
convergent can be continued analytically as a meromorphic function on
the whole of the complex manifold Q(G,). It satisfies the equation

Z(w,?)=Z(w, 0" ',d),

where @' is the Fourier transform of @ with respect to the Tamagawa
measure on k,. Moreover, Z(w,®) is holomorphic everywhere on £(G,)
except for simple poles at w, and w, with the residues — p ®(0) at w, and
p®'(0) at w,, where p=1if N=R and p=(logQ)~ ' if N={Q"}.



122 Zeta-functions of A-fields VII

On R7, choose two continuous functions F,, F; with the following
properties: (i) Fy =0, F, >0, Fy+ F; =1; (ii) there is a compact interval
[to,2,] in R} such that Fy(t)=0 for 0<t<t,, and F,(t)=0 for t>1,.
Take any B> 1. Then, for 6eR, 0 <B, teR}, we have t° F,(t) <t~ BB,
Write now, for i=0,1:

Z,=Z{w,P)=[d(z)(z) Flz|,) du(z).
ki

As before, put |o|=w, with 6eR; by prop. 10 of §4, Z, and Z, are
absolutely convergent for > 1. On the other hand, if 6 < B, Z;, is major-
ized by the integral

k[|<1’(2)| ' |zl7\F0(lZ|A)d“(z)<t‘(j)_Bki |P(2)} - |z[Xdp(2),

which is convergent by prop. 10 of § 4. In particular, Z (w,w,®) is ab-
solutely convergent for all seC, and one verifies easily that this is so
uniformly with respect to s on every compact subset of C. As the quasi-
characters w,w, for seC, make up the connected component of w in
Q(G,), with the complex structure determined by the variable s, this
shows that w—Z,(w,®) is holomorphic on the whole of Q(G,).

Now apply formula (6) of Chap. II-4 to the group kj, the discrete
subgroup k™ and the integrals Z,, Z,. This gives:

z= [ (T #(z8) wiz)Flzl)dua).

G, Sek”

where z is the image of z in G, =k /k™, and the integrand is to be under-
stood as a function of z. Here the integrals for Z,, Z, are absolutely
convergent whenever the original integrals for Z,, Z, are so, i.c. for
o>1 in the case of Z, and for all ¢ in the case of Z,,.

For each zek) , we may apply lemma 1 of § 2 to the automorphism
x—z 'x of k,; applying then Poisson’s formula, i.e. (1) of § 2, to the
function x—-®(zx), we get:

HO0)+ Y P(zE)=lzl5 " ( '0)+ Y <1>’(éz-1)),
gk Eek”

and therefore:
Zi= | (3 o€ )+ &0~ [2,80) |23 o) Fy(lzl) du(z)

Gy, Zek”

On the other hand, what we have proved above for Z, remains valid if
we replace w by w,w™!, ® by & and F, by the function t—F,(t™}).
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Calling Z{, the result of this substitution, we get:
ZE)=I([<P’(Z)IZIA60(Z)_1F1(|Z|,I du(z);

therefore this is always absolutely convergent, and holomorphic on the
whole of Q(G,). In this integral, replace z by z~'; this changes the Haar
measure y into a Haar measure cpu, where ¢?=1 since it is a homeo-
morphism of order 2 of k} onto itself, hence ¢=1. After this change of
variable, apply again formula (6) of Chap. II-4 to k and k*. This gives:

o= | (3 0127 1R 0@ F (0 duc)
G, Gek”
this again being always absolutely convergent. As é—»¢~ ! is a bijection
of k™ onto itself, we get now:

Z,-Z, =G§ (D'(0)— Izl PO)]z]x * (z) Fi(|z] ) dps(2),
this being absolutely convergent for 6> 1, since Z, and Z|, are so. By
corollary 2 of prop. 7, § 3, we can write w =y, where s is a character
of G, trivial on N. In view of our definition of yu as the measure p; x v
on G,=G} x N, our last formula can now be written:

Zy—Zy= (G§| l//dul) ' (§(¢’(0)—n¢(0))ns"lFl(n)dV(n)) .

The first factor in the right-hand side is 1 or 0 according as i is trivial
or not, i.e. according as o is principal or not; write J,, for this factor.
The second one can be evaluated at once by lemma 6. If A(s) is as defined
in that lemma, this gives:

Z\—Zy=5,(®'(0)A(s— 1)— D(0) A(s)).

As Z(w,®)=Z,+ Z,, this proves that Z(w,®) can be continued every-
where on Q(G,) outside the connected component 2, of wy=1 as a
holomorphic function, and on that component as a meromorphic func-
tion having at most the same poles as A(s—1) and A(s); as to the latter
poles and their residues, they are given by lemma 6 and are as stated
in our theorem. Finally, assume that we have chosen Fg, F, so that
Fo(t)=F,(t ') for all t; this can be done by taking for F, a continuous
function for t>1, such that 0<F,(t)<1 for all t 21, F,(1)=1/2, and
F,(t)=0 for t>t,, and then putting F,(t)=1-F,(t" ") for 0<t<1, and
Fy=1—F,. That being so, we have Z,=Zy(w,w™ !, ®), and therefore

Z(, D)= Zo(0, B)+ Zo(0, 0~ L, &) +6,(P'(0) A(s — 1) — D(0) A(s)).

In this formula, replace w by w,w™ " and @ by @'. In view of Fourier’s
inversion formula, this replaces @' by the function @” given by
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P'(x)=P(—x). As w is trivial on k*, we have w(—1)=1, hence
w(—z)=w(z) for all z, so that Z,(w,®") is the same as Z,(w, P); there-
fore this substitution merely interchanges the first two terms in the right-
hand side of our formula; as it changes s into 1—s, lemma 6 shows that
it does not change the last term. This completes the proof of the “func-
tional equation” in theorem 2.

COROLLARY 1. Let P be a finite set of places of k, containing P, ;
then the product
ptk,P,s)=]](1—g, )"
v¢P
is absolutely convergent for Re(s)>1, and (s—1)p(k,P,s) tends to a finite
limit >0 when s tends to 1.

The first assertion is contained in corollary 1 of prop. 1, § 1. Now
take Haar measures «, on k,, , on k), , as explained above; by lemma 5
of §4, we have, for every v, du,(x)=m,|x}, * do,(x), with some m,>0.
Take the standard function @ so that @, is the characteristic function
of r, for all v not in P, and that @,>0 and &,0)>0 for all v. Apply
prop. 10 of § 4 to Z(w,, @) for Re(s) > 1; the factor I, corresponding to v,
in the right-hand side of the formula in that proposition, can now be
written as

L=m, [ @,(0)|xI5™ " dat,(x).
(34

For v not in P, by prop. 11 of § 4, this differs from (1 —¢, %)~ ! only by
the scalar factor p,(r}), which is always >0, and which is 1 for almost
all v. For ve P, one can verify at once that I, is continuous for Re(s) =1
(one could easily show, in fact, that it is holomorphic for Re(s) >0, and,
in the next §, one will obtain a much more precise result for a specific
choice of @, but this is not needed now); for s tending to 1, it tends
to m,{®,da,, which is >0. This shows that Z(w,, ) differs from the
product p(k,P,s) in our corollary by a factor which tends to a finite
limit >0 when s tends to 1. On the other hand, theorem 2 shows that
Z(w,, P) has a simple pole at s=1, with the residue p@’(0), and p>0;
as ¢'(0)={Pda, and as this is obviously >0, this completes the proof.

COROLLARY 2. Let P be as above; let w be a non-trivial character
of ki, trivial on k™, such that w, is unramified for all v not in P; for v
not in P, put A(v)=ow,(n,), where n, is a prime element of k,. Then the

product
pk,P,0,5)= ];I (1—4w)g, )™
v P

is absolutely convergent for Re(s)>1 and tends to a finite limit when s
tends to 1; if @? is not trivial, this limit is not 0.



§S. The functional equation 125

As w is a character, we have [A(v)]=1 for all v not in P, so that the
first assertion is again contained in corollary 1 of prop. 1, §1. Take
o,, U, as before, and take @ so that, for v not in P, @, 1s the characteristic
function of r,. Apply prop. 10 of § 4 to Z(w,w,®) for Re(s)>1; the fac-
tor I, is now

I=m, [ ®,(x)o,(x)Ix[;™ " da,(x).
ki

For v not in P, w, is unramified and may be written as w,(x)=|x[},
where s, can be determined by A(v)=g, **; then prop. 11 of §4 shows
that I, differs from (1 — A(v)q, *)~ ! only by the scalar factor y,(r.), which
is 1 for almost all v. For ve P, we observe, as before, that I, is continuous
for Re(s) > 1; taking prop. 9 into account when v is an infinite place, one
sees easily that, for each ve P, @, may be so chosen that I is not O for
s=1, and we will assume that it has been so chosen (for specific choices
of @, I, will be computed explicitly in § 7). We see now that Z(w,w, )
differs from the product p(k,Fw,s) in our corollary by a factor which
tends to a finite limit, other than 0, when s tends to 1. In view of theorem 2,
this proves the second assertion in our corollary. As to the last one,
we need a lemmas:

Lemma 7. For teC, 2eC, put ¢(4t)=(1—1)*(1-211)*(1 —A%t). Then
lp(A,t)| <1 for teR, O0<t<1, Al=1.

In fact, we have then

2=

loglp(4,0)]* =log (¢ (A 1) o(4,1))

—_—
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If now ¢(4,¢) 1s defined as in the lemma, we have

p(kUP’5)3p(kSP!w!S)4p(k!P’w2’S): I_I (p(i(’v)’ql}‘s)_ 1'
véP
By the lemma, this has an absolute value >1 for seR, s>1, so that it
cannot tend to O for s tending to 1. For s tending to 1, as shown above,
p(k,P,w?,s) tends to a finite limit if w? is not trivial, and p(k, P,w,s) is
the product of a factor, tending to a finite limit other than 0, and of
Z(w,w,®), which is holomorphic in a neighborhood of s=1; therefore,
if p(k,w, P, s) tends to 0, it must be of the form F(s)(s— 1), with F bounded.
In view of corollary 1, this implies that the left-hand side of the last
formula tends to 0 for s tending to 1. This completes our proof. It is
an important fact that the conclusion of our coroliary remains true
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even if w? =1; the proof for this, which requires quite different methods,
will be given in Chap. X111-12.

CoROLLARY 3. Let k, be an A-field contained in k; let V be a set of
finite places of k, such that, for almost all the finite places v of k, not
in V, the modular degree of k, over the closure of kq in k, is >1. Then
the product

q(k,V,5)=T] (1 ¢,
veV
is absolutely convergent for Re(s)>1, and (s— 1)q(k,V,s) tends to a finite
limit >0 when s tends to 1.

In fact, with the notation of corollary 1, p(k,P,,s) is the product of
g{k,V,s) and of the similar product, taken over the set M of all the finite
places of k, not in V; applying corollary 3 of prop. 1, § 1, to the latter
product, and corollary 1 to p(k,P,,s), we get our conclusion at once.
Of course our corollary implies that ¥ cannot be a finite set, or in other
words that there are infinitely many places v of k for which the modular
degree in question is 1.

COROLLARY 4. Let ky and V be as in corollary 3; let k' be a separably
algebraic extension of k of finite degree n, and assume that there are n
distinct places of k' above every place ve V. Then k' =k.

Call V' the set of the places of k' lying above those of V. By corollary 1
of th. 4, Chap. I11-4, if veV, and w lies above v, we have k|, =k,, hence
g.,=q,. For any place v of k, and any place w of k" above v, the modular
degree of k;, over the closure of k; in k, is at least equal to that of k,
over that closure; therefore, for almost all v, not in V, or, what amounts
to the same, for almost all w, not in V7, that degree is > 1. We can now
apply corollary 3 to the products g(k, V,s) and g(k’, V', s); as the latter is
equal to q(k,V,s)", this gives n=1.

COROLLARY 5. Let k be an A-field of characteristic p>1, and let P
be a finite set of places of k. Then there is a divisor m=Y m(v)-v of k
of degree 1 such that m(v)=0 for all ve P.

Call v the g.c.d. of the degrees of all the places v, not in P; we have
to show that v=1. Let F=F, be the field of constants of k; by th. 2 of
Chap. I-1, there is, in an algebraic closure of k, a field F’ with ¢* elements,
and it is separable over F. Call k' the compositum of k and F’, and n
its degree over k; k' is separable over k. Let v be any place of k, not
in P; let w be a place of k" above v; by prop.1 of Chap.III-1, k,, is
generated over k; by k', hence by F'. By the definition of v, the module
of k, is of the form ¢, where r is an integer; therefore, by corollary 1
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of th. 7, Chap. I-4, combined with corollary 2 of th. 2,Chap. I-1, k, con-
tains a subficld with ¢ clements. By th. 2 of Chap. I-1, k;, cannot contain
more than one field with ¢" elements; therefore F'ck,, hence k, =k,.
Corollary 1 of th. 4, Chap. III-4, shows now that there are n distinct
places of k' above each place v of k, not in P. Taking k,=k in corollary 4,
and taking for V the complement of P, we get k'=k, hence F'cF,
ie v=1

COROLLARY 6. Let k be as in corollary 5, and let F, be its field of
constants. Then the value-group N of |z|, on kj is generated by q.

As we have seen in § 4, N is generated by the value-groups of |x|,
on k% for all v, hence by the modules g,=q%%", so that it has the
generator Q=gq", where v is the g.c.d. of all the degrees deg(v). By
corollary 5, v=1.

Taking corollary 6 into account, we can reformulate the last asser-
tion of theorem 2, in the case of characteristic p> 1, as follows:

CorOLLARY 7. Let k and K, be as in corollary 6; let notations be as
in theorem 2. Then Z(w,, @)+ ®(0)(1—q~ %)~ ! is holomorphic at s=0.

This follows at once from the results we have just mentioned and
from the fact that (1—¢q~%)"! has the residue (logg)~! at s=0.

§ 6. The Dedekind zeta-function. Special choices of @ in Z(w,P)
lead to the definition of important functions on the connected compo-
nents of Q(G,); these will now be investigated more in detail. We begin
with the consideration of the connected component Q, of wy=1 in
Q(G,), i.e. of the group of the principal quasicharacters of G, choosing @
as follows. Whenever v is a finite place of k, we take for @, the characteristic
function of r,. When v is real, i.e. k,=R, we take @,(x)=exp(—mnx?).
When v is imaginary, i.e. k,=C, we take @ (x)=exp(—2nxX). We have
now to calculate the factors in the product (5) for Z(w, ®), for this choice
of ¢ and for w=w,; when v is a finite place, these are given by prop. 11
of § 4, up to a scalar factor depending on u. For the infinite places, they
are as follows:

LemMA 8. Let G,,G, be defined, for all s€C, by the formulas
G,(s)=n""*I(s/2), Gy(s)=@2m)' "*I'(s).
Then we have, for Re(s)>0:
[ exp(—nx?)|xI*~ 1 dx=G,(s),
R

{exp(—2nxX)(x %)~ |dx A dX|=G,(s).
&
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This can be verified at once by obvious changes of variables, viz.,
|x|=tY2 in the first integral and x=r"?e(u) in the second one, with
teR:, ueR, 0<u<1; in the latter case, |dx A dX|=2ndtdu.

Now consider the measure y=] [y, on kx, given by taking y,(r;)=1
for every finite place v, dy,(x)=|x|"'dx when v is real, and
dy,(x)=(xX)"'|{dx A dX| when v is imaginary; when k is of characteristic
0, this is the measure occurring in prop. 9 of Chap. V-4. The relation
between y and the measure u introduced at the beginning of § 5 is as
follows:

PROPOSITION 12. Let pbe asin§ 5, and y as above. If k is of characteri-
stic O, we have y=c, i, where c, is as defined in proposition 9 of Chapter
V-4.1If k is of characteristic p>1, with the field of constants F,, and if h
is the number of divisor-classes of degree O of k, then y=c,u with
c=h/(g—1).

In view of our definition of g, the first assertion is merely a restatement
of prop. 9, Chap. V-4. Now let k be of characteristic p>1, and put
U=]]r;; this is the same as Q(f)) in the notation of Chap. IV-4, and it
is an open subgroup of k; ; by definition, we have y(U)=1. As explained
in Chap. II-4, we will also write y for the image of the measure y in
G,=ki/k* ; G, being, as before, the image of ki in G,, u is defined by
u(Gi)=1, so that we have y=c, u with ¢, =y(G}). Call U’ the image of U
in G, ; by th. 8 of Chap. IV-4 and its corollary, the kernel of the morphism
of U onto U’, induced by the canonical morphism of ki onto G, is
F,. so that we can compute y(U’) by taking G=U, I',=F;, '={1} in
lemma 2 of Chap. II-4; this gives y(U')=(q— 1) . Clearly the index of
U’ in Gy is equal to that of k* U in k} ; as we have seen in Chap. VI that
ki/k* U may be identified with the group Dg(k)/P(k) of the divisor-
classes of degree O of k, that index is h. Therefore y(G})=h/(q—1).

Now, for each infinite place w of k, put G,,= G, or G, =G, according
as w is real or imaginary. Combining prop. 10 of §4, prop. 11 of §4,
lemma 8, and prop. 12, we get for Re(s)> 1, @ being chosen as explained
above:

(6) Z(w, ®)=c; ' [ Gu(s) [T (1—q;97",

weP, v P,

with ¢, as in prop. 12. By th. 2 of § 5, the left-hand side can be continued
analytically as a meromorphic function over the whole s-plane; as the
same is true of the factors G,, it is also true of the last product in the
right-hand side. This justifies the following definition:
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DEFINITION 8. The meromorphic function {, in the s-plane, given for
Re(s)>1 by the product

Ge)=111—¢,97"
taken over all the finite places v of k, is called the Dedekind zeta-function
of k.

When @ is as above, its Fourier transform @' is immediately given
by th. 1 of § 2 and its corollary 2, combined with corollary 3 of prop. 2,
§ 2, and propositions 4 and 5 of § 2. This gives

P'(y)=lalX* P(ay)

where a is a differental idele attached to the basic character y. In view of
the definition of Z(w, ®) by formula (4) of § 4, we have now:

Z(o,9)=|al* w(a)" ' Z(w,P),
hence in particular, for o =w,, i.e. o(x)=|x|}:
(7 Z(0, ®)=lal** Z(w,, P);

moreover, the value of ||, is that given in prop. 6 of § 2.
We are now ready to formulate our final results on the zeta-function.

THEOREM 3. Let k be an algebraic number-field with r, real places and
r, imaginary places. Call {, its zeta-function, and write

Zi(s)=G(s)" G(s)* Lils)-
Then Z, is a meromorphic function in the s-plane, holomorphic except for
simple poles at s=0 and s=1, and satisfies the functional equation
Lo
Z(s)=|D|2°Z,(1—s)

where D is the discriminant of k. Its residues at s=0 and s=1 are respec-
tively —c, and |D|~ Y2 ¢,, with ¢, given by
¢ =2"'(2n)*hR/e,

where h is the number of ideal-classes of k, R its regulator, and e the
number of roots of 1 in k.

This follows immediately from (6), (7), prop. 12, prop. 6 of § 2, and
from th. 2 of § 5.

COROLLARY. The Dedekind zeta-function {,(s) has the residue |D|~ ¢,
at s=1.

This follows from th. 3 and the well-known fact that G,(1)=G,(1)=1.
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THEOREM 4. Let k be an A-field of characteristic p>1; let K, be its
field of constants and g its genus. Then its zeta-function can be written in
the form

P(g™)
(1—-q™)(1-q"™)
where P is a polynomial of degree 2 g with coefficients in Z, such that
(8) P(u)=q"u* P(1/qu).

ils) =

Moreover, P(0)=1, and P(1) is equal to the number h of divisor-classes of
degree 0 of k.

In fact, corollary 6 of th. 2, § 5, shows at once that s— w, has the
same kernel as s— ¢~ %, so that {,(s) may be written as R(qg™*), where R
is a meromorphic function in C*, with simple poles at 1 and at ¢~ 1.
Moreover, corollary 1 of prop. 1, § 1, shows that R(u) tends to 1 for u
tending to 0, so that R is holomorphic there, and that R(0)=1. We may
therefore write R(u) = P(u)/(1 —u)(1 — qu), where P is an entire function in
the u-plane, with P(0)=1. Now (7), combined with (6) and with prop. 6
of § 2, gives formula (8) of our theorem; clearly this implies that P is a
polynomial of degree 2g. Finally, corollary 7 of th. 2, § 5, combined
with prop. 12, gives P(1)=h.

§ 7. L-functions. We will now extend the above results to arbitrary
quasicharacters of G,; in order to do this, we adopt the following nota-
tions. Let w be any quasicharacter of G,; as we have seen in §§ 34, we
may write |w|=w,, with geR. For every v, we write w, for the quasi-
character of k induced on k,; by w. For every finite place v, we write
p’® for the conductor of w,; f(v)is 0 if and only if @, is unramified, hence,
as we have seen in § 4, at almost all finite places of k; when that is so, we
write w,{(x)=|x|;* with s,eC; clearly we have then Re(s,)=g. At the
infinite places of k, we can apply prop. 9 of § 3; this shows that w, may be
written as w,(x)=x"4|x[* if v is real, with A=0 or 1 and s,eC, and as
w,(x)=x"4X%"B(xX)* if v is imaginary, with inf(4,B)=0 and s,eC; in
the former case we put N,= A, and we have Re(s,)=N,+ g, and in the
latter case we put N,=sup(4, B), and we have Re(s,)=(N,/2) +o. As the
connected component of w, in the group Q(G,) of the quasicharacters
of G,, consists of the quasicharacters w,w for seC, the integers f(v),
N, have the same values for all the quasicharacters in that component.
They are all 0 if w is principal, or, more generally, if w is trivial on the
group U of the ideles (z,) such that |z,|,=1 for all places v of k; the struc-
ture of the group of the quasicharacters with that property can easily
be determined by the method used in the proof of th. 9, Chap. IV-4.
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Furthermore, with the same notations as above, we attach to w a
standard function ¢,=[][®, on k,, as follows. For each finite place v
where f(v)=0, i.e. where w, is unramified, we take for @, as before, the
characteristic function of r,. For each finite place v where f(v)>1, we
take @, equal to ;! on r) and to 0 outside 7. At each infinite place v,
we take @,(x)=x"*exp(—nx?) if v is real, and @ (x)=x1xBexp(—2nxX)
if v is imaginary, the integers A, B being as explained above. Then @,
will be called the standard function attached to w; it is clear that it does
not change if w is replaced by w,w, with any seC, and also that the
function attached in this manner to @, or to w '=w_,,®, or to
o'=w,071,is &,

We need to know the Fourier transform of @, or, what amounts to
the same in view of th. 1 of § 2, those of the functions @, defined above.
The latter are given by our earlier results except when v is a finite place
where w, is ramified. For that case, we have:

PROPOSITION 13. Let K be a p-field; let R be its maximal compact
subring, P the maximal ideal of R, and o a quasicharacter of K* with
the conductor P/, where f> 1. Let x be a character of K of order v,  the
self-dual measure on K with reference to y, and let be K* be such that
ordg(b)=v+f. Let ¢ be the function on K, equal to ™' on R* and to 0
outside R™. Then the Fourier transform of ¢ is

@'(y)=xmodg(b)'? p(by),
where K is such that k k=1 and is given by

k=modg(h)""* [ w(x)" 1 x(b™ " x)da(x).
R)(

By prop. 12 of Chap. II-5, the dual of the K-lattice P/ in Kis P~/ ",
as ¢ is constant on classes modulo P/ in K, prop. 2 of § 2 shows that ¢’
is 0 outside P~/ ~v=h"! R. The definition of ¢ gives

) ?'()= [ o) glxy)dafx).
RX

Obviously the measure induced by o on R™ is a Haar measure on R*
(this may also be regarded as a consequence of lemma 5, §4). Take y
such that ordg(y)= —f—v +1; then, by prop. 12 of Chap. II-5, x— x(x )
is constant on classes modulo P/ ~!. Assume first that f=1;then y(xy)=1
on R, so that (9) is the integral of @~ *do on R*, which is 0 since w is a
non-trivial character of the compact group R*. Assume now f> 1; then
(9) is the sum of the similar integrals taken over the classes modulo
P/~ 1 contained in R*, which are the same as the cosets of the subgroup
1+ P/~1in R*; since the definition of the conductor implies that w is
non-trivial on 1+P/~! the same argument as before gives again
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¢'(y)=0 in this case. Now take y=b"'u in (9), with ue R*; substituting
u~'x for x, we get ¢@'(b~ *u)=w(u)@’(b~ ). This proves that ¢’ is of the
form ¢ @(by) with ceC*. Applying to this Fourier’s inversion formula
and lemma 1 of § 2, we get cc=modg(b). As c=¢'(b™ '), we get for
the formula in our proposition. It would be easy to verify directly that
kKk=1 when x is defined by that formula; moreover, as the integrand
there is constant on classes modulo P/ in R, we can rewrite the integral
as a sum over R/P’; sums of that type are known as “Gaussian sums”.

PROPOSITION 14. Let w be a quasicharacter of G,, and @, the standard
function attached to w. Then the Fourier transform of ®,, with reference
to the basic character y of k,, is given by

®'(y)=xl|blA* ,(by)=xIbls” P5(by)

where k=] [x,, k,€C and k,k,=1 for all v, b=(b,)ek}, and K, b, are
as follows. Let a=(a,) be a differental idele attached to x; then b,=a, at
each infinite place v, and, for each finite place v of k, ord,(b,a, *)=1(v).
At every infinite place v of k, x,=i""v; at every finite place v where
f(©)=0, k,=1; at all other places:

Kk, =Ib,l, * [ w,(x)" " x,(by ! x)da,(x),

,U

where a,, is the self-dual Haar measure on k, with reference to y,,.

This follows at once from prop. 13, propositions 4 and 5 of § 2, and
corollary 3 of prop. 2, § 2.

COROLLARY. Let w be as in proposition 14, and put o' =w,w ™. Then
Z(CU, 45ao) = K"lbI; 2 w(b)Z(w,’ Qw')

For all w, by th. 2 of § 5, Z(w,®,) is equal to Z(w',d’), where ¢’ is
as in prop. 14. Express Z(w',9’) by the integral in (4), §4, under the
assumption that it is convergent, which, as one sees at once, amounts to
o <0. Expressing @’ by proposition 14, and making the change of variable
z—b7 1z in that integral, one gets the right-hand side of the formula in
our corollary. By th. 2 of § 5, both sides can then be continued analytically
over the whole of the connected component of w in Q(G,), so that the
result is always true.

Now apply prop. 10 of §4 to Z(w, ®,); for o> 1, this gives an infinite
product whose factors are all known to us except those corresponding to
the finite places v of k where f(v)>0; as to these, our choice of ¢, makes it
obvious that they are respectively equal to u,(r} ). Asin § 6, put G, =G,
when w is a real place, and G,,= G, when it is an imaginary place. Taking
into account prop. 11 of § 4, lemma 8 of § 6, and prop. 12 of § 6, we get,
fore>1:
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(10) Z(@,®)=c; ' [] Guls,) [T(A~gq;7*)7 ",

weP,, v P

where P is the set consisting of the infinite places and of the finite places
where f(v)>0.

For every place v of k, not # the set P which we have just defined, put
A(v)=gq, *; these are the finite places where ®, is unramified, and the
definition of s, for such places shows that we can also write this as
Av)=w,(rn,), where =, is a prime element of k,, or even as A(v)=w(z,)
if k; is considered as embedded as a quasifactor in k;. Clearly we have
Al =4, °.

In (10), replace now w by w,w, with seC; as observed above, this
does not change @,; it replaces the right-hand side of (10) by a product
which is absolutely convergent for Re(s)>1—0. As th. 2 of § 5 shows
that this can be continued analytically over the whole s-plane (as a
holomorphic function if @ is not principal), and as the same is true of
the factors G,, when they occur, we may now introduce a meromorphic
function L(s,w), given, for Re(s)> 1 — g, by the product

(11) Lis,0)=[](1-4v)q,*)""

taken over all the finite places v where w,, is unramified.

In order to formulate our final result in the case of characteristic 0,
we introduce the ideal in t given by j=[]p,®, which is called the con-
ductor of .

THEOREM 5. Let k be an algebraic number-field, and w a non-principal
quasicharacter of G,=ky/k*, with the conductor §. Then

As,0)= [] G,(s+s,) Lis,w)

weP,

is an entire function of s, and satisfies the functional equation
A(s,0)=ka(b)(D|R() 2 * Al—s,07"),
where k and b are as in proposition 14.

This is an immediate consequence of the corollary of prop. 14, when
one replaces w in it by w,w, taking into account the definitions of a, b
and § and the fact that |a|, =|D| . As it is well-known that I'(s)" ! is an
entire function, the same is true of the functions G, (s+s,)” !; therefore
theorem 5 implies that L(s,) is an entire function of s.

According to their definition, the above functions do not depend
essentially upon the choice of @ in a given connected component of
Q(G,); more precisely, they are independent of that choice, up to a trans-
lation in the s-plane, since, for every teC, L(s,w,w) is the same as
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L(s+1,w), this being also true for A(s,w). In view of corollary 2 of prop. 7,
§ 3, one may therefore always assume, after replacing @ by w_,® with a
suitable teC if necessary, that w is a character of k3, trivial on k™ and
also on the group M defined in corollary 2 of th. 5, Chap. IV-4. The
latter assumption can be written as Y (d,s,—N,)=0, where the sum is
taken over the infinite places of k, s, and N, are as above, and §,=1 or 2
according as k, is R or C. Since this implies that w is a character, we have
then 6 =0.

On the other hand, if k is of characteristic p>1, we introduce the
divisor =Y f(v)'v, and call this the conductor of w. Then:

THEOREM 6. Let k be an A-field of characteristic p>1; let F, be its
field of constants, g its genus, and ® a non-principal quasicharacter of
G.=kx/k™ with the conductor §. Then one can write L(s,w)=P(q™*,w),
where P(u,w) is a polynomial of degree 2g— 2+ deg(f) in u; and we have

P(u,@)=rxo(b)-(q"?u)?=2+€90. P(1/qu,w™")
where k and b are as in proposition 14.

The fact that we can write L(s,w)=P(q*,w), where P(u,w) is holo-
morphic in the whole u-plane, is proved just as the corresponding fact in
theorem 4. The last formula in our theorem is then an immediate conse-
quence of the corollary of prop. 14 when one replaces w by w,w there,
provided one takes into account the definitions of a, b and f and the fact
that |a|, =g~ ?%. Then that formula shows that P(u,) is a polynomial
whose degree is as stated.

Here again one will observe that, for teC, P(u,w,») is the same as
P(q™'u,w). In this case, we have written k; =ki x M, where (if one takes
corollary 6 of th. 2, § 5, into account) M is the subgroup of k; generated
by an element z, such that |z,|, =g, i.e. such that div(z,) has the degree
—1. Then corollary 2 of prop. 7, § 3, shows that, after replacing «w by
w_,w with a suitable teC, if necessary, one may assume that w(z,)=1;
the corollary in question shows also that w is then a character of kj, i. e.
that ¢ =0; furthermore, if one combines it with lemma 4 of § 3, and with
the obvious fact that in the present case the group kg, hence also the
groups ki, G,, Gi are totally disconnected, it shows that w is then a
character of finite order of kJ .

§ 8. The coefficients of the L-series. When an Euler product such as
the right-hand side of (11) is given, the question arises whether it can be
derived from a quasicharacter w of k5 /k*. The answer to this, and to
a somewhat more general problem which will be stated presently, depends
on the following result:
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PROPOSITION 15. Let P be a finite set of places of k, containing P,;
let Gp be the subgroup of kj, consisting of the ideles (z,) such that z,=1
for all ve P. Then k™ Gp is dense in k.

Put kp=]]k,, the product being taken over the places ve P; write
Ap for the subgroup of k, consisting of the adeles (x,) such that x,=0
for all veP; then k,=kpx Ap and k; =kp xGp, and our assertion
amounts to saying that the projection from k; onto kp maps k™ onto
a dense subgroup of k5. In fact, k; is an open subset of kp, and its
topology is the one induced by that of k,; our assertion follows now at
once from corollary 2 of th. 3, Chap. IV-2, which shows that the pro-
jection from k, onto kp maps k onto a dense subset of kp.

From prop. 15, it follows at once that a continuous representation w
of kX into any group I, trivial on k*, is uniquely determined when its
values on the groups k; are known for almost all v. In particular, if
I'=C", or more generally if I' is such that every morphism of k3 into
I is trivial on r; for almost all v, @ is uniquely determined when the
w(n,) are given for almost all v. Clearly every finite group I' has that
property, since the kernel of every morphism of k; into a finite group
is open in k, and therefore contains [ [r; for some P; the same is true

vgP
of every group I' without arbitrarily small subgroups, for the same
reason for which it is true for I'=C>. Another case of interest is given by

the following:

PROPOSITION 16. Let K be a p-field, and assume that k is not of charac-
teristic p. Then every morphism w of ki into K™ is trivial on v, for almost
all v, and is locally constant on k, whenever k,, is not a p-field.

As k is not of characteristic p, we have |p|,=1 for almost all v, and
then k, is not a p-field. As every morphism of a connected group into a
totally disconnected one must obviously be trivial, @ is trivial on k
when k,=C, and on R when k,=R. Call R the maximal compact
subring of K, and P its maximal ideal. Let v be any finite place of k such
that k, is not a p-field; let m>1 be such that @ maps 1+ p} into 1+ P. For
every n=0, by prop. 8 of Chap. II-3, every zel+ pJ can be written as
2’P" with z'el+ p™; therefore w(z) is in (1+P)y", hence in 1+P"*! by
lemma 5 of Chap. 1-4; as n is arbitrary, this shows that  is trivial on
14 p™, hence locally constant on k;. By th. 7 of Chap. I-4 if K is of
characteristic p, and by that theorem and prop. 9 of Chap. II-3 if it is of
characteristic 0, there are only finitely many roots of 1 in K, and we can
choose v>0 so that there is no root of 1, other than 1, in 1+ P*. Take a
neighborhood of 1 in k; which is mapped into 14 P* by w; as this con-
tains r) for almost all v, we see now that, for almost all v, w is trivial on
1+ p, and also on the group of all roots of 1 in k,, and therefore on r, .
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For every finite set P of places of k, containing P, we will write

Gp=[]rs; this is an open subgroup of the group G, defined in prop. 15;

v¢P

it con¢sists of the ideles (z,) such that z,=1 for veP, and z,er], i. €.
|z,l,=1, for v not in P; if I' is any group with the property described
above, and w is any morphism of k} into I, there is a set P such that &
is trivial on Gp and therefore determines a morphism ¢ of G,/Gp into T,
if at the same time w is trivial on k™, prop. 15 shows that w is uniquely
determined by ¢. We will discuss now the conditions on ¢ for such a
morphism w to exist.

If k is an algebraic number-field, and P is as above, we will say that a
fractional ideal of k is prime to P if no prime ideal p,, corresponding to
aplace ve P, occurs in it with an exponent # 0. Similarly, if k is of charac-
teristic p> 1, we say that a divisor is prime to P if no place ve P occurs
in it with a coefficient # 0. We will write I(P) (resp. D(P)) for the group
of the fractional ideals of k (resp. of the divisors of k) prime to P. Clearly
the morphism z—id(z) of ky onto I(k) (resp. the morphism z—div(z)
of kx onto D(k)) determines an isomorphism of G,/Gp onto I(P) (resp.
D(P)), which may be used to identify these groups with each other, or,
what amounts to the same, with the free abelian group  generated by
the places of k, not in P. In particular, every mapping v— A(v) of the set
of these places into a commutative group I' can be uniquely extended to a
morphism ¢ of I(P) (resp. D(P)) into I'; then @o(id) (resp. @o(div)) is a
morphism of G into I', trivial on Gjp.

ProposiTioN 17. Let ¢ be a morphism of I(P) (resp. D(P)) into a
commutative group I'; for each veP, let g, be an open subgroup of k,
contained in r; whenever v is finite. Then the morphism @o(id) (resp.
@o(div)) of Gp into T’ can be extended to a morphism o of k into T,
trivial on k™, if and only if one can find, for every veP, a morphism
of g, into T, so that @(id(&)) (resp. @(div(£))) is equal to ] w,(&) for all
Ee () (k*ng,). When that is so, w is unique and induces ;' on g, for
every ve P.

Put g=1] g,; this being considered as a subgroup of k} in the ob-

veP
vious manner, g - G, is an open subgroup of k; and is the direct product
of g and Gp. Then k™ g-Gp is an open subgroup of k3, so that, in view
of prop. 15, it is k;. It is now obvious that a morphism of ¢-G, into I
can be extended to one of k5 =k™ g - Gp, trivial on k*, if and only if
it is trivial on the group y=k™ n(g - Gp), and that the extension is then
unique. Clearly v is the same as the group () (k™ ng,) in our proposition.
As z—1d(2) (resp. z—div(z)) is trivial on g, it maps g-Gp=g x Gp onto
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I(P) (resp. D(P)); therefore if we write ¢, for the morphism ¢o(id) (resp.
@o(div)) of Gp into T, its extensions to g-G, are the morphisms of the
form y~'¢,, where  is any morphism of g into I'. Writing ¥, for the
morphism induced by ¥ on g,, we get our conclusion.

Obviously, if the condition in proposition 17 is satisfied for some
choice of the groups g, and of the morphisms ,, it remains so when
one substitutes, for each g,, any open subgroup g, of g,, and then for
¥, the morphism induced by ¥, on g,. For instance, one may always
take g,= R} when k,=R, and take for g, one of the groups 1+ p™ with
m =1 when v is a finite place. The same idea gives the following:

COROLLARY. In proposition 17, assume that I' is (a) discrete, or (b)
the group C*, or (c) the group K™, where K is a local p-field. Then the
extension w exists if and only if groups g, and morphisms s, can be found
with the properties stated in proposition 17 and the following additional
one: in case (a), Y,=1 for all veP; in case (b), Y,=1 for all the finite
places ve P; in case (c), Y,=1 for all the places ve P for which k, is not
a pfield.

In fact, assume that the conditions in proposition 17 are fulfilled for
some choice of the groups g, and of the morphisms ,. Then, in case (a),
we can replace g, by the kernel g, of ¥, for each veP, since this is an
open subgroup of g,, and then ¥, by 1. In case (b), we can do this for
every finite place veP, by lemma 4 of § 3; this can also be done, for
similar reasons, whenever I' is a group without arbitrarily small sub-
groups. Case (c) can be treated similarly, with the help of prop. 16.

Instead of verifying the condition in proposition 17 for all & in the
group y={)(k*ng,), it is clearly enough to verify it for a set of gener-
ators of y; in this connection, the following result is occasionally useful :

ProrosiTION 18. Notations being as in proposition 17, assume that k
is an algebraic number-field, and call v its maximal order. Then the group
y={) (k* ng,) is generated by ynr.

Take any ¢cv, and write {r=Dba " !, where a,b are two ideals in ,
prime to each other. For every finite place veP, £ is in r’, so that p, is
not a prime factor of a or of b. Apply corollary 1 of th. 1, Chap. V-2,
to the projection of k onto the product [ [r, taken over the finite places
v of k which either belong to P or correspond to the prime ideals divid-
ing a; it shows that there is aer such that aeg, for every finite veP,
aca, and a#0; then a? satisfies the same conditions and is in g, for every
infinite place v, so that it is in 7, hence in ynr. That being so, also éa?
is in yr; this proves our proposition.
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In particular, assume that g,= 1 + p™®, with m(v) > 1, for every finite
place ve P; put m=[[pI; let v,,...,v, be all the real places of k for
which g,=RJ. Then one sees at once that the set ynr, in prop. 17,
consists of the elements of r which are =1 (m) and whose image in
k, is >0 for 1<i<p.



Chapter VIII
Traces and norms

§ 1. Traces and norms in local fields. In §§ 1-3, we will consider
exclusively local fields (assumed to be commutative). We denote by K a
local field and by K’ an algebraic extension of K of finite degree n over K.
If K is an R-field and K'# K, we must have K=R, K'=C, n=2; then, by
corollary 3 of prop. 4, Chap. III-3, Trep(x)=x+X and N¢g(x)=xX;
Tr¢ ;g maps C onto R, and N g maps C* onto R, which is a subgroup
of R™ of index 2.

From now on, until the end of § 3, we assume K to be a p-field and
adopt our usual notations for such fields, denoting by ¢ the module of K,
by R its maximal compact subring, by P the maximal ideal in R, and by
n a prime element of K. The field K’ being as stated above, we adopt
similar notations, viz,, ¢, R, P', @, for K'. We write f for the modular
degree of K’ over K and e for the order of ramification of K’ over K, as
defined in def.4 of Chap. -4 ; then ¢’ =g’ and n=ef, by corollary 6 of th. 6,
Chap. I-4. As e=ordg.(n), the R’-module generated in K’ by P*=n"R, for
any veZ, is P'*”; for this, we will write 1 (P”).

By corollary 1 of prop. 4, Chap. I11-3, and the remarks following that
proposition, Trg. g is +0 if and only if K' is separable over K ; then, being
K-linear, it maps K’ onto K. By the definition of the norm, and by corol-
lary 3 of th. 3, Chap. I-2, we have, for all x'eK’:

1) modK'(x_’)= modg(N gx(x)-

In view of th. 6 of Chap. I-4, this implies that x’eR’ if and only if
Ny x(x)eR, and x'eR’ ™ if and only if Ny ,(x')eR*. As modg(n)=q~*
and modg.(r')=§~/, (1) may also be written as follows, for x'# 0:

2 ordg (N gk (x))=f"ordg.(x").

From now on, we will write Tr, N instead of Try. x, N /x, €xcept when
there are more fields to be considered than K and K'. For every veZ, we
will write 9t(P"*)= P/ ; by (2), this is the R-module generated in K by the
image of P"” under N.

PROPOSITION 1. Let K’ be separable over K. Then, if x'eR’, TH(x')eR;
if xeP', Tr(x)eP and N(1+x)=1+Tr(x")+ y with yeRn xR’
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Let K be an algebraic closure of K'; call A, ..., 4, the distinct K-linear
isomorphisms of K’ into K ; then, by corollary 3 of prop. 4, Chap. I11-3,
we have

©) Tr(x)=Y A4(x), N({+x)=][{1+24(x)).

Call K" the compositum of the fields 1,(K’), which is the smallest Galois
extension of K in K, containing K'; define R”, P” for K" as R, P are
defined for K. By corollary S of th. 6, Chap. I-4, we have 1,(R’)cR"” and
A(PYc P for all i, so that Tr(x) is in R” if x'eR’, and in P" if x'eP’; as
the same corollary shows that R=KnR" and P=KnP", this proves our
assertions concerning Tr. Now assume x'eR’, x'#0, and put

y=N({1+x)—1-Trx");

by (3), this is a sum of monomials of degree =2 in the 4,(x’). As one of the
J; s the identity, and as the 4;, by corollary 2 of prop. 3, Chap. I1I-2, differ
from one another only by automorphisms of K” over K, all the 4;(x’)
have the same order as x’ in K", so that yx'~2is in R” if x' is in R’. As
R’=K’nR”, this proves our last assertion. In view of the fact that Tr=0
if K’ is inseparable over K, and of the remarks about that case in Chap.
I11-3, our proposition is still valid (but uninteresting) in the inseparable
case.

COROLLARY. If x'e P'~¢*1 Tr(x')eR.

By definition, e=ordg.(n); therefore our assumption amounts to
nx'eP’, which implies Tr(nx')e P by prop. 1, hence Tr(x')eR since Tt is
K-linear.

DEFINITION 1. Let K' be separable over K ; let d be the largest integer
such that I'r(x')eR for all x'€P' ™9 Then P is called the different of K’
over K, and d its differental exponent.

For the different, we will write D(K'/K), or simply D. If K’ is insepa-
rable over K, Tr is 0, so that it maps P’ * into R for all v; in that case we
put d=+ oo, D(K'/K)=0.

By the corollary of prop. 1, we have d >e— 1. In particular, if d=0,
e=1, so that K’ is unramified over K. The converse is also true; this will
be a consequence of the following results:

PROPOSITION 2. Let K’ be unramified over K; call p, p' the canonical
homomorphisms of R onto k=R/P, and of R’ onto k'=R'/P', respectively.
Then, for x'e R', we have

P(THX) = TP (X)), PN (X)) = Nyulp'(x).
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As in th. 7 of Chap. I-4 and its corollaries, call M'* the group of
roots of 1 of order prime to p in K'; by corollary 2 of that theorem, K’ is
cyclic of degree f over K, and its Galois group is generated by the Fro-
benius automorphism, which induces on M'* the permutation p— pf.
In view of corollary 2 of th. 2, Chap. I-1, this amounts to saying that the
automorphisms of K’ over K determine on k'=R'/P’ the automorphisms
which make up its Galois group over k. Our conclusion follows at once
from this, the formulas Tr(x')=211i(x’), N(x)=]]A(x') and the similar
ones for k and &, i.e. from corollary 3 of prop. 4, Chap. III-3, applied
first to K and K’, and then to k and k'.

PROPOSITION 3. Let K' be unramified over K. Then Tr maps P surjec-
tively onto P* for every ve Z, and N maps R'™ surjectively onto R™.

Let k, k' be as in prop. 2. As k' is separable over k, Tr,., is not 0; the
first formula in prop. 2 shows then that the image Tr(R’) of R under Tr is
not contained in P; as it is contained in R by prop. 1, and as it is an R-
module since R’ is an R-module and Tr is K-linear, it is R. As K’ is un-
ramified, a prime element 7 of K is also a prime element of K’; therefore,
for veZ, P"=n"R’. As Tr is K-linear, we get

TH(P")=n" THR)=n"R=P".

As to the norm, put G,=R*, G,=R’*, G,=1+ P’ and G,=1+ P" for
all v 1. The last assertion in prop. 1 shows that, for every v 1, N maps
G, into G,, and also, in view of what we have just proved about the trace,
that it determines on G,/G, ., a surjective morphism of that group onto
G,/G,, . On the other hand, call ¢ the Frobenius automorphism of K'
over K, and u a generator of the group M'™ of the roots of 1 of order
prime to pin K’; then pis of order ¢’ — 1,i.€. ¢ — 1, and its norm is given by

N(H)___fnl u(ﬂ":fr[l ﬂqi=/.t1 +q++giot =H(qf—1)/(q—l);
i=0 i=0

clearly this is a root of 1 of order ¢ — 1, hence a generator of the group M ™
of roots of 1 of order prime to pin K. As M ™ is a full set of representatives
of cosets modulo G; =1+ P in G,=R™, this shows that N determines on
G,/G'; a surjective morphism of that group onto G,/G,. Now, for every
Xo€R™, we can determine inductively two sequences (x,), (x,) such that,
for all v=0, x,€G,, x,eG,, N(x,)ex,G, ., and x,, {=N(x,)” ' x,. Then,
for y,=xyx})...x,_;, we have N(y,)=xqx,!. Clearly the sequence
(y.) tends to a limit y'e R’*, and N(y')=x,.

COROLLARY. Let K’ be any extension of K of finite degree. Then the
different of K' over K is R',i.e. d=0, if and onlyif K'is unramified over K.
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Proposition 3 shows that d=0 if K’ is unramified over K. Conversely,
if d=0, K’ is separable over K, and then, as we have already observed
above, corollary 1 of prop. 1 gives e=1.

PROPOSITION 4. Let K’ be separable over K, and let P be its different
over K. Then, for every veZ, the image of P under Tr is P*, where u is
such that ep<v+d<e(u+1).

As Tr is K-linear and not 0, it maps every K-lattice in K’, and in parti-
cular every set P”, onto a K-lattice in K, i.¢. onto a set of the form P".
If u is as stated in our proposition, then, since ordg.(m)=e, P" is con-
tained in m* P’ ¢ and contains #** 1 P’~9~ ! In view of the definition of d
and of the K-linearity of Tr, this implies that Tr(P") is contained in
n* R=P* and not in n**! R=P**1 This completes the proof.

COROLLARY 1. For every x'e K'*, we have:
ordy (Tr(x'))=e-ordg(Tr(x")) Z ordg.(x) +d —e +1.

In fact, if we put v==0rd,.(x), and if we define g as in proposition 4,
the left-hand side of the inequality in our corollary is e u by that propo-
sition, and the definition of u shows that this is >v+d—e.

COROLLARY 2. Tr(R)Y=R if and only if d=e—1.

In fact, by proposition 4, u=v=0 implies d<e. As d=e—1 by the
corollary of prop. 1, we get d=e—1.
If d=e— 1, one says that K' is tamely ramified over K.

COROLLARY 3. Let y be a character of K of order u; then yoTr is a
character of K' of order d+ep.

Our assumption means that y is trivial on P~* and not on P™#~ !, Put
v=d+ ep; proposition 4 shows that Tr(P'~*)=P~*and that Tr(P' >~ )=
=P~ #71 Therefore yo Tr is trivial on P'~* and not on P’ >~ ! which is
what we had to prove.

In the next corollary, we introduce an algebraic extension K" of K’
of finite degree; R”, P” will have the same meaning for K" as R, P have
for K. For every ve Z, we will write ’(P”*) for the R”-module generated in
K" by P”, which is P"¢" if ¢’ = ord..(n') is the order of ramification of K"
over K'. With these notations, we have:

COROLLARY 4. Let K, K', K" be as above; let D=P'*. D'=P"¥, D" =P"%"
be the differents of K’ over K, of K” over K’ and of K" over K, respectively.
Then D" =1(D)-D' and d’'=¢'d+d', where €' is the order of ramification of
K" over K.
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This is trivially so if K" is inseparable over K, since then D" =0 and
either D or D' must be 0; we may therefore assume that K” is separable
over K, and, putting d=¢'d +d’, we have to prove that d’=4. In fact, by
proposition 4, Trg.,x maps P"~° onto P""¢ and P"~*~! onto P'~¢7},
and Trg. x maps P'~¢ onto R and P'~“~! onto P~ !, Our assertion follows
at once from this and from the “transitivity of traces”, i.e. corollary 4 of
prop. 4, Chap. 111-3.

COROLLARY 5. Let K and K’ be as above, and let K, be the maximal
unramified extension of K, contained in K'. Then K’ has the same different
over K as over K.

For the definition of K, cf. corollary 4 of th. 7, Chap. I-4. Our asser-
tion follows then at once from corollary 4, combined with the corollary
of prop. 3.

PROPOSITION 5. Let K, K' be as in proposition 4; then the norm N
determines an open morphism of K'™ onto an open subgroup of K*.

As before, call P the different of K’ over K, and put G,=1+ P*,
G,=1+P"” for v=1. Take any p>2d, and put v=eu—d. By prop. 4,
Tr(P"™)=P*; moreover, we have e(u—1)>2d, hence 2v>e(u +1), hence
P?cr** 'R, and therefore KNP'?* < P** 1, That being so, the last part
of prop. 1 shows, firstly, that N maps G, into G,,, and secondly that it deter-
mines a surjective morphism of G, onto G,/G,, . ,. Take now any x,€G,;
we can choose inductively two sequences (x;), (x}), so that, for all i>0,
X;€G, 44 Xi€G, 4 i, N(X)€X;G, 441 and x;,  =N(x})~ ' x;. Then, putting
Yi=XxpXxy...x;, we have N(y)=xqx;., ' Clearly the sequence (y)
converges to a limit y'eG,, and N(y')=xg. This shows that N maps G/,
onto G,, which proves our proposition, since the groups G,, G, for
u>2d,v=eu—d, make up fundamental systems of neighborhoods of 1 in
K* andin K' ", respectively. By using corollary 2 of prop. 4, Chap. I-4, and
the results of Chap. I1I-3, it would be easy to show that the conclusion of
our proposition remains valid for any extension K’ of K of finite degree,
separable or not. Obviously it is also valid for R-fields.

§ 2. Calculation of the different. Let assumptions and notations be
asin § 1. When K’ is regarded as a vector-space of dimension n over K,
R’ is a K-lattice, to which we can apply th. 1 of Chap. 1I-2. This shows
that there is a basis {«;,...,a,} of K’ over K, such that R'=) Ra,.

Now assume that K’ is separable over K, so that Tr is not 0; then, by
lemma 3 of Chap. I1I-3, we may identify K, as a vector-space over K, with
its algebraic dual, by putting [x',y']= Tr(x'y’); the dual basis {f,,...,5,}
to {ay,...,a,} is then the one given by Tr(«; ;)=4,; for 1 <i,j<n.
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PROPOSITION 6. Let K' be separable over K ; call D= P" its different.
Let {a,,...,a,} be a basis of K' over K such that R'=Y Ru;, and let
{B1,....B,} be the basis of K' over K given by Tr{(w,;p;) =6;; for 1<i,j<n.
ThenD™'=P' =) Rf,.

In fact, take any x'€R’, any y'e K', and write x' =) x;o;and y' =Y y; B;
with x;eR and y;eK for 1<i<n. Then THx'y')=) x;y;; this shows that
Tr(x'y)eR for all x'eR’, i.e. that Tr maps R')’ into R, if and only if y;e R
for all i. By the definition of the different, this means that y’ is in P'~ ¢ if
and only if it is in )_ R ;, as was to be proved.

COROLLARY. Let assumptions be as in proposition 6, and call A the
determinant of the matrix

Mz(T"(“i“j )19,,‘@-
Then ordg(A)=fd, and AR=(D).

Write a,=Y a;;B;, with a;;€K for 1<i,j<n. Multiplying both sides
with a; and taking the trace, we get T(a;a;)=a;;, hence M =(a;;). There-
fore the automorphism of the vector-space K’ over K which maps
{B., ..., B,} onto {ay, ..., &}, hence the K-lattice D~ ! onto R’, is represent-
ed by the matrix (a;;) with respect to the first one of these bases, and its
module, by corollary 3 of th. 3, Chap. I-2, has the value modg(4). As the
mapping x' - 7'?x’ also maps D~ '=P' "¢ onto R/, its module mod (7'
must be the same as modg(4). This gives fd = ordg(4), hence N(D)=A4R.
One will note that our corollary remains valid in the inseparable case,
since then T+=0 and D=0. Clearly our result implies that ordg(4) is
independent of the choice of a, ..., a,; this could easily be verified directly,
and justifies the following definition:

DEFINITION 2. Let A be as in the corollary of proposition 6; then the
ideal AR in R is called the discriminant of K’ over K.

Still assuming K’ to be separable of degree n over K, call K an alge-
braic closure of K'. Asin § 1, let 4,,...,4, be the n distinct K-linear iso-
morphisms of K’ into K ; as the identity is one of them, we may assume
that it is A,. Take any £eK’, and put &, = 4,(£) for 1 <i<n, hence in parti-
cular ¢, =¢. If v is the degree of K’ over K(¢), there are v distinct K(¢)-
linear isomorphisms of K’ into K, hence v and no more than v distinct
ones among the A, which map ¢ onto itself. This shows that K(&)=K' if
and only if &;# £ for all i#1.

Takenow anindeterminate X over K. We can, in the manner described
in Chap. III-3, extend the K-linear mapping Tr of K’ into K, and the
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polynomial mapping N of K’ into K, to mappings of K'[ X|=K' @ K[ X]
into K[ X], which we again denote by T and N. Put then:

@ FO)=NX-8=](X-&)=X"+Y aX""".
i=1 i=1

This is a monic polynomial in K[ X ]; calling F” its formal derivative, we
have

F’(é)=.lj[ (€=

In particular, in view of what has been proved above, we have K({)=K’
if and only if F "(£)#0. It is well known, and easily verified, that F(X) ™!
has in K(X) the “partial fraction decomposition” given by

1 1
F(X) 2, F(&)(X-¢&)

Considering the field K(X) as embedded in the obvious manner in the
field of formal power-series in X ~ ! with coefficients in K, we get from this:

2

n n +
XT"(1+YaX ) =Y FE)T Y X!
i=1 i=1 v=0
which may also be written as
+ n + o0
v=0 \i=1 v=0

Equating coefficients on both sides, we get

&) P(@=THF()™'¢)

for v=0, where P,(a) is, for all v, a polynomial in Z[a,,...,a,], with
P,=0forO<v<n-—1l,and P,_,=1.

PrROPOSITION 7. Let K' be separable of degree n over K, and call D
its different. For any é€K', let F be the polynomial defined by (4). Then
all the coefficients a; of F arein Rif £eR’, and in P if £€P’; moreover, if
EeR, F/(§)D™ ' is contained in R[&], and it is the largest R'-module con-
tained in R[£].

The assertions about the g; are proved exactly as the assertions about
the trace in prop. 1. In fact, if the &,=1,(¢) are defined as above, the as-
sumption e R’ (resp. £€ P’) implies that, for every i, £, is in 4,(R’) (resp.
in 1,(P")), hence in the maximal compact subring R” of the compositum K"
of the fields 4,(K’) (resp. in the maximal ideal P” of R"); (4) shows then
thatall thea;arein R”, hencein R= KNR"(resp.in P”,hencein P=KnP").
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As to the assertions about F'(£), assume first that F'(£)=0; as we have
seen, this is so if and only if K(&)# K'; then K(¢), hence also R[¢], cannot
contain any R’-module other than {0}, which proves our assertion in this
case. Assume now that F'(¢)#0; then K'=K(¢), so that {1,¢,...,& Y
is a basis of K’ over K. As F is monic and in R[X], and F(£)=0, a well

n—1
known elementary argument shows that R[£] is the R-module )’ Ré&.
i=0
n—1
Take now any x'eK'; write F'({)x'= Y. x,;& with x;eK for 0<ig<n—1.
i=0
Multiplying this with F'(¢)~ ! £ and taking the traces of both sides, we get,
in view of (5):

6) T &)= Y %Py, @)
i=0

for all v0, hence in particular, for 0<v<n—1:

n—1

™ Xpoe1=THX'E) — Y, %P, (a).

i=n—v

Assume first that x’e D~ !; then (7) shows, by inductiononvfor0<v<n—1,
that all x; are in R, i.e. that F'({)x’ is in R[£], so that F'({)D~* < R[¢].
On the other hand, assume that x;eR for 0<i<n—1, ie. that
F'(¢)x'eR[&]; then (6), for v=0, shows that Tr(x')e R. Replacing x’ by
x'y" with y’eR’, we see that, if x’ is such that F'({)x'R’<R[{], then
x'e D™ 1. This proves our last assertion.

COROLLARY 1. Assumptions and notations being as in proposition 7, we
have D=F'({)R' if and only if R'=R[E].

This follows at once from the second part of proposition 7.

COROLLARY 2. Let assumptions and notations be as in proposition 7:
assume also that K' is fully ramified over K ; put

FX)=NX-n)=X"+ Y a; X",
i=1
where ' is any prime element of K'. Then ordg(a)=>1 for 1<i<n,
ordg(a,)=1,and D=F'(z)R'.

Taking {=n" in proposition 7, we get the first assertion; the second
one is obvious in view of formula (2) of § 1, since a,=N(—n'); the
last one follows at once from corollary 1, combined with prop. 4 of
Chap. 1-4.
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COROLLARY 3. Let assumptions and notations be as in corollary 2;
then K' is tamely ramified if and only if n is prime to p.

As K’ is fully ramified, we have, in our usual notation, f=1 and
n=e. By corollary 2, we have d=ord.(F'(n)), and all the terms in F’(n)
except the first one nn’™~! are of order >e=ordy. (n) in K'. Therefore
d=e—1, i.e. K’ is tamely ramified, if and only if ord,.(n)=0, i.¢. if and
only if n is prime to p.

A polynomial F satisfying the conditions in corollary 2, i.e. a monic

polynomial X" + ) a, X" in K[X] such that ord(a;)>1 for all i and
i=t
ordg(a,)=1, is called an Eisenstein polynomial over K.
PROPOSITION 8. Let F be an Eisenstein polynomial over K. Then F is
irreducible in K[ X, and, if ' is a root of F in any extension of K, K(n')
is a fully ramified extension of K, having ©’ as a prime element.

Assume that F=GH, with G and H in K[X]. Let a, b be the smallest
integers such that G, =n"G and H,=#"H are in R[X], and put F,=
=n"*"F, so that F, =G, H,. Put k=R/P, and call F,, G,, H, the poly-
nomials in k[ X] obtained by replacing each coefficient in F;, G, H,,
respectively, by its image in R/P under the canonical homomorphism of
R onto R/P. By the definition of a and b, G, and H, are not 0, so that
F,#0; this implies that a+b=0, F,=F, and Fy=X"; consequently
there is v such that G,=X", Hy=X""". Then the degrees of G,, H,
are at least v, n—v; as F, =G, H,, they are v, n—v. If v>0, n—v>0,
call g, h the constant terms in G,, H;; as Gy=X" and H,=X""",
g and h are both in P; as the constant term of F is now gh, it is in P2,
which contradicts the definition of an Eisenstein polynomial. Now
let ©’ be a root of F in an extension of K, which we may assume to be
algebraically closed; as F is irreducible, the distinct K-linear isomor-
phisms of K’ = K(n') into that extension map =’ onto all the distinct roots
of F, so that F(X)=N(X —='), hence, by the definition of an Eisenstein
polynomial, ordg(N(n'))=1. By formula (2), § 1, this implies that f=1
and that n’ is a prime element of K'.

§ 3. Ramification theory. In this §, it will be convenient to write
isomorphisms and automorphisms of fields exponentially, i.e. as x — x*,
etc. Furthermore, K being as before, it is convenient to extend ordy to all
algebraic extensions of K as follows. Let x’ be any element of such an
extension; let K’ be any extension of K of finite degree, containing x’;
7 being as before a prime element of K, put

ordg(x")=ordg.(x")/ordg ();
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here, if we replace K’ by any similar field K” containing K’, ordg.(x')
and ordg.(n) are both multiplied with the order of ramification of K"
over K', so that our definition of ordg(x") is independent of the choice of
K’; of course one could take K’'= K(x’) in that definition. That being so,
ordy coincides on K* with the mapping ordy of K* into Z, as previously
defined, and determines a mapping of every algebraic extension of K into
Qu{+ 0}, with ordg(x')= + co if and only if x'=0.

As before, let K’ be an extension of K of degree n, which we assume to
be separable; let notations be as in §§ 1-2; in particular, let D= P"? be the
different of K’ over K. Call K, the maximal unramified extension of K
contained in K, this being uniquely defined by corollary 4 of th. 7, Chap.
[-4. Then K’ has the degree e over K, and, by corollary 5 of prop. 4, § 1,
it has the different D over K, . Put

F(X):NK'/Kl(X_TCl);

by corollary 2 of prop. 7, § 2, this is an Eisenstein polynomial over K,
and D=F'(n)R".

Let L be any Galois extension of K of finite degree, containing K’; for
instance, one may take for L the compositum of the images of K’ under all
the distinct K-linear isomorphisms of K’ into some algebraic closure of
K'. For every K-linear isomorphism x’'— x'* of K’ into L, put

v(4)=min, g ordg.(x' —x*)=min_. g ord,(x' — x'*)/ord, ().

Since ord, (x'—x'*) is an integer >0 or + co, this is well defined ; it is + oo
if and only if A is the identity; the identity, i.e. the natural injection of K’
into L, will be denoted by &. By th. 7 of Chap. I-4 and its corollaries 3 and
4, K, is generated over K by the roots of 1 of order prime to p in K’, and
these, together with 0, make up a full set of representatives for R’/P'in R’;
therefore, if 4 does not induce the identity on K, there is such a root {
for which (*#{, and then {—{* is in K’ and not in P’, so that, taking
x'={, we get v(1)=0. Now assume that 4 induces the identity on K.
As K'isfully ramified over K ;, prop. 4 of Chap. I-4 shows that R’ =R [='],
R, being the maximal compact subring of K, so that every x'e R’ can be
written as G(r') with Ge R, [ X]. This gives:

x - xX*=G()— Gr'H = - H(r',n'%)

with HeR,[X,Y]. As we have already observed in the proof of prop.
1, 7'* has the same order as 7’ in L ; this implies that ordg.(7'*) = ord.(n') =
=1, so that we have

ordg.(x' —x"*)>ordg (' —n'*) =1

and therefore, whenever 4 induces the identity on K :
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(8) v(A)=ordg.(r' —n'H)>1,

which implies that ordg. (' —n'*) does not depend upon the choice of 7.
Now, F being as defined above, we have, by formula (4) of § 2:

FX)=]](X—=n",
2
where the product is taken over all the distinct K -linear isomorphisms
Aof K" into L, and therefore

F(x)=T] (@~ %)
A¥e
where the product is now taken over the same isomorphisms except the
identity. This gives
d=ordy(F'(@)= ¥ v(h),
AFe

where the sum is taken over those same isomorphisms, and also, since the
number of such isomorphisms is e—1:

d—e+1=> (v(A)—1).
AFe
As v(4)=0 when A does not induce the identity on K, it amounts to the
same to write:
9 d=Y v(), d—e+1=) (v(AH-1)",
ife ite
where the sums are now taken over all the distinct K-linear isomorphisms
of K’ into L, other than the identity ; moreover, the number of terms >0
in the latter sum is <e—1.

If K’ is itself a Galois extension of K, we may take L=K’, and the
isomorphisms A are the automorphisms of K’ over K ; they make up the
Galois group g of K’ over K. The definition of v(4) shows that it is now an
integer or + oo if A#¢, v(4) is the largest of the integers v such that A
determines the identity on the ring R’/P"*. For every v 0, the automor-
phisms 1 of K’ over K for which v(1)>v make up a subgroup g, of g; we
have g, =g, and the groups g, for v>1 are known as “the higher ramifica-
tion groups” of K’ over K. As we have seen above, g,, which is traditio-
nally known as “the group of inertia” of K’, consists of the automorphisms
of K’ which induce the identity on K, ; in other words, it is the subgroup
of g, =g attached to K, in the sense of Galois theory; it is of order ¢, and
go/g; may be identified with the Galois group of K, over K, which, as we
know, is cyclic of order f and generated by the Frobenius automorphism
of K, over K.
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Still assuming K’ to be a Galois extension of K, call g, the order of the
group g, for each v=0. Then g, —1 is the number of the elements 4 of g,
other than ¢, for which v(4)>=v. We can therefore rewrite (9) as follows:

(10) d= 3} (g,~1), d—e+1=7Y (g,— 1)
v=1 v=2

ProposiTiON 9. Let K’ be a Galois extension of K with the Galois
group q=gq,; let the g,, for v=1, be its higher ramification groups. Put
Go=R"" and G,=1+ P” for vz 1. Then, for each v=1, g, consists of the
elements A of g, such that n'*n'~! is in G,_,; when that is so, the image
y(A) of n'*n' =Y in the group I' ,=G,,_ /G, is independent of the choice of
the prime element ' of K', and A — y(2) is a morphism of g, into I', with the
kernel g, .

The first assertion follows at once from (8) and the definitions. Re-
place 7’ by another prime element of K’; this can be written as n’u with
ueR’™ ; for Aeg,, this modifies n'*n’ ! by the factor u*u~ !, which, by the
definition of g,, is in 1+ P, i.¢. in G, ; this shows that y(4) is independent
of the choice of #'. If A, u are in g,, put u=n"*n'"!, v=n"7'"1. Then
" =w*u” Yuv; as ue R, u*u~ ! is in G ; this shows that 1 —y(4)
is a morphism. It is then obvious that its kernel is g, ., ;.

COROLLARY 1. For every v20, q,/q,+ is commutative; for v=0, it is
cyclic of order f; for v=1, it is cyclic, and its order e, divides q'—1,
q' being the module of K'; for v=2, it is isomorphic to a subgroup of
the additive group of R'/P’, and its order divides q'.

For v=0, this was proved above. Now put k'=R’/P’; this is a field
with g’ elements. The canonical morphism of R’ onto k' induces on G, a
morphism of G; onto k'* with the kernel G, so that I'; is cyclic of order
g —1. Similarly, for v>2, the mapping x' > 1+ n"” " x’ of R' onto G/,_,
determines an isomorphism of R’/P’ onto I',. Our assertions for v>1 are
immediate consequences of these facts and of proposition 9.

COROLLARY 2. Assumptions and notations being as in corollary 1, we
have e=eyp" with N =0 and e, prime to p.

This is obvious in view of corollary 1, since g, is of order e.

COROLLARY3. If v(4) has the same value v for all J#¢ in g, g is com-
mutative, with an order dividing q—1if v=1and q if v=2.

In fact, we have then g,=g, g,,,;={¢}; moreover, if v>1, we have
e=n, hence f=1and g=¢'.
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Finally, the numbers v(1) have important “transitivity properties”. As
above, let K’ be a separable extension of K of finite degree n, but not
necessarily a Galois extension; let K” be a separable extension of K’ of
finite degree; take for L a Galois extension of K of finite degree, con-
taining K”. Notations for K and K’ being as before, let K, be the maximal
unramified extension of K, contained in K”; call K, the compositum of
K’ and K,. Call ¢ the order of ramification of K" over K’, and f" its
modular degree over K'. As K’ has the same module q" as K, and K” and
K’ have the same module as K,, K, is the unramified extension of
K, of degree f’, and K’ is the maximal unramified extension of K’
contained in K" and is of degree " over K'. As K’ is of degree e over K,
this implies that K’ is of degree ef” over K, hence of degree e over K,.
Each K,-linear isomorphism ¢ of K, into L induces on K’ a K,-linear
isomorphism A of K’ into L; as K’ is the compositum of K’ and K, two
sych isomorphisms o, ¢’ cannot coincide on K’ unless ¢ =0¢"; as there
are e such isomorphisms, and the same number of K ;-linear isomorphisms
of K" into L, ¢ — 4 is a bijection of the former onto the latter ; in particular,
each isomorphism 4 of K’ into L, inducing the identity on K, can be
uniquely extended to an isomorphism ¢ of K into L, inducing the iden-
tity on K.

Now, calling n” a prime element of K”, put:

GX)=Ng (X —a)=X"+ Y 0, X",
i=1
By corollary 2 of prop. 7, § 2, this is an Eisenstein polynomial over K} ;
in particular, «,. is a prime element of K3 ; so is 7/, since K’ is unramified
over K'. Let A be any isomorphism of K’ into L, other than the identity,
inducing the identity on K, ; as we have seen above, this can be uniquely
extended to an isomorphism o of K, into L, inducing the identity on K.
Write G for the polynomial obtained by applying ¢ to each coefficient of
G ; we have
e—1
GX)-G'(X)=ap—ag + Y (;—af) X%
i=1
As o, and 7’ are prime elements of K, and K/, is unramified over K’, we
have, by what we have proved above:

ordg, (o, —ag)=ordg, (n' — %) = ord (' —'*)=v(4),

ordg, (o, —of) Zordg, (7' —n')=v(d) (1<i<e),
and therefore:
ord(G(n")— G°(n"))=v(A).
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We have G(n")=0. On the other hand, G° is the monic polynomial whose
roots are the images n”° of n” under the distinct isomorphisms 7 of K”
into L which coincide with ¢ on K. In other words, we have

G (") =[] (n" =",

where the product is taken over all the distinct isomorphisms 7 of K”
into L which induce 4 on K’ and the identity on K,. Let now v'(z) be de-
fined for K, K” and 1, just as v(1) has been defined for K, K’ and 4; in
other words, we put v'(1)=0 if 7 does not induce the identity on K,, and
if it does, we put

v'(t)=ordg.(rn" — n").
Since ordg.=e'-ordy., we get now, by comparing the above formulas:
(11) ev(l)=3 v(v),

where the sum may be taken over all the isomorphisms t of K” into L
which coincide with A on K’, since those which do not induce the identity
on K, make no contribution to the right-hand side ; for a similar reason,
(11) remains valid when 4 is an isomorphism of K’ into L which does not
induce the identity on K,. Combining formulas (9) and (11), one gets
another proof for corollary 4 of prop. 4, § 1.

Let now L be a Galois extension of K, not necessarily of finite degree.
Call 6 its Galois group, topologized in the usual manner, i.e. by taking,
as a fundamental system of neighborhoods of the identity, all the sub-
groups of ® attached to extensions of K of finite degree, contained in
L. Then ® is compact, and (11) and (9), together with corollary 4 of
prop. 4, § 1, may be interpreted by saying that there is a finitely additive
function H, on the family of all open and closed subsets of ®, with the
following property. Let K’ be any extension of K of finite degree, con-
tained in L; let e be its order of ramification over K, and d its differental
exponent over K; call § the open and closed subgroup of ®, consisting
of the elements of ® which induce the identity on K'. Then H(H)=d/e,
and, for every coset HA of § in ®, other than H, we have H(HA)= — v(1)/e,
where v(4) is as defined above. From this, we derive a linear form f— H(f),
i.e. a “distribution”, on the space of all locally constant functions f on ®,
by putting H(f)=H($A) whenever f is the characteristic function of
94, where 4 is any element of ®, and § is as above ; as all locally constant
functions on & can be written as finite linear combinations of such
characteristic functions, this determines H uniquely. We will call H the
Herbrand distribution on 6. In view of the foregoing results, it is clear
that its knowledge implies the full knowledge of the ramification pro-



§4. Traces and norms in A-fields 153

perties of K" over K’ whenever K', K" are of finite degree over K, and
KcK cK' <L

§ 4. Traces and norms in A-fields. In this §, we consider an A-field &
and a separably algebraic extension k' of k, of finite degree n over k.
Notations will be as explained in Chap. IV.

THEOREM 1. Let k be an A-field and k' a separable extension of k of
finite degree. Then, for almost all finite places w of k', k,,, is unramified
over the closure k, of k in ki,

Let x be a “basic character” for £, i.e. a non-trivial character of k,, tri-
vial on k. Put y'=y0Tr;,; this is a character of kj, trivial on k. As
Tt is not 0, and as it is k-linear on k', there is ek’ such that Ti.,(£) = 1.
As the extension of Tk, to kj is k,-linear, this implies that it maps kj
surjectively onto k,, so that ' is not trivial on k/,. Let w be a finite place
of k', and v the place of k lying below w; call y,, x,, the characters respec-
tively induced by y on k, and by y’ on k. By corollary 3 of th. 1, Chap.
IV-1, we have x,,=y,0 Tr, u,- By corollary 1 of th. 3, Chap. IV-2, g, is of
order O for almost all v, and ¥/, is of order O for almost all w; our conclu-
sion follows now immediately from this and from corollary 3 of prop. 4,

§1.

COROLLARY, Let assumptions be as in theorem 1; then N,., is an open
morphism of k) onto an open subgroup of kj .

By corollary 3 of th. 1, Chap. IV-1, N, induces N, ,, on k.* for all
places w of k’. By prop. 5 of § 1, this is, for all w, including the infinite
places, an open morphism of k, onto an open subgroup of k, ; by
theorem 1, combined with prop. 3 of § 1, it maps #,,* onto r; for almost all
w. In view of the corollary of prop. 2, Chap. IV-3, our assertion follows
immediately from these facts.

Ifk,and k,, are as above, k., being generated over k, by k', is separable
over k,, so that, if v and hence w are finite places, its different over k, is
not 0 and may be written as p/¢™, with d(w) > 0. This justifies the following
definition:

DEFINITION 3. Let k, k' be as in theorem 1; for every finite place w of k',
let p'2™ be the different of k,, over the closure k,, of k in k.. Then, by the
different of k' over k, we understand the ideal [ [pid™ of k' if k, k' are of

characteristic 0, and the divisor Y d(w)-w of k' if they are of characteristic
p>1; it will be denoted by by, or by D if no confusion can arise.

We will now consider separately the cases of characteristic 0 and of
characteristic p>1.
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PrOPOSITION 10. Let k be an algebraic number-field, k' a finite alge-
braic extension of k, t and v’ their maximal orders, and b the different of k'
over k. Then D~ ! is the set of the elements nek’ such that Tr({n)isinx for
all Eer'.

Take first any £er’ and any neb~!; then £ned™!, which means, by
definition, that ének’ and Enep, *™ for all finite places w of k'. This
implies that Ti, , (En)er, for all such places, and therefore, by corollary
3 of th. 1, Chap. IV-1, that T, (&) is in kN, for all v, hence in r. Conver-
sely, assume 7 to be such that this is so for all £er’; take x'=(x,,)ek}, and
put z= T, (x'n). Then, by corollary 3 of th. 1, Chap. IV-1,z=(z,) is given
by

2y= ., Trig (X0 10)-

wlv

Take a finite place v of k; by corollary 1 of th. 1, Chap. V-2, the projection
of ' on the product Hr;,, taken over the places w lying above v, is dense
there. As z, is in r,, by our assumption, whenever x’ is in r', and depends
continuously upon x/, it is therefore in r, whenever x,,er), for all w above
v. This implies that Tr,, ,, maps nr, into r,, hence, by the definition of the

different, that # is in p, “®; as this is so for all w, n must be in D~ ".

COROLLARY. If o is any fractional ideal of k', the set of the elements
n of k' such that Try., (¢n) isin x for all Eed’ is the fractional ideal '~ 1d~ 1

In fact, in view of proposition 10, this set consists of all the # such that
na'cd L

Now we introduce two morphisms 1, M of the groups I(k), I(k') of
fractional ideals of k and of k' into each other, as follows. Consider again
the morphism a—id(a) of k} onto I(k), with the kernel Q,=k,(P )",
which was defined in Chap. V-3; as pointed out there, we may use it to
identify I(k) with k3/Q,; we recall that Q_ is the group kxx[][r;
consisting of the ideles (z,) such that |z,|,=1 for all finite places v of k. If
the group Q' is similarly defined for k', we may also identify I(k’) with
k\/Q. . Write now 1 for the natural embedding of kJ into k,* ; by corol-
lary 1 of th. 1, Chap. IV-1, this maps every z=(z,) in k; onto the element
1(z)=(z,) of k,~ such that z, =z, whenever w lies above v; then |z,/,=1
implies |z, |,,= 1, so that:(z) is in Q if and only if zeQ . This shows that 1
determines an injective morphism of I(k) into I(k’), which we will call the
natural embedding of I(k) into I(k’), and which we will also denote by i;
with this notation, we have (id)o1=10(id); this may be regarded as de-
fining the injection 1 of I(k) into I(k"). Clearly, if k” is an extension of k" of
finite degree, and if the morphisms 7 of k}” into k} ™ and 1" of k{ into kj
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are defined just as 1 was defined for k; and k., we have 1" =1'o1; therefore
the corresponding relation holds true for the natural embeddings of (k)
into I(k"), of I(k'}into I(k") and of I(k) into I(k’). On the other hand, corol-
lary 3 of th. 1, Chap.1V-1, combined with formula (1) of § 1, shows that N,
maps Q' into Q_, ; therefore it determines a morphism of I(k) into I(k),
also known as the norm, which we will denote by N, ; we have(id)o N,
=N, ro(id), and this may be regarded as defining Ry, If k" is as above,
we have R, =Ry 0Ny, as an immediate consequence of the corre-
sponding relation for ordinary norms. Furthermore, if n is the degree of
k' over k, we have N, ,(x)=x" for all xek, as an immediate consequence
of the definition of N, ; this implies at once the corresponding relation
for the extension of Ny, to k,. For zeky, we can write it as N, (1(2)) = 2",
which implies that we have 9. ,(1(a)) = o” for all aeI(k).

By th. 3 of Chap. V-3, I(k) and I(k’) are the free groups respectively
generated by the prime ideals p,, p, of r, 1. We will now describe the
morphisms 1, R, in terms of these generators.

PROPOSITION 11. For each finite place v of k, and each place w of k'
lying above v, call e(w) the order of ramification and f(w) the modular
degree of k., over k,. Then we have:

1p)=]TPE™, Replpr)=pI™, 3 ew) fw)=n,
wlv wlv
where the product in the first formula, and the sum in the last one, are taken
over all the places w of k' lying above v.

The first formula follows at once from the definitions, and the second
one from the definitions, corollary 3 of th. 1, Chap. IV-1, and formula (1)
of § 1. As to the last formula, since the degree of k., over k, is e(w) f(w), it
is nothing else than corollary 1 of th. 4, Chap. I1I-4; it is also an immediate
consequence of the first two formulas and of N, ,(:(p,)) = p}.

COROLLARY. Let k be an algebraic number-field, and a a fractional ideal
of k. Then Ny,o(a) is the fractional ideal N(a) Z of Q, where R is the norm
as defined in definition 5 of Chap.V-3.

This follows at once from the latter definition and from the second
formula in proposition 11, applied to the fields k and Q.

As every ideal in the ring Z is of the form mZ with meN, every
fractional ideal of Q can be written in one and only one way as rZ with
reQ, r>0; one may therefore identify the group I1(Q) of fractional ideals
of Q with Q5 =Q” nR7}, by means of the isomorphism r—rZ of the
latter onto the former. Then the norm 9 of definition 5, Chap. V-3, be-
comes the same as N, q as defined above.
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PROPOSITION 12. Let y be the character of Q,, trivial on Q, such that
Xo(X)=e(—x); let k be an algebraic number-field, and put y'=yoTryq;
let a=(a,) be a differental idele for k, attached to y'. Then a,=1 for every
infinite place v of k, and id(a) is the different b, 4 of k over Q.

The character y is the same which has been introduced in the first
part of the proof of th. 3, Chap. IV-2; it was shown there that it is uniquely
determined by the condition stated above, and that y, is of order 0 for
every place p of Q. Our first assertion is now an immediate consequence
of the definition of differental ideles in Chap. VII-2, combined with
corollary 3 of th. 1, Chap. IV-1. Our last assertion is an immediate conse-
quence of the same results, combined with corollary 3 of prop. 4,§ 1.

COROLLARY. Let k be as in proposition 12, and let D be its discriminant.
Then |Dl - m(bk/o).

If a is as in proposition 12, we have |a|, =|D| ™!, by prop. 6 of Chap.
VII-2. On the other hand, since a,=1 for all infinite places of k, the defi-
nition of 9t shows at once that |a|, =9(id(a)) ! ; in view of proposition 12,
this proves our assertion.

Now we generalize the definition of the discriminant, i.e. definition 6
of Chap. V-4, as follows:

DEFINITION 4. Let k be an algebraic number- field, k' a finite extension
of k, and d the different of k' over k. Then the ideal D=MN,.,(D), in the
maximal order t of k, is called the discriminant of k' over k.

One should note that, according to this, the discriminant of k over
Q is not D, but the ideal DZ=|D|Z in Z. When the latter is given, D is
determined by D=(—1)"?|D|, as follows from the remark at the end of the
proof of prop. 7, Chap. V-4.

PrROPOSITION 13. Let k, k', k" be algebraic number-fields such that
kck'<k”;let b and D, and D', D" and D" be the differents and the dis-
criminants of k' over k, of k" over k', and of k" over k, respectively. Then:

b =IO, D= Ry (D)

where 1’ is the natural embedding of 1(k') into 1(k"), and v’ is the degree of
k" over k'.

The first formula follows at once from the corresponding local result,
1.e. corollary 4 of prop. 4, § 1. The second one follows from this and defi-
nition 4, combined with the transitivity property of norms.

Now let k be an A-field of characteristic p>1, and k' a separable
extension of k of finite degree n. As a— div(a) is a morphism of k ; onto the
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group D(k) of divisors of k, with the kernel | [}, we see, just as in the case
of number-fields, that the natural embedding of k into k,* determines an
injective morphism 1 of D(k)into D(k'), which we call the natural embedding
of D(k) into D(k). Similarly, the norm mapping N,., of k,* into kj deter-
mines a morphism of D(k’) into D(k), which we denote by &, (the
notation M would be undesirable here, since the groups of divisors are
written additively). The properties of 7and & are quite similar to those of
 and 9 in the case of number-fields. In particular, we have &,,,(1(a))=
=na for every divisor a of k, and, with the same notations as in proposi-
tion 11:
1v)= ) ew)'w,  Spu(w)=f(w)v, Z, e(w) f(w)=n,
wlv wiv

the proof being the same as there. Let F, F . be the fields of constants of k
and of k', and let f;, be the degree of the latter over the former. Then the
definition of f(w), and that of the degree of a place, give f,deg(w)=
f(w)deg(v), and consequently, at first for places, and then for arbitrary
divisors:

(12) deg (S, p(a))=fodeg(a), deg(i(a))=(n/fo)deg(a)

where o’ is any divisor of k', and a any divisor of k.

If b is the different of k' over k, we define the discriminant of k' over k as
being the divisor &,.,(0) of k. With notations similar to those in prop. 13,
we have:

V'=17®)+0, D =D+ S (D)

PrOPOSITION 14, Let k and k' be as above; let ® be the different of k'
over k, and let ¢ be a canonical divisor of k. Then the divisor 1(¢)+d is a
canonical divisor of k'.

By the definition of a canonical divisor, there is a “basic character” y
for k, such that ¢ =div(y). Then corollary 3 of prop. 4, § 1, combined with
corollary 3 of th. 1, Chap. IV-1, and with the definitions, shows at once
that the divisor of yo Tiy. is 1(c) +D.

COROLLARY. Let k, k' and d be as in proposition 14 : let g be the genus of
k; let n be the degree of k' over k, and f, the degree of the field of constants
of k' over that of k. Then the genus g’ of k' is given by

29'=2=(n/fy) (29 —2) +deg(d).

This follows at once from proposition 14, corollary 1 of th. 2, Chap. VI,
and the second formula (12). It implies that the degree of the different is
always an even integer; a more precise result will be proved in Chap.
X1II-12.
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§ 5. Splitting places in separable extensions. Assumptions and nota-
tions being as in theorem 1 of §4, one can express that theorem by
saying that, for almost all places w of k', the degree of k], over k, is equal
to its modular degree over k,. Therefore corollaries 2 and 3 of prop. 1,
Chap. VII-1, and corollaries 3 and 4 of th. 2, Chap. VII-5, are valid if
“degree” is substituted for “modular degree”, provided one adds there the
assumption that k is separable over k,. We will now consider some
consequences of these results.

As before, let k be an A-field, k' a separable extension of k of finite
degree n, and v a place of k. We can write k' =k(£), where & is a root of an
irreducible monic polynomial F of degree n in k[ X']. Combining th. 4 of
Chap. 111-4 with prop. 2 of Chap. III-2, we see that the places w of k'
which lie above v are in a one-to-one correspondence with the irredu-
cible monic polynomials dividing F in k,[ X]; if, for each such place w.
we call F,, the corresponding polynomial, the degree of k,, over k, is
equal to the degree of F,,; by th. 1 of §4, that degree, for almost all v, is
equal to the modular degree of k., over k,. We also see that the places w,
lying above v, for which ki, =k, are in a one-to-one correspondence with
the roots of F in k,.. By corollary 1 of th. 4, Chap. I11-4, there are n distinct
places of k" lying above v if and only if k, =k, for every such place w;
when that is so, one says that v splits fully in k’; it does so if and only if F
has n distinct roots in k. If L is a Galois extension of k, then, by corollary
4 of th. 4, Chap. 11I-4, the completions of L at the places of L lying above
v are all isomorphic; therefore, if L, =k, for one such place u, v splits fully
in L. Let k'=k(&) be a field between k and L ; then, if F is defined as above,
it splits into linear factors in L[ X|, and the smallest Galois extension L’
of k, contained in L and containing k', is the subfield of L generated over k
by the roots of F in L. If now ¢ is a place of L lying above v, L, is generated
over k, by the roots of F, so that L, =k, if and only if v splits fully in k% in
that case, as we have seen, it also splits fully in L".

PROPOSITION 15. Let k', k" be two extensions of k, both contained in a
separable extension L of k of finite degree. Let X be the set of the places v
of k such that ki, =k, for at least one place w of k' lying above v. If almost
all the places ve X split fully in k", k" is contained in k.

We may assume that L is the compositum of k' and k”. Call W the

set of the places w of k' such that the place v of k which lies below w
splits fully in k” and that k,=k,,. Let u be a place of L above w, and t
the place of k" below u; L, is generated over k, by L, hence by k, and
¢ ; therefore, if we W, L,=k,; this shows that all the places in W split
fully in L. Now take a place w of k', not in W; call v the place of k below
w. If then k,=k, v is in X, so that it must be in the finite subset of X,
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consisting of the places in X which do not split fully in k. If k,#k,,,
the degree of k), over k, is >1; by th.1 of §4, this is the same as the
modular degree, except for finitely many places. We have thus shown
that the modular degree of k/, over k, is > 1 for almost all the places w
of k', not in W. Applying now corollary 4 of th.2, Chap. VII-5, to k,
k' and L (instead of k,, k and k' of that corollary), we get k'=L, i.e.
k'<k.

COROLLARY. Let k', k" be two Galois extensions of k, contained in
some extension of k of finite degree. Let S', S” be the sets of the places
of k which split fully in k' and in k", respectively. Then k' contains k"
if and only if S” contains almost all the places veS'.

If K ok”, it is obvious that a place of k which splits fully in k" does
the same in k”. Conversely, as k' is a Galois extension, S’ is the same
as the set X in proposition 15; our conclusion is now a special case of
that proposition. In particular, we see that k' must be the same as k"
if §’, §” differ by no more than finitely many elements.

§ 6. An application to inseparable extensions. It will now be shown
that one of our main results, the isomorphism between k), and (k'/k),,
which was proved for separable extensions as theorem 1 of Chap.IV-1,
is still valid without the assumption of separability. For this, we need
alemma:

LeEMMA 1. Let k be an A-field of characteristic p>1; then k is purely
inseparable of degree p over its image kP under the endomorphism x— xF.

By lemma 1 of Chap.III-2, we may write k as k=F(x,...,Xy),
where x, is transcendental over F,, and x; is separably algebraic over
F,(xo) for 1<i<N. Then Kk’=F,(x5,....x}). Put Kk'=k"(xo)=
F,(x0,X%,...,xk). As each x; is purely inseparable over F,(x{) and sepa-
rable over F (x,), k is at the same time purely inseparable and separable
over k', so that k=k’; this implies that k is purely inseparable of degree
1 or p over kP. If k was the same as k?, it would contain an element y
such that y?=x,. Clearly y cannot be in F,(x,), so that it is purely
inseparable over F,(x,); this contradicts the assumption that k is sep-
arable over F(x,).

Now, in order to extend theorem 1 of Chap. IV-1 to the case of an
inseparable extension k' of k, it is clearly enough to show the validity
of th.4, Chap.III-4, in that case, since the latter alone is involved in
the proof of the former. We will first do this for a purely inseparable
extension of k of degree p. Let k' be such an extension; for any x'ek’,
there must then be an integer n>0 such that x'?"ek, and, if n is the
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smallest such integer, the degree of X’ over k is p"; as this must be <p,
n is 0 or 1. This shows that kK’?ckck’, hence, in view of lemma 1, that
k=k'®. For that case, we prove the following:

PROPOSITION 16. Let k' be an A-field of characteristic p>1; put
k=k'?. Then, above each place v of k, there lies one and only one place
w of k'; it is the image of v under the isomorphism x—x'® of k onto k';
we have k,=(k,,)’, and the k linear extension &, of the natural injection
of k' into ki, to A,=k'®,k, is an isomorphism of A, onto k.. Moreover, if
o is a basis of k' over k, and a,, for each v, is the r,-module generated by
o in A,, then, for almost all v, ®, maps o, onto the maximal compact
subring r,, of k..

Let v be a place of k, and w a place of k' lying above v. By the corollary
of prop. 1, Chap. lII-1, k/, is gencrated over k, by k', hence purely in-
separable of degree 1 or p over k,. In the former case, every element of
k must be a p-th power in k,; this is impossible, since k is dense in k,
and therefore contains at least one prime element of k,. Therefore, by
corollary 2 of prop. 4, Chap. I-4, k,, is uniquely determined, up to an
isomorphism, and y—y? is an isomorphism of k;, onto k,. Let 1 be the
natural injection of k' into k/,; this must induce on k the natural in-
jection 4, of k into k,; therefore, for every £ek’, we have 1,(&7)= A(E);
as this determines A(£) uniquely, we see that w is uniquely determined
by v, and also that it is the image of v under x—x/?. If now @, is as in
our proposition, it is clearly a surjective homomorphism of A, onto
k., ; as both of these spaces have the dimension p over k,, it is an iso-
morphism. Finally, let o be a basis of k" over k. In view of corollary 1
of th. 3, Chap.III-1, and of lemma 1 of Chap.III-2, we may assume
that « contains an element a such that k' is separably algebraic over
F ,(a). Let then v and w be as above, and let u be the place of the field
ko=F,(a) which lies below w. By th.1 of §4, for almost all w, k,, is
unramified over (k,),. Take w such that this is so; since th. 2 of Chap.III-1
shows that k, has just one place u for which [a],> 1, we may also assume
that w does not lic above that place. Then, by that theorem, there is a
polynomial neF,[T] such that n(a) is a prime element of (ko),, hence
also of k., since k., is unramified over (k,),. Now, by corollary 2 of th.3,
Chap. IlI-1, a, is a compact subring of A, for almost all v; this implies
that it contains 1. hence r,.- 1. As it contains a, it contains n(a), hence
the ring r,[n(a)]; by prop. 4 of Chap. I-4 and its corollary 1, this is
the same as r.,,.

Clearly proposition 16 implies the validity of th.4, Chap. III-4,
‘when k=k'?. Now take for k" an arbitrary extension of , of finite degree.
Call k; the maximal separably algebraic extension of k, contained in
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k’; let p™ be the degree of k' over ky. If x' is any element of k', there is
n=0 such that x'”"eky, and, if n is the smallest such integer, x' is of
degree p" over kj, so that n<m; this shows that k' >k, >k'"". Applying
lemma 1 to the sequence of fields k', k'?,...,k'"", we see that each is of
degree p over the next one, so that k' is of degree p™ over k'*”, which is
therefore the same as kj. Proceeding now by induction on m, we may
assume that theorem 4 of Chap.IIl1-4 is valid for the extension k' of
k, and we have to show that it is also valid for the extension k' of k. Put
k"=k'"; let v be a place of k; call wi,...,w, the places of k” lying above
v, and, for each i, call k; the completion of k" at w;. By prop. 16, there
is, for each i, one and only one place w; of k', lying above wj, and the
completion k; of k' at w; may be identified with k'®,..k;. By the in-
duction assumption, we have an isomorphism &, of 4,=k"®,k, onto
the direct sum of the fields k', with the properties stated in our theorem.
By the properties of tensor-products, the tensor-product A,=k'® .k,
is canonically isomorphic, in an obvious manner, to k'®,.. 4;, hence to
the direct sum of the products k¥’ ®,..k; and therefore to the direct sum
of the fields k;; it is then easily seen that the isomorphism &, of 4, onto
the latter sum which has been so defined has the properties required
by our theorem. As to the last part, it can be deduced in the same manner
from the induction assumption and prop. 16, by taking a basis a’ of k"
over k, a basis f§ of k" over k", and taking for k" over k the basis a con-
sisting of all the products a'b of an element ¢’ of o’ and an element b of B.



Chapter IX
Simple algebras

§ 1. Structure of simple algebras. This Chapter will be purely algebraic
in nature; this means that we will operate over a groundfield, subject
to no restriction except commutativity, and carrying no additional
structure. All fields are understood to be commutative. All algebras are
understood to have a unit, to be of finite dimension over their ground-
field, and to be central over that field (an algebra 4 over K is called
central if K is its center). If A, B are algebras over K with these properties,
so is A®gB; if A is an algebra over K with these properties, and L is a
field containing K, then A; = A ® L is an algebra over L with the same
properties. Tensor-products will be understood to be taken over the
groundfield ; thus we write A ® B instead of A ® , B when A, B are algebras
over K, and A® L or A;, instead of A®g L, when A is an algebra over K
and L a field containing K, A4, being always considered as an algebra
over L.

Let A be an algebra over K, with the unit 1,; all modules over 4
will be understood to be unitary (this means, e.g. for a left module M,
that 1 ,-m=m for all me M) and of finite dimension over K, when regarded
as vector-spaces over K by putting, e. g. for a left module M, Em=(¢-1,)m
forall e K and me M. If M'isa subset of a left A-module M, the annihilator
of M’ in A is the set of all xe 4 such that xm=0 for all meM’'; this is a
left ideal in A. The annihilator of M in A is a two-sided ideal in A ; if it is
{0}, M is called faithful.

DEFINITION 1. Let A be an algebra over K. An A-module is called simple
if it is not {0} and has no submodule except itself and {0}. The algebra A
is called simple if it has no two-sided ideal except itself and {0}.

For a given A, there are always simple left 4-modules; for instance,
any left ideal of A, other than {0}, with the smallest dimension over K,
will be such a module.

PROPOSITION 1. Let A be an algebra over K, with a faithful simple
left A-module M. Then every left A-module is a direct sum of modules, all
isomorphic to M.

We first prove our assertion for A itself, considered as a left A-module.
In M, there are finite subsets with the annihilator {0} in 4 (e.g. any basis
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of M over K); take any minimal set {m,,...,m,} with that property.
For 0<i<n, call 4; the annihilator of {m;,,...,m,} in 4; for i>1, put
M;=A;m,. Clearly A,={0}, A,=A;foriz1, A,0A4;_,and A;#A4,_,,
since otherwise xm;=0 for j>i would imply xm;=0, and m; could be
omitted from {m,,...,m,}. For i=1, A, is a left ideal, M, is a submodule
of M, and x — xm; induces on 4; a morphism of A; onto M, with the kernel
A;_,, so that it determines an isomorphism of 4;/4;_, onto M; for their
structures as left A-modules. As 4;#A4;_,, M, is not {0}; therefore it
is M. By induction on i for 0<i<n, one sees now at once that
x—(xm,,...,xm;) induces on A4; a bijective mapping of A; onto the
product M'=M x ... x M of i modules, all equal to M ; this is obviously
an isomorphism for the structure of left 4-module. For i=n, this proves
our assertion for A. Now take any left A-module M’, and a finite set
{m\,...,m,} generating M’ (e.g. any basis of M’ over K). Then the
mapping of A" into M’, given by (x,); <;<,— D, X; 1}, is a surjective mor-
phism of left A-modules; as we have just proved that A, as such, is iso-
morphic to M" for some n, this shows that there is a surjective morphism
of M™ onto M', or, what amounts to the same, a surjective morphism F,
onto M’, of a direct sum of s=nr modules M,, all isomorphic to M.
Call N the kernel of F, and take a maximal subset {M,,..., M} of
{M,, ..., M} such that the sum N'=N+ ) M, _is direct; after renumber-
ing the M, if necessary, we may assume that this subset is {M,, ..., M,}.
Then, for j> h, the sum N'+ M; is not direct, so that N'nM; is not {0};
as it is a submodule of M ;, which is isomorphic to M, it is M ;. This shows
that M ;< N’ for all j > h. Therefore F maps N' onto M'; as its kernel is N,
h

it determines an isomorphism of ) M, onto N'.
i=1

PROPOSITION 2. Let A and M be as in proposition 1, and let D be the
ring of endomorphisms of M. Then D is a division algebra over K, and A
is isomorphic to M (D) for some n=1.

We recall that here, as explained on p. XV, D should be understood as
a ring of right operators on M, the multiplication in it being defined
accordingly. As D is a subspace of the ring of endomorphisms of the
underlying vector-space of M over K, it is a vector-space of finite dimen-
sion over K. Every element of D maps M onto a submodule of M, hence
onto M or {0} ; therefore, if it is not 0, it is an automorphism, hence
invertible. This shows that D is a division algebra over a center which is
of finite dimension over K. By prop. 1, there is, for some n>1, an iso-
morphism of 4, regarded as a left A-module, onto M"; this must deter-
mine an isomorphism between the rings of endomorphisms of these two
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left A-modules. Clearly that of M" consists of the mappings
(m;); s,‘sn_’(zmidij)l <j<n

with d;;eD for 1<i,j<n, and may therefore be identified with the
ring M, (D) of the matrices (d;;) over D. On the other hand, an endo-
morphism of 4 regarded as a left A-module is a mapping f such that
fxy)=x f(y)forall x, yin A4; for y=1,, this shows that f can be written
as x—xa with a= f(1,); the ring of such endomorphisms may now be
identified with A4, which is therefore isomorphic to M, (D). As the center
of M, (D) is clearly isomorphic to that of D, this implies that the latter
is K, which completes the proof.

THEOREM 1. An algebra A over K is simple if and only if it is iso-
morphic to an algebra M (D), where D is a division algebra over K ; when
A is given, n is uniquely determined, and so is D up to an isomorphism.

Let A be simple; take any simple left A-module M; as the annihila-
tor of M in A is a two-sided ideal in 4 and is not 4, it is {0} ; therefore M
is faithful, and we can apply prop. 2 to A4 and M it shows that A is iso-
morphic to an algebra M, (D). Conversely, take 4 = M, (D). For 1 <h,k<n,
call e, the matrix (x;;) given by x,, =1, x;;=0 for (i,j)#(h,k). If a=(a;))
is any matrix in M,(D), we have e;;ae, =a;,e, for all i, j, h, k; this shows
that, if a#0, the two-sided ideal generated by a in A contains all the e;;
therefore it is A, so that A4 is simple. Let now M be the left ideal generated
by e, in A; it consists of the matrices (a;;) such that a;;=0 for j>2;
if a is such a matrix, we have e;;a=aj, ¢;;, which shows that, if a0,
the left ideal generated by a is M, which is therefore a minimal left ideal
and a simple left A-module. Let now f be an endomorphism of M
regarded as a left A-module, and put f(e,,)=a with a=(g;), a;;=0 for
j=2. Writing that f(e;;e;;)=e;;a, we get, for j>2, a;; =0; then, for
x=(x;;) with x;;=0 for j>2, we get f(x)=f(xe,;)=xa=(x;;a;,). This
shows that the ring of endomorphisms of M is isomorphic to D. As
prop. | shows that all simple left A-modules are isomorphic to M, this
shows that D is uniquely determined by 4 up to an isomorphism. As
the dimension of A over K is n” times that of D, n also is uniquely
determined.

We recall now that the inverse of an algebra 4 over K is the algebra A°
with the same underlying vector-space over K as A, but with the multi-
plication law changed from (x,y)—xy to (x,y)—>yx.

PROPOSITION 3. Let A be an algebra over K ; call A° its inverse, and
put C=AQ®A°. For all a, b in A, call f(a,b) the endomorphism x—axh
of the underlying vector-space of A; let F be the K-linear mapping of C
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into Endy(A) such that Fla®b)=f(a,b) for all a, b. Then A is simple if
and only if F maps C surjectively onto Endg(A); when that is so, F is
an isomorphism of C onto Endg(A).

One verifies at once that F is a homomorphism of C into Endg(A4).
If N is the dimension of 4 over K, both C and Endy(A4) have the dimen-
sion N2 over K; therefore F is an isomorphism of C onto Endg(A4) if
and only if it is surjective, and if and only if it is injective. Assume that A
is not simple, i.e. that it has a two-sided ideal I other than {0} and A.
Then, for all a,b, f(a,b) maps I into I; therefore the same is true of F(c)
for all ceC, so that the image of C under F is not the whole of Endg(A).
Assume now that 4 is simple, and call M the underlying vector-space
of A over K, regarded as a left C-module for the law (c,x)— F(c)x. Any
submodule M’ of M is then mapped into itself by x-—->axb for all ¢, b, so
that it 1s a two-sided ideal in A; as 4 is simple, this shows that M is
simple. An endomorphism ¢ of M is a mapping ¢ such that p(axb)=
=ae(x)bforall a,x,bin A; for x=b=1, this gives p(a)=a¢(l ,), hence
axbo(l y=axe(l )b, so that ¢(1,) must be in the center K of 4; in
other words, ¢ is of the form x—&x with £e K. Call C' the annihilator
of M in C, which is the same as the kernel of F. We can now apply
prop. 2 to the algebra C/C’, to its center Z, and to the module M; as D
is then K, it shows that C/C’ is isomorphic to some M, (K), hence Z
to K; but then, as has been seen in the proof of th. 1, M must have the
dimension n over K, so that n=N. As C/C’ has then the same dimension
NZ over K as C, we get C'= {0}, which completes the proof.

COROLLARY 1. Let L be a field containing K. Then the algebra
A; =A® L over Lis simple if and only if A is so.

In fact, let C;, F, be defined for A4; just as C, F are defined for 4
in proposition 3; one sees at once that C; =C®L, and that F, is the
L-linear extension of F to C,. Our assertion follows now from pro-
position 3.

COROLLARY 2. Let L be an algebraically closed field containing K.
Then A is simple if and only if A, is isomorphic to some M, (L).

If D is a division algebra over a field K, the extension of K generated
in D by any £e D— K is an algebraic extension of K, other than K. In
particular, if L is algebraically closed, there is no division algebra over L,
other than L. Therefore, by th. 1, an algebra over L is simple if and only
if it is isomorphic to some M,(L). Our assertion follows now from
corollary 1.

CoRrOLLARY 3. The dimension of a simple algebra A over K is of
the form n?.
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In fact, by corollary 2, 4, is isomorphic to some M, (L) if L is an
algebraic closure of K; its dimension over L is then n?, and it is the
same as that of 4 over K.

COROLLARY 4. Let A, B be two simple algebras over K; then AQB
is simple over K.

Take an algebraic closure L of K; (A®B), is the same as A; ®B;.
Since clearly M, (K)®M,,(K) is isomorphic to M,,(K) for all m, n, and
all fields K, our conclusion follows from corollary 2.

COROLLARY 5. Let A be a simple algebra of dimension n* over K.
Let L be a field containing K, and let F be a K-linear homomorphism
of A into M, (L). Then the L-linear extension F; of F to A, is an iso-
morphism of A; onto M,(L).

Clearly F; is a homomorphism of 4, into M, (L), so that its kernel
is a two-sided ideal in 4;. As A, is simple by corollary 1, and as F;
is not 0, this kernel is {0}, i.e. F, is injective. As A, and M,(L) have
the same dimension n? over L, this implies that it is bijective, so that
it is an isomorphism of 4; onto M (L).

COROLLARY 6. Let L be an extension of K of degree n; let A be a
simple algebra of dimension n* over K, containing a subfield isomorphic
to L. Then A, is isomorphic to M ,(L).

We may assume that 4 contains L. Then (x,&)—x¢, for xe A, e,
defines on A a structure of vector-space over L, call V that vector-
space, which is clearly of dimension n over L. For every ae 4, the map-
ping x—ax may be regarded as an endomorphism of V, which, if we
choose a basis for V over L, is given by a matrix F(a) in M,(L). Our
assertion follows now from corollary 5.

PROPOSITION 4. Let A be a simple algebra over K. Then every auto-
morphism o of A over K is of the form x—a~'xa with ac A*.

Take a basis {a,,...,ay} of A over K. Then every element of A®A°
can be written in one and only one way as Y a;®b;, with b,e A% for
1 <i<N. By prop. 3, « can therefore be written as x— ) a;xb;. Writing
that a(xy)=a(x)a(y) for all x, y, we get

0=2aixybi_ZaiXbi“(Y):Zaix(ybi"bi“()’))-

For each yeA, this is so for all x; by prop. 3, we must therefore have
yb;=bh,a(y). In particular, since this gives y(b;z)=b,a(y)z for all y and z
in A, b;A is a two-sided ideal in A, hence A4 or {0}, for all i, so that b, is
either 0 or invertible in A. As « is an automorphism, the b; cannot all
be 0; taking a=b;#0, we get the announced result.
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COROLLARY. Let o and a be as in proposition 4, and let a'€ A be such
that a'a(x)=xa for all xe A. Then o’ =&a with £eK.

In fact, the assumption can be written as a’'a” ' x=xa’a™ ! for all x;
this means that a’'a” ' is in the center K of A.

Proposition 4 is generally known as “the theorem of Skolem-
Noether” (although that name is sometimes reserved for a more com-
plete statement involving a simple subalgebra of A). One can prove,
quite similarly, that every derivation of A is of the form x - xa—ax, with
aeA.

We will also need a stronger result than corollary 2 of prop. 3; this
will appear as a corollary of the following:

PROPOSITION 5. Let D be a division algebra over K, other than K.
Then D contains a separably algebraic extension of K, other than K.

We reproduce Artin’s proof. In D, considered as a vector-space
over K, take a supplementary subspace E to K=K -1, and call ¢ the
projection from D=E®K -1, onto E. Then, for every integer m>1,
x—@(x™) is a polynomial mapping of D into E, whose extension to D,
and E;, if Lis any field containing K, is again given by x— ¢@(x™), where ¢
denotes again the L-linear extension of ¢ to D, and E;. Now call N
the dimension of D over K. Clearly every {eD, not in K, generates
over K an extension K(¢) of degree >1 and < N ; moreover, if this is
not purely inseparable over K, it contains a separable extension of K,
other than K. Assume now that our proposition is not true for D. Then
K has inseparable extensions, which implies that it is of characteristic
p>1 and that it is not a finite field; moreover, every £eD must be
purely inseparable over K, hence must satisfy an equation &”"=xeK,
where p” is its degree over K. As this degree is <N, it divides the highest
power q of p which is <N, so that £2e K. Then, if E and ¢ are as above
defined, the polynomial mapping x— ¢(x%) maps D onto 0. As K is an
infinite field, this implies that the same holds true for the extension of
that mapping to D; and E;, when L is any field containing K. In other
words, for all L, x—x? maps D, into its center L- 1,. This is palpably
false when L is algebraically closed, for then D, is isomorphic to an
algebra M, (L), and taking e.g. x=e,; in the notation of the proof of
th. 1, we have x?=e¢,, and this is not in the center of M, (L).

COROLLARY. Let A be a simple algebra over K, and L a separably
algebraically closed field containing K. Then A; is isomorphic to an
algebra M (L).

The assumption means that L has no separably algebraic extension
other than itself. Then proposition 5 shows that there is no division
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algebra over L, other than L. Qur conclusion follows now at once from
th. 1, combined with corollary 1 of prop. 3.

§ 2. The representations of a simple algebra. Let 4 be a simple algebra
over K; by corollary 3 of prop. 3, § 1, its dimension N over K may be
written as N =n? For any field L containing K, call 9, the space of
the K-linear mappings of A into M,(L); every such mapping F can be
uniquely extended to an L-linear mapping F; of 4, into M,(L). If one
takes a basis a={a;,...,ay} of A over K, F is uniquely determined by
the N matrices X;=F(a;), so that, by the choice of this basis, I, is
identified with the space of the sets (X}); <;<y of N matrices in M, (L),
which is obviously of dimension N? over L.

By corollary 5 of prop. 3, § 1, a mapping FeIR, is an isomorphism
of A into M (L), and its extension F, to A, is an isomorphism of A,
onto M,(L), if and only if F is a homomorphism, i.e. if and only if
F(1,)=1, and F(ab)=F(a)F(b) for all a, b in A, or, what amounts to
the same, for all a, b in the basis . When that is so, we say that F is an
L-representation of A; if we write K(F) for the field generated over K
by the coefficients of the matrices F(a) for all ae A, or, what amounts
to the same, for all aew, then F is also a K(F)-representation of A.

If L is suitably chosen (for instance, by corollary 2 of prop. 3, §1,
if it is algebraically closed, or even, by the corollary of prop. 5, § 1, if
it is separably algebraically closed), the set of L-representations of A
is not empty. Moreover, if F and F’ are in that set, then FjoF, ! is an
automorphism of M (L), hence, by prop. 4 of§ 1, of the form XY 1 XY
with YeM,(L)*; this can be written as F;(F; '(X))=Y 'XY; for
ae A, X =F(a), it implies F'(a)=Y ' F(a) Y; we express this by writing
F'=Y 'FY. Moreover, when F and F’ are given, the corollary of
prop. 4, § 1, shows that Y is uniquely determined up to a factor in the
center L™ of M, (L)*.

PROPOSITION 6. Let A be a simple algebra of dimension n* over K.
Then there is a K-linear form 1+0 and a K-valued function v on A, such
that, if L is any field containing K, and F any L-representation of A,
t(a)=tr(F(a)) and v(a)=det(F(a)) for all acA; if K is an infinite field,
v is a polynomial function of degree n on A.

Put N =n?, and take a basis {ay,...,ay} of A over K. Take first for L
a “separable algebraic closure” of K, i.e. the union of all separably
algebraic extensions of K in some algebraically closed field containing K ;
this is always an infinite field. By the corollary of prop. 5, § 1, there is
an L-representation F of A, and then, as we have seen above, all such
representations can be written as F'=Y "' F Y with YeM,(L)*. Clearly
a—tr(F;(a)) is an L-linear form t on A;, and a—det(Fy(a)) is a poly-
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nomial function v of degree n on A4;; as F; is an isomorphism of A4,
onto M,(L), T is not 0; neither t nor v is changed if F is replaced by
F'=Y 'FY. Writing a=) x;a; with x;e L for 1<i<N, we can write 1
and v as a linear form and as a homogeneous polynomial of degree n,
respectively, in the x;, with coefficients in L. If ¢ is any automorphism
of L over K, we will write 7°, v* for the polynomials in the x;, respec-
tively derived from 7, v by substituting for each coefficient its image
under o¢. Similarly, we write F° for the L-representation of A such that,
for each a in the basis {a,,...,ay}, F°(a) is the image F(a)” of F(a) under o,
i.e. the matrix whose coefficients are respectively the images of those
of F(a). Then, clearly, for all ae 4;, t°(a) and v°(a) are respectively the
trace and the determinant of F°(a); as we have seen above, they must
therefore be equal to t(a), v(a) for all ae 4;. This implies that all the
coefficients in t and v, when these are written as polynomials in the x;,
are invariant under all automorphisms of L over K, hence that they
are in K. This proves our assertion, so far as only L-representations
are concerned, with L chosen as above. Obviously it remains true for
L-representations if L is any field containing L. As every ficld containing
K is isomorphic over K to a subfield of such a field L, this completes the
proof.

The functions 7, v defined in proposition 6 are called the reduced
trace and the reduced normin A. Clearly t(x y)=t(y x) and v(x y)=v(x) v(y)
for all x, y in A; in particular, v determines a morphism of 4™ into K ™.

COROLLARY 1. Let A and v be as in proposition 6. Then, for every
ac A, the endomorphisms x—ax, x—xa of the underlying vector-space
of A over K have both the determinant N ,(a)=v(a)".

It is clearly enough to verify this for 4, with a suitable L; taking L
such that A, is isomorphic to M,(L), we see that it is enough to verify
it for an algebra M, (L) over L; but then it is obvious. This is the result
announced in the remarks preceding th. 4 of Chap. IV-3.

COROLLARY 2. Let D be a division algebra over K; let t4, v, be the
reduced trace and the reduced norm in D. For any m>1, put A=M,, (D),
and call 7, v the reduced trace and the reduced norm in A. Then, for every
x=(x;;) in A, ©(x)=) 10(xy); if the matrix x=(x;;) in A is triangular,

ie.if x;=0 for 1<j<i<m, v(x)=[]volxy)

Take L such that D has an L-representation F. Then the mapping
which, to every matrix x=(x;;) in M, (D), assigns the matrix obtained
by substituting the matrix F(x;;) for each coefficient x;; in x is an
L-representation of A. Using this for defining 7 and v, we get at once
the conclusion of our corollary.
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COROLLARY 3. Let assumptions and notations be as in corollary 2.
Then v(A™)=v,(D").

We may regard A as the ring of endomorphisms of the space V =D"
considered as a left vector-space over D, and consequently 4™ as the
group of automorphisms of that space. By an elementary result (already
used in the proof of corollary 3 of th. 3, Chap. I-2, but only for a vector-
space over a commutative field), every automorphism of ¥ can be
written as a product of automorphisms, each of which is either a permu-
tation of the coordinates or of the form

(xl,...,xm)ﬁ(inai,xz,...,xm)
i

with a,eD* and a;eD for 2<i<m. By corollary 2, the latter auto-
morphism has the reduced norm vy(a,). As to a permutation of coordi-
nates, the same L-representation of 4 which was used in the proof of
corollary 2 shows at once that it has the reduced norm 1 if the dimen-
sion d? of D over K is even, and +1 if it is odd. As vo(—1p)=(—1)%,
we have thus shown that v(4™) contains vy(D ™) and is contained in it.

§ 3. Factor-sets and the Brauer group. Up to an isomorphism, the al-
gebras over a given field K may be regarded as making up a set, since
the algebra structures that one can put on a given vector-space over K
clearly make up a set, and every such space is isomorphic to K" for
some n.

From now on, we will consider only simple algebras over K; it is
still understood that they are of finite dimension and central over K.
Consider two such algebras 4, A"; by th. 1 of § 1, they are isomorphic
to algebras M, (D), M,.(D), where D, D' are division algebras over K
which are uniquely determined, up to an isomorphism, by 4, A". One
says then that A and A’ are similar, and that they belong to the same
class, if D and D’ are isomorphic over K. Clearly, in each class of simple
algebras, there is, up to an isomorphism, one and only one division
algebra, and there is at most one algebra of given dimension over K.
An algebra will be called trivial over K if it is similar to K, i.e. isomor-
phic to M (K) for some n. We will write Cl(4) for the class of simple
algebras similar to a given one A.

Let A, A’ be two simple algebras, respectively isomorphic to M, (D)
and to M,.(D"), where D, D’ are division algebras over K. By corollary 4
of prop. 3,§ 1, D® D' is simple, hence isomorphic to an algebra M, (D"),
where D” is a division algebra over K which is uniquely determined,
up to an isomorphism, by D and D', hence also by 4 and A’. By the
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associativity of tensor-products, A® A’ is isomorphic to M, (D”). This
shows that the class of A® A4’ is uniquely determined by those of 4
and A". Write now:

Cl(4® A)=Cl(A) - CI(A),

and consider this as a law of composition in the set of classes of simple
algebras over K. It is clearly associative and commutative; it has a
neutral element, viz., the class CI(K) of trivial algebras over K. More-
over, if A° is the inverse algebra to A, prop. 3 of § 1 shows that A® A°
is trivial, so that C1(4°) is the inverse of Cl(4) for our law of composition.
Therefore, for this law, the classes of simple algebras over K make up
a group; this is known as the Brauer group of K; we will denote it by
B(K). If K’ is any field containing K, and A4 a simple algebra over K,
it is obvious that the class of A is determined uniquely by that of A,
and that the mapping Cl(4)—Cl(Ak.) is a morphism of B(K) into B(K'),
which will be called the natural morphism of B(K) into B(K').

It will now be shown that the Brauer group can be defined in another
way, by means of “factor-sets”; this will require some preliminary defi-
nitions. We choose once for all an algebraic closure K for K; we will
denote by K,,, the maximal separable extension of K in K, i.e. the
union of all separable extensions of K of finite degree, contained in K.
We will denote by & the Galois group of K, over K, topologized as
usual by taking, as a fundamental system of neighborhoods of the iden-
tity ¢, all the subgroups of ® attached to separable extensions of K of
finite degree. Clearly this makes ® into a totally disconnected compact
group. As K is purely inseparable over K,.,, each automorphism of
Kep can be uniquely extended to one of K, so that & may be identified
with the group of all automorphisms of K over K.

DEFINITION 2. Let "™ be the product ® x---x ® of m factors equal
to ®; let $ be an open subgroup of ®. Then a mapping { of ™ into
any set S will be called H-regular if it is constant on left cosets in G
with respect to H™.

This amounts to saying that f(¢,...,0,,) depends only upon the left
cosets Hoy,...,H0, determined by the o; in &. When that is so, [ is
locally constant, or, what amounts to the same, it is continuous when S
is provided with the discrete topology. Conversely, let f be a mapping
of ®™ into S; if it is locally constant, it is continuous if S is topologized
discretely, hence uniformly continuous since ® is compact; this implies
that there is an open subgroup $ of ® such that f is $-regular.
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DEFINITION 3. Let ®"™ be as in definition 2. Then a mapping f of G
into M (K..,), for any n=1, will be called covariant if it is locally constant
and satisfies the condition

F61 s A)=f(T 15 O
forallo,,...,0,,4 in 6.

LemMa 1. Let  be an open subgroup of ®; let L be the subfield of
K., consisting of the elements invariant under . Then an H-regular
mapping of ® into K., is covariant if and only if it is of the form c—¢&°,
with £eL.

Let x, i.e. 6—>Xx(0), be a mapping of ® into K, and put &=x(e).
If x is covariant, we have x(a)=¢? for all ¢ if this is H-regular, & must
be in L. The converse is obvious.

LEMMA 2. Let $ be an open subgroup of ®. Call X,, the space of
H-regular covariant mappings of ®&™ into K, regarded as a vector-
space over K; call X, the space of all H-regular mappings of ™ into
Kp; regarded as a vector-space over K. Then X,,=X, ®¢K,.,, and
the dimension of X,, over K, and of X,, over K, is n™, if n is the index
of Hin 6.

Let L be as in lemma 1; it has the degree n over K. Take a full set
a={a,,...,a,} of representatives of the cosets Ho of § in &; then the
isomorphisms A,,...,4,, respectively induced on L by the «;, are the n
distinct K-linear isomorphisms of L into K ,. Any mapping xeX,, is
uniquely determined by its values on a x --- x a, and these can be chosen
arbitrarily; therefore X, has the dimension n™ over K, and every
linear form L on X, can be written as

L(x)zzailmimx(ail" ..,OC,-m)
@)

sep?

with coefficients q;, in K,.,. Now we proceed by induction on m. For
m=1, lemma 1 shows that X, as a vector-space over K, is isomorphic
to L, hence of dimension n, so that we need only show that X, generates
Xj as a vector-space over K. If not, there would be a linear form
L on X, other than 0, which would be 0 on X, ; writing L as above,
and making use of lemma 1, we get 0= a,&* for all £e L; this contra-
dicts the linear independence of the A; over K, i.e. corollary 3 of
prop. 3, Chap. III-2. Now, for any m, consider the tensor-product
Y,=X,® " ®X,, taken over K, of m factors equal to X,, and the
similar product Y,=X; ® - ® X taken over K,,; as we have just
shown that X is the same as X; @ K,.,, we may, in an obvious manner,
identify Y, with Y, ® K. Call ¢ the K, -linear mapping of Y,, into
X,, which, to every element x, ® - ®x,, of Y., assigns the mapping
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(G150 ey Om)=X1(01) ... X (0,)

of ™ into K,,,. This is surjective; for, if a linear form L on X, is 0 on
¢(Y,), we must have, for all x,,...,x,, in X}:

Ozzailu-imxl(ail)'"xm(aim)9
5}
which clearly implies that all the a; are 0. As Y, has the same dimen-
sion n™ as X,,, this shows that ¢ is an isomorphism of ¥, onto X, . Now
take a basis { f;,..., f,} of X, over K. Then the n™ elements f; @ ® f; .
make up a basis of ¥, over K, hence also of Y, over K., so that their
images under ¢ make up a basis of X, over K,.,. This amounts to
saying that every element of X, can be written uniquely in the form

(0-1"'"O-m)—)zxiln'im.ﬁl(al)'".ﬁm(am)
®
with coefficients x, in K,.,. Writing now that this is in X, i.e. that
it is covariant, we see that this is so if and only if all the x; are invariant
under &, i.e. if and only if they are all in K. Therefore ¢ maps Y,, onto
X,,. This completes the proof.

Let now K’ be any field containing K, and let KL, Keps ® be defined
for K" as K, K,,, ® have been defined for K. As K is determined only
up to an isomorphism, we will always assume, in such a situation, that
we have taken for K the algebraic closure of K in K'. It is obvious that
K., is then contained in K., Every automorphism ¢’ of K’ over K’
induces on K an automorphism ¢ of K over K (more precisely, over
KNK'); clearly the mapping ¢'—¢ is a continuous morphism p of 6’
into ®; this will be called the restriction morphism; it is injective if K’
is algebraic over K, since then K'=K; in that case one will usually
identify ®' with its image in ®, which is always a closed subgroup
of ®, and is open in ® when K’ is of finite degree over K. If § is any
open subgroup of &, and L is the corresponding subfield of K., i.e.
the one consisting of the elements invariant under &, the subgroup
$'=p 1) of & is open, and the corresponding subfield of K, is the
one generated by L over K'.

Let notations be as above, and let f be as in definition 2, i.e. a map-
ping of ™ into some set S. We will write fop for the mapping

(1,0~ fp(0Y),... p(07,)

of ®'™ into S. This is obviously continuous, i.e. locally constant, if f
is so; if f is H-regular, it is §'-regular, with §'=p~1(H); if S=M,(K,.,),
and f is covariant, fop is covariant. If K’ is algebraic over K, ® is a
subgroup of ®, and p is its natural injection into ®; then fop is the
restriction of f to &',
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After these preliminaries, we can now go back to our main topic.

THEOREM 2. Let A be a simple algebra of dimension n* over K. Let $
be an open subgroup of ®, L the corresponding subfield of K., and F
an L-representation of A. Then there is an H-regular covariant mapping Y
of ®x G into M(K,,)", such that F’=Y(p,0)” ' F*Y(p,0) for all p,o
in ®; if Y is such, there is an H-regular covariant mapping f of ® x ® x G
into K, such that, for all p, 0,7 in ®:

(1) f(P:UaT) Y(p,’[)= Y(pao-) Y(G’T)9
and this satisfies the condition
(2 S(p0,0) f(v,p,7)=f(v,0,7) f(v,p,0)

for all v,p,0,7 in ®.

For every 1€ ®, F* is a K -representation of A, hence of the form
Z(A)"'FZ(A), with Z(A)eM,(K,,,)". As F* depends only upon the left
coset HA, we may, to begin with, assume that 1—Z(1) is H-regular; it
would then be easy to verify that Y(p,0)=Z(cp~ ') satisfies all the
conditions of the first part of our theorem, except possibly that of the
$H-regularity. To obtain this, we refine our construction as follows. Take
a full set A of representatives of the double cosets H 19 in & with respect
to $. For each leA, F and F* are both L'-representations, if L’ is the
compositum L-L* of L and its image L* under A4; choose then Z(/) in
M, (LY, sothat F*=Z(4)~' F Z(1). Each pe ® can be written as p=0o.4f,
with a uniquely determined Ae A and with o, § in . If at the same time
we have p=o'Af" with o, in $, then:

BB =A" " )l

so that, if we put y=48"1, y is both in § and in A~ *$ 1, which implies
that it leaves fixed all the elements of L and of L*, hence L-L* and Z(A).
Therefore, if we put Z(p)=Z(A), this depends only upon p, not upon
the choice of «, B, subject to the conditions stated above. It is then easy
to check that Y(p,6)=Z(cp ')y satisfies all the conditions stated in
our theorem. Now, for all p,o,1:

F'=Y(s,7)" ' F°Y(0,7)=Y(6,7)" ' Y(p,0)" 1 F* Y(p,0) Y(0, 7).

At the same time, we have F*=Y(p,7)~ ! F* Y(p, 7). As we have observed
above, this implies, by the corollary of prop.4, § 1, that Y(p,0)Y(g,1)
differs from Y(p,t) only by a scalar factor f(p,0,7), which proves (1).
One can then verify (2) by a straightforward calculation, and the re-
maining assertions are obvious.
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COROLLARY. Let assumptions and notations be as in theorem 2; let
K’ be a field containing K; & being as before, let p be the restriction
morphism of ® into ®. Let Fg. be the K'-linear extension of F to Ag..
Then Yop and fop are related to Fy. in the same manner as Y and f to F.

This is obvious. When Y and f are related to an L-representation F
of A in the manner described in theorem 2, we will say that they belong
to A.

DEFINITION 4. A covariant mapping f of ®x®x® into K, is
called a facior-set of K if it satisfies (2) for all v,p,0,7 in ©®.

Clearly the factor-sets of K make up a group {(K) under multipli-
cation. If K, ® and p are as above, f— fop is obviously a morphism
of {(K) into {(K").

Let z be any covariant mapping of ® x ® into K{,. Obviously the
mapping

G (p,0,9)~2(p,0)2(0,7) 2(p, ) "

is covariant, and one verifies immediately that it is a factor-set.

DEFINITION 5. The factor-set defined by (3) will be called the co-
boundary of z; a factor-set of K will be called trivial if it is the coboundary
of a covariant mapping of ® x ® into K.

The trivial factor-sets make up a subgroup B(K) of the group {(K)
of all factor-sets of K. The quotient {(K)/B(K) will be denoted by H(K),
and its elements, i.e. the classes modulo B(K) in {(K), will be called
the factor-classes of K. If K' and p are again as before, it is obvious
that f— fop maps coboundaries into coboundaries, so that p deter-
mines a morphism of H(K) into H(K’), which we again denote by p.

PROPOSITION 7. The factor-sets belonging to a simple algebra A over
K make up a factor-class of K.

Let §, L, F, Y and f be as in th. 2; let z be any covariant mapping
of ®x ® into KZ,,; let §' be an open subgroup of § such that z is
$'-regular; let L' be the subfield of K., corresponding to $'. Then F
is also an L'representation; Y'=zY is related to F in the same manner
as Y, and it determines the factor-set f' = f, f, where f; is the coboundary
of z. This shows that all the factor-sets in the class determined by f
belong to A. On the other hand, let &', L; F', Y’, f’ be related to 4 in
the same manner as §, L, F, Y and f. Put §"=9n9’, and call L" the
corresponding subfield of K, which is the compositum of L and L!
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Then there is ZeM,(L)” such that F'=Z"'FZ. A trivial calculation
gives now F°=W 'F*?W with W=(Z*)"'Y(p,6)Z°, so that Y'(p,0)
can differ from W only by a scalar factor. If we write z(p,o) for this
factor, we have now

Y'(p,0)=z(p,0)(Z*)" " Y(p,0) Z°,

which implies that z is §”-regular and covariant. Then f’f~1 is the
coboundary of z, which completes the proof.

COROLLARY. Let K’ be a field containing K; then the factor-class
of K’ determined by Ag. is the image of the factor-class of K determined
by A under the restriction morphism p of &' into 6.

This is obvious in view of the corollary of th. 2.

If A is a simple algebra over K, the factor-class of K, consisting
of the factor-sets belonging to A, will be said to belong to A or to be
attached to A.

THEOREM 3. The mapping which, to every simple algebra A over K,
assigns the factor-class of K attached to A, is constant on classes of
simple algebras over K and determines an isomorphism of the group B(K)
of such classes onto the group H(K) of factor-classes of K.

Take first two simple algebras 4, 4’ over K; call n?, n’? their dimen-
sions over K. Let L, F, Y and f be defined for A as in th.2, and let
L', F', Y, ' be similarly related to A’; call L” the compositum of L and
L’. We may identify M,(L")® M,(L") with M,,.(L"). Then, if we put
A"=A® A, and if we write F"=F ® F' for the K-linear mapping of 4"
into M,,.(L") given by F'(a® a)=F(a) ® F'(a') for all acA and a'e 4,
F" is an L"-representation of A”, and one sees at once that Y'=Y® Y’
and f"=ff" are related to A" and F” as in th. 2. This shows that the
factor-class attached to A" is the product of those attached to A and
to A'. If A=M,(K), one can take for F the identity mapping of A onto
M,(K) and then take Y=1, hence f=1; therefore the factor-class at-
tached to a trivial algebra is the trivial one, and the factor-classes at-
tached to A" and to M, (A’) are the same. This proves the first assertion
in our theorem and shows that the mapping u of B(K) into H(K) which
is thus defined is a morphism. It will now be shown, firstly that pu is
injective, and then that it is surjective; this will be done in several steps,
which we formulate as lemmas.

LeMMA 3. Let $ be an open subgroup of ®, and L the subfield of K,
corresponding to . Let Y be an H-regular covariant mapping of ® x G
into M (K.,)™, such that Y(p,t)=Y(p,0) Y(0,1) for all p,a,7 in &. Then
there is Ze M (L)* such that Y(p,0)=(Z*) 1 Z° for all p,o in ®.
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Take a full set a of representatives of the cosets Ho of H in B; as
we have observed in the proof of lemma 2, they induce on L all the
distinct K-linear isomorphisms of L into K, and these are linearly
independent over K., as has been shown in corollary 3 of prop. 3,
Chap. I1I-2. Let M, (K,,,) operate on the right, by matrix multiplication,
on the space M, ,(K,,,) of row vectors over K,,, and similarly on the
left on column vectors. For each ue M, (L), put

z= Z u* Y(a,¢).
For any pe®, ap is again a full set of representatives of the cosets of
in ®; as Y is covariant, we have then

2= u? Y(ap,p)=) u" Y(op);

for pe$, this shows that z is invariant under $, i.e. that it is in M, ,(L).
Therefore, if we write ¢ for the mapping u—z defined above, ¢ maps
M, (L) into itself. Now we show that there are n vectors u,,...,u, in
M, (L), such that the vectors ¢(u;) are linearly independent over L.
In fact, if this were not so, there would be a column vector v in M, (L),
other than 0, such that ¢(u)v=0 for all ue M, ,(L). This can be written
as ) u*(Y(x,&)v)=0, which, in view of the linear independence of the «
on L, implies Y(a,&)v=0 for all a, hence v=0. Choose now n vectors u;
such that the ¢(u;) are linearly independent over L; call U the matrix
in M, (L) whose rows are the u;, and put Z=) U*Y¥(«,¢). As the rows
of Z are the ¢(u;), Z is invertible in M ,(L). Just as above, we have, for
all p,o:
Z°=%"UY(a,p), Z°=Y U"Y(a,0),

and therefore Z°=Z*Y(p,0) in view of the assumption on Y. This
shows that Z has the property stated in our lemma.

It is now easy to show that the morphism g of B(K) into H(K) which
has been defined above is injective. In fact, assume a simple algebra A
over K to have a trivial factor-set; in view of prop. 7, this implies that
we can choose §, L, F and Y as in th. 2, so that (1) holds with f=1.
Let now Z be as in lemma 3, and put F'=ZFZ~'; then one sees at
once that F'=F'? for all p,o in ®. This means that F' is a K-represen-
tation of A4, i.e. an isomorphism of A onto M ,(K), so that A is trivial.

Finally, the surjectivity of u is contained in the following more
precise result:

LEMMA 4. Let $ and L be as in lemma 3; call n the degree of L over K.
Let f be an H-regular factor-set of K. Then one can choose A, F and Y
with the properties described in theorem 2, so that the factor-set defined
by (1) is the given one and that A contains a subfield isomorphic to L.
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This will be proved by an explicit construction, due to R. Brauer.
We first observe that, if we take v=p =0 in the formula (2) of th. 2 which
defines factor-sets, we get f(p,p,7)=f(p,p,p); as f is covariant, this
gives f(p,p,7)=a” with a= f(g,¢,¢). Now apply lemma 2 to the case
m=2; this gives two spaces X,, X}, of dimension n% over K and over
K., respectively, and X, =X, ®yK,,,. Take a {ull set a of representa-
tives of the cosets Ha of H in ®. For any x, y in X3, and any p, s in &, put

2(p,0)= ). f(o,%p)x(p,®) y(2:, ).
Clearly z, i.e. the mapping (p,6)—z(p,0), is in X3, and it is in X, if x, y
are in X,; more precisely, (x,y)—z is a bilinear mapping of X, x X}
into X which induces on X, x X, a bilinear mapping of X, x X, into X,.
It will now be shown that, if we write this as (x,y)—xy, it makes X,
into an algebra A with the required properties. In fact, for each pe®,
and each xe X}, put

(Dp(x): (f(ﬂ? a’p)x((x’ﬁ))a,ﬂea .

After choosing an ordering on the set a, we may identify mappings of
axa into K, with the matrices in M,(K,,,); then each &, may be
regarded as a mapping of X, into M,(K,.,); as such, it is obviously
K., linear and bijective. Using formula (2), one verifies at once that
P ,(xy)= @,(x) ®,(y) for all x, y in X;. Call e the element of X; given
by e(p,6)=(a")""', with a=f(ce:¢), whenever ¢ is in the same
coset Hp as p, and e(p,0)=0 otherwise. Clearly e is in X,; since
f(o,a,p)=a® for all a, p, we have @,(e)=1,. It is now obvious that, for
each p,®, maps X3, with the multiplication (x,y)—xy, isomorphically
onto the algebra M,(K.,), the unit of the former being e. As X;=
=X, ®k K, this implies, by corollary 1 of prop. 3, § 1, that this multi-
plication makes X, into a simple algebra 4 over K, with 1,=e. For
any ¢eL, and any xeA, write £x for the element of X, given by
(p,0)—> & x(p,0); this defines on X, a structure of left vector-space
over L; moreover, it is clear that (x)y=E&(xy) for all {eL and all x, y
in A; therefore ¢—¢&e is an isomorphism of L into 4, and éx=({e)x
for all £eL and all xe A.

We will now construct F and Y with the properties stated in our
lemma. For all p,¢ in ®, call D(p,s) the diagonal matrix given by

D(ps O') = (6aﬁ f(“’ Ps a))a, Pea

with 8,,=1 or 0 according as a=f or not. Using (2), one verifies at
once that one has, for all p,o, and all xe X}

(4) D(p,0)®,(x)=2,(x)D(p,0).
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Now choose a basis {¢,,...,&,} of Lover K, and call {¢,,...,n,} the dual
basis to this when L is identified with its own dual by putting [£,n]=
=Tryx(En). As the elements o of a induce on L the n distinct K-linear
isomorphisms of L into K., we have, for every {eL, Ty (&)=Y &%

so that the definition of the #; may be written as
5ij: T"L/K(fi’?j)= Z é?ﬂ:
aea

Therefore we may put:
X =({D1<i<nacar X! =M)sea;1<i<n-

Write now, for each p, F,=X &,X ™, this gives
Fp(x):‘( Z igf(ﬁ’a’p)x(a’B”ﬁ?)lSi,jﬁn'

a, fiea

Assume that xe 4, i.e. that it is covariant; as f is covariant, and as a,
for every A, is a full set of representatives of the cosets of $ in &, we have

Fxf=( X & fBopDx@B)nf )i <ijan=Foa).

o, fea

In particular, if we put F = F,, we have, for every p, F,=F?. By the defini-
tion of F,, this gives F*=F for pe$, i.e. F(x)’ = F(x) for every xe 4 and
every pe$; in other words, F maps A into M,(L), so that it is an L-
representation of A. For all pe®, we have FP=X®,X ~'. In view of (4),
this gives F°=Y(p,6)” ! F* Y(p, ), where we have put

Y(p,0)=X D(p,0)X "' =( L& f(00,0)1 )1 <1,
One can now verify at once that this, together with 4 and F, is as re-
quired by our lemma. We also note for future use that the reduced trace
7 and the reduced norm v in A4 can be calculated by means of any one of
the K, -representations @, of 4, e.g. from &,; this gives, for all xe 4,
7(x) =tr(®,(x)), v(x) =det(®P,(x)), and in particular:

(¢ 1,)= TVL/K(é), v(E-1,)= NL/K(é)
for all £eL.
With lemma 4, the proof of theorem 3 is now complete.

CorOLLARY 1. Let K’ be a field containing K, and p the restriction
morphism of ®' into ®. Let A be a simple algebra over K, and f a factor-set
belonging to A. Then Ay. is trivial if and only if fop is so.

This follows at once from theorem 3 and the corollary of th. 2.



180 Simple algebras X

COROLLARY 2. Let § be an open subgroup of ®, and f an H-regular
factor-set of K. Then f is trivial if and only if it is the coboundary of an
$H-regular covariant mapping of ® x ® into K}

sep -

Assume that f is trivial; construct A, F and Y as in lemma 4. By
theorem 3, A is trivial, so that there is an isomorphism F’ of 4 onto
M/K). Then F=Z"'F'Z, with some ZeM,(L)*, hence F°=
=Y'(p,06)" *F*Y'(p,0) with Y'(p,6)=(Z°)"'Z°. This implies Y(p,0)=
=z(p,0) Y'(p,0), where z is H-regular and covariant. Then f is the co-
boundary of z.

COROLLARY 3. Let L be a separable extension of K of degree n. Let A
be a simple algebra over K. Then A, is trivial if and only if there is an
algebra A' of dimension n? over K, similar to A, containing a subfield
isomorphic to L; when A’ exists, it is unique, up to an isomorphism.

The last assertion is obvious. By corollary 6 of prop. 3, § 1, the
existence of A’ implies the triviality of A7, hence that of A;. Conversely,
assume that there is an isomorphism of 4, onto a matrix algebra M, (L);
this induces on A an L-representation F. By th. 2, we can construct an
$-regular factor-set f belonging to A. Then, by lemma 4, we can construct
an algebra A’ such as required our corollary.

It is frequently convenient to identify the groups B(K) and H(K) by
means of the isomorphism u described in theorem 3. If this is done, and
if K’ is any field containing K, the corollaries of th. 2 and of prop. 7
show that the natural morphism of B(K) into B(K'), which maps the
class of every simple algebra A over K onto the class of Ay, coincides
with the restriction morphism p of H(K) into H(K").

§ 4. Cyclic factor-sets. We will now discuss in greater detail a type
of factor-sets of particular importance, attached to the cyclic extensions
of the groundfield K. Here, as always, we understand “cyclic” as meaning
a Galois extension (hence, by definition, a separable one) with a finite
cyclic Galois group. With the same notations as in § 3, the cyclic exten-
sions of K are the subfields L of K corresponding to the open subgroups
$ of ® with cyclic factor-group. If L and § are such, and if n is the degree
of L over K, ®/9 is isomorphic to the group of the n-th roots of 1 in C;
any isomorphism of 6/$ onto the latter group may be regarded as a
character y of ®, with the kernel $; such a character, which 1s of order n,
will be said to be attached to L. If o is a representative in ® of a generator
of /%, there is one and only one character y of ®, attached to L, such that
x(@)=e(1/n).

Conversely, let ¥ be any homomorphism of & into C* ; by lemmas 3
and 4 of Chap. VII-3, it is a character of ® of finite order n; its kernel §
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is then an open subgroup of &, with a cyclic factor-group of order n,
and the subfield L of K, corresponding to § is cyclic of degree n over
K ; we will then say that L is attached to .

Let notations be as above; as y is locally constant on &, one can
choose, in infinitely many ways, a locally constant mapping & of G into
R such that y(c)=e(®(0)) for all o ®. For instance, one may choose &
so that 0< ®@(g)< 1 for all o; if @ is chosen according to this condition,
it is determined uniquely, and it is $-regular, since y is so. In any case,
since x is of order n, @ maps ® into (1/n)Z. Consider now the mapping

) (p,0,7) > e(p,0,7)=@(cp™ ')+ P(ra™ )~ P(tp™ ")

of ® x ® x G into R ; as @ is locally constant, this is so; as y is a character,
one sees at once that e maps ® x ® x ® into Z. Put now, for any e K™ :

© flp,6,1)=09;

obviously, f is a covariant mapping of ® x ® x ® into K. (more
precisely, into K ™), and one verifies at once that it satisfies condition (2)
in th. 2, § 3, i.e. that it is a factor-set. Any factor-set f defined in this
manner will be called a cyclic factor-set. Let @' be another locally con-
stant mapping of ® into R such that y(¢)=e(®'(0)) for all 6; let f’ be the
factor-set defined by @' and 6, just as f has been defined by @ and 6.
Put ¥ =& —&; clearly ¥ maps ® into Z; putting z(p,a)=60¥¢*"",
one sees at once that f'f ~! is the coboundary of z. This shows that the
class of the factor-set f, modulo the group B(K) of trivial factor-sets, is
uniquely determined by y and 6; it will be denoted by {x,6}, and every
such factor-class will be called cyclic.

PROPOSITION 8. For each 0 K™, y— {x,0} is a morphism of the group
of characters of ® into the group H(K) of factor-classes of K; for each
character y of ®, 0 {x,6} is a morphism of K™ into H(K).

This is obvious in view of our definitions.

Let K’ be a field containing K ; as in § 3, we assume that K is contained
in K’, and we denote by p the restriction morphism of G’ into ®, as well
as the morphisms for factor-sets and factor-classes derived from this in
the manner explained in § 3. If y is any character of ®, ¥’ = yo p is a charac-
ter of ®'; if x is of order n, the order n’ of ¥’ divides n; if  is the kernel
of y, the kernel of ' is § =p~ 1(9), and p determines an injective mor-
phism of &'/’ into &/ ; if L is the cyclic extension of K attached to y,
the cyclic extension of K’ attached to y' is the compositum of L and K';
it is cyclic of degree n'. Then, for every fc K™, we have:

Q] {x,0}0p={x0p.,0}.
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PROPOSITION 9. Let y be a character of ®, L the cyclic extension of K
attached to y, and A a simple algebra over K. Then A is trivial if and only
if the factor-class attached to A can be written in the form {y,0} with
feK™.

Call $ the kernel of y; it is the subgroup of ® corresponding to L.
If the factor-class attached to A is {y,0}, the one attached to A4, is given
by (7) when one takes for p the restriction morphism of § into & ; then
yop, being the character induced by y on $, is trivial, so that A; is trivial.
Conversely, assume that A4, is trivial; then, if n is the degree of L over K,
corollary 3 of th. 3, § 3, shows that, after replacing A by an algebra similar
to A if necessary, we may assume A to be of dimension n* over K. Let F be
an L-representation of A, induced on A by an isomorphism of 4, onto
M (L). As y is of order n, we may choose ae ® such that y(«)=e(1/n); then
®/% is generated by the image of o in that group. There is X e M, (L)™ such
that F*=X "' F X, hence, by induction on i, F*' = X; ! F X, if we put

X=XXx*.x""

for all i>0. Take i=n; as " induces the identity on L, F*" = F ; therefore
X, must be of the form -1, with 8e L*. Applying o to both sides of the
formula defining X, we get X*=X"1X, X, hence 6*=#, so that 0 is in
K. Take any ieZ and write it as i=nv+j with v, jin Z and 1 <j<n; if
then we write X;=6" X ;, one verifies easily that, for i>0, this coincides
with X, as above defined, that X,,,=6"-1, for ve Z, and that X, ;= X, X¢
for all i, j in Z. Take now a locally constant function @ on ® such that
1(0)=e(®(0)), hence nP(c)eZ, for all o, and put Y(p,0)= (X,00,-1)
for all p,o in ®. One verifies easily that Y, in relation to A and F, has the
properties required by th. 2 of § 3, and that the factor-set f determined
in terms of Y by (1) of th. 2 is the one given by (5) and (6).

PROPOSITION 10. Let y and L be as in proposition 9. Then the kernel of
the morphism 0 — {,0} of K™ into H(K) is Npx(L").

In the proof of proposition 9, take A= M ,(K); then we may take for
F the identity, and, as F*=F, we may take X =¢-1, with any e L™,
Then 0=N_ (&), and {x,6} is trivial, since 4 is so. Conversely, assume
6eK™ to be such that {y,0} is trivial. Take @ such that y(o)=e(®(0))
and 0< P(o)< 1 for all ¢; then ®()=i/n for 0<i<n—1, and & is H-
regular, so that, if we define f by (5) and (6), f is an H-regular factor-set.
As f is trivial, corollary 2 of th. 3, § 3, shows that it is the coboundary of
an $H-regular covariant mapping z of  x ® into Kg,, . As § is a normal
subgroup of ®, left cosets and right cosets of § in ® are the same; this
implies that, for all p, ¢ in ®, z(p,0) is invariant under all A€ $ and is
therefore in L*. For all e ®, put w(c)=z(¢,0), and put w,=w(a’) for all i.
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Then z(p,0)=w(c p~!)?. Write now that f(p,s,7), as given by (6) is equal
to the coboundary of z, as given by (3) of §3, for p=¢, o=0o, t=0a'"
for 0<i<n—2, we get l=ww,)*w;3i, and, for i=n—1, we get

O=w,_(w)"" 1 wg . Therefore =N (w,), which completes the proof.

Let y and L be as in propositions 9 and 10, $ and « as in the proofs
of these propositions. If @ is chosen as in the proof of prop. 10, we have
fl@ ™, 0" g)=1 or 6§ according as i<j or i>j, and in particular
f(e,e,e)=1. We now apply to this factor-set the construction described
in the proof of lemma 4, § 3, and define the algebra A4 as has been explained
there. As indicated above, the fact that here § is a normal subgroup of ®
implies that every $-regular covariant mapping of ® x ® into K,
maps ® x ® into L. For ieZ, define u; as the mapping of ® x ® into L
given by u,(p,6)=1 or O according as 6 p~ ! is in Ha "' or not; clearly u,c 4
and u, , ,=u, for all i, and u, is the same as the unit e=1, of A. One finds
atonce that, for 0<i,j<n—1,u;u;=u;, ;wheni+j<n—1land u;u;=0u;, ;
when i+j=n. As in the proof of lemma 4, define ¢x, for £eL, xe A, as
given by the mapping (p,6) —» £” x(p,0) ; one finds at once that Ex = (£ 1 4)x.
Similarly, define x¢ as given by the mapping (p,06)— x(p,0)¢%; then
x¢=x(¢-1,). Clearly {u;= u,&* for all Ee L and all i. As A has the dimen-
sion n? over K, it has the dimension n over L when considered either as a
left vector-space, by (£,x)— £x, or as a right vector-space, by (£, x)—x¢&.
Moreover, {ug,uy,...,u,_,} is a basis for both of these spaces; in fact,
if we put x=> &u; with &;eL for 0<i<n~1, we have x(e,a")=¢;, s0
that x=0 implies £;=0 for all i, and a similar proof holds for 4 as a
right vector-space. Finally, as has been observed at the end of the proof
of lemma 4, § 3, one can use the isomorphism @, of 4 into M,(K,.,)
which was defined there, and which is now an L-representation of A,
for the calculation of the reduced trace t and of the reduced norm v in A.
Taking {e,0"!,...,a™"*} as the full set a of representatives of G/$ in G
used in the definition of @,, we get at once, for all £e L:

®) (¢ 1)=Tryx(d): t(lu)=0 (I<ign—-1),
9) v(¢1)=Npk(S); vu)=(-1""0¢  (1<i<n-1).

PROPOSITION 11. Let L be a cyclic extension of K of degree n, and a
a generator of its Galois group over K. Let X be a left vector-space of
dimension n over L, with the basis {ug,u1, ..., u,_}. Then, for each e K*,
there is one and only one K-bilinear and associative mapping (x,y)—>xy
of X x X into X such that: (i) for all £e L and all xe X, Ex=(Euy)x and
Xtg=x; (il) u;=(u,)' for 1<i<n—1; (iii) (u,)' =0uy; (iv) Cuy =u, (Eu,).
This makes X into a simple algebra A over K, in which the reduced trace ©
and the reduced norm v satisfy (8) and (9), and the factor-class of K attached
to Ais {y,0} if y is the character of ® attached to L, such that y(x)=e(1/n).
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As all this has been proved above for the algebra 4 which we con-
structed there, it only remains for us to show that the conditions (i) to (iv),
together with the associativity, determine the multiplication uniquely.
In fact, by induction on i, (iv) gives &u;=u;(é* u,) for 0<i<n—1. Then,
using (i) and the associativity of the multiplication, we get, for
0<i,j<n—1andforall &,nin L:

(Cu)(n “j) = (Euo)(u;(nuo)) U;= (Cug)(n* i u)u;

:(5“0)(’1(14“0)“1'“1': f'laiiui“,’-

By (i), wuj=u; ;if i+j<n~1; by (ii) and (iii), w,u;=0u;, ;_, if i+j>n.
This shows that, using (i) to (iv) and the associativity, one can write
uniquely (Su;)(nu;) in the form {u, with {e L, which completes the proof
of our proposition.

DEFINITION 6. Assumptions and notations being as in proposition 11,
the algebra A defined there will be called the cyclic algebra [ L/K ;y,0].

An illustration for the above concepts, which will be considered more
closely in the following chapters, is provided by the division algebras
over a commutative p-field K. In fact, prop. 5 of Chap. I-4 may now be
interpreted as saying precisely that every such algebra D can be written
as a cyclic algebra [K,/K;y, 7], where K, is an unramified extension
of K, x a character attached to K,, and = a suitable prime element
of K. But now we can say more; prop. 10, combined with prop. 3
of Chap. VIII-1, shows that {y,¢} is trivial for £eR™, so that {y,n} is
independent of the choice of =; so is [ K;/K ;,7], since there can be only
one algebra of given dimension over K in a given class, up to an isomor-
phism.

As a further illustration for the above theory, we will apply it to the
field K =R. We may then identify K with C, and ® has only two elements,
the identity ¢ and the automorphism ¢ of C given by z—Z, and only one
non-trivial character y, given by y(s)= —1. The cyclic extension of R,
attached to y, is C. Combining now corollary 2 of prop. 3, § 1, corollary 3
of th. 3, § 3, and propositions 9 and 11, we see that every class of simple
algebras over R contains a cyclic algebra [C/R;y,0]. As the group
N¢r(C¥) is RY and is of index 2 in R*, prop. 10 shows that there are
exactly two such algebras, up to isomorphism, viz., a trivial one and the
algebra H=[C/R;y, —1]. The latter is a division algebra; in fact, it is of
dimension 4 over R; writing it as M (D), where D is a division algebra
over R, and calling d* the dimension of D over R, we get nd=2, hence
n=1since H is not trivial. Writing H in the manner described in prop. 11,
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we see that it has a basis over C consisting of two elements u,=1 and u,,
hence a basis over R consisting of 1, i, j=u, and k=iu, ; it is then trivial
to verify that the multiplication table for 1, i, j, k is the well-known one
for the “quaternion units” in the algebra of “classical” quaternions.

§ 5. Special cyclic factor-sets. Now we apply the results of §4 to the
characters attached to “Kummer extensions” and to “Artin-Schreier
extensions” of K.

In the first place, let n be such that K contains »n distinct n-th roots
of 1; then these make up a cyclic group E of order n; of course, if K is of
characteristic p> 1, our assumption implies that n is prime to p. Let ¥
be an isomorphism of E onto the group of n-th roots of 1 in C; this will
be determined uniquely if we choose a generator ¢; of E and prescribe
that  (¢;)=e(1/n). Take any £e K™, and let x be any one of the roots of
the equation X"=¢ in K ; then x is in K, and the equation X"=¢ has
the n distinct roots ¢x, with g E. In particular, for each 6 ®, x” must be
one of these roots, so that x*x~!isin E. Now put

X elO)=Y (x"x71);

as Ec K, the right-hand side does not change if we replace x by ex with
g€ E and is therefore independent of the choice of a root x for X"=¢. For
a similar reason, we have, for all p, 0 in G:

xP?x =P x ) (xx " H=(x"x")(x"x" 1Y),
and therefore
Xn, 0 0)= X, 6(0) 2, (0
which shows that y, , is a character of . Take now any neK”, and

call y a root of X"=n; then xy is a root of X"=¢#, and we have, for all
0e®:

ey (xy) t=x"x" D7y
and therefore

Xn,en= Xn,eXn,n>

which shows that é— y,, . is a morphism of K™ into the group of char-
acters of ®. It is obvious that y, , is trivial if and only if the equation
X"=¢ has one root, hence all its roots, in K, i.e. if £e(K™)"; in other
words, (K )" is the kernel of € — y, .. It would be easy to show that the
image of K* under that morphism consists of all the characters of ®
whose order divides n, but this will not be needed.

Now we put, for £ and § in K:

{503 =1{8,0},;
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this is known as “Hilbert’s symbol”; one should note that it depends
upon the choice of Y, or, what amounts to the same, of the generator ¢,
of the group E of n-th roots of 1 in K. By prop. 8, § 4, we have:

(10) {€€,0},={80}.{¢.0},,  {&,00,={5.60, {50,

for all £,&,0,6 in K*.

Call again x a root of X"={¢; clearly the kernel $ of x, . consists of
the elements ¢ of & such that x”=x, so that the corresponding subfield
of K., which is the cyclic extension of K attached to y, ., is L=K(x).
Call d the order of y, ; then yx, . determines an isomorphism of &/$
onto the group of d-th roots of 1 in C; d divides n, and it is also the
degree of L over K. Therefore the distinct conjugates of x over K, i.e.
its images under the d distinct automorphisms of L over K, are the ele-
ments ¢x, where ¢ runs through the group E’ of d-th roots of 1 in K.
Write e=n/d, and, for any {eK:

e—1
o= [T¢-ex),
v=0

where &,, as before, is a generator of E; as the &} for 0<v<e—1 are a full
set of representatives of the cosets modulo E' in E, we have:
Nyx(@)=[](—ex)={"~¢.
eckE

For {=0 and (=1, this shows that —¢ and 1—¢ are in N g(L). By
prop. 10 of § 4, this gives:

(11) {&.-&h=1, {{1-¢L=1,

these formulas being valid whenever they are meaningful, i.e. the first
one for all £e K™, and the second one for all 0,1 in K. In the first one,
replace & by &n with £, 1 in K™, and apply (10); we get:

{& =& {&nbe {n, =&} (nm},=1.

Here, by (11), the first factor is 1, and the last one is equal to {n, — 1}
applying (10) again, we get

(12) {&nlu{n8l=1,

which is known as “the law of reciprocity” for the symbol {&,5},. The
same could be proved by the explicit construction of the simple algebra
corresponding to the latter factor-class; we merely sketch the proof in
the case when the equations X" =¢, X"=y are both irreducible over K.
That being assumed, put L= K(x), where x is a root of X"=¢; let A be
the cyclic algebra [L/K; y, 7). By prop. 11 of §4, where we write now y
instead of u,, A has a basis over L consisting of the y/ for 0<j<n— 1, hence

n
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a basis over K consisting of the x*y’ with 0<i,j<n—1, with the relations
x"=¢&, y"=n, xy=¢, yx. If we exchange ¢ and 5, and also x and y, A4 is
clearly replaced by its inverse A°; this implies (12).

Now let K be of characteristic p>1; identify the prime field in K
with F,, and call  the character of the additive group of F, given by
¥(1)=:e(1/p). Take any £eK, and let x be any one of the roots of the
equation X — X?=¢; then xisin K., and that equation has the p distinct
roots x +a with aeF,. In particular, for each o€ ®, x” must be one of
these roots, so that x” —x is in F,. Now put

Xp,e(0) =Y (x7 —X);

as the right-hand side does not change if we replace x by x+a with
acF,, it is independent of the choice of x. A calculation, quite similar to
the one given above for y, ., shows that y,, . is a character of ®, and that
&— 1, is a morphism of the additive group of K into the (multiplicative)
group of characters of G ; the kernel of that morphism is the image of K
under the mapping & — & — £ of K into itself, and it would again be easy
to show that the image of that morphism consists of y=1 and of the
characters of ® of order p. Put now, for all £eK and all fe K™ :

{25,601 =1{5,0},-

Then we have:
(13) {E+¢,0},={8,0},{¢.0},, {£00},={,0}, {507,

for all £, & in K and all 6, ' in K*. Assume now that x is not in K;
then L=K(x) is the cyclic extension of K attached to x, ., and it is of
degree p over K; X?— X+ £=0 must then be the irreducible equation
for x over K, so that N x(x)=(—1)?¢= —¢£. By prop. 10 of § 4, this gives

(14) {59 _é}p:L

which is therefore valid whenever x is not in K. If xe K, y,,  is trivial, so
that (14) is still valid provided it is meaningful, i.e. provided £ #0. There-
fore (14) is valid for all £e K ™.



Chapter X

Simple algebras over local fields

§ 1. Orders and lattices. Let D be a division algebra of finite dimension
over any field K; we will consider left vector-spaces over D, whose
dimension will always be assumed finite and >0. If VV and W are such
spaces, we write Hom(¥, W) for the space of homomorphisms of ¥ into
W, and let it operate on the right on V; in other words, if « is such a homo-
morphism, and ve V, we write va for the image of v under «. We consider
Hom(V, W), in an obvious manner, as a vector-space over K ; as such, it
has a finite dimension, since it is a subspace of the space of K-linear
mappings of V into W. As usual, we write End(V) for Hom(V, V).

If V, V', V" are left vector-spaces over D, and agHom(V, V') and
BeHom(V", V"), we write aff for the morphism v—(va)f of V into V.
For V=V'=V", this makes End(V) into a ring; as before, we write
Aut(V) for End(V)*, this being the group of automorphisms of V. For
V=V, V'=W, we get for Hom(V, W) a structure of left End(V)-module;
for V'=V"=W, we get for Hom(V,W) a structure of right End(W)-
module.

Let D and V be as above; let d? be the dimension of D over K, and m
that of V over D. Take a basis {v, ..., v,,} of V over D; for each e End(V),
write v;¢=) x;;v;, with x;;€D for 1<i,j<m; this defines a mapping

E—(x;;) of énd(V) into M, (D), which is obviously an isomorphism of
End(V) onto M,,(D); in particular, this shows that End(V) is a simple
algebra of dimension m?d? over K. Obviously V, considered as a right
End(V)-module, is simple; therefore, by prop. 1 of Chap. IX-1, every
such module is a direct sum of modules isomorphic to V.

Let V and W be left vector-spaces over D; call m, n their dimensions;
put A=End(V), B=End(W), H=Hom(V, W). As H is a right B-module,
it is a direct sum of modules isomorphic to W; comparing dimensions
over K, one sees at once that it is the direct sum of m such modules.
Similarly, as a left A-module, H is the direct sum of n modules isomor-
phic to the dual space V'=Hom(V,D) of V, this being a simple left
A-module and a right vector-space of dimension m over D. One could
easily see that every endomorphism of H for its structure as a left
A-module is of the form A—A 8 with SeB, and that every endomorphism
of H for its structure as a right B-module is of the form A —»a 4 with ae A.
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Let D, Vand A=End(V) be as above, and let v be the reduced norm
in A; by corollary 1 of prop. 6, Chap. IX-2, the determinant of the endo-
morphisms x—ox and x—xa& of the underlying vector-space of A
over K, for any aeA, is v(2)™; in particular, « is in A* if and only if
v(a)£0.

If K is a local field, ‘all the above spaces, being vector-spaces of
finite dimension over K, can be topologized as such in one and only
one way, according to corollary 1 of th.3, Chap.I-2; conversely, by
corollary 2 of the same theorem, the requirement of finite dimensional-
ity over K could everywhere be replaced by that of local compactness.
If we write again A =End(V), the group 4™ =Aut(V) is the open subset
of A determined by v(x)# 0; as such, it is a locally compact group. More-
over, the Haar measure in it is right-invariant as well as left-invariant;
this is contained in the following lemma, which generalizes lemma 5
of Chap. VII-4:

LeEMMA 1. Let K be a local field; let D, V and A=End(V) be as above,
and let o be a Haar measure on A. Then the measure pu on A™, given by

dpu(x)=mody(N 4 (x)) ™~ dox(x) = modi(v(x)) ™ de(x)
is both left-invariant and right-invariant on A™.

This follows at once from corollary 1 of prop. 6, Chap. IX-2, com-
bined with corollary 3 of th. 3, Chap. I-2.

In the rest of this §, we assume that K is a commutative p-field;
D being a division algebra over K, hence also a p-field (a non-commuta-
tive one, unless d=1), we write R and R, for the maximal compact
subrings of K and of D, and P and P, for the maximal ideals in R and
in R,, respectively.

Let Vand W be as above; let Lbe a D-lattice in V, and M a D-lattice
in W; then we write Hom(V,L; W, M) for the set of all morphisms of
V into W which map L into M. Choose bases {vy,...,0}, {Wi,...,W,}
for V and W according to th.1 of Chap.II-2, i.e. so that L=) Ry
and M=Y R,w;. For each AieHom(V,W), we can write A=) x;;w;
with x;;€ D for 1 <i<m, 1 <j<n, and this determines a bijection A—(x;))
of Hom(V, W) onto the space M,, (D) of the matrices with m rows and n
columns over D; clearly A is then in Hom(V, L ; W, M) if and only if the
matrix (x;;) is in M, ,(Rp). In particular, this shows that Hom(V,L; W, M)
is a K-lattice in the space Hom(V, W) considered as a vector-space
over K, and also that it can be identified with the space of all morphisms
of Linto M for their structures as R-modules. We write End(V, L) for
Hom(V,L;V,L); this is a K-lattice and an open compact subring of
End(V), which may be identified with End(L). We write Aut(V, L) for
End(V,L)"; it is the group of automorphisms of L.
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PROPOSITION 1. Let K be a p-field, D a division algebra over K, V a
left vector-space over D, and L a D-lattice in V. Let v be the reduced norm
in the algebra A=End(V) over K. Then Aut(V,L) consists of the ele-
ments ¢ of End(V, L) such that modg(v(£))=1.

Take éeA; it is in A* if and only if v(£)£0. If m, d are as before,
the module of the automorphism x—x¢ of 4 is modg(v(€))™; as A, for
its structure as a right A-module, is the direct sum of m modules iso-
morphic to V, this implies that the module of the automorphism v—v ¢
of V is modg(v(¢))?. Now assume that ¢ is in End(V,L); then it maps L
onto a D-lattice L'=L¢& contained in L, so that the module of v—vé
is equal to [L:L"]~!. This shows that L=L’ if and only if modg(v(¢))=1,
which proves our proposition.

COROLLARY. Notations being as in proposition 1, Aut(V,L) is a com-
pact open subset of End(V,L) and of End(V) and a compact open sub-
group of Aut(V).

This is now obvious.

PROPOSITION 2. Let V be as in proposition1; let X be a multipli-
catively closed subset of End(V). Then X is relatively compact in End(V)
if and only if there is a D-lattice L in V such that X c End(V,L).

Let X be relatively compact in End(V); we may assume that it is
compact, since otherwise we replace it by its closure. Let L be any
D-lattice in V. Call L the set of the vectors ve L such that véeL for all
£e X ; clearly this is an Ry-module, hence closed, by prop. S of Chap. 11-2;
being contained in L, it is compact. As X i1s compact and L is open,
L' is open. Therefore L' is a D-lattice. As X is multiplicatively closed,
vfisin L for all ve L and all £e X, so that X = End(¥,L). The converse
is obvious.

PROPOSITION 3. Let V be as above, and let L, L' be two D-lattices in V.
Then either Aut(V,L) is not contained in End(V,L), or there is xeD*
such that L =x L.

By th. 2 of Chap. II-2, there is a basis {v,,...,0,} of ¥, and there are
integers v;, such that L=) Rpv, and L'=) Py'v,. Every permutation of
the v; determines an automorphism of V which belongs to Aut(V,L);
if all these are in End(V, L), all the v; must be equal; if v is their common
value, we have L'=m}, L for any prime element =, of D.

THEOREM 1. Let D be a division algebra over a p-field K, and let V
be a left vector-space over D. Then the maximal compact subrings of the
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algebra A=End(V) are the rings End(V,L), and the maximal compact
subgroups of A™ are the groups Aut(V,L), when one takes for L all the
D-lattices in V.

By prop. 2, a compact subring of End(V) must be contained in some
End(V, L), hence must be equal to it if it is maximal. Now assume that,
for some L, End(V, L) is contained in a compact subring X of End(V);
this, in turn, must be contained in some End(V,L). Then, by prop. 3,
L'=xL with some xeD*; this gives End(V,L)=End(V,L), hence
X =End(V,L). Similarly, a compact subgroup of A =Aut(¥V) must be
contained in some End(V,L), hence in End(V,L)", i.e. in Aut(V,L). If
this is contained in a compact subgroup X of Aut(V), X must be con-
tained in some End(V,L), and we get L'=xL and X =Aut(V, L), just as
before. In the conclusion of theorem 1, one might take for L, instead
of all the D-lattices in V, a full set of representatives for the equivalence
relation among D-lattices defined by L'=xL, xeD*.

Compact open subrings of a simple algebra over a p-field are also
called orders; thus, the first part of theorem 1 states the existence of
maximal orders in the algebra 4=End(V), viz,, all the rings End(V, L).
As we have seen above, these are all isomorphic to M, (Rp) if m is the
dimension of V over D; clearly they are the transforms of one another
under the automorphisms of ¥, since any basis of V over D can be trans-
formed into any other basis by such an automorphism. It amounts to
the same to say that they are the transforms of one another under the
inner automorphisms of A.

PROPOSITION 4. Let D be as above, and let V, W be two left vector-
spaces over D. Let M, M’ be compact open subgroups of Hom(V, W), and
let X be the set of the elements & of End(V) such that EM < M'. Then X
is a compact open subgroup of End(V); if M =M, it is a subring of End(V).

Obviously X is a subgroup of End(V), and a subring if M=M'".
As M is compact and M’ is open, X is open. Now put H=Hom(V, W).
As M is open, it contains a basis {y,,...,4,} for H regarded as a vector-
space over K. If now we regard H as a left End(V)-module, the annihila-
tor of that basis in End(V) is the same as that of H, hence {0} since
End(V)is simple and Wis not {0}. Therefore the mapping & —(& ..., E )
of End(V) into H'=H x--x H is injective, hence an isomorphism of
End(V) onto its image in H', for their structures as vector-spaces over K,
hence also for their topological structures. This implies that the set X’
of the elements ¢ of End(V) such that &u,e M’ for 1<i<r is compact.
As'Xisa subgroup of X’ and is open in End(V), it is an open subgroup
of X', hence closed in X’, hence compact.
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For M =M, the ring X defined by proposition 4 is called the left
order of M. Exchanging right and left, we see that the set Y of the ele-
ments 7 of End(W) such that My<M is a compact open subring of
End(W); this is called the right order of M. Now we show that, if one
of these orders is maximal, the other is also maximal. This is contained
in the following:

THEOREM 2. Let K and D be as in theorem 1; let V, W be two left
vector-spaces over D, and let L be a D-lattice in V. Let N be a compact
open subgroup of Hom(V,W) such that ¢EN<N for all ¢ in End(V,L).
Then there is a D-lattice M in W such that N=Hom(V,L;W,M), and
the left and right orders of N are End(V, L) and End(W, M), respectively.

By th. 1 of Chap. II-2, we can choose a basis {v,,...,1,,} of V over D,
so that L=Y Rpy;; then, as explained above, we can use this basis for
identifying End(V) with M,,(D) and End(V, L) with M,,(R}), by assigning
to each element ¢ of End(V) the matrix (x;;) given by v;£=) x;;v;. Now
consider the mapping a—(v, a,...,v,,0) of Hom(V,W) into the direct
sum W™ of m spaces isomorphic to W; clearly it is a bijection of
Hom(V, W) onto W™; call it ¢, and put N'=¢(N), where N is the set
in theorem 2. If « is in Hom(V, W) and ¢(x)= (wl, .>w,,), and if £ and
(x;;) are as above, then (&) =(W],...,w,,), with w] quwj for 1<i<m;
by our assumption on N, this must be in N " whenever (w,,...,w,,) is in N !
and all the x;; are in R,. Writing e;; for the “matrix unlts” in M, (D),
as defined in the proof of th. 1, Chap IX-1, take first for (x;;) the matrix
unit ey, ; then we see that, if (w,,...,w,,) is in N’, every one of the elements
©,...,0,w,,0,...,0), for 1<h<m, must also be in N’. This is the same
as to say that, if we call W,, ..., W,, the m summands of W™, and if we
put Ny=N'nW, for 1<h<m, we have N'=Y N;. Similarly, taking for
(x;;) the matrix unit e,,, we see now that N;=Nj for all h and k; put
M =N, for any h. Finally, taking for (x;;) the matrix x-1,, with xeR,,
we see that M is an Rj-module. As N is open and compact in Hom(V, W),
N’ isso in W™ hence N, in W,, and M in W ; therefore M is a D-lattice
in W. Now we see that an element « of Hom(V, W) is in N if and only if
v;aisin M for 1 <i<m;thisis the same as to say that N=Hom(V, L; W, M).
Then the left order and the right order of N contain End(V,L) and
End(W, M), respectively; as the latter are maximal orders, this com-
pletes our proof.

COROLLARY 1. Let A be a simple algebra over K, R, a maximal com-

pact subring of A, and I a left ideal in R,. Then I is open in A if and only
if it can be written as =R o with xe R ,n A*.
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We may assume that 4 =End(V), where V is as in theorem 2; then,
by th. 1, we may assume that R ,=End(V, L), where L is as in theorem 2.
If I is open, we may apply theorem 2 to it, taking W=V and N=1I;
this gives I =Hom(V, L;V,M), where M is a D-lattice in V. Take bases
{01, 50}, {Wi,...,w,} Of ¥, so that L= R,y and M=) R,w, and
call ¢ the automorphism of ¥V which maps the former basis onto the
latter one. Then M=L¢ and I=R,¢&; as ¢ is in 1, it is in R,. The con-
verse is obvious.

COROLLARY 2. Let A and R, be as in corollary 1, and let J be a com-
pact two-sided R,-module in A, other than {0}; then J is open in A. If
A=End(V) and R,=End(V,L), with V and L as in theorem 2, then J
can be written as J=Hom(V,L;V,n} L), where veZ and ny is a prime
element of D.

As R, is a K-lattice in 4, we can choose a basis {a,,...,ay} of 4
over K, consisting of elements of R,. If £ is in A and not 0, the two-sided
ideal generated by £ in 4 is A, since A is simple; therefore the elements
a;Ca;, for 1<i, j< N, generate A as a vector-space over K, so that the
R-module they generate in A is a K-lattice, hence open. This implies
that the set J in our corollary must be open; then, by theorem 2, we
can write it as J=Hom(V,L;V,M), where M is a D-lattice in V such
that End(V, M) contains End(V,L). By prop. 3, this gives M =x L with
xeD* ; we have then M ==}, L for v=ord(x).

If Vand W are as in theorem 2, any set N with the properties des-
cribed there, i.e. any set which can be written as N=Hom(V,L; W, M)
for suitably chosen D-lattices Lin V and M in W, will be called a normal
lattice in Hom(V, W).

§ 2. Traces and norms. As before, we consider a local field K, a
division algebra D of dimension d? over K, and a simple algebra A
over K, isomorphic to M,,(D) for some m>1; we denote by t and 1,
the reduced traces in A and in D, and by v and v,, the reduced norms
in A and in D, respectively. We begin by considering the case of a p-field.

PROPOSITION 5. Let K be a p-field; let D be a division algebra of
dimension d* over K; let Ry, be the maximal compact subring of D, and
let m, be a prime element of D. For any m=1, put A=M,(D) and
R,=M,,(Rp), and let T be the reduced trace in A. Then the set of the
elements x of A, such that 1(xy)eR for all yeR,, is ®R,=R o, with
w=nrp"91,.

Consider first the case m=1, A=D, R,=R,,. As has already been
observed in Chap. IX-4, we may use prop. 5 of Chap. I-4 to describe D
as a cyclic algebra [K,/K;y,n] over K, where K, is an unramified
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extension of K of degree d, y a character attached to that extension,
and 7 a prime element of K; then a comparison of that proposition
with the definition of a cyclic algebra in prop. 11 of Chap. IX-4 shows
that u,, in the latter proposition, is a prime element of D. We may now
substitute u, for m,, as this does not affect the statement in our proposi-
tion, and write therefore n,=u,, hence, with the notations of prop. 11
of Chap. IX-4, u;=n}, for 0<i<d—1 and n=xf. Call R, the maximal
compact subring of K;; by (b) in prop.5 of Chap.I-4, R, is the left
R,-module generated by uy,...,u, ,; therefore any xeD has the pro-
perty stated in our proposition if and only if t(x#7})eR for all neR,
and for 0<j<d—1. Again by (b) in prop. 5 of Chap. I-4, we may write
x=Y &nb with {,eK, for 0<i<d—1. Using formula (8) of Chap. IX-4

for the reduced trace 75 in D, we get, for j=0, Trg (on)eR for all
neR;; by prop. 3 of Chap. VIII-1, this is so if and only if £,€ R . Similar-
ly, for 1<j<d—1, our condition can be written as Tr, (¢, ;7' T)eR
with n'=n’, f=a/~%; as every automorphism f of K, maps R, onto
itself, this must be so for all #'eR,, and this, just as before, is equivalent
to {,_,en™' R,. Therefore the set defined in our proposition is the
R,-module generated by 1,7 'n,,...,n 7% !, ie. by the elements
wpmh for 0<i<d—1if w,=nr) ™% In view of (b) in prop. 5, Chap. I-4, this
completes our proof for the case m=1. For m> 1, our conclusion follows
immediately from this and from corollary 2 of prop.6, Chap.IX-2,
which says that 7(x)=) 7,(x;) for x=(x;;) in A.

COROLLARY 1. Assumptions and notations being as in proposition 5,
let y be a character of K of order 0, and identify A with its topological
dual by putting {x,y)=yx(t(xy)). Then the dual K-lattice to R, is ®R,.

In fact, this dual lattice is defined as the set of the elements x of 4
such that y(t(xy))=1 for all yeR,. As t is K-linear, this is the same
as to say that y(z(xy)z)=1 for all yeR, and all ze R, hence, by prop. 12
of Chap. I1-5, the same as t(xy)eR for all yeR,.

COROLLARY 2. Let A be a simple algebra over K; let T be the reduced
trace in A, y a character of K of order 0, and identify A with its topologi-
cal dual by {x,y)> = y(t(xy)). Let M and M’ be two K-lattices in A, dual
to each other in A. Assume that both M and M’ are subrings of A. Then A
is trivial over K, M is a maximal compact subring of A, and M=M'.

By th. 1 of § 1, M is contained in some maximal compact subring R,
of A, and we may, by using a suitable isomorphism of A with an algebra
of the form M,,(D), identify 4 with M, (D) and R, with M, (R,), where
notations are as in proposition 5. As M <= R,, corollary 1 shows now
that M'>wR,> Ry, hence, by th.1 of § 1, M'=wR,=R,. Clearly this
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implies that d=1, i.e. that A4 is trivial, and then, again by corollary 1,
that M=R,.

ProrosITION 6. Let K be a p-field, A a simple algebra over K, and v
the reduced norm in A. Then v(A*)=K".

By corollary 3 of prop. 6, Chap. IX-2, it is enough to consider the
case A=D; then, just as above, we can write D as a cyclic algebra and
use for v, the formula (9) in Chap. IX-4. With the same notations as
above in the proof of prop. S5, this shows, firstly, that v,(D*) contains
N, x(R}), which is the same as R* by prop. 3 of Chap. VIII-1, and
secondly that it contains vp(u;)=mn. As K™ is generated by R* and =,
this proves our proposition.

In the case of R-fields, the conclusion of proposition 6 is of course
valid for A=M,,(K) with K=R or C, but not for K=R and A= M, (H).
In fact, as we have seen in Chap. IX-4, the algebra H of “classical”
quaternions has a basis over R, consisting of the “quaternion units”
1, i, j, k, with the relations i*= —1, j>*= —1, k=ij= —ji, which imply
k*=—1, i=jk= —kj, j=ki= —ik. Clearly the R-linear bijection x—X
of H onto itself which maps 1, i, j, k onto 1, —i, —j, —k is an antiautomor-
phism, i.e. it maps xy onto yX for all x, y. In order to determine the
reduced trace 7 and the reduced norm v in H, one needs a C-represen-
tation F of H. By applying some of the results in Chap. IX, or by a direct
computation, one finds that such a representation is given by

o ro-(3 0 e (28) mw-(0)

Then one finds at once, for x=t+ui+vj+wk, with ¢, u, v, w in R:
X)=x+x=2t, v(x)=xX=Xx=02+u’+v>+w.

This shows that v maps H* onto R} ; by corollary 3 of prop. 6, Chap. IX-2,
the same is therefore true for A=M,,(H) for any m=>=1.

§ 3. Computation of some integrals. Here, in preparation for the
computation of the zeta-function of a simple algebra in Chapter XI, we
carry out some local calculations, generalizing the results of prop. 11,
Chap. VII-4, and of lemma 8, Chap. VII-6.

Take first a p-field K and a division algebra D over K. Call R, the
maximal compact subring of D, P, the maximal ideal in Ry, and 7, a
prime element of D. For each ¢>0, choose a full set A(e) of represen-
tatives of the classes modulo Pj§in R;,. Now, for a given m> 1, we define
three subsets I, ', T” of M, (D), as follows. By I, we understand the
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group of “triangular” matrices in M,,(D)*, consisting of the matrices
t=(t;;) such that t;;=0 for 1<j<i<m, and t;#0 for 1<i<m. By ¥,
we understand the subset of I, consisting of the matrices t=(t,)) in T,
such that ¢;;€ Ry, for all i, j, and that each t;;, for 1<i<m, is of the form
ng with ¢;>0. By T, we understand the subset of ', consisting of the
matrices ¢=(t;;) in ', such that t;;e A(e)) for 1<i<j<m, e; being given
by t;;=n3. With these notations, we have:

LeEMMA 2. Let V be a left vector-space of dimension m over D; let L
be a D-lattice in V, and let {v;,...,v,} be a basis of V such that L= Rpv,.
Let L' be a D-lattice in V, contained in L. Then there is one and only one

basis {v;,...,v,,} of V, such that L= Rpv} and that vj =Y t,;v; for 1<i<m,
j

with a matrix t=(t;;) belonging to the set T".

For 1<i<m, call W, the subspace of V generated by v,,...,v,. Let
{Wi,...,w,} be any basis of ¥, and write it as w;=) x,;v;. Clearly the
matrix x=(x;;) is in I, i.e. it is triangular, if and only if, for each i
{w;...,w,} is a basis of W,. By th. 1 of Chap. II-2, one can choose such
a basis for which L'=) R,w;; then, since L'cL, all the x;; are in R,
Write x;;=y;ny, with y,eR}, and ¢;€Z, for 1<i<m, and replace the w;
by the vectors y; ' w;, which obviously have the same properties ; after
that is done, the matrix (x;;) is in T". Assume now that there are vectors
Uj5---» Uy such as required by the lemma, and write vj=3 z;;w;; clearly
the matrix (z;;) must then be triangular, and, as L'=) Ryvj=) Rpw, it
must be in M,,(Rp)*; for a triangular matrix (z;;), the latter condition
is fulfilled if and only if z;€ Ry, and z;;e Ry, for all i, j. Then the coefficient
of v; in v is z; 7§, and, as this must be of the form =%, we must have
z;=1. Now, for 1<i<j<m, the coefficient ¢;; of v; in v} is given by

ji—1
Lij=X;;+ Z ZinXpj + 2 T8,
h=i+1

and the proof of the lemma will be complete if one shows that the z,;,
for 1<i<j<m, can be uniquely chosen in R, so that t;cA(e;) for

I<i<j<m. For each value of i, this can be verified at once by induc-
tiononjfori+1<j<m

LEMMA 3. The set X" is a full set of representatives for those left
cosets of M, (Rp)* in M, (D) which are contained in M, (Rp).

Take a left vector-space V of dimension m over D, a D-lattice L
in V, and a basis {v;,...,,} of ¥ such that L=) R, v;; as before, identify
End(V) with M,,(D) by assigning, to each {cEnd(V), the matrix (x;;)
given by v;£=)"x,;v;: put A=End(V) and R,=End(V,L); then R, =
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=M, (Rp), and R}, i.e. M, (Rp)™, consists of the automorphisms ¢ of
V such that L &= L. Therefore two elements o, § of 4™ belong to the
same left coset of R} if and only if La=L f; that left coset is contained
in R, ifand only if Lac L. At the same time, by lemma 2, every D-lattice
L'of ¥V, contained in L, can be written in one and only one way as ) R, v;
with vj=)t,v; and (r;)eT"; this is the same as to say that it can be
written in one and only one way as Lt with 1eX", which proves our
lemma.

PROPOSITION 7. Let K be a p-field with the module q; let D be a division
algebra of dimension d* over K. Let A be a simple algebra over K, isomorphic
to M, (D). Let R , be a maximal order in A, and ¢ its characteristic function.
Let v be the reduced norm in A, and let u be the Haar measure in A™ such
that pu(R%) =1. Then the integral

I(s)= | p(x)modg(v(x))d u(x),
AX

where seC, is absolutely convergent for Re(s)>d(m— 1) and has then the

value
m—1

I)=[[A-g"""
i=0
As before, identify A with End(V) and R, with End(V, L), where V is
a left vector-space of dimension m over D, and L a D-lattice in V. By
prop. 1 of § 1, the integrand in I(s) is constant on left cosets of R} in 4™ ;
in view of the definition of p, this gives:

I(s)= Y. mod(v(v)),

the sum being taken over any full set of representatives of those left
cosets of R} in A which are contained in R,, and for instance over
the set T” supplied by lemma 3. If we identify now 4 with M,,(D) and
R, with M, (Rp) as before, T" consists of the triangular matrices ¢ =(t;;)
such that t;;=n7 and t;;e A(e;) for all i, j, the e; being integers >0. By
corollary 2 of prop. 6, Chap. IX-2, we have then v(¢)=[ [ vp(t;) =vp(rnp)®
with E= Zei, vp being the reduced norm in D; as we have seen in §2,
vp(mp) is a prime element of K if n;, has been suitably chosen, and this
implies that the same is true for any choice of n;,. This gives modg(v(t))=
=g~ . On the other hand, prop. 5 of Chap. I-4 shows that the module of
Dis g% so that,for each e>>0, the set A(e) consists of ¢* elements. Therefore,
for a given set of integers ey, ..., e,, there are ¢*" matrices teT”, with
N =Y (i—1)e;. Thus we get:

9= T1( 3 o).

i=1 \e=0
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Clearly this is absolutely convergent for Re(s)>d(m—1) and has then
the value stated in our proposition.

CoRrOLLARY. Let I(s) be as in proposition 7, and let 1y(s) be similarly
defined for the algebra Aq=M,(K) with n=dm. Then we have, for
Re(s)>n—1:

I = [] (U—¢").

This follows at once from proposition 7.

We will also need the corresponding results for algebras over R-
fields. Here we have either K=R, and D=R or H, or K=D=C. In all
three cases, x— X is an antiautomorphism of D such that xx>0 for all
xeD™; it is the identity if D=R, the non-trivial automorphism of C
over R if D=C, and it is as defined at the end of § 2 if D=H. As usual, if
x=(x;;) is any matrix in M, (D), we write ‘x for its transpose, and X for
the matrix (X;;); then x—'X is an antiautomorphism of M,,(D). We will
write T for the set of all triangular matrices (¢;;) in M, (D) such that
t;€R} for 1 <i<m; clearly this is a subgroup of M, (D)*. Now let V be
a left vector-space of dimension m over D. For the sake of brevity, and
although this does not quite agree with the established usage, we will
say that a mapping f of V' x V into D is a hermitian form on V if there is a
basis {vy, ..., v,,} of ¥ such that, for all x;, y; in D:

f(zxivia Zyivi)z inj;i;

every basis of V' with that property will then be called orthonormal for
/. One sees at once that a basis {w,, ..., w,} is orthonormal for f if and
only if f(w;,w;)=4,; for all i, j, or even if this is so merely for 1 <i<j<m.
We topologize the space of all hermitian forms on V by the topology of
“uniform convergence on compact subsets” of V' x V; in other words, for
each compact subset C of Vx V, and each &> 0, the set of the hermitian
forms f such that mod,(f'—f)<e on C is to be a neighborhood of f,
and these make up a fundamental system of neighborhoods of f in the
space of hermitian forms.

LEMMA 4. For D=R, H or C, let V be a left vector-space over D, with
the basis {v,, ..., v,,}, and let f be a hermitian furm on V. Then there is one
and only one orthonormal basis {vy,...,v,} for f such that v;=3t,v,
with (t;;)€X, and it depends continuously upon f.

The proof is straightforward, and so well known that it may be
omitted here.
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Let Vbeasabove;let fbe a hermitian form on ¥V, with the orthonormal
basis {vy,..., U,}. Let {w,,...,w,} be a basis of ¥, given by w,=3 u;;v;
with u=(u;;)e M, (D); a trivial calculation shows at once that this is
orthonormal for f if and only if u-'#u=1,,; clearly the matrices u with
that property make up a compact subgroup of M, (D)*, which we will
denote by U. Now let o be any automorphism of V; we will write f*
for the transform of f by «, i.e. for the mapping defined by f*(v,w)=
=f(va~,wa ') forall v, win V; this is a hermitian form, with the ortho-
normal basis {v,«,...,v,a}. Clearly, when we identify 4=End(V) with
M (D), as before, by means of the basis {v,,...,v,,}, U is the subgroup of
A" =M, (D) consisting of the automorphisms ¢ of V such that f¢=f.

LeMMA 5. The subgroups T and W of A* =M, (D)™ being as defined
above, the mapping (u,t)—>ut is a homeomorphism of UxT onto A ™.

Let V, f and the orthonormal basis {v,,...,v,} be as above; use that
basis again to identify A =End(V) with M, (D), hence A* with M, (D).
Leto, fbein A ; we have f*=f* if and only if f=f#*"", i.e. if and only
if B~ "ell, or fella. Now, for any xe A~ , apply lemma 4 to f?; it shows
that there is one and only one matrix (r;)eT¥ such that the vectors
v;= t;v; make up an orthonormal basis for f* This is the same as to
say that the automorphism 7 of ¥ which corresponds to that matrix, i.e.
which maps {v,...,v,} onto {v},...,v,}, transforms f into f*=f"
Moreover, by lemma 4, the matrix (t;;) depends continuously upon [,
hence upon «. Expressing this in terms of the matrices x, u, t in M,,(D)*
which correspond respectively to «, at~! and 1, we get the assertion in
our lemma.

LEMMA 6. Notations being as in lemma 5, let u be a Haar measure
on A™. For every continuous function F with compact support on X, call
F' the function on A™ such that F'(ut)=F(t) for all ue Wand all teX.
Then F' is continuous with compact support on A, and there is a right-
invariant measure 6 on T such that fF’d,uszdB for all F.

The first assertion follows at once from lemma 5 and the compacity
of the group U. Then, as u is right-invariant on A* by lemma 1, §1,
it is obvious that the mapping F— | F'du is invariant under right trans-
lations in . By the theory of the Haar measure, this shows that 0 is
the image of a Haar measure, i.e. of a left-invariant measure on I,
under the homeomorphism t—t~! of T onto itself.
LemMA 7. Let « be a Haar measure on D; put 6=[K:R], and write,
Jor t=(t;))eX:
do(ry =[] (7" tdey) - ] dalty).
i=1 1<i<j€m

Then this defines a right-invariant measure on X.
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As 8d? is the dimension of D over R, corollary 2 of th. 3, Chap.I-2,
shows that, for every aeRY, the module of the automorphism x—xa
of D is a®®. A straightforward computation shows then at once, firstly
that the measure 0 in lemma 7 is invariant under t—tt' for every diagonal
matrix €3, and secondly that it is invariant under t—tt” for every
matrix t"=(t})€T such that £{;=1 for 1<i<m. As every matrix in T
can be written in the form ¢'¢”, this proves our lemma.

PrOPOSITION 8. Take K=R and D=R or H, or K=D=C; call § the
dimension of K over R, and d* that of D over K. Call 1 the reduced trace
and v the reduced norm in the algebra A= M (D) over K. Let u be a Haar
measure in A . Then the integral

I(s) = fexp(—ndt('x- x)) mod g (v(x))* du(x)

is absolutely convergent for Re(s)>d(m—1), and, for a suitable choice of
U, it has then the value

m-1

I(s)=(ndd)"™%2 T] I' (8d(s—di)/2).
i=0
Clearly the first factor in the integrand of I(s) is constant on left

cosets of M in 4. Now, for any uell, put z=v(u). If D=K, this means
that z=det(u), so that ue U implies zZ=1, hence modg(z)=1. If K=R
and D=H, we have, for all xe 4, v(x)=det(F(x)), where F is an iso-
morphism of 4 into M,,(C); but then x—'F(’X) is also such an iso-
morphism, so that v('X)=v(x); this implies that, for uell, v(u)>=1, and
therefore v(u)=1 since we have seen in §2 that v maps M, (H)* into
R. Therefore, in all cases, the second factor in the integrand of I(s)
is also constant on left cosets of W in 4 ™. That being so, lemmas 6 and
7 show that, for a suitable choice of u, I(s) is the same as the integral
with the same integrand, but taken on I with the measure df(t). The
reduced trace 7, in D is given by 7,(x)=x if D=K, and t,(x)=x+X
if K=R and D=H; in view of corollary 2 of prop. 6, Chap. IX-2, we
have now, for t=(t;)eX:

T('[_'I)Zd’ Z Liitijs V(1) = l_[ (tii)d'
1<ig<jsm 1<ism

This gives:

m + o0 m(_:m—ll

Is)=1] ( | exp(—mdde?) ts"_ldt> . (j exp(—n:éd?t)da(t))
i=1 V] D

with s;=dd(s—di+d) for 1<i<m. The last factor is independent of

sandis >0. The other factors can be transformed into the usual integral

for the gamma function by an obvious change of variable. Up to a
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constant factor >0, which can be rendered equal to 1 by changing the
Haar measure y, the result is that stated in our proposition.

COROLLARY. Assume, in proposition 8, that K=R and D=H; let
I(s) be as defined there, and let 1,(s) be the similarly defined integral for
the algebra Ag= M ,(R) with n=2m. Then we have, for Re(s)>n—1:

191" =y [ s—h

O<h<n
h#£0(2)

with a constant y>0.
This is an immediate consequence of proposition 8 and of the iden-
tities
S s+1
T'(s+1)=sTI(s), F(s)=n_1/223_1F<2> F(T)

from the theory of the gamma function.



Chapter XI
Simple algebras over A-fields

§ 1. Ramification. In this Chapter, & will be an A-field; we use all
the notations introduced for such fields in earlier Chapters, such as
ka, k,, r,, etc. We shall be principally concerned with a simple algebra
A over k; as stipulated in Chapter IX, it is always understood that A
1s central, i. e. that its center is k, and that it has a finite dimension over
k; by corollary 3 of prop. 3, Chap.IX-1, this dimension can then be
written as n?, where n is an integer > 1. We use A, as explained in Chap-
ters IIT and IV, for the algebra A,=A®k, over k,, where, in agreement
with Chapter IX, it is understood that the tensor-product is taken over
k. By corollary 1 of prop. 3, Chap. IX-1, this is a simple algebra over
k,; therefore, by th.1 of Chap.IX-1, it is isomorphic to an algebra
M,,.,(D(v)), where D(v) is a division algebra over k,; the dimension of
D(v) over k, can then be written as d(v)?, and we have m(v)d(v)=n;
the algebra D(v) 1s uniquely determined up to an isomorphism, and
m(v) and d(v) are uniquely determined. One says that A4 is unramified or

ramified at v according as A, is trivial over k, or not, i. e. according as
dv)=1ord(w)>1.

THEOREM 1. Let A be a simple algebra over an A-field k; let o be a finite
subset of A, containing a basis of A over k. For each finite place v of k,
call a, the r,-module generated by a in A,. Then, for almost all v, A, is
trivial over k,,, and o, is a maximal compact subring of A,.

By corollary 1 of th. 3, Chap. I1I-1, we may assume that « is a basis of
A over k, and that 1, belongs to it. Call £ the reduced trace in A; by prop. 6
of Chap. IX-2, it is not 0, and its k,-linear extension to A4, is the reduced
trace in 4,. By lemma 3 of Chap. 111-3, we may identify the underlying
vector-space of A over k with its algebraic dual by putting [x,y]=1(xy).
Now, as in th. 3 of Chap. I'V-2, take a “basic character” y of k,. By corol-
lary 1 of that theorem, y, is of order 0 for almost all v; by corollary 3 of
the same theorem, the k -lattice a, is its own dual for almost all v, when 4,
is identified with its topological dual by putting {x,y) =y, (t(xy)). By
corollary 2 of th. 3, Chap. I1I-1, «, is a compact subring of 4, for almost
all v. Therefore, at almost all places v of k, the assumptions of corollary 2
of prop. 5, Chap. X-2, are valid, the conclusion being as stated in our
theorem.
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The first part of theorem 1 can be expressed by saying that 4 is unra-
mified at almost all places of k. The object of § 2 will be to show that it
cannot be unramified at all places of k unless it is trivial.

§ 2. The zeta-function of a simple algebra. Let all notations be as
in§ 1, and let a be a basis of 4 over k. By th. 1 of § 1, «, is 2 maximal com-
pact subring of 4, for almost all v; therefore we may, for each finite place
v of k, choose a maximal compact subring R, of 4,, in such a way that
R,=a, for almost all v; that being done, call @, the characteristic function
of R,. For each infinite place v of k, choose an isomorphism of A, with
M, ,(D(v)), where D(v) is R, H or C, as the case may be; identifying 4,
with the latter algebra by means of that isomorphism, define @, on A,
by putting, for all xeA,, ®,(x)=exp(—ndt('x-x)), where notations are
the same as in prop. 8 of Chap. X-3. Then @=] | @, is a standard function
on A,. Taking now a Haar measure u on Ay, we have:

PROPOSITION 1. The integral
Z ()= §¢(Z)IV(Z)I,§d#(Z)

Ax

is absolutely convergent for Re(s)>n and is then given by the formula

zA(s>=cf1j()Zk(s—i)-H( T a=g)( I s=h),

O<h<n O<h<n
h#0(d(v)) h#0(2)

where Z, is the function defined in theorem 3 of Chap. V11 -6, or the zeta-
function of k, according as k is of characteristic O or not, where p is the
number of real places v of k for which D(v)=H, and C is a constant >0.

For each v, choose a Haar measure y, on A, so that u,(R})=1 for
all finite places v of k; we may then assume that we have taken u=[]p,,
in the same sense as has been explained in Chap. VII-4 for the case
A=k. By following step by step the proof of prop. 10, Chap. VII-4, one
finds that the integral Z ,(s) is absolutely convergent, and equal to the
infinite product

[TU 2V (%)),

v Al
whenever the factors in that product, and the product itself, are absolutely
convergent. Those factors have been calculated in propositions 7 and 8
of Chap. X-3; the absolute convergence of Z ,(s) for Re(s)>n is then an
immediate consequence of the latter results, combined with prop. 1 of
Chap. VII-1. The same results, combined with the definitions in Chap.
V1I-6, give now the final formula in our proposition for the case A=M,(k);
combining this with the corollaries of propositions 7 and 8 of Chap. X-3,
one obtains at once the general case of the same formula.
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One should note that the middle product, in the formula for Z ,(s) in
proposition 1, is a finite one by th.1 of § 1, since that theorem shows that
d(v)=1 for almost all the places of k. It should also be pointed out that
the computation of the constant C in that formula, for an explicitly given
Haar measure p on A}, offers no difficulty, and that it is important for
some purposes, €. g. for the determination of the “Tamagawa number” of
the subgroup A" of A given by v(x)= 1. As this lies beyond the scope of
the present volume, it will not be pursued any further.

PROPOSITION 2. Let D be a division algebra of dimension d? over k,
and let Z ;(s) be defined as in proposition 1. Then, if k is of characteristic 0,
Z 5(s) has no other pole than s=0 and s=d; if k is of characteristic p>1
and has the field of constants F,, Z(s) has no other pole than the zeros

of =g~ (1—¢q"7°).

This will be proved by following step by step the proof of th. 2, Chap.
VII-5. In analogy with that proof, it will be convenient to adopt the follow-
ing notations. For ze D} and seC, write w(z)=|v(z)|i; w, is then a
morphism of Dy into R} . For éeD™, v(€) is in k* ; therefore, by th. 5 of
Chap. 1V-4, w, is trivial on D*. Consider first the case where k is of
characteristic p > 1; by prop. 6 of Chap. X-2, v maps D, onto k], for all v,
so that w, maps D; onto the subgroup of R} generated by g, ; by corol-
lary 6 of th. 2, Chap. VII-5, this implies that w, maps D X onto the sub-
group of RY generated by g, if F, is the field of constants of k. In that case,
take z,e Dy such that w,(z,)=g¢, and call M the subgroup of D} gen-
erated by z,; then Dy is the product of M and of the kernel D} of w,.
On the other hand, if k is of characteristic 0, call M the subgroup of k
defined in corollary 2 of th. 5, Chap. IV-4; k being identified with the
center of D, kj is to be considered as a subgroup of D, ; as v(z)=z* for
zek, the corollary we have just quoted shows that w; maps M onto R, so
that Dy is again the product of M and of the kernel D} of w,. In both
cases, th. 4 of Chap. IV-3 shows that D}/D* is compact.

As in the proof of th. 1, § 1, take a basic character y of k, ; identify D,
with its topological dual by {x,y> = x(z(xy)), and, for each v, identify D,
with its topological dual by {x,y> =y,(t(xy)). For each v, call «, the self-
dual Haar measure on D, ; then, by corollary 1 of th. 1, Chap. VII-2, the
measures «, are coherent, and a =] [a, is the Tamagawa measure on D,.

Let again & =] [, be the standard function on D, which was used
above in the construction of Z(s), and let ¥ =[] ¥, be any standard
function on D,. Call Z(¥,s) the integral obtained by replacing ¢ by ¥ in
the definition of Z,(s); with the present notations, this can be written:

Z(¥,9)=[ Y(D)o,2)duz).

A
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It will now be shown that this is absolutely convergent for Re(s)>d and
that it can be continued as a meromorphic function in the whole s-plane,
with no other poles than those mentioned in proposition 2; this will then
contain that proposition as a special case. As to the convergence, we have
¥, =, for almost all y, by the definition of a standard function. For every
finite place v of k, the support R, of @, is an open subgroup of D, and the
support S, of ¥, is compact; then, choosing a €k, such that a,S,<R,,
and putting y,=sup |¥,|, we have |¥ (x)|<y,®P(a,x) for all xeD,.
Similarly, the definition of standard functions shows at once that, for
any infinite place v, one can find ¢, and y, in R} such that |¥ (x)]| <
<y, (e, x) for all xeD,. This shows that there is acky and yeR}
such that [P(x)|<y@(ax) for all xeD,. Therefore the integral Z(¥,s).
for Re(s)=o0, is majorized by

7§ Plaz)w,(z)dpz)=yw,(a ") Zp(o),

D}

which, by prop. 1, is convergent for ¢ >d.
Now take the same two functions F,, F, as in the proof of th. 2 of
Chap. VII-5; Z(¥,s) is then the sum of the two integrals

Z;=] P Ffw,(2)du).

DX

Exactly as in that proof (but taking now B > d), we see that Z, is absolutely
convergent for all s and defines therefore an entire function of s, and that
the same is true for the integral Z|, obtained by replacing ¥ by its Fourier
transform ¥', s by d —s and F, by t —» F,; (¢t ') in the definition of Z,. Just
as there, one can also apply Poisson’s summation formula (i. ¢. formula (1)
of Chap. VII-2), in combination with lemma 1 of Chap. VII-2, to the
function x— ¥(zx) on D,; in applying the latter lemma, one has to use the
fact that the module of the automorphism x—z~'x of D,, for zeDy, is

‘ND/k(Z_ l)lA = lv(z)|;d= 0 _4(2).

Then, proceeding exactly as in the proof in question, one finds that
Z(¥,s) is the sum of the entire function Z,+ Z; and of the integral

f8)=T (P0)— 04(2) P(0) 0, 4(2) Fy (01 (2))d p2).

Di/D

Here the integrand is constant on the cosets of the compact subgroup
G,=Dj/D* of the group G= DS /D*. As G, is the kernel of the morphism
of G into R} determined by w,, we may identify G/G, with the image
Nof G in R} under that morphism, which is R} or the group generated by
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g, according to the characteristic of k. In view of lemma 6 of Chap. VII-5,
and taking for v the measure occurring in that lemma, we have therefore
(up to a constant factor which may be made equal to 1 by a suitable
choice of pu):
=0 —n' ¥ (O) '~ Fy(mydv(n)= ¥ (0) Als —d) — ¥(0) A(s)

3
where 1 is as defined there. In view of the statement about the poles of 4
in that lemma, this completes our proof.

Now the comparison between propositions 1 and 2 will give us the
main result of this Chapter.

THEOREM 2. A simple algebra A over an A-field k is trivial if and only if
it is everywhere unramified, i.e. if and only if A, is trivial over k,, for every
place v of k.

It is clearly enough to prove this for a division algebra D. If D, is
trivial for all v, prop. 1 shows that its zeta-function Z(s), up to a constant

factor, is given by
d-1

Zp(s)=[] Zi(s—1).
i=0
In view of theorems 3 and 4 of Chap. VII-6, this has poles of order 2 at
s=1,2,...,d—11if d>1. By prop. 2, this cannot be. Therefore d=1, and
D=k.

Actually the combination of propositions 1 and 2 allows one to draw
stronger conclusions than theorem 2; for instance, it shows at once that,
if d>1, D must be ramified at least at two places of k. This need not be
pursued any further now, since much stronger results will be obtained in
Chapter XIII.

§ 3. Norms in simple algebras. As a first application of theorem 2.
we will now reproduce Eichler’s proof for the following:

PROPOSITION 3. Let A be a simple algebra over an A-field k, and let v be
the reduced normin A. Then v(A™) is the subgroup y of k™, consisting of the
elements whose image in k, is >0 for every real place v of k where A is
ramified.

That proof depends upon the following lemmas.

LEmMMA 1. Let K be a commutative p-field, L= K(&) a separably alge-
braic extension of K of degree n, and put

FX)=N (X —9=X"+ Y a;X"""
i=1
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Let G(X)= Y b; X"~ be a polynomial of degree n—1 in K[X). Then,
i=1

if all the coefficients of G are sufficiently close to 0 in K, the polynomial

F+ G is irreducible over K and has a root in L.

It will be convenient to extend modg to a mapping x—|x| of an
algebraic closure K of L into R, by putting |x|=mody.(x)'/” whenever
K(x)c K'<K. and K’ has the finite degree v over K; by corollary 2
of th. 3, Chap. 1-2, this is independent of the choice of K’ when x is given
in K. Take AeR such that |a; < A for 1<i<n, and assume, for some
B< A, that |b]] <B' for 1 <i<n. Let 5 be any root of F+ G in K; then we
have

n

0= Z (ai"“bi)"fﬁi

i=1
and therefore
n|" <sup,(A'ly|" ),

hence || < A. Call &,,..., &, the roots of F; they are all distinct, since L is
separable over K, and they are the images of £ under the automorphisms
of K over K. What we have proved for # can be applied to the £,, by taking
G =0, so that |£,| <A for 1 <v<n. Now put

a=inf; S[L<v<n|év_€u|;

we have 0 <a < 4. Assume now that we have taken B< A(a/A4)". As n is
a root of F+ G, we have

n

[To—¢&)==Y by
v= i1
and therefore ]

inf |y — & |"<sup;(B'A" )< BA" "' <o”,

so that there is v such that [y — ¢ | <o. Clearly this implies that g —¢,| >«
for all u+#v. Let 6 be an automorphism of K over K, mapping £, onto &.
After replacing # by #°, which is also a root of F+ G, we see that |5 — | <
<o and [n—¢&,| = o for all £+ & Assume that L is not contained in K(z);
then there is an automorphism 1 of K over K() such that &'+ &; as this
must leave |y —¢£| invariant, we get a contradiction. Therefore K(y) > L;
as # is at most of degree n over K, this implies that K()= L and that
F+ G is irreducible.

Incidentally, since every extension of K of degree n can obviously be
generated by a root of a monic polynomial F of degree n with coefficients
in the maximal compact subring of K, lemma 1 shows that K has at most
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finitely many separable extensions of given degree, hence also (by corol-
lary 2 of prop. 4, Chap. I-4) finitely many algebraic extensions of given
degree.

LEMMA 2. Let K be a commutative p-field, R its maximal compact sub-
ring, and L an unramified extension of K. Then, for every xeR*, there is
yeL such that Ny (y)=x and that K(y)=L.

Call n the degree of L over K ; call § the number of divisors of 1 ; since
Liscyclic over K, ¢ is also the number of distinct fields between K and L.
We will first construct e L such that N, .(e)=1 and that L=K(&)
for 1<i<é. Take a common multiple D of the integers 1,2,...,4, e.g.
D=¢!. Callxa generator of the Galois group of Lover K.For | <hgn—1,
consider the mapping

E-P(O)=(" P (e

of L into itself. This is a polynomial mapping, when L is regarded as a
vector-space over K, as one sees at once by choosing a basis for L over K
and expressing ¢ in terms of that basis. Taking again for K an algebraic
closure of L, we can extend the mappings P, to the algebra ¥=L® K
over K. Now apply prop. 3 of Chap. I1I-2 to that algebra and to the n
distinct isomorphisms a’ of L into K, for 0<i<n~1. As in that propo-
sition, call g; the K-linear extension of « to %, and put @ =(ug,..., it,_):
that proposition shows that ¢ is an isomorphism of % onto K". Then the
mapping uqo P09~ ! of K" into K is given by

(XgseesXpo 1) (Xpi 1 xo)D—(xhxx)D,

where it should be understood, for h=n— I, that x,=x,. As this is not 0.
and as K is an infinite field, we see now that none of the P, is 0 and that
one can choose {eL such that P,(¢)#0 for 1<h<n—1. Let £ be so
chosen, and put £=¢*¢™ ' Then N (¢)=1, and the images (¢*")” of &,
under the automorphisms o with 1<h<n—1, are all + ¢, so that
L=K(eP). As D is a multiple of i for 1 <i<4é, we have, for each such i,
e”= (&P, hence K(s?)= K(¢'), so that L=K(¢'). Now take any xeR*;
by prop. 3 of Chap. VIII-1, we can write it in the form x =N ¢(y,) with
y€L*. Consider the infinite sequence of fields K;= K (&'y,), for all i>0.
At most J of them can be distinct ; therefore there are pairs (i,j) of integers
such that 0<i<jand K;= K, and, if we take such a pair for which j—i
has the smallest value, we have 0<j—i<dJ. As 'y, and ¢y, are both in
K;, ¢~ "is in K;. In view of our choice of ¢, this implies K;= L. Thus
y=¢'y, satisfies the requirements in our lemma.

We can now proceed to prove proposition 3. Call n* the dimension of
the given algebra A over k, and R, the set of the infinite places of k where
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it is ramified. If v is in R, it must be real, and A4, must be isomorphic to
an algebra M, (H); as this implies n=2m, this can only happen if n is
even, and, of course, if k is of characteristic 0. We have seen in Chap. X-2
that the reduced norm v maps M, (H)* onto R ; therefore v(4™) is
contained in the group y defined in proposition 3. Choose now a non-
empty finite set R’ of finite places of k, containing all the finite places of k
where A is ramified, and put R=R'UR_. Take any veR’, and a prime
element , of k,; by prop. 6 of Chap. X-2, there is x, € 4, such that v(x,)=
=m,. Apply corollary 2 of th. 3, Chap. IV-2, to 4 and to some place v, of k,
not in R’; it shows that we can choose ae€ 4 so that its image in A, is
arbitrarily close to x,, and that, for all w# v in R’, its image in A4,, is arbi-
trarily close to 1. In view of the continuity of v, this can be done so that
the image of v(a) in k,, is so close to =, as to be a prime element of k,, and
that its image in k,,, for every w vin R’,is so close to 1 as to be in r; ; then
aeA*, since v(x)# 0. For each veR’, choose an element «, of 4™ in this
manner, Now take any & in the subgroup y of k™ defined in our proposi-
tion; we have to show that it is in v(4™). For each veR’, put n(v)=
=ord (¢), and put a=[]o2®; after replacing ¢ by &v(x)™ !, we see that
it is enough to prove our assertion under the additional assumption that
ord,(§)=0for allve R'. For each place ve R, take an unramified extension
k. of k,, of degree n over k,. By lemma 2, there is y, ek, such that {=
=N, (v,) and k, =k, (y,). As y, is then of degree n over k,, it is the root
of an irreducible polynomial F, of degree n over k,, given by:
n—1
F(X)=Nip, (X —y,)=X"+ Z ai,vX"_i+(_ 1)"¢,
i=1

with a; ek, for 1<i<n—1. For each veR,, put q; ,=0 for 1<i<n~1,
and consequently, since the existence of such a place implies that niseven:

F(X)=X"+(-1D"{=X"+¢;

then, because of our assumption €7, F, has no root in k, =R, so that the
same is true of every monic polynomial of degree n over R whose coeffi-
cients are close enough to those of F,. Applying corollary 2 of th. 3, Chap.
IV-2, to k and to some place v, of k, not in R, we see that we can choose
w;€k, for 1 <i<n—1, so that its image in k, is arbitrarily close to a, , for
every veR. In view of lemma 1 and what has just been said, this can be
done so that the polynomial

n—1

FX)=X"+ Y o, X" "+(—1)¢

i=1
has the following properties: (a) for every veR’, F is irreducible over k,
and has a root in k,; (b) for every veR , F has no root in k,=R. As R is
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not empty, (a) implies that F is irreducible over k and has no multiple
roots. Call { a root of F in some algebraic closure of k, and put k' =k({).
Take any ve R’, and a place w of k', lying above v; as the completion of k'
at w must then be generated over k, by a root of F, this completion, by (a),
is isomorphic to k;,, with which we can identify it; as it is of degree n over
k,, corollary 1 of th. 4, Chap. I1I-4, shows that w is the only place of k'
lying above v, and that theorem shows then that we may identify k|, =k,
with k'®, k,. Similarly, (b) shows that, if v is in R, all the places of k'
lying above v are imaginary.

Now consider the algebra A'= 4,. over k’. Take any place w of k', and
call v the place of k lying below w. By the elementary properties of tensor-
products, A, which is the algebra 4'®,.k,, over k', may be identified in an
obvious manner with 4,®, k. As A4, is trivial over k, for v not in R,
this shows that also A,, must then be trivial. If v is in R, w is imaginary,
so that ki, =C and that A, is trivial. Finally, let v be in R’, and write 4, as
M,,.,,(D(v)), where D(v) is a division algebra over k,; if its dimension over
k, is d(v)?, we have n=m(v)d(v), so that d(v) divides n. Then k/,, which is
unramified, hence cyclic, and of degree n over k,, contains a ficld k"
which is of degree d(v) over k,, and is of course unramified over k,. By
prop. 5 of Chap. I-4, D(v) contains a field isomorphic to k”; therefore, by
corollary 6 of prop. 3, Chap. IX-1, D(v),~ is trivial over k”; obviously this
implies that (4,),- is trivial over k", hence that 4}, =(4,).., is so over k..

Having thus shown that A’ is unramified at all places of k', we can
conclude, by th. 2 of § 2, that it is trivial over k', which is the same as
to say that 4 has a k'-representation into M, (k"). Therefore, by th. 2 of
Chap. IX-3, A has an H-regular factor-set, if H is the Galois group over
k' of the separable algebraic closure k., of k. Then, by lemma 4 of
Chap. IX-3, we can construct an algebra of dimension n* over k, con-
taining a field isomorphic to k', with the same factor-set as A4; as this
implies that it is similar to 4, and as it has the same dimension as 4
over k, it is isomorphic to A and may be identified with it. As shown
there, we have then v({-1,)= N, ,(()=¢.

§ 4. Simple algebras over algebraic number-fields. We will now
combine the results of § 1 with some of those of Chapter V in order to
obtain a few basic results in the theory of ideals in simple algebras over
algebraic number-fields.

In this §, k will be an algebraic number-field, r its maximal order,
and all algebras will be simple algebras over k. We recall that, by prop.4
of Chap. V-2, if L is any k-lattice in a vector-space E over k, and if v
is a finite place of k, the closure L, of L in E, is the r,-module generated
by Lin E,.
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Let D be a division algebra over k. As in Chap. X-1, let V, V', V"
be left vector-spaces of finite dimension over D, other than {0}; put
H=Hom(V,V"), H =Hom(V',V"), H'=Hom(V,V"). If X, X' are sub-
groups of the additive groups of H and of H’, respectively, we write
X X', as usual, for the subgroup of H" generated by the elements {&'
for (e X, &eX’; it is easily seen, e. g. by taking bases for V, V', V" over
D, that HH'=H". Now let L, L' be k-lattices, in H and in H', respectively,
when these are regarded as vector-spaces over k; then LL is obviously
a finitely generated r-module in H”, and, as H"=HH’, it is a k-lattice
in H".

PROPOSITION 4. Let A be a simple algebra over k. Then there are
maximal orders in A; these are k-lattices in A, and a k-lattice R in A is
a maximal order if and only if its closure R, in A, is a maximal order
in A, for every finite place v of k. Every order in A is contained in a
maximal order.

If R is any order in A, the r-module generated by R in A is also
an order, and it is a k-lattice; this shows that, unless R is a k-lattice,
it cannot be maximal. Let X be any k-lattice in A; the last part of th. I,
§ 1, may be expressed by saying that X, is a maximal order in A, for
almost all v. Then th. 2 of Chap. V-2 shows that there is a one-to-one
correspondence between the orders R in 4 which are k-lattices, and the
possible choices of an order R, in A, for every finite place v of k, subject
to the condition that R, be a k,-lattice for all v, and R,= X, for almost
all v; if R is given, R, is the closure of R in A, and, if the R, are
given, R is defined by R=((4~R,). In view of th. 1, Chap. X-1, all our
assertions are now obvious.

PROPOSITION 5. Let D be a division algebra over k. Let V, W be two
left vector-spaces of finite dimension over D; put H=Hom(V,W) and
A=End(V). Let M, M’ be two k-lattices in H. Then the set X of the
elements & of A such that EM c M’ is a k-lattice in A, whose closure in
A,, for every finite place v of k, is the set X, of the elements x of A,
such that xM,cM,. If M=M', X is an order of A.

For every v, by prop. 4 of Chap. X-1, X, is a k,-lattice in 4,, and it
is an order if M, =M. Let L be any k-lattice in 4; as we have seen
above, LM is a k-lattice in H, whose closure in H,, for every v, is clearly
L, M, Therefore, for almost all », we have L,M,=M,=M,; this
implies that, for almost all v, X, is an order and contains L, As L, is
a maximal order in A, for almost all v, we see that X, =L, for almost
all v. Therefore, by th. 2 of Chap. V-2, there is a k-lattice X'= N (AnX,)
in A with the closure X, for all v. Clearly X = X"; conversely, since
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X'McM, for every v, and M'=()} (HnM,), we have X'<X. This
completes the proof, except for the last assertion, which is now obvious.

If notations and assumptions are as in proposition 5, and if M = M’,
the set X is called the left order of M. Exchanging right and left, we see
that the set of the elements # of B=End(W), such that My <M, is an
order of B; this is called the right order of M.

PROPOSITIONG. Let V, W and M be as in proposition 5; assume that
there is a maximal order R of A=End(V), such that M is a left R-module.
Then R is the left order of M, and its right order is a maximal order of
B=End(W).

This is an immediate consequence of prop. 5, combined with th. 2
of Chap. X-1.

With the same notations and assumptions as in propositions 5 and
6, a k-lattice M in Hom(V, W) with the left order R and the right order
S will be called an (R, S)-lattice; it is called a normal lattice if R or S,
and consequently both R and §, are maximal orders. If V=W, hence
H=A=B, anormal lattice is also known as a “normal fractional ideal”.
Clearly, in that case, the three relations M-McM, McR, McS are
equivalent; when they hold, M is a left ideal in the ring R and a right
ideal in the ring S; it is then called a normal ideal and an (R, S)-ideal.
By using the above results and those of Chap. X, one can see at once
that, if R and S are any two maximal orders in A, there are always
(R, S)-ideals. Furthermore, if a normal (R, S)-lattice M is a maximal left
ideal in R, i.e. if M c R, M +#R, and if there is no left ideal other than
R and M between R and M, then it is a maximal right ideal in S, in the
same sense; when that is so, one must have M,=R, =S8, for all finite
places v of k except one. If the multiplication law (M,M)->MM’ is
restricted to those pairs (M, M’) of normal lattices in 4 for which the
right order of M is the same as the left order of M’, the normal lattices,
for this law, make up a so-called “groupoid” whose units are the maximal
orders of A. It is also easily seen that, for this law, every normal ideal
can be written, although in general not uniquely, as a product of maximal
ideals. For two-sided ideals and (R, R)-lattices, one has a more precise
result:

PROPOSITION 7. Let R be a maximal order in A. Then, for the law
(M, M")—->MM’, the (R,R)-lattices in A make up a commutative group; it
is the free group generated by the maximal two-sided ideals in R; for every
prime ideal p in x, there is one such ideal, and only one, between R and pR.

This follows in a quite straightforward manner from the above re-
sults and corollary 2 of th. 2, Chap. X-1.



Chapter XII
Local classfield theory

§ 1. The formalism of classfield theory. The purpose of classfield
theory is to give a description of the abelian extensions of the types of
fields studied in this book, viz., local fields and A-fields. Here we
assemble part of the formal machinery common to both types.

LemMA 1. Let G=G, x N be a quasicompact group, G, being compact
and N isomorphic to R or Z; let H be an open subgroup of G. Then, if
H is contained in G, (i.e. if it is compact), N is isomorphic to Z., and H
is of finite index in G ; otherwise it is of finite index in G.

Put H,=HnNG; as this is open in G,, and G, is compact, it is of
finite index in Gy; this proves the first assertion. As HNN is an open
subgroup of N, it is N if N is isomorphic to R; therefore H=H, x N in
that case, and G/H is isomorphic to G,/H,. If N is isomorphic to Z, let
n; be a generator of N; if H is not contained in G, it has an element
of the form g,n{ with g, €G,, ueZ, u+0. As G,/H, is finite, there is
v+#0 such that g} e H,. Then n%’ is in H, so that H contains the group
H' generated by H, and n{*. As H' is obviously of finite index in G,
this proves the lemma. Theorem s of Chap. V-4 may be regarded as
the special case where G=ky/k™, H being the image of Q(P) in kj /k*.

LeMMA 2. Let G=G, x N, G'=G| x N’ be quasicompact groups, G,
and Gy being compact and N, N' isomorphic toR or Z. Let F be a morphism
of G’ into G but not into G,. Then F~*(G,)=G); the kernel of F is com-
pact; F(G')is closed in G, and G/F(G') is compact.

As G, is the maximal compact subgroup of G, F(G) is contained in
G,. For n'e N’, call f(n') the projection of F(n') onto N in G; f is then
a non-trivial morphism of N’ into N, hence, obviously, an isomorphism
of N’ onto a closed subgroup of N with compact quotient; our first and
second assertions follow from this at once. We also see now that F
induces on N’ an isomorphism of N’ onto F(N’), and that F(N')nG, ={1};
therefore F(G') is the direct product of F(G') and F(N’) and is closed.
Finally, G/G, F(N’) is clearly isomorphic to N/f(N’), hence compact; as
the kernel of the obvious morphism of G/F(G’) onto G/G, F(N’) is the
image of G, in G/F(G'), hence compact, G/F(G') must also be compact.



214 Local classfield theory X1

From now on, in this §, we will consider a field K; later on, this will
be either a local field or an A-field. As in Chapter IX, we write K for an
algebraic closure of K, K., for the union of all separable extensions of K
contained in K, and ® for the Galois group of K., over K, topologized
as usual. We will write K, for the maximal abelian extension of K con-
tained in K; this is the same as the union of all abelian extensions of K
of finite degree, contained in K, i.e. of all the Galois extensions of K
of finite degree, contained in K, whose Galois group is commutative;
by definition, this is contained in K,.,. We denote by & the subgroup
of ® corresponding to K, ; this is the smallest closed normal subgroup
of ® such that /G is commutative; it is therefore the same as the
“topological commutator-group” of ®, i.e. the closure of the subgroup
of ® generated by the commutators of elements of . We write U for
the Galois group of K, over K; this may be identified with &/GV; it
is a compact commutative group. Let ¥ be any character of ®; as in
Chap. IX-4, call $ its kernel and L the subfield of K., corresponding
to §, which is the cyclic extension of K attached to y; clearly Lc K,
and $> 6, so that we may identify y with a character of 2, for which
we will also write y. Conversely, every character of U determines in an
obvious manner a character of ®, with which we identify it. Thus the
group of characters of ®, for which we will write X, is identified with
the group of characters of ; the latter is the same as the dual UA* of
A, except that we will always write the group Xy multiplicatively; we
put on X the discrete topology, this being in agreement with the fact
that the dual of a compact commutative group is always discrete. By
the duality theory, the intersection of the kernels of all the characters
of A is the neutral element; this is the same as to say that the intersection
of the kernels $ of all the characters y of ® is &Y, or also that K, is
generated by all the cyclic extensions L of K ; this is of course well-known.

Let K' be any field containing K; as in Chap.IX-3, we take an
algebraic closure K’ of K’ and assume at the same time that we have
taken for K the algebraic closure of K in K’; then, as we have seen
there, K., is contained in K, and, if ® is the Galois group of K%,
over K', the restriction morphism p of &' into ® is the one which maps
every automorphism of K., over K’ onto its restriction to K,.,. Obviously
p maps &' into Y, so that it determines a morphism of ' = &'/G'V
into A=6/6GY, which we also denote by p and call the restriction
morphism of A’ into A. It amounts to the same to say that K,,, is con-
tained in K, and that p maps an element o' of ', i.e. an automorphism
of K, over K', onto its restriction to K,,. Correspondingly, y—yop is
a morphism of X into X ..

In classfield theory, one defines a “pairing” of the group Xy of the
characters of & (or, what amounts to the same, of ) with a locally
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compact commutative group Gy, invariantly associated with K. In this
Chapter, where K will be a local field, we will take Gx=K ™ ; in the next
one, K will be an A-field, and we will take at first Gy=K} and later on
Gx=K, /K ™. This pairing, which will be called the canonical pairing,is a
mapping of Xy x G into C*, whose value, for ye X and ge G, will be
written as (x,g)g; to begin with, we assume that it satisfies the following
condition:

[I]Q@) Forally, ' in Xg, and all g, g' in Gg:

X D= Dx - Px> U699k = 06 Dk 69k 5
(1) O 9)—= -9k is a continuous mapping of X g x Gy into C*.

As X is discrete, the pairing is continuous, i.e. [1(ii)] is satisfied, if
and only if g—(x,9) is a continuous mapping of G into C* for every
x€ X ; then [I(i)] implies that it is a character of G, of an order dividing
that of y. Consequently, if [1(i)] is assumed, [I(ii)] is equivalent to the
following:

[1(i1")] For every ye X g, the kernel of g— (y,9)x is an open subgroup of
GK:

Assume that such a pairing has been given. Then, for each ge Gy,
¥—(x,g)k is a character of X . As X is the same as the dual of U, the
duality theory shows that this can be uniquely written as y— y(x) with
oeW. We will write a, or, when necessary, ag for the mapping g —» o of G
into A determined in this manner. Obviously we have a(gg’)=a(g)a(g’)
for all g, ¢’ in G, and the continuity of our pairing, i.e. condition [I(ii)],
implies at once that a is continuous. Thus a is a morphism of G into U,
determined by the relation

(1) (1:9)x = x(alg)),

which is valid for all ye X and all ge Gg. We will call a the canonical
morphism of G into A.

Now we assume the additional condition:
[ If (.9)x=1 for all ge Gy, then y=1.

In view of [I], this is clearly equivalent to either one of the following
conditions:

[II"] x— yoa is an injective morphism of X g into the group of characters
of Gg.
[II"] The image a(Gg) of G by a is dense in U.

We also add the assumption that G should be quasicompact, or rather
a more precise one, which is as follows:
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[I11] Either (a) G is the direct product of a compact group G and of a
group N isomorphic toR, or (b) Gy is the direct product of a compact group
Gy and of a group N isomorphic to Z, and there is, for each integer n>1,
a character yeXy of order n such that (y,g)x=1 for all geGL.

The two cases in [III] will be referred to as case [III(a)] and case
[III(b)], respectively. In both cases, as has been observed in Chap. VII-3,
G+ may be characterized as the unique maximal compact subgroup of Gg.

From now on, we will write Uy for the kernel of the canonical mor-
phism a of G into ?; it is the intersection of the kernels of the characters
yoa of G, i.e. of the characters g — (x,g)x, for all ye Xy.

PROPOSITION 1. In case [ 111(a)], the canonical morphism a determines an
isomorphism of Gg/Ug onto W; every character of Gy, trivial on Uy, can
be uniquely written as yoa with ye X ¢; and x— yoa is an injective morphism
of X into the group of characters of finite order of Gy.

As every character y of W is of finite order, the last assertion is no more
than a restatement of [11"]. For every y€ X, yoa induces on the subgroup
N of G a character of N of finite order; as N is isomorphic toR, thereis no
such character except the trivial one. Therefore N < Ug; if we put Ux=
=UxNnGL, we have Ugx=Ug x N, and G,/Ug may be identified with
Gi/Uk; as this is compact, a determines an isomorphism of that group
onto a closed subgroup of 2, hence onto A itself, by [II"]. Then, by the
duality theory, y — yoa is the “dual” or “transpose” of a, hence an iso-
morphism of X ¢ onto the subgroup of the group of characters of Gg which
is associated by duality with Uy; this subgroup consists of the characters
of Gy, trivial on Uy.

COROLLARY. In case [111(a)], every character of Gk, trivial on U=
=UgnGE, can be uniquely extended to a character of Gy of the form
xoa.

In fact, it can be uniquely extended to a character of G, trivial on N;
this is then trivial on Ug and is as required.

PROPOSITION 2. In case [1II(b)], call X, the subgroup of Xy con-
sisting of the characters y such that (x,g)x=1 for all geGy; call n, a
generator of the subgroup N of Gg. Then y—(y,n,)x is an isomorphism of
X, onto the group of all roots of 1 in C.

As every ye X is of finite order, (3,g)k is always a root of 1, for all y
and all g. As Gy is generated by G} and n,, a character of Gx which is
trivial on G is uniquely determined by its value at n,; in view of [II'],
this shows that y—(x,n,)x is an injective morphism of X, into the group
of roots of 1 in C; in particular, it maps every character y of order n,
belonging to X, onto a primitive n-th root of 1 in C. By [III(b)], there are
such characters for every n>1; therefore the image of X, by that mor-
phism contains all the roots of 1 in C.
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COROLLARY 1. Assumptions and notations being as in proposition 2,
G+ is the set of the elements g of Gy such that (y,g)x=1 for all ye X,.

Let v be any integer other than O; by proposition 2, there is ye X,
such that (y,n})x # 1, hence (y, 1} g)x # 1 for all ge Gg. As G is the union
of the cosets n} G, for all ve Z, this proves our assertion.

COROLLARY 2. In case [1I1(b)], the kernel U of the canonical morphism
a is contained in G ; a determines an isomorphism of Gx/U g onto the inter-
section N, of the kernels in A of the characters ye X,; and a~ Y(Wy)=GL.

The first and last assertion follow at once from corollary 1. Put
B=a(GL); clearly B is compact, and a determines an isomorphism of
Gx/Ug onto B; moreover, by the definition of X, a character y of A
belongs to X, if and only if it is trivial on B, so that B =A,,.

COROLLARY 3. In case [1II(b)], every character of G, trivial on Ug,
is of finite order and can be extended to a character of Gg of the form
yoa, where y is a character of .

By corollary 2, every character of GL, trivial on U, can be written as
x10a,, where y, is a character of 2, and a, is the morphism of G onto
A, induced by a. As x, can be extended (although not uniquely) to a
character y of 2, and as every character of 2 is of finite order, this proves
our assertions.

COROLLARY 4. In case [III(b)], the mapping y— xoa is a bijective
morphism of Xy onto the group of the characters of Gg of finite order,
trivial on Ug; it maps X o onto the group of the characters of G of finite
order, trivial on G%.

All we need show is that the mappings in question are surjective. Take
first a character i of Gy of finite order, trivial on GL. As ¥ (n,) is then a
root of 1 in C, proposition 2 shows that there is ye X such that (y,n,)x =
=1 (n,); then yoa coincides with ¥ on G} and at n,, hence on Gy.
Now take any character ¥ of G of finite order, trivial on Ug; by corol-
lary 3, we can find ye Xy such that ¥ coincides with yoa on Gg; then
W' = r-(yoa)~ ! is trivial on G and of finite order, so that, by what we
have just proved, it can be written as y’oa. This completes our proof.

PROPOSITION 3. Assume [I], [1I] and [II1}, and call a the canonical
morphism of Gy into W. For every extension L of K of finite degree,
contained in K, call B(L) the subgroup of U corresponding to L, and put
N(L)=a"Y(B(L)). Then B(L) is the closure of a(N(L)) in U; L consists of
the elements of K,, which are invariant under a(g) for all ge N(L); a
determines an isomorphism of Gg/N(L) onto the Galois group of L over K;
and L— N(L) is a one-to-one correspondence between subfields L of K,y
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of finite degree over K, and the open subgroups of Gy of finite index in
Gy, containing Uyg.

AsB(L)is openin A, N(L)is open in Gg. By [11"], a(Gg) is dense in U;
this implies that a(N(L)) is dense in B(L) and that a determines an iso-
morphism of Gg/N(L) onto A/B(L), which is the same as the Galois
group of L over K. As the operation of U on K, is continuous, every
clement of K,, which is invariant under a(N(L)) is invariant under its
closure B(L), so that it is in L. Finally, let H be any open subgroup of G
of finite index n, containing Uy; call ¥,, for 1<i<n, all the distinct
characters of Gy, trivial on H; then H is the intersection of their kernels.
By prop. 1 in case [1II(a)] and by corollary 4 of prop. 2 in case [III(b)],
we can write ;= y;oa for 1 <i<n, the y; being characters of U; by [1I'],
the y; are uniquely determined and make up a finite subgroup of Xy,
since the ¥; make up a finite subgroup of the group of characters of Gy.
Call B the intersection of the kernels of the y; in % ; it is an open subgroup
of U, of index n; therefore the subfield L of K, corresponding to B, is
of degree n over K. Clearly H=a"!(B), hence H = N(L). This completes
our proof.

COROLLARY. In case [111(b)], call K, the subfield of K., corresponding
to the subgroup Ny =a(Gg) of . Then, for each integer v= 1, K, contains
one and only one extension K, of K of degree v; this is the cyclic extension
of K, attached to any one of the characters of order v, belonging to X o; and
N(K,) is the subgroup of G generated by G and n).

By corollary 2 of prop. 2, we have Gk =a~ (,); therefore, if L and
N(L) are as in proposition 3, we have L= K|, if and only if N(L)> G§;
this implies that N(L)is generated by G and n}, if v is the index of N(L) in
Gg. Then, by proposition 3, L is cyclic of degree v over K, and, if y is a
character of A attached to L, N(L) is the kernel of yoa, so that y belongs
to X, and has the order v. Conversely, if y is such, the kernel of yoa is
generated by Gk and nj}, so that the cyclic extension attached to y is L.

Now we consider a cyclic extension K’ of K, contained in K,.,. We
use the notations &', "V, A’ =®'/G"V as explained above, and write p
for the restriction morphism of &’ into & and also for that of 2 into 9.
As K’ is cyclic over K, ®’ is an open normal subgroup of ®, with cyclic
factor-group; consequently, we have &> >G> ™), and &'V is a
normal subgroup of ®. For every ie®, the inner automorphism
o—A0 2~ ! induces on ®' an automorphism of &’; therefore, if ' is any
character of ®’, we can define a character y* of ® by putting, for every
a'e®, y*(¢')=y (Lo’ A™"). Clearly y* =y if Ae®', so that ¥’ — y'* deter-
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mines an operation of the Galois group ®/®’ of K’ over K on the group
Xy of the characters of ®'.

Furthermore, we assume that we have been given canonical pairings
-9k, (' 9k of X with a group Gy, and of X . with a group G, both
of them satisfying [I], [II], [III]; to simplify notations, put G=Gy,
G' =Gy, G,=Gx, G, =Gy ;call q, a’ the canonical morphisms of G into
A, and of G’ into W/, respectively defined by these pairings. Assume also
that ® operates on G/, the action of any A€ ® on G’ being written as g'— g’
and satisfying the following condition:

[IV] () For ie®', g'>g* is the identity on G’; (i) For each e ®,
g'—g'* is an automorphism of G, and g*g'~'e G, for all g€ G'; (iii) For all
YeXg,geG and e ®, we have:

gk =09 k-
Finally, assume that we have been given a morphism F of G’ into G,
satisfying the following condition:
[V] () For all ge G’ and all Ae®, we have F(g'*)=F(g); (il) For all
YeXg and all g'e G', we have:

(200, = (1 F(@)k-
Clearly [ V(ii)] may also be written as poa’=aoF.

PROPOSITION 4. Let K' be a cyclic extension of K; let a, a’ be the canon-
ical morphisms respectively defined by canonical pairings of X with a
group G, and of X . with a group G', both satisfying [1], [11], [IIT]. Assume
that the Galois group ® of K, acts on G', that F is a morphism of G’ into
G, and that [IV] and [V] are satisfied. Then UNF(G})=F(U'nG)),
where U, U’ are the kernels of a and of a'; moreover, we have UNF(G')=
=F(U")if G satisfies [111(a)], or if G and G’ satisfy [111(b)] and F does not
map G into G,.

By [V(ii)], we have poa’=aoF; therefore F(U’) is contained in U,
hence in UnF(G"), and, if we put U, =U'nG,, F(U}) is contained in
UnF(G)). Let ¥ be a character of G, trivial on F(U}); then yy oF is a
character of G', trivial on U’. Apply now the corollary of prop. 1, in the
case [I1I(a)],and corollary 3 of prop. 2, in the case [ I1I(b)], to the character
induced on G, by i oF; this shows that i oF coincides on G} with a
character of the form y'oa’, with y'e X .. In other words, we have, for all
geqi:

¥ (F@)=(>9 )k

By [IV(ii)], this must hold if we substitute g*g ~!for g, with any g'eG’
and any 1€ ®. In view of [ V(i)], this gives

1=(0,g%9 =09 (9"
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and therefore, by [1V(iii)]:

9= 0N =09 )k
By [II], this shows that ¥’ is invariant under 4 for every Ae ®; more expli-
citly, it is invariant under all the automorphisms of & induced on &’ by
inner automorphisms of &. Therefore the same must be true of the
kernel §' of y/, so that §’, which is an open subgroup of & with cyclic
factor-group, is a normal subgroup of ®. Let a be a representative in ® of
a generator of the cyclic group ®/®’; let § be a representative in & of a
generator of '/9’; then &’ is generated by §' and g, and ® is generated by
®’ and «, hence by &', f and a. Consequently G/9’ is generated by the
images o', §' of o, f in G/§'. As ¥ is invariant under ¢’ oo’ " !, we get,
for o'=B,x'(B)=y'(xBa~'). This shows that afa~* B! is in the kernel
9’ of y, so that o' commutes with " in ®/$’. Consequently G/’ is com-
mutative. Therefore the character of ®'/$’ determined by y’ can be ex-
tended to a character of &/%’. This is the same as to say that y’' can
be extended to a character y of ®, so that we have y'=yop. In view of
[V(ii)], the definition of ¥’ gives now, for all '€ G, :

Y(F(@N)=Qop.9)k =06F@)k-

This is the same as to say that ¥ coincides with yoa on F(G'), so that it
is trivial on UNF(G)). As F(U") is a compact subgroup of G, and as we
have proved that every character  of G, trivial on F(UY), is trivial on
UNF(G}), we see that F(U'|)> UnF(G"); in view of what we had proved
before, this completes the proof of the first part of our proposition. If G
and G’ satisfy [III(b)], we have U’ =G’ and U<=G,, by corollary 2 of
prop.2;if F does not map G’ into G, we have F~'(G,)= G, by lemma 2;
UnF(G)) is then the same as UNF(G’), which completes the proof of the
second part in that case. Now assume that G'= G, x N’ with N’ isomor-
phic to R. As we have seen before, for every y'e€ X, the character of N’
induced on N’ by y'od’, being of finite order, is trivial, so that N'c U’,
hence U'= U x N'; the same argument, applied to the character induced
on N’ by yoaoF for ye X, gives now F(N')c U, and therefore:

UAF(G)=(UAF(GY)- F(N')=F(U)F(N')=F(U").

§ 2. The Brauer group of a local field. From now on, K will be a
local field. As in Chapter IX, we write B(K) for its Brauer group, H(K) for
the group of its factor-classes, and we identify these groups with each
other by means of th. 3, Chap. IX-3. In Chap. IX-4, we have already
determined these groups in the cases K=R, K=C, and we begin by
recalling the results found there, and introducing some additional nota-
tions which will be useful in the next Chapter. As B(R) has two elements, it
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has a unique isomorphism 5 onto the subgroup {+1} of C*; for any
simple algebra A over R, we write h(4)=n(Cl(4)), and call this the
Hasse invariant of A;itis + 1 or — 1 according as A4 is trivial or not. As
B(C) has only one element, we write # for the mapping which maps it
onto {+1}, and, for every simple algebra 4 over C, we write h(4)=
=7n(Cl(4))=+1 and call this the Hasse invariant of A. For K=R, the
Galois group ® of K., over K consists of the identity ¢ and of the auto-
morphism x — X of C over R; for K=C, & ={¢}. For every character y of
©®, and every 8e K™, we have defined in Chap. IX-4 the factor-class
{x,0}; identifying H(K) with B(K) as we have said, we may now write, for
K=RorC:

(% 9)1( = rl({X’ 0})

Clearly this is 1 if K=C, or if K=R and y is the trivial character of &;
if K=R and y is the non-trivial character of ®, our results of Chap. IX-4
show that it is + 1 or —1 according as >0 or 8 <0. One verifies imme-
diately that this is a canonical pairing of X ; with K*, in the sense of § 1,
and that it satisfies conditions [I], [II], [II1(a)]; the kernel Uy of the
canonical morphismis C* if K=C, and R if K=R.

From now on, K will always denote a commutative p-field, except that
occasionally we will point out the validity of some of our results for K=R
or C. As usual, we write R for the maximal compact subring of K, g for
its module, P for the maximal ideal of R, and = for a prime element of K.
We use the notations K, Kiep, ®, Kyp, U, as in § 1. Write M for the set of
all roots of 1 of order prime to p in K; this is clearly a subgroup of K.
Put Ky =K (M), and call H, the closed subgroup of ® corresponding to
K, i.e. consisting of the automorphisms of K., over K which leave
invariant all the elements of K, or, what amounts to the same, all those of
9R. By corollary 2 of th. 7, Chap. I-4, every finite subset of I generates over
K an unramified extension of K. Conversely, every extension of K, con-
tained in an unramified extension, is itself unramified, so that, by corol-
lary 3 of th. 7, Chap. I-4, it is generated by a finite subset of I ; moreover,
by the same corollary, there is one and only one such extension K, of
degree n over K, for every n>1. Consequently, K, is the union of the
fields K, for all n> 1. Again by corollary 2 of the same theorem, the map-
ping p— u? of M into itself is an automorphism of M, and, for every
n>1, there is one and only one automorphism of K, over K, viz., the
Frobenius automorphism, which coincides with that mapping on MnK,.
Clearly this implies that there is one and only one automorphism ¢, of
K, over K which induces u— u? on I; this will be called the Frobenius
automorphism of K, over K, and every automorphism ¢ of K, over K

which induces ¢, on K, will be called a Frobenius automorphism of K .,
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over K; then the Frobenius automorphisms of K., over K make up the
coset Ho in G.

DEFINITION 1. A character x of & will be called unramified if the cyclic
extension of K attached to y is unramified; we will write X, for the set of
all unramified characters of ®.

In view of what has been said above, it is clear that y is unramified if
and only if the cyclic extension attached to y is contained in K, or, what
amounts to the same, if and only if y is trivial on the subgroup $, of ®
corresponding to K, ; therefore X, is a subgroup of the group X of all
characters of ®. '

PROPOSITION 5. Let ¢ be a Frobenius automorphism of K, over K.
Then x— x(@) is an isomorphism of the group X, of the unramified char-
acters of ® onto the group of all roots of 1 in C; it is independent of the
choice of .

Clearly that mapping is a morphism of X, into the group of the
roots of 1 in C. With the notations explained above, the cyclic extension
of K attached to an unramified character y of order nis K,,. As ¢ induces on
K, the Frobenius automorphism of K, over K, and this generates the
Galois group of K, over K, y(¢) is a primitive n-th root of 1; therefore the
morphism in our proposition is both injective and surjective. The last
assertion follows from the fact that two Frobenius automorphisms can
differ only by an element of §,, and every unramified character is trivial

on $H,.

THEOREM 1. Let K be a commutative p-field, and © a prime element of
K. Let X be the group of the unramified characters of ®. Then y— {y,n}
is an isomorphism of X, onto the group H(K) of factor-classes of K ; it is
independent of the choice of m.

We can identify H(K) with the Brauer group B(K) of K. Every element
of B(K), 1.e. every class of simple algebras over K, contains one and only
one division algebra over K. As has already been pointed out in Chap.
IX-4, and again in Chap. X-2, prop. 5 of Chap. I-4 shows that such an
algebra, if it is of dimension n” over K, can be written as [K,/K; x. 7, ],
where y is a character attached to K, and =, is a suitable prime element of
K ; therefore the factor-class belonging to that algebra is {y, 7, }. Combin-
ing prop. 10, Chap. IX-4, with prop. 3 of Chap. VIII-1, we see that this
is independent of 7;, so that it is the same as {y,n}. Consequently,
x—{x,m} is a surjective morphism of X , onto H(K). As K, is unramified of
degree n over K, its modular degree over K is n; therefore = cannot be in
Nk, x(K;) unless n=1; again by prop. 10, Chap. IX-4, this shows that,
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if y is attached to K,,. {y,7}#1 unless n=1, i.e. unless y=1. This com-
pletes our proof.

COROLLARY 1. Let K and 7 be as in theorem 1; let K, be the unramified
extension of K of degree n, and let y be a character attached to K,. Then
[K,/K; ¥, 7] is a division algebra over K.

At any rate, it is of the form M (D), D being a division algebra over K ;
if d? is the dimension of D over K, D can be written as [K,/K: y,x],
where ¥’ is a character attached to K,. By theorem 1, this implies y' =y,
hence n=d and m=1.

COROLLARY 2. Let ¢ be a Frobenius automorphism of K., over K.
There is one and only one isomorphism n of H(K) onto the group of all roots
of 1in C, such that n({y,n})=yx(@) for all yeXy; it is independent of
the choice of n and of .

This follows at once from theorem 1, combined with prop. 5.

CoOROLLARY 3. Notations being as above, let Xy be the group of all
characters of & for all ye X g and all e K™, put

(6D =n({x.0}).

T hen this defines a pairing between X g and K™ which satisfies conditions

[1] and [111(b)] of § 1.

By prop. 8 of Chap. IX-4, it satisfies [I(i)]. By prop. 10 of Chap. IX-4
and prop. 5 of Chap. VIII-1, it satisfies [1(ii')]. As to [III(b)], we have
here to take Gx=K*, GL=R*, and we can take for N the subgroup of
K™ generated by . Then [11I(b)] is satisfied by taking for y any character
attached to the unramified extension K, of K of degree n, as follows at
once from prop. 10 of Chap. IX-4 and prop. 3 of Chap. VIII-1.

COROLLARY 4. For all ye X, and all 0 K*, we have (y,0)x = x(¢)°"?;

if wis any prime element of K, (x, m)x = y(@).

The latter assertion is a restatement of corollary 2. Then the former
holds for 8 ==, and also, as proved in the proof of corollary 3, for feR™;
the general case follows from this at once.

COROLLARY 5. Let K, be a field isomorphic to K; let K, be an al-
gebraic closure of K., and X an isomorphism of K onto K,, mapping K
onto K. For every character y of ®, write y* for its transform by A, i.e.
for the character of the Galois group ®, of (K)sep over K, given by
o) =x(ho,27") for all 6,€®,. Then (1,0)x=(",0"k, for all yeXy
and all fe K™
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This follows at once from corollary 2, since obviously A maps a
prime element of K onto a prime element of K,, and transforms a
Frobenius automorphism of K, over K into one of (K )., over K.

From now on, the pairing of X, with K™, defined in corollary 3,
will be called the canonical pairing for K. As explained in § 1, we derive
from this a morphism a of K™ into the Galois group U of K,, over K
which will be called the canonical morphism for K; it is defined by
(0, 0)x = x(a(6)), this being valid for all ye X and all e K*. Corollary 4
of th. 1 shows that a(zn) induces on K, the Frobenius automorphism of
K, over K whenever 7 is a prime element of K.

As we identify the Brauer group B(K) with the group H(K) considered
in theorem 1 and its corollaries, we may consider the mapping # defined
in corollary 2 of th. 1 as an isomorphism of B(K) onto the group of roots
of 1in C; for every simple algebra A over K, we will write h(A)=rn(Cl(A4)),
and will call this the Hasse invariant of A;itis 1 if and only if 4 is trivial.

THEOREM 2. Let K’ be an extension of K of finite degree, contained
in K; let ®, ® be the Galois groups of K., over K, and of K'yp over K/,
respectively, and let p be the restriction morphism of ® into ®. Then.
for every y€ Xy, and every 8'e K'™, we have:

() (xop, ) = (X, Nx'/x(el))x‘

Let f be the modular degree of K’ over K; then the module of K' is
g’/, and, if ¢, ¢’ are Frobenius automorphisms of K,,, over K, and of
K. over K', respectively, ¢ coincides with ¢/ on the group Mt of the
roots of 1 of order prime to p in K, hence on K,=K(M), so that p(¢p)e '
is in the subgroup $H, of ® which corresponds to K, Now assume first
that the character y in (2) is unramified, hence trivial on §,; this implies
that y(o(¢")=yx(p)’. As we have observed in Chap.IX-4, the cyclic
extension of K’ attached to yop is the compositum of K’ and of the
cyclic extension of K attached to x; as the latter is unramified, hence
generated by elements of IR, the same is true of the former, so that
yop is unramified. We can now apply corollary 4 of th. 1 to both sides
of (2); it shows that the left-hand side is y(p(¢"))" with r=ord.(6'), and
that the right-hand side is x(¢)* with s=ordg(Ng x(8), hence s= fr by
formula (2) of Chap. VIII-1. This proves (2) when y is unramified. In
the general case, call n the order of y; as neither side of (2) is changed if
we replace ' by @'y with n'e K'*, we may assume that r=ord (6')+0.
As we have just shown, if ¥, is any unramified character of ®, (y;0p,0)k
is equal to yx,(p)’"; in view of prop. 5, we can choose y, so that this is
equal to any given root of 1 in C, and in particular to the left-hand side
of (2); as (2) has already been proved for unramified characters, it will
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therefore be enough, after replacing x by xx; ', to prove our result under
the additional assumption that the left-hand side has the value 1. That
being now assumed, call L the cyclic extension of K attached to y; the
cyclic extension of K’ attached to yop is then the compositum L of K’
and L. As the left-hand side of (2) is 1, prop. 10 of Chap. IX-4 shows
that there is n’eL’ such that ¢'=N (7). This gives, by Chap. III-3:
N x(0)=Np x(n)=Npx(N,.(n); the same proposition shows then
that the right-hand side of (2) is 1, which completes the proof.

COROLLARY 1. If a, a’ are the canonical morphisms for K and for
K, respectively, we have poa’=aoNg. .

In view of our definitions, this is just another way of writing (2).

COROLLARY 2. Let K and K’ be as in theorem 2; call n the degree of
K’ over K. Then, for every simple algebra A over K, we have h(Ag)=h(A)".

By th. 1, the factor-class belonging to A4 can be written as {y,x}. By
formula (7) of Chap. IX-4, the restriction morphism of H(K) into H(K’)
maps the class {y,0} onto the class {yop,0} for every ye Xy and every
0e K™ ; moreover, for 6e K™, we have N . (0)= 0" By th. 2, this gives:

hAg)=(xop, )i = (1 n")x = h(A4)".

COROLLARY 3. If y is a non-trivial character of ®, 0—(y,0)x is a non-
trivial character of K ™.

Call n and d the orders of these two characters; clearly d divides n.
Call L the cyclic extension of K attached to y; call ¥, an unramified
character of ® of order n, K, the unramified extension of K of degree n,
and put D=[K,/K;y,,7]. By corollary 2 of th. 1, we have h(D)=y,(¢),
so that h(D) is a primitive n-th root of 1. By corollary 2, we have then
h(D;)=h(D)"=1, so that D, is trivial; this is the same as to say that D
has an L-representation into M (L); by prop. 9 of Chap. IX-4, the factor-
class attached to D can then be written in the form {y,6}, with some
#eK™, and we have h(D}=(y,0)x. Therefore d=n. This shows that our
canonical pairing satisfies condition [II] of § 1.

CorOLLARY 4. If L is any cyclic extension of K of degree n, Ny (L)
is an open subgroup of K™ of index n.

In fact, by prop. 10 of Chap. IX-4, it is the kernel of 8—(x, 8)x, where
¥ is a character of ® attached to L, and we have just proved that this is
of order n.

If K'=K, or if y=1, the conclusion (2) of theorem 2 is trivial; if K’
is the cyclic extension of K attached to y, (2) is equivalent to prop. 10
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of Chap. IX-4, since yop=1 in that case. No other case than these can
occur if K is an R-field, as one sees at once. Therefore theorem 2 remains
valid for K=R or C; so do its corollaries.

PROPOSITION 6. A character y of ® is unramified if and only if (3,6)c =1
forall 6eR™.

Call X}, the group of the characters with the latter property; as
before, we call X, the group of the unramified characters of 6. By
corollary 4 of th. 1, Xy = X§. By prop. 2 of § 1, y—(y, )k is an isomorphism
of X, onto the group of all roots of 1 in C; by th. 1, combined with
prop. 5, this induces on X an isomorphism of X, onto the same group.
Therefore Xy=X,.

COROLLARY. A cyclic extension L of K is unramified if and only if
Npx(L*) contains R™.

In view of prop. 10, Chap. IX-4, this follows at once from the appli-
cation of proposition 6 to a character of ® attached to L.

§ 3. The canonical morphism. We have now verified conditions
[I], [11], [T11(b)] of §1 for the canonical pairing (x,0)x, and we have also
shown that the subgroup X, of Xk defined by means of such a pairing
in § 1 is here the same as the group X, of the unramified characters of
®. As in § 1, we will now call Uy the kernel of the canonical morphism
a of K™ into U; our main result in this § will be that Ug = {1}. In applying
the results of § 1, we have to keep in mind that here G% must be replaced
by R*, n; by a prime element n of K, and N by the subgroup of K*
generated by n. Corollary 2 of prop. 2, § 1, shows that Uy is contained in
R™, and that a determines a morphism of R onto the intersection 2,
of the kernels of the characters ye X,, when these are considered as
characters of . Here, by prop. 6 of § 2, X, consists of the characters of
® which are trivial on the subgroup , of ® corresponding to the union
K, of all unramified extensions of K. Therefore % is the image of §,
in A, i.e. the subgroup of A corresponding to the subfield K, of K,,,
or in other words the Galois group of K,,, over K. ‘

ProprosITION 7. Let K, be the union of all the unramified extensions
of K, contained in K ; let @, be the Frobenius automorphism of K,
over K, and let a be the canonical morphism of K* into the Galois group
W of K,, over K. Then, for every 0c K™, a(0) induces on K, the auto-
morphism @, with r=ord(0).

In fact, corollary 4 of th.1, §2, can be expressed by saying that
x(a(@))=yx ()" for every yeX,, if ¢ is an automorphism of K, over K
which induces ¢, on K. This is the same as to say that, if ¢ induces ¢’
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on K., a(f) ¢’ " is in the intersection of the kernels of all the characters
¥€X,, or again, in view of the definition of %, and K, that a(@)¢p ™"
induces the identity on K, as was to be proved.

CoOROLLARY. Notations being as in proposition 7, call ¢’ an auto-
morphism of K, over K, inducing ¢, on Ky. Then a maps R* onto Ugy;
it maps K™ onto the union of the cosets Wy, @™ for neZ, and this union
is dense in .

This follows at once from proposition 7 and from [IT"] in § 1.

Now we consider the kernel U of a. By definition, it is the intersection
of the kernels of the characters 8—(y,0)x of K™, when one takes for y
all the characters of . By prop. 10 of Chap. IX-4, this is the same as to
say that it is the intersection of the groups N, (L") when one takes for
L all the cyclic extensions of K.

PROPOSITION 8. Let K’ be an abelian extension of K of finite degree.
Then Ug=Ng x(Ug).

Assume first that K’ is cyclic over K. Then we can apply prop. 4
of §1, by taking F=Ng g; in fact, [IV(i)] and [IV(ii)] are obviously
satisfied by the automorphisms x—x* of K'*, for all 1€ 6; so is [1V(iii)],
by corollary 5 of th. 1, § 2; [V(i)] is obviously satisfied, and so is [ V(ii)],
by th. 2 of § 2. In the conclusion of prop. 4, U and U’ are here the same,
respectively, as Ug and Uyg.; moreover, as we have seen, U is contained
in Ny x(K"*), which, in the notation of prop.4, is the same as F(G').
This proves our assertion when K’ is cyclic over K. Otherwise we can
find a sequence K, K;,...,K,, =K’ of fields between K and K’, such that
each one is cyclic over the preceding one. If we use induction on m, the
induction assumption gives Uy, = Ny x,(Uy.), and what we have proved
gives Uy=Ng, «(Ug,); putting these together, we get our conclusion.
The same proof would be valid for any solvable extension, but this will
not be needed.

PROPOSITION 9. Assume that K contains n distinct n-th roots of 1.
Then the intersection of the kernels of the characters 0—(y, ¢,0)x of K™, _
forall Ee K™, is (K™)".

Here the assumption on K implies that r is not a multiple of the
characteristic of K, and g, . is as defined in Chap. IX-5. By definition,
the set in question is the intersection of the kernels of all the morphisms
0—{¢& 6}, 0of K* into H(K). By formula (12) of Chap. IX-5 (the “reciprocity
law”), this consists of the elements 6 of K™ such that {6,{},=1, i.e.
{tneE} =1, i.e. (4,0, E)=1, for all £eK™. By corollary 3 of th.2, §2,
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this is equivalent to y, y=1; as we have observed in Chap. IX-5, this
is so if and only if 8e(K ™).

COROLLARY. Let K be any p-field; if n is not a multiple of the char-
acteristic of K, Ug<(K™)".

The assumption on n implies that there are n distinct n-th roots of
lin K, ; then they generate an abelian extension K’ of K. By proposition
9, we have Uy < (K'™)". By prop. 8, this gives

Ug= NK’/K(UK')C NK’/K((K, * )")C (K*).

ProposITION 10. Assume that K is of characteristic p. Then the
intersection of the kernels of the characters 0—(x, ., 0)x of K™, for all
teK, is (K*).

Call Z that intersection; as all the characters y, . are of order p or 1,
Z is a subgroup of K™, containing (K*)?; as y, . =1 for £=0, Z may be
defined as consisting of the elements 6 of K™ such that {£,6},=1 for
all £e K™, or, what amounts to the same, such that {£6, H}I,zl for all
(e K™. By formulas (13) and (14) of Chap. IX-5, we have, for all éeK*,

feK™:
1={€9’ _éa}p:{ée’ _é}p'{éo’g}p’

so that Z is also the set of the elements 0 of K such that {£6, — &} =1
for all {eK ™. Then, by the first formula (13) of Chap. IX-5, Zu{0}
is an additive subgroup of K. As Z is a subgroup of K*, containing
(K™)P, we see now that Zu{0} is a subfield of K, containing K?; therefore,
by corollary 1 of prop. 4, Chap. I-4, it is either K or K. If it was K, all
the characters of the form y, - would be trivial. As we have observed in
Chap. IX-5, the kernel of the morphism £—y, . is the image of K under
the mapping x—x—x?; in view of th. 8 of Chap. I-4, one sees at once
that this image cannot contain n~ !, if n is any prime element of K;
therefore x, . is not trivial for £=n""'. This proves that Zu{0}=K?,
hence Z=(K*)".

COROLLARY. If K is of characteristic p, U <=(Ug)*.

By proposition 10, Ug < (K*)?, so that, if 8e Uy, it can be written
as n? with ne K™, Take any cyclic extension L of K; by prop. 8,
Ugx=Npx(Uy), and, by prop. 10, U, =(L*)?; therefore we can write §
as Ny x({?) with {e L*. This gives #n”= N, x({)’; as p is the characteristic,
this implies # = Ny x({). We have thus shown that 7 is in the intersection
of the groups Ny x(L™) for all cyclic extensions L of K ; as this intersection
is Uk, this proves our corollary.
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THEOREM 3. The mapping y— yoa is a bijective morphism of the group
Xy of characters of U onto the group of the characters of finite order
of K*.

Take any integer n>1. If K is not of characteristic p, we have
Ugc(K™)", by the corollary of prop. 9. If K is of characteristic p, write
n=n'p' with n’ prime to p, and i>0, and take any fe U,; by the same
corollary, we can write 0=¢" with (e K*. By the corollary of prop.
10, and using induction on i, we see at once that Ugc(Ug)”, so that we
can write =n?" with ne Uy. Take integers a, b such that n’a+p'b=1;
then 6=(£"n)". This shows that, in all cases, Ug=(K*)", so that every
character of K, of order dividing n, is trivial on U. As this is so for all n,
our conclusion follows now at once from corollary 4 of prop. 2, § 1.

COROLLARY 1. The canonical morphism a of K™ into the Galois group
A of K, over K is injective.

By lemma 2 of §1, applied to the endomorphism x—x" of K*,
(K™)" is a closed subgroup of K* for every n>1; this implies that it is
the intersection of the kernels of all the characters of K* whose order
divides n; that being so, theorem 3 shows that the kernel Uk of a is the
same as the intersection U’ of the groups (K )" for all n>1. Clearly U’
is contained in R*. As it is obvious that the compact group R* is totally
disconnected, lemma 4 of Chap. VII-3 shows that all its characters are
of finite order. If 7 is a prime element of K, every character of R* can be
uniquely extended to a character w of K* such that w(n)=1, which then
must also be of finite order. This implies that U’ is contained in the kernel
of all the characters of R*, so that it is {1}.

COROLLARY 2. The canonical morphism a induces on R* an isomorphism
of R onto the Galois group N, of K, over the union K, of all unramified
extensions of K in K.

This is now obvious, by corollary 1 and the corollary of prop. 7.

_ THEOREM 4. Let K' be an extension of K of finite degree, contained in
K; put L=K'nK,y,. Then, for 6 K™, a(8) induces the identity on L if and
only if 0isin Ng. ((K'™).

Call p the restriction morphism of ' into A, and put B =p(A").
An element of K ,, is invariant under B if and only if it is in K'; then it is
in L; therefore B is the subgroup of A corresponding to L. Put X =a~ !(B)
and X'= Ny x(K'*); what we have to prove is that X = X'. By lemma 2
of§ 1, X"is closed in K. If nis the degree of K’ over K, we have N (6)=
=" for fe K™, so that X' >(K*)*; therefore, if Y is a character of K*,
trivial on X', it is trivial on (K ™)", hence of a finite order dividing n, so
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that, by th. 3, it can be written as yoa with ye Xx. Then yoao Ny is
trivial on K'*; by corollary 1 of th. 2, § 2, it is the same as yopod’, so that
xop must be trivial on A’, hence y on p(A')=%B, hence ¥ on X. This
shows that X'> X. Conversely, if § =Ny (0') with #'eK'*, corollary 1
of th. 2, § 2, gives a(8)=p(a’(6)); as this is in B, we see that X' < X, which
completes the proof.

COROLLARY 1. Assumptions and notations being as in theorem 4, call
B the subgroup of W corresponding to L. Then Ny (L*)=Ng. x(K'*)=
=a~ 1(B).

The latter equality is just a restatement of theorem 4. Applying
theorem 4 to K'=L, we get Ny x(L*)=a~!(B).

COROLLARY 2. For every extension L of K of finite degree, contained in
K.p, call B(L) the subgroup of U corresponding to L, and put N(L)=
Ny (L) Then N(L)y=a~'(B(L)); B(L) is the closure of a(N(L)) in U;
L consists of the elements of Ky, invariant under a(0) for all 0e N(L), and
a determines an isomorphism of K> /N (L) onto the Galois group W/B(L) of
L over K. Moreover, L N(L) maps the subfields of K., of finite degree
over K, bijectively onto the open subgroups of K™, of finite index in K*.

All this is a restatement of prop. 3 of § 1, once theorems 3 and 4 are
taken into account. Traditionally, when Land N(L)are asin our corollary,
one says that L is “the classfield” to the subgroup N (L) of K*. In applying
our corollary, it is frequently useful to keep in mind that, by lemma 1 of
§ 1, an open subgroup of K * is of finite index in K™ if and only if it is not
contained in R™.

COROLLARY 3. Let K and K’ be as in theorem 4; let M be a subfield of
K., of finite degree over K, and call M’ its compositum with K'. Then
NM’/K’(M, * ) = NK'/E 1(NM/K(M * ))

By corollary 2, N, x(M ™), which is the same as N(M), consists of the
elements 6 of K™ such that a(#) leaves every element of M invariant.
Similarly, Ny k(M) consists of the elements 8" of K™ such that a'(¢')
leaves every element of M’ invariant; the latter condition is fulfilled if and
only if p(a’(6")) leaves every element of M invariant; in view of corollary
1 ofth.2,§ 2, thisis the same as to say that a(N . x(6)) leaves every element
of M invariant, i.e. that Ny, x(0') is in Ny (M ™).

It is easily seen that theorem 4 and its corollaries retain their validity
for R-fields; so does theorem 3.

§ 4. Ramification of abelian extensions. The above theory would be
incomplete without the knowledge of the ramification properties of the
abelian extensions of K, and in particular of their differents and discrimi-



§4. Ramification of abelian extensions 231

nants. As shown in Chap. VIII-3, these properties can be fully expressed
by a description of the Herbrand distribution on the Galois group A
of K, over K. We begin with some preliminary results, the first one of
which has no reference to abelian extensions and may be regarded as
supplementing Chap. VIII-3. We adopt the same notations as there,
e.g. in prop. 9 of that Chapter, calling K’ a Galois extension of K of
degree n with the Galois group g =g,, and calling g,, for v> 1, the higher
ramification groups of K' over K. We also call R, R’ the maximal com-
pact subrings of K, K’, and P, P’ the maximal ideals of R, R’, respectively.
We denote by ¢ the neutral element of g.

PROPOSITION 11. Let e be the order of ramification of K' over K, and
let P' be its different. Take h>1, ze P* and put :

Ngx(X—2)=X"+a, X" '+ +a,
where X is an indeterminate.
() If v(<h+1 forall A#e¢, then, for 1<i<n:
e-ordgla)=h+d—e+1.
i) If v(A)<h for all A+z¢, then, for 2<i<n:
e-ordg(a)>h+d—e+1.
(i) If v(A)=h+1 for all A+¢, then, for 1 <i<n:
ordg(a;)=h.
V) If v(AY=h+2 for all A+¢, then, for 1<i<n—1:
ordg(a) > h.

As —a, =Trg x(2), the inequality in (i), for i=1, is nothing else than
corollary 1 of prop. 4, Chap. VIII-1, and does not depend upon the as-
sumption about v(4) in (i). In any case, we have

(3) (—Dia=Y 20

where the sum is taken over all combinations of i distinct elements of
g, or, what amounts to the same, over all subsets s={4,,...,4;} of g of
cardinal number i. For each such subset s, write:

z(s)=zMz% . 2

Take such a subset s; for each oeg, write so for the image of s under the
translation 41— A¢ in g; call ) the subgroup of g, consisting of the ele-
ments ¢ such that s 6 =s; call l the order of b, and take a full set {p{,...,p,}
of representatives of the left cosets b p of h in g. Clearly s is a disjoint union
of right cosets ub of b in g; take a full set m= {,..., u,,} of representatives
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for these cosets, so that s is the disjoint union of the cosets u,b,...,u, b;
we have i=ml. Put w=z(m), and call K” the subfield of K’ corresponding
to the subgroup } of g; we have now:

z(s)= I_[ w?=Ng. g-(W).
aeh
In view of the definition of b, the sets s p,,...,s p, are all distinct; as they
have the same cardinal number i as s, all the terms z(sp)), for 1 <j<r,
occur in the right-hand side of (3). As the p; induce on K” all the distinct
isomorphisms of K” into K, the sum of these terms can be written as

4) ZZ(SP,') = Zz(s)”f = ZNK’/K"(W)OJ =Trgx (NK'/K"(W))'

Consequently, the right-hand side of (3) can be written as a sum of terms,
each of which has the form shown in the right-hand side of (4); moreover,
for each one of these terms, we have ml=i, where [ is the order of b, i.e.
the degree of K’ over K”. All we need do now is to prove the inequalities in
our proposition for each term of that form, with ord,.(w)=mh in view of
the assumption on z and of the definition of w. Call ¢’ the order of ramifi-
cation and f” the modular degree of K’ over K”, so that I=¢' f’ by corol-
lary 6 of th. 6, Chap. I-4; then, by (2) of Chap. VIII-1, the order of N, - (w)
in K" is = f'mh. Call ¢” the order of ramification and d" the differental
exponent of K” over K. If w is the order in K of the right-hand side of (4),
we have, by corollary 1 of prop. 4, Chap. VIII-1:

o= f'mh+d —e" +1.
Ase=¢e'e", i=ml, and ¢ f'=]I, this gives
ew=zih+e'd —e+e.
If now we call 4’ the differental exponent of K’ over K", corollary 4 of
prop. 4, Chap. VIII-1, gives d=¢'d”+ d, so that our last inequality can

be written as
ew=zih+(d—e+1)—(d' —e +1).

Now formula (9) of Chap. VIII-3, applied to K’ and K", gives:
d—e+1=Y((A)-1)*,
A

where the sum is taken over all A+¢ in h; moreover, as pointed out there,
the number of terms >0 in that sum is <e’'— 1. If the assumption in (i) is
satisfied, every one of these terms is < h; this gives

d—e+1<(e—1)h,
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and therefore
ew—(h+d—e+1)=(i—¢€)h;

as ¢’ <1<, this proves part (i) of our proposition. If the assumption in (ii)
is satisfied, we get in the same way:

d—-e+1<Ee—-1)kh-1)
and therefore
ew—(h+d—e+1)zi—1+(i—¢€)(h—1);

this cannot be 0 unless i =1, which proves (ii). On the other hand, if we
apply formula (9) of Chap. VIII-3 to K'and K, we get

(d—e+l)—(d—e+1)=)(()-1)"

where the sum is now taken over all Aeg—b and consists of n—{ terms,
so that it is >(n—I)h if the assumption in (iii) is satisfied. Then we get:

e(@—hyz(i+n—Il-eh,

which proves (iii), since /<i and e<n. Similarly, the assumption in (iv)
gives:
elw—h=2(i+n—Il—-eYh+n-1;

as I<i, e<n, I<n, the right-hand side cannot be 0 unless [=i, e=n, [=n,
hence i =n. This proves (iv).

COROLLARY 1. Notations being as in proposition 11, take again h=1,
ze P That being so:

@) If v(A)<h+1 for all A+¢, then:

e-ordg(Ng x(1+z)—1)=h+d—e+1
@) If v(A)<h for all A+e, and h=pe—(d—e+1) with peZ, then:
Ngx(I+2)=1 (P), Nyg(l+2)=1+Trgxlz) (PPT).
(i) If v(A)=h+1 for all A#¢, then:
\ Nex(l+2)=1 (P,
(v) If v(A)=h+2 for all 1+, then:
Nygx(1+2)=14 Ngelz) (P**).

In fact, with the notations of proposition 11, we have:

Ngx(l+2)=1+ Z (—1)a;
i=1
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the four assertions in our corollary follow now immediately from the
corresponding ones in proposition 11,

COROLLARY 2. Assumptions being as in corollary 1 (il), we have
N x(1+P"=1+4P*.

As d—e+120, these assumptions imply h<pe, hence p>1. By
corollary 1 (ii), Ng. k(1 + P"*) is contained in 1+ P*. Conversely, take any
Xo€P?; then we can define by induction two sequences (x,,X;,...) and
(Z9»21,...), With x;eP'*? and z;e P*** for all i>0, by taking, for each
i=0, z;e P**" such that Trg. x(z)=x;, as may be done by prop. 4,
Chap. VIII-1, and then putting

X1 =1+ x) Nl +2) 71 =15

corollary 1 (ii) shows at once that this is in P{* 172, as it should. Then,
obviously, 1+ x,=Ng x(y) with y given by the convergent product

y=[](1+2z); as yis in 1+ P’*, this proves our corollary.

i=o0

PROPOSITION 12. Let K and K’ be as above, and assume that v(1) has
the same value i>2 for all A+#¢ in g. Then, for 1 <h<i, Ng x(1+ P*) is
contained in 14 P*; and N . x(1+ P ~')is contained in 1+ P'if and only if
the degree n of K’ over K is equal to the module q of K.

Here the higher groups of ramification of K’ over K are given by
g,=g for v<iiand g,={¢} for v>i+1. As g, =g, we have e=n; K’ has the
modular degree f =1 over K and has the same module g as K. By formula
(9) of Chap. VIII-3, we have d =(n—1)i. Taking h=i in corollary 1(i) of
prop. 11, we get our first assertion for that case; in the case h <, it follows
at once from corollary 1 (iii) of the same proposition. By corollary 3 of
prop. 9, Chap. VIII-3, the degree n of K’ over K divides g; by that propo-
sition, if we take a prime element 7" of K’ and put y,=n"n'"" for all
A€g, the mapping i— y, maps g onto a set Y of elements of 1+ P!
which are all incongruent to each other modulo P". In particular, Y
makes up a full set of representatives of the cosets of 1+ P in 1+P !
if and only if n=gq. Since obviously Ny x(y;)=1 for all 4, this shows that,
if n=¢, Ng,x(1+ P"') is the same as N k(1 + P"), hence contained in
1+ Pi.In order to prove the converse, take ze K™ such that ord g.(z) =i —1.
As in prop. 11, write .

Ny (X —2)=X"+ 3 a; X"
j=1
Then a,=Ng x(—z), so that, by (2) of Chap. VIII-1, ordg(a,)=i—1.
Taking h=i—1in prop.11 (i), we get ordg(a;)=i—1 for 1<j<n, so that,
if we put b;=aj/a,, all the b; are in R. Now take any yel+Pi7 1 as
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(1—y)/zisin R, and as K’ has the same module as K, there is ae R such
that (1 —y)/z=a (P'), or, what amounts to the same, y=(1 —az)u with
uel+ P". Then Ny x(u) is in 1 + P, so that we have:
n n—1
Ngx()=Ngg(l—az)=1+ Y a;of=1+a,(«"+ Y b;ad) (PY).

j=1 i=1
For 1<j<n-1, call b; the image of b ;in the field R/P, under the canonical
homomorphism of R onto that field; then the above formula shows that
Ny x(y)isin 1+ P'if and only if the image of « in the same field is a root
of the polynomial T"+ Y b, T/; in particular, if this is so for all y, all the
elements of R/P must be roots of that polynomial, so that n>g. This
completes the proof.

PROPOSITION 13. Let 7 be a prime element of K; for eachv>1,call N,
the subgroup of K™ generated by n and 1+ P’, and call K, the subfield of
K., such that N(K,)= N, in the sense of corollary 2 of theorem4,§ 3. Call
a® the Galois group of K, over K, and a, the morphism of K* onto g, with
the kernel N,, determined by the canonical morphism a of K. Call g, for
i1, the higher groups of ramification of K, over K. Then g\"=g"; for
I<p<vand ¢~ ' <i<q’, ¢’ =0a,(N,).

Choose some v 1, and then, to simplify notations, write N instead of
N,, L instead of K,, g instead of g*), g; instead of g{”; as in Chap. VIII-3,
call g; the number of elements of g;, for all i>1; then g, divides g; for
i2j. As g is isomorphic to K*/N, the degree of L over K is the index of N
in K, whichisn=(q—1)¢q"~ '. By the corollary of prop. 6, § 2, the maximal
unramified extension L of K, contained in L, is the one for which N(LL*)=
=R*N;as R* N=K", we get L=K; in other words, L is fully ramified
over K, its order of ramification is e=n, and we have g, =g; moreover, L
has the same module g as K, and the same must then be true of all fields
between K and L, so that, if Kc K' = K” = L, K” is fully ramified over K'.
By corollary 1 of prop. 9, Chap. VIII-3, g,/g; , ; divides g for i =2 ; therefore
g1/g,=q—1. Put r; =0 and r,=(g,+---+ g;)/n for all i>2; for each in-
teger p =0, call i(p) the largest of the integers i such that r; < p. Assume
ri<p<r;, foranyp>=0andanyi>1;thenO<pn—(g,+ - +¢)<gi+1;
this is clearly a contradiction, since n, ¢,,...,g; are multiples of
gi+1- Therefore, for all p, we have r;,)=p. We have i(0)=1, and i(p)> 1
for p>0. Take now any p such that 0 p <v; put i=i(p); call K’, K" the
subfields of L consisting of the elements invariant under g; and under g, , ,,
respectively; the Galois group g” of K” over K’ may then be identified
with g;/g;, .. If p=0, i=1, and the degree of K" over K' is g,/g,=q— 1.
From now on, assume that 1< p<v; we will show that then K" is of de-
gree g over K'. We first observe that the higher ramification groups g
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of K” over K’ are given by applying formula (11) of Chap. VIII-3 to K’,
K" and L; as K" is fully ramified over K', its order of ramification is the
same as its degree over K’, and then that formula shows at once that
v(c")=i for all s”"€g" except the identity, so that g;=g" for j<i, and
g;={¢} for j>i+1. Similarly, write g'=g/g; for the Galois group of K’
over K, and call gj its higher ramification groups; in exactly the same
manner, we find that gj is the image g,/g; of g; in g/, for j<i, and that it
is {&} for j=i. Call R’, R” the maximal compact subrings of K', K", and
P, P” the maximal ideals in R’, R”, respectively. As K’ is fully ramified
over K, its order of ramification ¢’ is the same as its degree n'=n/g;;
then, if P'?" is the different of K’ over K, formula (10) of Chap. VIII-3, gives

1

d—e+1=3 ((g;j/g)—1)=rin/g;i—i+1=pn' —i+1.

i=2
Take any ze L such that ord (z) 2i—1; put v=N x(z), so that ve P""~ ',
Applying corollary 1 (iv) of prop. 11 to K” and L, with h=i—1, we get

Nyg(l+2)=1+v (P").
Define now we K’ by writing

14+ w=Npj(1+2)=Ngr(Npg-(1+2).

Applying to K', K" the first assertion in prop. 12 with h=i, we get
1+WENKII/K'(1+U) (P”);

the case h=i—1 of the same assertion in prop. 12 gives then we P~ L.
Now, taking h=i—1 in corollary 1 (ii) of prop. 11, we can apply it to K
and K’; this gives

NL/K(1+ Z)=NK1/K(1+W)EI +TI‘Kr/K(W) (Pp+1).

By the definition of K, and corollary 2 of th. 4, § 3, this must be in N,= N,
hence in N,nR*, i.e. in 14 P*; as p<v, this implies that Trg. k(w) is in
P?*1 In view of the values found above for ¢’ and d’'—e'+ 1, prop. 4 of
Chap. VIII-1 shows that Trg.x maps P"~'surjectively onto P?, and P
onto P**'; in particular, there is w'e P"~ ' such that Trgx(w') is not in
P?*1 Then, if we had ordg.(w)=i—1, w'w™! would be in R’, so that we
could write w'w™l=u (P') with R, since K’ has the same module
as K ; this can be written w = aw (P"), which implies

T"K'/K(W/) = ﬂ'x'/K(W) =0 (Pp+ 1),

against our assumption. This shows that w is in P”, or in other words
that Ng.x(1+v) is in 1+ P" whenever v=N x.(z) with ze L, ord,(z) >



§4. Ramification of abelian extensions 237

=i—1. Now choose zoe L™ so that ord;(z)=i—1; put vy =N x-(2), 50
that ordg-(vy)=i—1; call M ™ the group of (¢— 1)-th roots of 1 in K, and
take z=pz, with ue M. As the degree of L over K" is g;,,, and as
g;/9;+ divides q for all j>2, we have v=p%v,, where Q=g,,, divides a
power of q and is therefore prime to g —1, so that u— u? is an automor-
phism of M. Consequently, when p runs through the set M =M * {0},
1+v runs through a full set of representatives of the cosets modulo
I+ P"in 14+ P"~ ' As Ng.x(1+v) is in 1+ P" for all these elements v,
prop. 12 shows, firstly, that N x.(1+ P"*~ ') is contained in 1+ P", and
then that the degree of K” over K’ must therefore be g.

In other words, we have shown that g,, /5., + 1 is equal to g for 1 <p <
<v—1; we had already found that it has the value g—1 for p=0. As we
have

n=(q—-1)qg '= H(gi/gi+ N
i=1

this implies that g;=g,,, whenever i is not one of the integers i(0)=1,
i(1),...,i(v—1); therefore g;=g;,,+, for i(p) <j<i(p +1), so that g, ,, is
of index q in g;, for 1 < p <v, while this index is g~ 1 for p=0. By induc-
tion on p, we see at once that g,,,=q"~* for 1< p<v. The definition of the
integers r; gives now:

Tio+ 1y~ Tipy=(Gipy+ 1+ "+ gi(p+1))/n=(i(.0+1)—i(P))qv_p_ln71,

for 0< p<v. As ry,,=p, the left-hand side is 1; this gives

ilp+)—ilp)=@-1)¢,

and therefore i(p)=¢” by induction on p.

To complete the proof, observe that, in view of the values found above
fore’and d'— e’ +1, we may apply corollary 2 of prop. 11, with h=i—1, to
K and the same field K’ as above; it shows that 1+ P” is the same as
Ny k(14 P~ ') and is therefore contained in the group N'= Ny, (K')
associated with K’ according to corollary 2 of th. 4, § 3. As N’ contains the
group N=N, associated with L=K,, it contains =, hence the group N,
generated by 7 and 1+ P?. Let a, be the morphism of K* onto g=g",
with the kernel N,, defined in our proposition; by corollary 2 of th.4,
§ 3, this maps N’ onto the subgroup g,,, of g corresponding to K';
therefore g;,,, contains a,(N,) for 1<p <v. In view of our definitions, the
same is obviously true for p=0 if we define Ny by Ny =K, and also for
p=v. Now we prove by induction on p that g;,,=a,(N,) for 0<p<v. It
is true for p=0. Assume g;,_;,=a,(N,_,), and let N’ be as above; N’
contains N,, as we have seen, and it is contained in N,_,, since g, is
contained in g, 1); its indexin N,,_, is the same as that of g,y in g;(,_ 1),
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whichis g—1if p=1and qif p>1. As this is the same as the index of N, in
N,_, we get N'=N,. In view of what has already been proved above,
this completes the proof of our proposition.

COROLLARY. Notations being as in proposition 13, the order of ramifi-
cation of K, over K is the same as its degree and is given by e,=(q— 1)q" ~ *;
if d, is the differental exponent of K, over K, we have d Je,=v—(q—1)" L.

The value of e, has already been given above; that of d, can be ob-
tained at once by applying formula (10) of Chap. VIII-3 to the results
stated in proposition 13; this gives the formula in our corollary.

As will presently be seen, proposition 13 contains in substance the
determination of the Herbrand distribution on the Galois group U of
K, over K, which was our main object in this § We recall that this has
been defined in Chap. VIII-3 as a certain linear form f— H(f) on the
space of all locally constant functions on . As explained there, if X is
any open and closed subset of U, its characteristic function fy is locally
constant, and then we write H(X) instead of H(fy); X — H(X) is thus a
finitely additive function of X.

LEMMA 3. Let H be the Herbrand distribution on WN. Then there is a
unique distribution H, on W, such that H(f)= Hy(f,) whenever f is a
locally constant function on W, and f, is the function induced on U, by f.

Let B be any open subgroup of U; let L be the subfield of K, corre-
sponding to B. Let K, be as in § 2, 1.¢. the union of all unramified exten-
sions of K, so that 2, is the subgroup of A corresponding to K,. Then the
maximal unramified extension L, of K, contained in L, is KonL and
corresponds to the subgroup BA, of A. If Ba is any coset of B in A,
other than B, and « induces on L the automorphism /4, H(B a) is by defi-
nition equal to — v(4)/e, where e is the order of ramification of L over K ;
this is 0 if 2 does not induce the identity on L, i.e. if Ba is not contained
in BA,, or in other words if BanWA,=0. As H is finitely additive, this
implies that H(X)=0 whenever X nU,=0, and H(f)=0 whenever the
locally constant function f is 0 on ,. On the other hand, take any
locally constant function f;, on U,. As A, is compact, f, is uniformly
continuous, so that there is an open subgroup B of U such that f, is con-
stant on the cosets of BN, in A,. Then £, can be uniquely continued to
a function f on U, constant on the cosets of B in W and 0 outside BA,,.
If then we put Hy(f,)=H(f), it is clear that H, is as required by our
lemma. Except for obvious notational changes, the lemma and its proof
remain valid for the Herbrand distribution on the Galois group of any
Galois extension of K, abelian or not. This will not be needed.
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As the canonical morphism a of K™ into % maps R™ isomorphically
onto A, , we can transport to R™ the distribution H, of lemma 3 by means
of the inverse to that isomorphism. This defines a distribution Hg on R’
which we extend to a distribution Hy on K™ by prescribing that
H(X)=Hg(XnR") for every open and closed subset X of K*. We will
call Hy the Herbrand distribution on K™ ; in an obvious sense, its support
iscontained in R ™. In view of the definition of Hy, we have H(f)= H(foq)
for every locally constant function f on A, and H(X)=H(a™'(X))
for every open and closed subset X of . The distribution H is given by
the following theorem:

THEOREM 5. Let Hy be the Herbrand distribution on K*. Then its
support is R*; Hg(R*)=0; Hy(1+ P)=v—(q—1)"1 for all v=1; if
0<p<v, éeR™, and ordg(1 —&)=p, then

Hy((1+P))=—¢"" (-1

By the definition of the Herbrand distribution, we have H()=0;
this gives Hg (K *)=0,hence H(R*)=0.Let K,, N,, d,, ¢,be asin prop.13
and its corollary; if B, is the subgroup of 2 corresponding to K,, we
have H(B,)=d, /e, by the definition of the Herbrand distribution; as
N,=a"(B,) by corollary 2 of th.4, § 3, and as N,nR* =1+ P*, this,
together with the corollary of prop. 13, gives for Hg(1+ P*) the value
given in our theorem. Finally, let £ be as in our theorem; call A the auto-
morphism of K, induced by a(£). By the definition of the Herbrand
distribution, H(B,a(¢)) is —v(1)/e,, or, what amounts to the same, it
is —i/e, if i is the largest integer such that leg®. By prop. 13, this is
i=q¢" if p is the largest integer such that Aeaq,(N,), or, what amounts
to the same, such that e N,; this is given by p=ordg(1—¢). On the
other hand, H(B,a(¢)) is the same as Hg(N,&) and as Hg((1+ P*)¢).
This completes our proof.

COROLLARY 1. Let y be a character of N, and P! the conductor of
the character yoa of K™. Then f=H(y)=Hg(xoa).

Put o=yoa. If f=0, w is trivial on R™, so that Hg(w)=Hg(R*)}=0
by theorem 5. Assume now that f > 1; call ¢, the characteristic function
of R*, and ¢, that of 1+ P for 1 <i<f. We have:

r-t
Hylw)= Z Hi((9;— @i+ 1)w)+HK((Pf(U)-
i=0
By the definition of the conductor,  is trivial on 1+ P/, so that the
last term is equal to Hg(1+ P/), hence to f—(q—1)"! by theorem 5.
Also by theorem 5, and in view of the fact that w is constant on cosets
modulo 14 P/ in R*, we have, for 0<i<f—1:
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Hy((¢i— ;4 )0)= =4 g1 7S =S54 1),

where S; is the sum ) w(¢) taken over a full set of representatives of
the cosets modulo 1+ P/ in R* if i=0 and in 1+ P* if i>1. By the
definition of the conductor, w is not trivial on R*, nor on 1+ P' for any
i< f; therefore §;=0 for i< f, and §S,=1. Our conclusion follows from
this at once.

COROLLARY 2. Let L be an abelian extension of K of finite degree.
Let w,...,w, be all the distinct characters of K™, trivial on the subgroup
N(L)=N, (L") of K* associated with L; for each i, call P’* the conductor
of w;. Then the discriminant of L over K is P’ with =) f.

Call B the closure of a(N(L)) in U; by corollary 2 of th. 4, § 3, it is
the subgroup of 2 corresponding to L, and a determines an isomorphism
of K*/N(L) onto A/B. Therefore we can write, for each i, w;,=y;o04q,
where y; is a character of ¥, trivial on B, and the x;, for 1 <i<n, are
then all the characters of 2, trivial on B, so that the characteristic
function of B on U can be written as n~ 'Y y;. Call ¢, f and d the order

of ramification, the modular degree and the differental exponent of L
over K; then n=ef, and, by the corollary of prop. 6, Chap. VIII-2, the
discriminant of L over K is P/9 By the definition of the Herbrand
distribution, we have H(B)=d/e; this can be written as

dfe=H(n"*Y 1) =n"* LHQ),

hence fd=) f,, in view of corollary 1. This completes the proof.

§ 5. The transfer. Notations being as before, let K’ be an extension
of K of finite degree; call a, o' the canonical morphisms of K* into 2,
and of K'™ into ', respectively. As a is injective, there is a mapping ¢
of the image a(K™) of K™ in U into the image a'(K'*) of K'* in U,
defined by t(a(6))=a’(8) for every e K™, or in other words by toa=a’oj
if j is the natural injection of K™ into K'*. The question arises whether
this can be characterized in group-theoretical terms, and extended by
continuity to a morphism ¢ of U into W’'; this will now be answered
affirmatively. For simplicity, we will assume K’ to be separable over K;
a consideration of the general case would complicate our statements
without adding to them anything of value.

Consequently, let K’ be a subfield of K, of finite degree n over K.
As before, we call &' the subgroup of ® corresponding to K’, and identify
A with G/GY) and W with &'/&D). It will be shown that the morphism
we are looking for is none other than the so-called “transfer homo-
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morphism” t of U into W'; we recall that this is defined as follows. Take
a full set {o,,...,0,} of representatives of the right cosets 6 ®" of &' in
®. For every o€ ®, the mapping 6,® —~00,;®’ is a permutation of these
cosets, so that one may write, for each i, 60,6 =0,;®’, where i—j(i)
is a permutation of {1,...,n}; this can be written as ¢6¢,=0,;1; With
7;,€®’. It is now easily seen that the image of 7, --- 7, in W =6'/G"Y),
under the canonical morphism of ®' onto ', depends neither upon the
choice of the representatives g; nor upon their ordering, so that, if we
call that image a(c), the mapping o—a(s) of ® into A’ depends only
upon ® and &'. One sees then at once that a(so’)=a(o)a(s’) for all
o, ¢’ in ®. Moreover, the subgroup &” of ®, consisting of the elements ¢
such that o6,€0,6  for all i, is the intersection of the open subgroups
6,6 o ! for 1 <i<n, hence itself an open subgroup of ®; as it is obvious
that 6 —a(0) is continuous on %", it is continuous on &, hence a morphism
of ® into . As W is commutative, the kernel of this morphism must
contain BV, so that it determines a morphism ¢t of U= G/G* into A’;
by definition, this is the transfer homomorphism of U into A’

THEOREM 6. Let K’ be an extension of K of finite degree, contained
in K., let a, a’ be the canonical morphisms of K™ into W, and of K'*
into W, respectively. Let t be the transfer homomorphism of U into W,
and j the natural injection of K™ into K'™. Then toa=aq’oj.

Let ®, ® be as above; let L be any Galois extension of K of finite
degree, containing K’ and contained in K, and let § be the subgroup
of ® corresponding to L. Then © is a normal open subgroup of ®,
contained in &’; the Galois group of L over K is g=®/%, and the sub-
group of g corresponding to K" is ¢'=®'/9. Let K” be any field between
K and L; let " and g"=®"/9 be the subgroups of & and of g, respec-
tively, corresponding to K”. The canonical morphism a” for K” is then
a morphism of K" into A" =G"/G""), which, to every £€ K" ", assigns
an automorphism a”(¢) of K7, over K”; we will write b(K";¢) for the
automorphism of LNnK}, over K” induced on that field by a”(£). As the
subgroup of ® corresponding to LnK7}, is § & "), é-b(K";&) is a mor-
phism of K”* into the group 6"/ ®""); clearly the latter group may be
identified with g”/g""), where g"") is the commutator subgroup of g".
In particular, 0—b(K;6) is a morphism of K* into g/g*. We will denote
by t, the transfer homomorphism defined for g and g’ just as ¢ has been
defined above for & and ®'; it is a morphism of g/g'*’ into g'/g’*’. Our
theorem will be proved if we show that, for all e K™, b(K';0) =1t,(b(K;0));
for this implies that a’(9) can differ from t(a(f)) only by an element of
the image of $ GV in G'/G'V, i.e. by an element which is arbitrarily
close to the identity, since we can take for § an arbifrarily small open
subgroup of &’, normal in G.
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We will denote by h, h' the canonical morphisms of g onto g/g™"
and of g’ onto g'/g"'", respectively; h is the same as the “restriction
morphism” which, to every automorphism of L over K, assigns its
restriction to LNK,, , and k' can be similarly interpreted. If now K” is
a field between K and L, corresponding to the subgroup ¢” of g, K"n K 5,
is the subfield of L corresponding to the subgroup g”g*’ of g, or, what
amounts to the same, it is the subfield of LnK,, corresponding to the
subgroup h(g”) of the Galois group g/g*’ of LnK,, over K. Conse-
quently, by th. 4 of § 3, and in view of our definition of b(K;6), the sub-
group Ny x(K"™) of K™ consists of the elements 6 of K™ such that
b(K;0)is in h(g”). Now assume that g” is commutative, so that ¢—b(K";&)
maps K”* into g”; then we see in a similar manner, by applying corollary 1
of th. 2, § 2, to K and K”, that we have, for all e K"*:

(5) h(b(K";£))=b(K; Ngx(£)).

IfK">K',i.e.ifg” =g, we have a similar formula with K', &’ replacing K, h.

Now, for a given 8e K™, we can choose a cyclic subgroup I' of g
such that b(K;0) is in h(I'); for instance, we may take for I' the group
generated by any yeg such that h(y)=Db(K;0). Then, as we have seen
above, if Z is the subfield of L corresponding to I', § may be written as
N, x(0) with {eZ*. Take a full set of representatives {4,...,4,} for the
double cosets I'Ag' of I' and ¢ in g, and call y, a generator of I'. For
each i, I'A;¢’ is a union of right cosets y 4,9’ of ¢/, with ye I’ If y,y" are in I
7.4 isthesameasy'A,q ifand onlyify ™!y’ isin the group [=I'n;g'4; .
Call d, the index of I in T'; then I is generated by y%, and d, is also the
smallest of the integers d such that 4; 199 4, is in g. That being so, I'4,g’
is the disjoint union of the cosets 74 4;a’ for 0<j<d;. Consequently, the
elements 74 A, for 1 <i<r, 0<j<d,, make up a full set of representatives
of the right cosets of g’ in g, and we can use it for computing the transfer
to(y) of any element y of I Taking at first y=y,, we find at once, in that
case:

©) o) =K ( n(z;‘vd%i)> IR GE 0
i=1

i=1

this being true for y=1y,, it is obvious that it remains so for y =7{ for all j,
or in other words for all ye Il

For each i, put Z;=Z%, and call Z. the compositum of Z; and K’;
obviously (4;,Z}) is a proper embedding of Z above K’ in the sense of
Chap. III-2. Let (4,Z") be any such embedding; after replacing it if
necessary by an equivalent one, we may assume that Z’ is contained in
K., hence in L, so that the isomorphism 4 of Z onto Z’ can be extended
to an automorphism A of L over K. Then (4,Z’) is equivalent to (4;,Z})
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if and only if there is a K'-linear isomorphism of Z’ onto Z;, which we
can then extend to an automorphism o of L over K’, such that 4 coincides
with A;6 on Z. Then A=y1,6 with yeI’ and oseg’. Consequently (1,Z)
is equivalent to one and only one of the embeddings (4;,Z;). Now prop.4
of Chap. I11-3 gives:

6 :NZ/K(C): l_[ Nz;»/K'(CM)-
i=1

As we may apply (5) to K’ and to K" =Z; for each i, we get:
M b(K';0)= [T (B(Z;; (™).
i=1

Put y=b(Z;{); by the definition of b, this is in I By corollary 5 of th. 1,
§ 2, we have then:

b(Z; =27 "y A,

We may apply (5) to the fields Z,, Z; instead of K, K", replacing at the
same time h by the identity since the Galois group of L over Z; is the
commutative group A; ! I'4,. The Galois group of L over Z; is the inter-
section of the latter group with g'; with the same notations as before,
thisis A; ' I;4;; it is of index d; in A; ' I'4;, so that d; is the degree of Z; over
Z;. As {*is in Z;, we have then N, ({*)=({*)*. Therefore (5), applied
to Z;, Z; and {*, gives:

B(Z; () =B(Zs ()= Ty )™

In view of (6) and (7), our conclusion follows from this at once.



Chapter XIII
Global classfield theory

§ 1. The canonical pairing. In this Chapter, k£ will be an A-field; we
use the same notations as in earlier chapters, e.g. k,, r,, 4,, k4, €tc. We
choose an algebraic closure k of k, and, for each place v of k, an algebraic
closure K, of k,, containing k. We write k., k, .., for the maximal se-
parable extensions of k in k, and of k, in K, respectively. We write k,,,
k, . for the maximal abelian extensions of k in k., and of k, in k, .,
respectively. One could easily deduce from lemma 1, Chap. XI-3, that
k, «p is generated over k, by k., and therefore K, by k, and we shall see
in § 9 of this Chapter that k, ,, is generated over k, by k,,,; no use will be
made of these facts. We write ® and A =6/6G' for the Galois groups of
k., and of k,,, respectively, over k; we write ®, and A,=6,/G for
those of k, .., and of k, ,,,, respectively, over k,. We write p, for the re-
striction morphism of &, into ®, and also, as explained in Chap.XII-1,
for that of U, into W. We write X, for the group of characters of &, or,
what amounts to the same, of U ; for each ye X, we write y, = yo p,; this is
a character of ®,, or, what amounts to the same, of ¥,

PrOPOSITION 1. Take any yeX,; call L the cyclic extension of k
attached to y. Let v be any place of k; let L' be the cyclic extension of k,
attached to y,=yxop,, and let w be any place of L lying above v. Then there
is a k,-linear isomorphism of L' onto L.,

As observed in Chap. IX-4, L' is the compositum of L and k, in K,,.
As it is of finite degree over k,, it is a local field, and prop. 1 of Chap.
III-1 shows that L is dense in it; therefore it is the completion of L at a

place lying above v. Our conclusion follows now from corollary 4 of th. 4,
Chap. 111-4.

CoroLrLARY. Notations being as in proposition 1, y, is unramified for
almost all v; if yx, is trivial for almost all v, x is trivial.

The first assertion follows at once from th. 1 of Chap. VIII-4, combined
with proposition 1; the second one follows similarly from corollary 4 of
th. 2, Chap. VII-5, when one takes there for V the set of all the finite places
of k where y, is trivial.

We can now apply to k, and y, the definitions and results of Chap.
XII-2. For any zek, , we will write (x,, z), instead of (x,,z),,. The canonical
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morphism of &}, into U, will be denoted by a,; then we have (x,,z),=
=y,(a,(2)) for all zek;. For every zek;, p,(a,(2)) is the automorphism of
k., over k induced on k,, by the automorphism a,(z) of k, ., over k,.

Take now z=(z,)e k. For almost all v, z, is in 7, and, by the corol-
lary of prop. 1, y, is unramified, so that we have (x,,z,),=1 by corollary 4
of th. 1, Chap. XII-2. Therefore, in the product

(1) (X’Z)k=l:[(Xvazu)w

taken over all the places of k, almost all the factors are equal to 1, so that
the product is well defined. The continuity of z,—(y,,z,), for each v,
together with the facts mentioned above, implies that z—(y, z), is conti-
nuous on k}; therefore it is a character of k, whose order is finite since
it divides that of y. The pairing of X, with kj, given by (1), will be called
the canonical pairing for k; it is clear that it satisfies condition [I] of
Chap. XII-1. As to condition [II], assume that z—(y, z), is trivial on kj;
then z,—(x,,z,), must be trivial for every v. As [II] is satisfied for local
fields, this implies that all y, are trivial, hence that y is so, by the corollary
of prop. 1. This proves [II] for the pairing (1).

As explained in Chap. XII-1, we can now define the canonical mor-
phism a of ki into A by writing, for all ye X, and all z=(z,)ek,:

(2) X(a(z)):(Xaz)k:H(szu)v'
Then, by [11"] of Chap. XII-1, a maps k; onto a dense subgroup of U.

PROPOSITION 2. Let j, be the natural injection of k, into ki, mapping
kX onto the quasifactor k, of k. Then aoj,=p,oq,.
v q v A v v

In fact, if z,ek}, z=j,(z,) is the idele whose coordinates are all 1
except the one corresponding to v which is z,. Put a=q,(z,); (2) gives here:

1(6(2)) = (o 2,)0 = Xo(@) = x (0, (@)

As this is so for all characters y of 2, it implies a(z)=p,(x), as was to be
proved.

THEOREM 1. Let k' be an extension of k of finite degree, contained ink;
let ®, ®' be the Galois groups of k.., over k, and of ki, over k', respectively,
and let p be the restriction morphism of ®' into ®. Then, for every charac-
ter ye Xy, and for every z'eky , we have:

(xop, 2N =1 Nk’/k(zl))k'

In view of our definitions, this is an immediate consequence of th. 2
of Chap. XII-2, combined with corollary 3 of th. 1, Chap. IV-1.
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COROLLARY 1. If a, a’ are the canonical morphisms for k and for k',
respectively, we have poa’=aoN,.,.

This is just a restatement of theorem 1.

COROLLARY 2. Assumptions and notations being as in theorem 1,
Ny (k) is contained in the kernel of yoa if and only if k' contains the
cyclic extension of k attached to y.

In fact, theorem 1 shows that it is contained in that kernel if and only
if yopoa’ is trivial, hence, by [II], if and only if yop is trivial. Let L be
the cyclic extension of k attached to x; then the cyclic extension of k'
attached to yop is the compositum L' of k¥’ and L, and yop is trivial if and
only if L=k, i.e. k' o L.

Our main business in this chapter will be to determine the kernel
of the canonical morphism a. For the time being, we merely observe that
it must contain the kernel of a, for every v; this is {1} if v is finite, but it is
R7 ifvisreal, and C* if v is imaginary. We will write k% . for the product
of the latter kernels in kj, i.e. for the group of the ideles (z,) such that
z,=1 for every finite place v, and z,>0 for every real place v; then this
group is contained in the kernel of a; of course it is {1} if k is of charac-
teristic p> 1.

We will now give explicit formulas for (x, z), in some special cases, and
begin by considering a field k of characteristic p> 1. Let then F be the
field of constants of k; call g the number of elements of F, and F the alge-
braic closure of F in k. By th. 2 of Chap. I-1, F* is the group of the roots
of 1 in k, and all these roots have an order prime to p. We will call k, the
compositum of k and F, §, the subgroup of ® corresponding to k,, and
X, the subgroup of X consisting of the characters of ®, trivial on §,,.
Clearly every extension of k of finite degree, contained in k,, is generated
over k by finitely many elements of F, hence by an extension F’ of F of
finite degree. More precisely, we have the following:

LEMMA 1. Let F' be the extension of F of degree n, contained in k; then
the compositum k' of k and F' is cyclic of degree n over k; its field of con-
stants is F’; and the restriction morphism of the Galois group of k' over k
into that of F' over F is an isomorphism of the former onto the latter group.

Call F” the field of constants of k', n’ the degree of k' over k, and n” that
of F” over F; clearly n' <n<n". Take {e F” such that F" = F({), and call P
the irreducible monic polynomial in F[ X | with the root {. If Q is a monic
polynomial in k[ X], dividing P in k[ X], all its roots are in F, so that its
coefficients are in Frk, i.e. in F. Therefore P is irreducible in k[X], so
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that n' >n", hence ' =n=n". The assertion about the Galois groups may
now be regarded as a special case of corollary 1 of prop. 3, Chap. I1I-2, or
also as following from k' = F'® .k, which is an immediate consequence of
prop. 2, Chap. I11-2.

Whenever k and k' are as in lemma 1, we will say that k' is a constant-
field extension of k. In view of th. 2, Chap. I-1, there is, for every integer
n=>1, one and only one such extension of k of degree n; this will be denoted
by k,. Then k, is the union of the cyclic extensions k, for all n > 1; in parti-
cular, it is contained in k,,; we will denote by U, the subgroup of U
corresponding to k,, i.e. the group of automorphisms of k,,, over k,. We
may then consid.r X, as being the group of characters of 2, trivial on U ;
a character ye X, belongs to X, if and only if the cyclic extension of k
attached to y is contained in k,, hence if and only if it is one of the fields
k,.

By corollary 2 of th. 2, Chap. I-1, combined with lemma 1, there is, for
every n>1, one and only one automorphism of k, over k, inducing on the
field of constants F,=Fnk, of k, the automorphism x—x%, where ¢, as
before, is the number of elements of F; moreover, this generates the Galois
group of k, over k. Consequently there is one and only one automorphism
¢, of ky over k, inducing on F the automorphism x—x?; this will be
called the Frobenius automorphism of k, over k. Every automorphism
¢ of k., over k, inducing @, on ky, will be called a Frobenius automorphism
of k., over k; then the Frobenius automorphisms of k., over k make up
the coset Ho¢ in G.

PROPOSITION 3. Let k be an A-field of characteristic p> 1 with the field
of constants F=F,. Let x be a character of ® belonging to X, i.e. such
that the cyclic extension of k attached to y is a constant-field extension of k.
Let ¢ be any Frobenius automorphism of k.., over k. Take zeky, and put

|zla=q"". Then (3,z),=x(¢)"

Put z=(z,). Let v be a place of k of degree d, i.e. such that the module of
k,is q,=q" Let L be the cyclic extension of k attached to x; this is gener-
ated over k by some extension F’ of F, hence by roots of 1 of order prime
to p. Therefore the extension of k, attached to y,, being generated by F’
over k,, is unramified, so that y, is unramified. Moreover, a Frobenius
automorphism of k, .., over k, induces on F the automorphism x— x4
and therefore coincides with ¢? on F, hence on k. By corollary 4 of th.1,
Chap. XII-2, this gives (x,,2,),=x(¢?)’ with v=ord,(z,). As |z,|,=q~ ¥
and |z|, =]]|z,l,, our conclusion follows from this at once.

COROLLARY 1. Assumptions and notations being as in proposition 3, and
a being the canonical morphism for k, a(z) coincides with ¢" on k.
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In fact, they can differ only by an element belonging to the kernels of
all the characters yeX,, and the intersection of these kernels is §,,
which is the group leaving k, invariant.

COROLLARY 2. If ye X, and k™, (3,0),=1.

This follows at once from proposition 3 and from the fact that |6, =1
by th. 5 of Chap. IV-4.

COROLLARY 3. A character x of ® belongsto X, if and only if (y,z),=1
for all zek,.

If yeX,, proposition 3 shows that y has the latter property. Now
assume that y has that property. By corollary 6 of th. 2, Chap. VI1I-5,
there is z,ek} such that |z,|, =g, and then k} is generated by k} and z,.
Let n be the order of y; then (x,z,), is a primitive n-th root of 1 in C. As ¢
induces on k, a generator of the Galois group of k, over k, there is a
character y attached to k,, such that y'(¢)=(x,z,),. By proposition 3, we
have then (¢,z,),=x'(¢) " !, hence (xx’, z,)x =1, and therefore, in view of
proposition 3 and our assumption on y, (xx',z),=1 for all zeky. This
implies that y=y'"1, so that ye X,,.

When k is of characteristic 0, there is no such convenient tool as the
one supplied by the constant-field extensions in the case of characteristic
p > 1; the nearest substitute is provided by the “cyclotomic” extensions;
here we merely consider the case k=Q; then ® is the Galois group of
Q=Q,,, over Q. For m>1, let & be a primitive m-th root of 1 in Q;call,
the subgroup of & corresponding to Q (¢), so that the Galois group of
Q(e) over Q is g=6/9,,. It is well known that g consists of the automor-
phisms determined by e—¢*, when one takes for x all the integers prime to
m modulo m; it may thus be identified with (Z/mZ)~, i.e. with the multi-
plicative group of the ring Z/mZ. Let y be any character of g, with the
kernel b; we identify this in an obvious manner with a character of ®,
which we also call y; this has a kernel $ = 9,,. On the other hand, when we
identify g with (Z/mZ)™, we also identify y with a function on the latter
group and therefore with a function on the set of all integers prime to m,
which we also call y, and which is then such that y(ab)=x(a) x(b) when-
ever a, b are two such integers. This can then be uniquely extended to a
character of the subgroup of Q* consisting of the fractions a/b, with
a, b in Z and prime to m; also the latter character will be denoted by j.
With these notations, we have:

PROPOSITION 4. Let y be as above, and let Z be the cyclic extension of Q
attached to x. Then, for every rational prime p not dividing m, y,, is unrami-
fied, and, for every zeQy, (xp,z)pzx(lzl;l); Jor every zeR™, (¥oor2)os =
=y(sgnz).
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Let p be any prime not dividing m; let w be a place of Z, lying above p,
and let u be a place of the field L=Q(e), lying above w. By prop. 1 of
Chap. I1I-1, L, is generated over Q,, by &; as this is of order m prime to p,
L, is unramified, and so is Z,,, hence also y,, by prop. 1. A Frobenius
automorphism ¢, over Q,, of the algebraic closure of Q, induces on L,,
hence on L, the automorphism determined by s—¢&P; therefore y(¢),
according to the notations explained above, is the same as y(p). In view of
this, our assertion about (x,, z), is an immediate consequence of corollary
4 of th. 1, Chap. XII-2, and of |z| ,=p~°"®. Similarly, let w be a place of Z
lying above the place co of Q, and u a place of L lying above w. If m=1o0r 2,
y is trivial, and our last assertion is obvious. If m>2, L,=R(g)=C has
the non-trivial automorphism x—X over R; this is the one determined
by e—¢~ !, so that, if g and b are as explained above, it induces on Z,,
the automorphism corresponding to the image of —1in g/b. If y(—1)=1,
—1lisinh, Z,=R,and y is trivial;if y(—1)=—1, —lisnotinh, Z,=C,
and y,, is non-trivial. The last assertion in proposition 4 follows at once
from this and from the results stated at the beginning of Chap. XII-2.

COROLLARY 1. Assumptions and notations being as above, let w be a
place of Z. If w lies above a rational prime p, not dividing m, the degree
of Z,, over Q, is the order of y(p) in the group C™; if w lies above o,
the degree of Z,, over R is the order of y(—1)in C™.

The latter assertion was proved above; as to the former, prop. 1
shows that the degree in question is equal to the order of the character
z=(,,2), of Q,; proposition 4 shows that this is as stated in our corollary.

COROLLARY 2. The character y being as above, take z=(z,)eQ} such
that, for every prime p dividing m, ord,(z,)=0 and (y,.z,),=1. Then
(12D = 1(r(2)), with r(2) given by

r(z)=sen(z)[ [z '

In the latter formula, the product is taken over all the rational
primes, or (wWhat amounts to the same, in view of the assumption on z)
over all the primes not dividing m; then x(r(z)) is well defined. Our
assertion follows now at once from proposition 4 and the definitions.

CoOROLLARY 3. The character y being as above, one can choose, for
every prime p dividing m, an open subgroup g, of Q), such that (y,{)e=1
forallEe () (Q* Ng,).

For each p dividing m, let p* be the highest power of p dividing m ;
then 1+mZ, is the same as the subgroup 1+ p*Z, of Qj. Take now
for g, for each p dividing m, the intersection of 1+ mZ, with the kernel
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of z—(x,,z), in Q. Then, if £ is as in our corollary, corollary 2 shows
that (x,&)q is equal to x(r()); by th.5 of Chap.IV-4, r(¢) is equal to
sgn(&)-1¢] ., i.e. to & Write E=a/b, with a, b in Z and (a,b)=1. If p is
any prime dividing m, { is in Z,, so that b is prime to p; if p* is as above,
{isin 14+p*Z,, so that a=b (p*). Therefore a and b are prime to m, and
a=b (m); this implies y(a)= y(b), hence, in view of our definitions, y(&)=1,
which completes the proof.

§ 2. An elementary lemma. As above, let y be a character of (Z/mZ);
considering it again as a function on the set of all integers prime to m,
we now associate with it the function ¥ on Z such that y(x)=y(x)
whenever x is prime to m, and /(x)=0 otherwise. It is customary, by
abuse of language, to call such a function ¥ “a multiplicative character
modulo m”, or, more briefly, “a character modulo m” on Z. Obviously
a function ¥ on Z is such a character if and only if ¥(x +m)=y(x) for
all xeZ, y(x)=0 for (x,m)#1, Yy(1)=1, and Y(ab)=v¢(a)y(b) for all
a,b in Z; it will be called trivial if ¥(x) takes no other values than 0
and 1, and of order nif ¥" is trivial. If , ¥’ are such characters, modulo
m and modulo m’ respectively, ¥ ¥’ is a character modulo mm'.

The object of this § is to prove lemma 3; the lemma and the proof
are due to van der Waerden. We begin with a special case.

LEMMA 2. Let | be a rational prime, n an integer =1, and a,,...,a,
integers > 1. Then there is a multiplicative character ¥ on Z, such that,
for every i, W (a)) is a root of 1 whose order is a multiple of I"; moreover,
there is such a Y whose order is a power of 1, and, if 1=2, there is such a

¥ for whichy (—1)= —1.

Clearly the order of ¥/(a;) is a multiple of that of y(a?). If I=2, we
replace each a; by a?; after doing this, we may therefore assume, in that
case, that g,=0 or 1 (4) for all i. For each i, we will now define a sequence
of primes p; ,(v=0,1,...) as follows. If a;#1 (I), we take for p; , any prime
divisor of the integer
lV+l_ 1

3) =

al’ —1

=1+a ++a"" "

Clearly, as P'* ! =1 (I— 1), the numerator of the left-hand side is =a;— 1 (i),
hence not a multiple of I; therefore p; ,#1. On the other hand, if ;=1 (J),
write @} in the form a!"=1+ b with a>1 and b0 ()); if /=2, we have
a2, in view of our assumption on the g; in that case. Then:

a’ =(1+ FbY=1+ 1 (#+2).
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This shows that the left-hand side of (3) is then a multiple of / and not
of I?; as the right-hand side shows, it is >!; we take then for p;, any
prime divisor of that left-hand side, other than /. Now we show that,
in all cases, p;, cannot divide the denominator of the left-hand side of
(3). In fact, assume that it does; then all the terms in the right-hand side
are =1(p; ), so that the right-hand side itself is =/ (p;,); as it is a multiple
of p;,, and as p; ,#1, this cannot be. This shows that the image of a; in
the group (Z/p; ,Z)* is exactly of order '*!; in particular, for each i, all
the p;, are distinct. Therefore, choosing an integer p such that /" >r, we
may, for each i, choose an integer v;>n+p—2 such that the prime
p;=p;,, does not divide any of the integers a,,...,a,. For each i, the
group (Z/p;Z)* is cyclic of order p;—1, and the image of g; in that group
has the order P**1!; call y; a generator of the group of characters of
that group; call * the highest power of [ dividing p,—1; put
pu=A—v,+n+p—2, m=I1"%{p;—1) and y;=y7"; clearly i,>v,, so that
u>0; then y; is a character of order I*, and it is easily verified that yj(a;)
is a root of 1 of order I"**~!. For each i, extend y} to a multiplicative
character {; modulo p; on Z, as explained above; let M be an integer
such that ™ is a multiple of the order of all the ¥}, hence of all the ;.
As each p; is prime to all the a;, we can then write

‘pi(aj)z e(l_Mbij)

with b;;€Z, for 1<i, j<r; moreover, for each i, the highest power of |
dividing b;; is I ~"~#*1, Now consider the ™" characters

w.=[T(w)
i=1

with 0<x; <™ for 1<i<r; of course they need not all be distinct. For
each j, we have

wx(aj)= e(l‘M Z bijxi)-
i=1
This is a root of 1, of order dividing I™; that order is a multiple of [
unless it divides I"" !, i.e. unless we have

b”xJE - Zbux, (lM_n+1).
i#j

For a given j, and for each set of values for the x; for i+, this congruence
has either no solution x; at all, or exactly IM~* solutions modulo I;
therefore, for each j, there are at most M2 sets of values for the x;,
satisfying 0< x; <™ for 1<i<r, such that w,(a;) has an order dividing
I"~1. Consequently there are at most rI™"~* such sets for which at least
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one of the w_(a;) has an order dividing I"'; as r </, the number of such
sets is < /™" This proves that one can choose x so that the order of
w,(a;) is a multiple of I for all j. Then § = w, is a solution of our problem,
except perhaps in the case =2, since then we also want ¥ to be such
that Y (—1)= — 1. In that case, if w, (—1)= —1, we take ¥ =w,. If not,
take a prime p, dividing 44a,a,...a,—1, and = —1 (4); clearly there is
at least one such prime. Then the group (Z/p,Z)* is cyclic of order
2mg with my=(p,—1)/2=1 (2), so that it has exactly one character y,
of order 2; this satisfies yo(—1)= — 1. Extending y, to a multiplicative
character ¥, modulo p, on Z, one sees at once that ¥ = ¥, w, is a solu-
tion of our problem, provided one has taken n>=2, as may of course
always be assumed. This completes the proof.

LemMma 3. Let ay,...,a,, ny,...,n, be integers >1. Then there is a
multiplicative character ¥ on Z such that y(—1)=—1 and that, for
every i, ¥ (a;) is a root of 1 whose order is a multiple of n;.

Put N=2][n,; for every prime ! dividing N, let I" be the highest
power of [ dividing N, and let i, be chosen according to lemma 2, so
that its order is a power of [, the order of ¥,(a;) is a multiple of /" for
every i, and y,(—1)= —1if [=2. When [ is odd, y,(—1), being + 1 and
of odd order, is 1. That being so, it is clear that ¥ =[]y, solves the
problem.

§ 3. Hasse’s “law of reciprocity”. As in Chap. XI, if 4 is a simple
algebra over k, and v any place of k, we write 4, for the algebra A® k,
over k,; we have seen in Chap. IX-3 that the mapping Cl(4)—Cl(4,) is
then a morphism of the Brauer group B(k) of k into the Brauer group
B(k,) of k,. It has been shown in Chap. XII-2 that the Hasse invariant k
determines an isomorphism of B(k,) onto a group H, consisting of all
the roots of 1 in C if v is a finite place, of +1if v is real and of 1 if v is
imaginary. From now on, for any simple algebra A4 over k, we will write
h,(A)=h(A,); this will be called the Hasse invariant of A at v. By th. 1
of Chap. XI-1, we have h,(A)=1 for almost all v; therefore the mapping
A—(h,(A)) determines a morphism h of B(k) into the “direct sum” of
the groups H, for all v, i.e. into the subset H of [ [H, consisting of the

elements (5,) of that product such that #,=1 for almost all v. By th. 2
of Chap. XI-2, the kernel of h is the class of trivial algebras over k, so
that h is injective. It will be shown in § 6 that h(B(k)) consists of the
elements (1,) of H such that an—l In this §, we show that l_[h =1

for every simple algebra A over k.
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As in § 1, let y be a character of ®, and L the cyclic extension of k
attached to y; for any fek™, consider the cyclic algebra A=[L/k;y,0],
corresponding to the factor-class {y,0}. As we have seen in Chap. IX-4,
the restriction morphism maps the factor-class {x, 0} of k onto the factor-
class {y,,0} of k,, so that 4, belongs to the latter class. Therefore, by the
definition of the Hasse invariant, we have, for all v:

(4) hv(A)z(Xwe)w Hhv(A):(X’ O)k

On the other hand, let k' be an cxtension of k of finite degree; A being
any simple algebra over k, put A'=A®, k'; let w be a place of k', and v the
place of k lying below w. The transitivity properties of tensor-products
show at once that the algebra (4'),,=A'®,.k,, over k,, may be identified
with 4,®, k,,; therefore, by corollary 2 of th. 2, Chap. XII-2, we have
h,(A")=h (A)"™ if n(w) is the degree of k, over k,. In particular, in view
of what has been said above, A’ is trivial if and only if h (4" =1 for
every place w of k'.

PROPOSITION 5. For any yeX,, let L be the cyclic extension of k
attached to y. Let A be a simple algebra over k. Then the following asser-
tions are equivalent: (i) Ay is trivial; (ii) for every place v of k, and every
place w of L above v, the degree of L, over k, is a multiple of the order of
h,(A) in the group C*; (iii) A is similar to a cyclic algebra [ L/k; y,0] with
some Oek™ ; (iv) there is z=(z,) in ki, such that h,(4)=(y,, z,), for every
place v of k. Moreover, if s as in (iii) and z as in (iv), 0~ ' z is in Ny, (LY).

The equivalence of (i) and (ii) is a special case of what has just been
proved above; that of (1) and (iii) is contained in prop. 9 of Chap. 1X-4,
Assume (iii); then, by (4), (iv) is satisfied if we take z=6. Now assume
(iv); then the order of h,(A) divides that of y,, which, by prop. 1 of § 1,
is equal to the degree of L, over &, for every place w of L lying above v, so
that (ii) is satisfied. Finally, let 0 be as in (iii), z asin (iv), and put z/ =6~ ' z;
by (4), we have then (y,,z,),=1 for all v; by prop. 10 of Chap. IX-4, and
prop. 1 of § 1, this implies that, if w is any place of L above v, z, is in
Ny (Ly,). For each place v of k, choose t,eL;,, for all the places w of
L lying above v, so that z,,=N,_, (t,) for one of these places, and ¢,,=1
for all the others; as |z,|,=1 for almost all v, this implies that |z,,|,,= 1 for
almost all w, so that t=(t,) is in Ly ; then we have z'= N ,(t).

We will now use proposition 5 in order to show that every simple
algebra A over k is similar to one of a very special type. For this, we re-
quire two lemmas,

LemMA 4. Let k be of characteristic p> 1. For every place v of k, let
v(v) be an integer =1, such that v(v)=1 for almost all v. Then there is a
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constant-field extension k' of k such that, if v is any place of k and w a
place of k' above v, the degree of k., over k, is a multiple of v(v).

Let F=F, be the field of constants of k. For a place v of k of degree
d(v), the module of k, is ¢*®; therefore, by corollary 3 of th. 7, Chap. 1-4,
if k, contains a primitive root of 1 of order ¢*®/ —1, its degree over k,
must be a multiple of f. The condition in lemma 4 will therefore be satis-
fied if we take for k' a constant-field extension of k whose degree over k is
a multiple of all the integers d(v)v(v) corresponding to the finitely many
places v where v(v)> 1.

LeEMMA 5. Let k be of characteristic 0. For every place v of k, let v(v)
be an integer > 1, such that v(v)=1 for almost all v, v(v)=1 or 2 whenever v
is real, and v(v)= 1 whenever v is imaginary. Then there is an integer m>1
and a cyclic extension Z of Q, contained in the extension Q(c) generated by
a primitive m-th root ¢ of 1, with the following properties: (a) if v is any
place of k, and w a place, lying above v, of the compositum k' of k and Z,
the degree of k,, over k, is a multiple of v(v); (b) |m|,=1 whenever v is
a finite place of k and v(v)>1.

To begin with, let Z be any extension of Q, and let k' be its composi-
tum with k. Let v be any place of k, w a place of k' lying above v, u the
place of Z lying below w, and ¢ the place of Q lying below u. Then k,,
Z, and Q, are respectively the closures of k, Z and Q in k., so that t also
lies below v. We have:

[k:k,]=[K,:Z,] [Z2.,:Q] [k: Q]
therefore, if we put
V(©)=v(v) [k,:Q,],

and if [Z,:Q,] is a multiple of v'(v), [k,,:k,] will be a multiple of v(v).
Now, for every finite place t of Q above which there lies some place v of
k where v(v)> 1, call n(t) some common multiple of the integers v'(v) for
all the places v of k above t; for all other finite places t of Q, put n(t)=1; put
n(o0)=2, this being a multiple of v'(v) for every infinite place v of k, as
one sees at once. Then m and Z, in our lemma, will satisfy our require-
ments if [Z,:Q,] is always a multiple of n(¢) and if |m|,=1 when t+ oo,
n(t)>1; in other words, it is enough to prove our lemma for k=Q.
Call then p,,...,p, the rational primes p for which n(p) > 1; apply lemma 3
of § 2 to the integers a;=p;, n;=n(p;); we get a multiplicative character
on Z, modulo some integer m, such that ¥ (—1)= — 1 and that, for each i,
¥(p;) is a root of 1 whose order is a multiple of n(p;). As ¥(x)=0 when x
is not prime to m, m is then prime to all the p;, which is the same as to say
that |m|,= 1 when n(p)> 1. Let then y be the character of (Z/mZ)* deter-
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mined by ¥; consider this as a character of the Galois group of Q(e)
over Q, ¢ being a primitive m-th root of 1, and call Z the cyclic extension
of Q attached to y; then corollary 1 of prop. 4, § 1, shows that m and Z
satisfy all the requirements in our lemma.

THEOREM 2. If A is any simple algebra over k, we have Hh (A)=1,
the product being taken over all the places v of k.

If k is of characteristic p> 1, prop. 5 and lemma 4 show that A4 is simi-
lar to a cyclic algebra [k'/k; x,0], where k' is a constani-field extension of
k, y a character attached to k', and 6ek™. Then x is in X, where X is
as defined in § 1, and our conclusion follows at once from (4) and corollary
2 of prop. 3, § 1. If k is of characteristic 0, we apply prop. 5 and lemma 5,
taking for v(v), in the latter lemma, the order of h,(A4) in C*; this shows
that A is similar to a cyclic algebra [k'/k;y’,6], where k' is as in lemma 5,
¥ is any character attached to k', and ek *. By (4), what we have to prove
isthat (y',0),=1. Let mand Z be as in lemma 5; then we can take y'=yop,
where p is the restriction morphism of the Galois group of Q over k into
that of Q over Q, and y is a character of the latter group attached to Z.
Call v,,...,v,, all the places of k lying above some rational prime dividing
m; for each i, choose a place w; of k' lying above v;; call w},...,w)y all the
places of k', other than the w,, ly1ng above some v;; for each i, call k;, k] the
completions of k at v;, and of k" at w,, respectively; for each j, call k7 the
completion of k" at w}. By condition (b) in lemma 5, and in view of our
choice of the v(v), we have h, (4)=1for all i; by (4), prop. 1 of § 1, and prop.
10 of Chap. IX-4, this implies that, for each i, we can write §=N,, (z;)
with z;ek;™. By corollary 2 of th. 3, Chap. V-2, there is an element { of
k' whose image in k;, for 1<<i<M, is arbitrarily close to z;, and whose
image in k7, for 1<j<N, is arbitrarily close to 1. In view of corollary 3
of th. 1, Chap. 1V-1, this implies that we can choose {ek'™ so that the
image of 4, =0Nk,/k(2,')_1 in k; is arbitrarily close to 1 for 1<i<M. By
prop. 10 of Chap. IX-4, one does not change the factor-class {y,0} if one
replaces 6 by 0,; consequently, this does not change the invariants
h,(A)=(x,,0), of A. Therefore it is enough if we prove our assertion
(’,0),=1 under the additional assumption that the image of 8§ in k,,
for 1 <i< M, isin a prescribed neighborhood of 1. By corollary 3 of th. 1,
Chap. 1V-1, these neighborhoods can be so chosen that the image of
Ny 0(0) in Q,, for every prime p dividing m, is arbitrarily close to 1. As
¥ '=xop, and as we have, by th. 1 of § 1:

(xop,0)= (Xs Nk/Q(B))Qa

our assertion follows now from corollary 3 of prop. 4, § 1.

18 Weil, Basic Number Theory
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COROLLARY. For every yeX,, and every Ock™, we have (y,0),=1.

This follows at once from (4) and theorem 2.

The corollary of theorem 2 is known as “Artin’s law of reciprocity”
because Artin discovered it (in substance) and pointed out that the “laws
of reciprocity” of classical number-theory can easily be derived from it
and from purely local considerations. Theorem 2 is due to Hasse; its
close connection with “Artin’s law” accounts for the name of “Hasse’s
law of reciprocity” which is usually given to it.

The corollary of theorem 2 may be expressed by saying that, for every
1€ X, the character z—(y, z), of k} is trivial on k™, or that k™ is contained
in the kernel of the canonical morphism. Consequently, we may now
regard (x, z), as defining a pairing between X, and the “idele-class group”
G.=ky/k* of k; in order not to complicate notations, we do not intro-
duce any new symbol for this pairing, but we will apply to it the results of
Chap. XII-1 in an obvious manner. It is clear that it satisfies conditions
[I] and [II] of Chap. XII-1, since these have been verified in § 1 for (y, z2),
considered as a pairing of X, and k;. By th. 6 of Chap. IV-4, G, is quasi-
compact, and we have G} =k,/k*. If k is of characteristic 0, condition
[I1I(a)] of Chap. X1I-1 is satisfied. If k is of characteristic p> 1, corollary 3
of prop. 3, § 1, together with lemma 1 of § 1, shows that condition {ITI(b)]
of Chap. XII-1 is satisfied by taking for , in that condition, a character
attached to the constant-field extension of degree n of k; it also shows
that the group denoted by X, in § 1, and consisting of the characters
attached to the constant-field extensions of k, is now the same as the
group which was so denoted in Chap. XII-1. In that case, we can now
apply corollary 2 of prop. 2, Chap. XII-1, which shows that the canonical
morphism a maps k} onto the subgroup 2, of A corresponding to the
union k, of the constant-field extensions of k; similarly, if k is of charac-
teristic 0, prop. 1 of Chap. XII-1 shows that a maps k; onto U. If we call
again U, the kernel of q, it contains k*, and, if k is of characteristic p> 1,
corollary 2 of prop. 2, Chap. XII-1, shows now that U, =k} ; on the other
hand, if k is of characteristic 0 and if the subgroup k , of ky is defined as
in § 1, U, contains the closure of k™ k. . In §8, it will be shown that U, is
that closure if k is of characteristic 0, and that otherwise U, =k ™.

We will now reformulate prop.4 of Chap. XII-1 for the pairing
between X, and G, defined above. Let k" be a cyclic extension of k. Then
E—¢E* forevery Ae®, and E 5N wx(£) are polynomial mappings of k', into
k' and into k respectively, when k' is regarded as a vector-space over k,
and we have N, (%) =N, (&) for all £ As explained in Chap. IV-1,
Ny, as a mapping of k), into k,, is the extension to these spaces of the
polynomial mapping N,., of k" into k, and we now extend to k/, the
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k-linear mapping ¢—¢&* of k' onto &’ in the same manner. Then we have
Ny plx*)= Ny (x') for all x'ek,, and in particular for all x'ek}*. At the
same time, by the corollary of prop. 3, Chap. IV-3, we have |z/|,=
=[Ny (2)4 for all z'eky, hence |z, =|z|, for all Zek)* and all e ®.
As the morphisms z'—z'4, 2= N,.,(2) of kJ' onto ki and of k' into kJ
map k" onto k”* and into k* respectively, they determine morphisms
of G;. onto G,. and into G, respectively; we take these as the mappings
g'—g*, g'—>F(g), in prop. 4, Chap. XII-1. It is now clear that these map-
pings satisfy conditions [IV(i)<ii)] and [V(i)}; [IV(iii)] is an immediate
consequence of the definitions and of corollary 5 of th. 1, Chap. XII-2 (it
admits of an obvious generalization, quite similar to the latter corollary),
while [ V(ii)] is here the same as the assertion in th. 1,§ 1. All conditions for
the application of prop. 4, Chap. XII-1, being thus fulfilled, we conclude
that we have, in our present notation:

(5) Upnk™ Nk'/k(kﬁax):kx Nyw(Uy),

where k is any A-field, k' any cyclic extension of k, and U,, U,. are the
kernels of the canonical morphisms for k and for k', respectively.

§ 4. Classfield theory for Q. The results already obtained make it
easy to conclude our investigation in the special case k= Q) this is due to
the fact expressed in the following lemma:

LeEMMA 6. We have the direct product decomposition:
Q;=Q* xR* x[]Z;
r

where the last product is taken over all the rational primes p.

Here R} and the Z are to be understood as subgroups of the quasi-

factors R* =Q_ and Q}, of Q3. As in corollary 2 of prop. 4, § 1, define a
morphism r of Q3 into Q™ by putting, for z=(z,) in Qy :

r()=sgn(z,)[[lz,l, ';

as we have already observed (in the proof of corollary 3 of prop. 4,§ 1), r
induces the identity on Q*, as follows at once from th. 5 of Chap. IV-4.
Therefore, if R is the kernel of r, r determines a direct product decomposi-
tion Qx =Q™ x R and is the projection from that product onto its first
factor. Clearly R=R3 x [[Z;. This proves the lemma.

P

Clearly the subgroup HZ; of Qy is totally disconnected, so that,
by lemma 4 of Chap. VII-3, all its characters are of finite order. It follows
now at once from lemma 6, combined with corollary 2 of prop. 7, Chap.

18*



258 Global classfield theory XII1

VII-3, that every quasicharacter of Qy, trivial on Q*, is of the form w, ¥,
where V¥ is trivial on Q™ xR} and where w,, as in Chap. VII, denotes
the quasicharacter z— |z} and is trivialon Q* and on [ [Z,, ; ¥ is then a
character of finite order. We recall that, if w is any quasicharacter of Qj},
trivial on Q, the conductor of w, according to the definition given in
Chap. VII-7 for an arbitrary number-field, is the ideal |[p/® of Z,
where, for each rational prime p, p/® is the conductor of the quasi-
character w, induced by w on Q;; here, as usual, we identify a non-zero
ideal in Z with the integer >0 which generates it.

As explained in § 1, if ¢ is a primitive m-th root of 1 in Q, we identify
the Galois group g of Q(¢) over Q with (Z/mZ)™, and every character y
of g with a character of the Galois group & of Q over Q, or, what amounts
to the same, with a character of the Galois group U of Q,, over Q. Of
course Q(g) = Q. for all m.

THEOREM 3. For any m>1, let ¢ be a primitive m-th root of 1 in Q,
and let a=(Z/mZ)™ be the Galois group of Q(e) over Q. Then y—yoca
is an isomorphism of the group of the characters y of g onto the group of
the characters of Qy, trivial on Q™ xR, whose conductor divides m.

Call I' the latter group. Call P the set consisting of co and of the
primes p dividing m; for each prime peP, put g,=1+ p*Z,, where p*
is the highest power of p dividing m; call H the subgroup of Q} con-
sisting of the ideles (z,) such that z,>0, z,eg, for every prime peP,
and z,eZ, for p not in P. Then I is the group of the characters w of
Qi which are trivial on Q* and on H. Put g, =R™ and g=]]g,, the
latter product being taken over all ve P; as in Chap. VII-8, call G, the
subgroup of Qy consisting of the ideles (z,) such that z,=1 for all veP;
as g X Gp is an open subgroup of Qf, and as Q™ G, is dense in Q} by
prop. 15, Chap. VII-8, we have Q; =Q™ ‘(g x Gp). The morphism r of
Qi onto Q* defined in the proof of lemma 6 maps g x Gp onto the
subgroup Q™ of Q* consisting of the fractions a/b, where a, b are in Z
and are prime to m; the kernel of the morphism of g x G, onto Q™
induced by r is the group H defined above. As every character in I' is
trivial on H, this implies that, for any wel, there is a character y of
Q™ such that yor coincides with @ on g x Gp. Then, ifacZ and a=1 (m),
we have aeg x Gp and r(a)=a, hence y(a)=w(a)=1. Therefore y deter-
mines a character of (Z/mZ)* ; this being also denoted by y, and being
regarded as a character of g, hence of ®, corollary 2 of prop.4, §1,
shows that (y,z)q=x(r(2)) for all zeg' x Gp, if ¢’ is a suitable open sub-
group of g. This means that yoa coincides with yor, hence with w, on
9'xGp. As Q5 =Q™ (g’ x Gp) by prop. 15, Chap. VII-8, and as yoa and
o are both trivial on Q7, this proves that yoa=w. Conversely, let now
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¥ be any character of g=(Z/mZ)*; as in § 1, consider this as a function
on the set of all integers prime to m, and extend this to a character y of
Q™; then yor is a character of gx Gp. Take £€Q* (g x Gp); then
r(&)=¢&, and one sees at once, as in the proof of corollary 3 of prop. 4, §1,
that £eQ™ and y(&)=1. Therefore yor is trivial on Q™ (g x Gp), so
that it can be uniquely extended to a character w of Q5 =Q™ ‘(g X Gp),
trivial on Q™ ; as r is trivial on H, @ is also trivial on H, so that it belongs
to I. As above, corollary 2 of prop. 4, § 1, shows now that yoa coincides
with yor, hence with w, on g’ x Gp, if ¢’ is a suitable open subgroup of
g; as above, this gives yoa=w, which completes our proof. We see also
that yoa coincides with yor, not only on g’ x Gp, but even on g x Gp; in
other words, the conclusion of corollary 2 of prop. 4, § 1, is valid provided
z,€9, for every prime peP; we will not formulate this as a separate
result, but will use it in the proof of our next corollary.

COROLLARY 1. Let ¢ be as in theorem 3; take any z=(z,) in nZ; and
put x=a(z)~'. Then there is an integer a such that a€z,+mZ, for every
prime p, and, for every such a, we have &*=¢®.

The condition on a can also be written as a=z, (p*) for every prime
p dividing m, p* being the highest power of p dividing m; it is well known
that these congruences have a unique solution modulo m (this may also
be regarded as a special case of corollary 1 of th. 1, Chap. V-2). As z €Z
for all p, a is then prime to m; in particular, it is not 0. Put then z’=a" 'z;
then z,eg, for all primes peP; therefore, as shown at the end of the
proof of theorem 3, we have y(a(z'))=yx(r(z')). As a is trivial on Q*,
a(z)=a(z)=a"';as r(@=a and r(z)=1, we get y(ax)=y(a). As this is so
for all characters y of g, it shows that the automorphism of Q(¢) induced
by « is the one determined by e—¢”.

COROLLARY 2. The kernel of the canonical morphism a for Q is
Q> xR}, and a determines an isomorphism of [|Z} onto the Galois

group W of Q .y over Q.

In fact, we already knew that the kernel of a contains Q™ xR, and
theorem 3 shows that it is contained in it. The last assertion follows now
at once from lemma 6, and prop. 1 of Chap. XII-1.

COROLLARY 3. Q,, is generated over Q by the roots of 1 in the al-
gebraic closure Q of Q.

Let K be the extension of Q generated by these roots, which is the
same as the union of the fields Q(e) for all m> 1, where ¢ is as in theo-
rem 3. Let B be the subgroup of U corresponding to K. Then, if y is as
in theorem 3, it is trivial on B, so that yoa is trivial on a~*(B). By theo-
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rem 3, a”1(B) must therefore be contained in Q* xR ; as this, by
corollary 2, is the kernel of a, we must have B= {1}, hence K=Q,,,.

§ 5. The Hilbert symbol. The determination of the kernel of the
canonical morphism in the general case depends on two results, corre-
sponding to propositions 9 and 10 of Chap.XII-3. In this §, we deal with
the former one; this will require some preparations.

By n, we will understand any integer > 1.

LEMMA 7. Let G be a quasicompact group. Let y be a group of char-
acters of G, all of order dividing n, and let X be the intersection of their
kernels. Then every character of G, trivial on X, is in y.

By lemma 2 of Chap. XII-1, applied to the endomorphism x—x" of
G, G" is a closed subgroup of G, and G/G" is compact; therefore the
subgroup of the dual of G, associated by duality with G", is discrete;
it consists of all the characters of G which are trivial on G", i.e. whose
order divides n. Consequently 7 is discrete, hence closed, in the dual of
G. Our assertion follows now from the duality theory.

PROPOSITION 6. Let K be a local field containing n distinct n-th roots
of 1. For x, y in K™, put (X, ), x=Xnx>V)x- Then

(ya x)n,K = (xs,V)n,K_ !

for all x, y in K*; (K*)" is the set of the elements y of K™ such that
(%, Y)ux=1 for all xe K*; if modg(n)=1, and if R is the maximal compact
subring of K, the set of the elements y of K™ such that (x,y), x=1 for all
xeR™ is (K*)'"R™.

In view of our definitions in Chap. IX-5 and in Chap. XII-2, {x,y), ¢
is the same as #({x,y},), where # is as defined in corollary 2 of th. 1,
Chap. X1I-2; our first assertion is then nothing else than formula (12)
of Chap. IX-5. The second one is identical with prop.9 of Chap. XII-3
if K is a p-field; it is trivial if K=C; it can be verified at once if K=R,
since in that case our assumption, about the n-th roots of 1 being in K,
implies that n=2. As to the last assertion, the assumption mody(n)=1
implies that K is a p-field, with p prime to n. In view of our first formula,
and of prop. 6 of Chap. XII-2, our assertion amounts to saying that
%u., is unramified if and only if y is in (K™)"R*. Call g the module of K;
our assumption about the n-th roots of 1 implies that n divides g—1. In
an algebraic closure K of K, take a primitive root { of 1 of order n(q—1).
For any f>1, let K, be the unramified extension of K of degree f,
contained in K; then { is in K, if and only if n(g— 1) divides g —1,ie.
ifand only if 1 +g+---+¢/~'=0 (n); as g=1 (n), this is so if and only



§5. The Hilbert symbol 261

if f=0 (n). This shows that K({)=K,. Put e={"; as this is a primitive
{g—1)-th root of 1, it 1s in K. In view of the definitions of Chap. IX-5,
we have thus shown that y,, is an unramified character of order n,
attached to K,; therefore, by prop.5 of Chap. XII-2, it generates the
group of the unramified characters of order dividing n. In particular,
for yeK™, y, , is unramified if and only if it is equal to (y, )" for some
veZ, i.e. if ye™" is in the kernel of the morphism x—y, .; as we have
seen in Chap. IX-5, that kernel is (K )". Consequently y, , is unramified
if and only if y is in the subgroup of K™ generated by (K ™)" and &. By
prop. 8 of Chap. I1-3, (K ™)" contains 1+ P; as R™ is generated by 1+ P
and ¢, our assertion is now obvious.

COROLLARY. For every local field K containing n distinct n-th roots
of 1, (x,y), k defines a locally constant mapping of K™ x K™ into the
group of the n-th roots of 1 in C.

This is obvious if K=R or C; if K is a p-field, it is an immediate
consequence of proposition 6, and of the fact (contained in prop. 8 of
Chap. I1-3 if K is of characteristic p, since then n must be prime to p,
and otherwise in the corollary of prop. 9, Chap. II-3) that (K*)" is an
open subgroup of K™, of finite index in K. The symbol (x, y), x may be
said to determine a duality between the finite group K*/(K™)" and
itself, by means of which that group can be identified with its own dual.

PROPOSITION 7. Let k be an A-field containing n distinct n-th roots of 1.
Then, for all z=(z,), 2/ =(z,) in ki, almost all factors of the product

(Z’ Z/)n = l_[ (Zu’ Z:;)n, ko
v

taken over all the places v of k, are equal to 1, it defines a locally constant
mapping of ki x kY into the group of the n-th roots of 1 in C, and satisfies
(z,2"),=(2,2); ! for all z, 2. Moreover, (ky)" is the set of the elements z
of kX suchthat(z,2'),=1 for all z'ekj.

If k is of characteristic p> 1, our assumption about k implies that n
is prime to p; consequently, in all cases, we have |n],=1 for almost all v.
As z,, z, are in r, for almost all v, our first assertion follows now at once
from prop. 6; the same facts, combined with the corollary of prop. 6,
show that (z,z'), is locally constant. By prop. 6, if z is in the kernel of all
the characters z —(z,z'),, we must have z,e (k)" for all v; then, if we write
z,=thwith tek;, thefactthatz,isin r; for almost all v implies the same
for t,, so that t=(¢,) is in k5 and that z=1¢".

COROLLARY 1. For every finite set P of places of k, containing all the
places v for which {n|,+ 1, put
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QP)=[1k; <[] . QP)=]]&)y <] r
veP v¢P veP v¢P

X

Then these are open subgroups of k, and the set of the elements z of k
such that (z,2)),=1 for all e Q(P) (resp. for all € Q(P)) is (k)" Q'(P)
(resp. (k3 ) Q(P)).

Concerning the definition of P, one should observe that {n|,>1 for
every infinite place of k, so that P contains all these places. Then Q(P)
is the same as the open subgroup of k5 which was so denoted in Chap.
IV-4; as we have seen above, (k)" is open in k] for all v, so that Q'(P)
is open in (P). The first set considered in our corollary consists of the
ideles (z,) such that (z,,z;),,, =1 for all z,ek; if veP, and for all z,er}
if v is not in P. Our assertion follows now at once from prop. 6. The other
set can be treated in the same manner.

COROLLARY 2. Let P be as in corollary 1, and assume also that k =
=k*Q(P). Then (K*y'=k* n (k)" Q'(P).

In this last relation, (k*)" is clearly contained in the right-hand side.
Conversely, let £ be an element of this right-hand side. Then, by corollary
1, (§,2),=1 for all ze Q(P); by definition, this is the same as to say that
Q(P) is in the kernel of the character z—(y, . z), of k5. As that kernel
contains k™, by the corollary of th. 2, § 3, and as k; =k™Q(P), this
implies that y, . is trivial, hence that {e(k™)".

The symbol (z,z), defined in prop. 7 may be called the Hilbert symbol
for k. As the last assertion of prop. 7 implies that (k;)" is a closed sub-
group of kj, the main content of that proposition may be expressed by
saying that the Hilbert symbol determines a duality between the group
ky/(kx)' and itself, by means of which it can be identified with its own
dual. As observed above, we have, for k™, zek; :

(6,2)0= (tu, 2> 2 = X, e((2))
and therefore, by the corollary of th. 2, § 3, ({,n),=1forall &, win k™.

PROPOSITION 8. Let k contain n distinct n-th roots of 1. Then k™ (ky)"
is the set of the elements z of ky such that (£,z),=1 for all £E€k™, and it
contains the kernel U, of a.

Call X, the set in question; it may also be described as the intersection
of the kernels of the characters y, .oa of k; for all éek™; clearly it con-
tains U,. As before, put G, =k} /k*; applying lemma 2 of Chap. XII-1
to G, and to the endomorphism x—x" of G,, we see that k* (k})" is
a closed subgroup of k; with compact factor-group. Applying lemma 7
to G,, and to the group of the characters of G, determined by characters



§5. The Hilbert symbol 263

of ky of the form y, ;oa with éek*™, we see that every character of kJ,
trivial on X, is of that form. Clearly X, contains k*(k5)"; as they are
both closed in kg, our proposition will be proved if we show that there
are arbitrarily small neighborhoods U of 1 in kj such that X, is con-
tained in k™ (k3 )" U; we will choose U as follows. Let P, be a finite set of
places of k, containing all the places v where |n|,+#1, and satisfying the
condition in the corollary of th. 7, Chap. IV-4, i.e. such that k5 =k*Q(P,);
then every finite set of places P > P, has these same properties. Take any
such set P; take U=[]U,, where U, is an arbitrary neighborhood of 1 in
(ky)" for veP, and U,=r} for v not in P; clearly U is a neighborhood
of 1 in k; and can be made arbitrarily small by suitable choices of P
and the neighborhoods U, for ve P. One sees at once that (k)" U is the
same as (k, )"Q'(P), where Q'(P) is as defined in corollary 1 of prop. 7.
What we have to prove is that X, is contained in the group W(P)=
k™ (ki)Y' Q'(P), or in other words that X, W(P)= W(P). By lemma 1 of
Chap. XII-1, applied to G,=k;/k* and to the image of W(P) in G,, we
see that W(P) has a finite index in kj ; it will thus be enough to show that
W(P) and X, W(P) have the same index in k.

The index of X, W(P) in k; is equal to the number of distinct
characters of kj, trivial on X, and on W(P). Being trivial on X,, such a
character must be of the form y, ;oa with £ek™. As X, contains k™ (k) )",
this is trivial on W (P) if and only if it is trivial on Q'(P), hence, by corol-
lary 1 of prop. 7, if and only if £ is in (k)" Q(P). In view of our assumptions
on P, we can write

(k) QP)= (k™ QP))' Q(P)= (k)" Q(P).

As in Chap. IV-4, put E(P)=k™ nQ(P); we see now that the characters
in question are those of the form y, ;oa with £e(k*)"E(P), and we must
compute the number of distinct ones among these, which is the index in
(k™)"E(P) of the kernel of the morphism £—y, oa. That kernel is the
same as that of {—y, ., which is (k*)"; consequently that index is the
same as that of E(P)" in E(P). In view of th. 9 of Chap. IV-4, and of the
fact that n divides the order of the group of the roots of 1 in k, that index
is n° with ¢=card(P).

Now we have to compute the index of W(P) in k. Consider the
groups G=k™ x Q(P), G'=k™ x Q'(P), and the morphism f of G into kJ
given by f(&,u)=C¢u for Eek™, ueQ(P). Call H the kernel of f; this
consists of the elements (£, 1) of G with £e E(P). In view of our assump-
tion on P, f maps G onto k5 ; it maps G’ onto W (P), as appears from the
formula

W(P) =Kk7(ky ) Q(P)= k™ (k™ Q(P)" Q' (P)= k™ (Q(PYy'Q (P))=k*Q'(P).
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This gives f~'(W(P))=H G', and therefore:
[k:W(P)]=[G:HG]=[G:G']-[HG:G]".
Here [G:G'] is given by
[G:G']=[Q(P): ' (P)] = [ [K::(k¥']-

veP
In the right-hand side, each factor corresponding to an imaginary place v
is equal to 1, which can also be written as n”|n|, !, since in that case
|n|,=n2 If v is real, n must be 2, since k, =R must contain a primitive
n-th root of 1; then the corresponding factor is 2, which can again be
written as n?|n|; '. The factors corresponding to the finite places ve P
are given by the corollary of prop. 9, Chap. 11-3, if k is of characteristic 0,
and by prop. 8 of Chap. II-3 otherwise; here one has to take into account
the fact that n divides the order of the group of roots of 1 in k, hence
also in k,, and that consequently it is prime to p if k is of characteristic p.
Then one sees that the factors in question are again respectively equal
to n?|n|, !. This gives
[G:G]=[]*Inl; H=n*]]Inl; " =n*
reP v

since |n|,=1 for all places v not in P.

Our proof will now be complete if we show that [H G':G'] =n°. This
is the same as the index of HNG' in H, or, in view of the definition of H
and G, as that of E(P)nQ'(P) in E(P). By corollary 2 of prop.7,
E(P)nQ'(P) is contained in E(P)n(k™)", i.e. in E(P)", and it is obvious
that it contains E(P)". Therefore the index is question is that of E(P)"
in E(P); we have already found above that this is »°; this completes
our proof.

§ 6. The Brauer group of an A-field. In § 3, we have seen that a class
of simple algebras A over k is uniquely determined by its local invariants
h(A), with h,(4)=1 for almost all v, h,(4)=1 for all imaginary places,
and h,(4)=1 or 2 for all real places; and we have proved that [ [ h,(4)=1.
Therefore the Brauer group H(k) will be known if we prove the following:

THEOREM 4. Let k be an A-field. For each place v of k, let n, be a root
of 1in C. Assume that n,=1 for almost all v, n,=1 for every imaginary
place v, n,=1 or 2 for every real place v, and that | [n,=1. Then there

is a simple algebra A over k with the invariants h,(A)=n,,.

The proof of this, for a field k of characteristic 0, will be postponed
until the end of this §; we proceed to prove it now for a field k of charac-
teristic p>1. As in Chap. VI, write D(k) for the group of divisors of k,
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Dy(k) for the group of divisors of degree 0, and P(k) for the group of
principal divisors; call h the aumber of divisor-classes of degree 0, i.e.
the index of P(k) in Dy(k). Let v,,...,vy be all the places of k where ,#+1;
taking for n an integer >1 such that (n,)"=1 for all i, we can write
1, =e(a;/n) with a;e€Z for 1<i<N. As []n,=1, we have ) a;=na with
acZ; after replacing a, by a; —na, we may assume that Zai:O. For
each i, call d; the degree of the place v;; put d=][[d; and m=Y (a;d/d)v,.
Then deg(m)=) a;d=0, m is in Dy(k), hence hm in P(k), so that there
is §ek™ such that div(f)=hm, i.e. ord, (0)=ha;d/d; for I <i<N, and
ord,(0)=0 when #,=1. Now consider the constant-field extension k'
of k of degree hnd; let ¢ be the Frobenius automorphism of k" over k,
and y the character of the Galois group of k' over k such that y(¢)=
=e(1/hnd). Just as in the proof of prop. 3 of § 1, one sees at once, by
applying corollary 4 of th. 1, Chap. X1I-2, that, if v is any place of &,
and § its degree, (x,,0),= x(¢®" with v=ord,(0). In view of our choice
of 0 and y, this gives (y,,6),=#, for all v. Therefore, by formula (4) of
§ 3, the cyclic algebra A=[k'/k; y,0] solves our problem.

ProPOSITION 9. For each ye X,, call U(y) the kernel of the character
xoa of ki. Then: (a)if k' is the cyclic extension of k attached to x, U(y)=
=k™ Ny s (k); (b) for every n=1, prime to p if k is of characteristic p>1,
the intersection U, of the kernels U(y), for all the characters ye X, of
order dividing n, is k™ (k3 )".

Put U'(y)=k™ N, ,(ky), when y and k' are as above, and put
U,=k* (k3 )". Applying lemma 2 of Chap. XII-1 to the endomorphism
x—x" of the group G,= kj/k*, we see that U, is closed in kj; applying
the same lemma to the morphism of G into G, determined by the
morphism N,., of k)~ into kS, we See that U'(x) is also closed in k.
If y is of order n, and k' is as in (a), n is the degree of k" over k, so that
Nyp(z)=z" for zek, hence also for zek,; therefore we have then
U'(x)= U.. A character of kX is trivial on (kx)" if and only if its order
divides n; therefore a character of kj, trivial on k™, has an order divid-
ing n if and only if it is trivial on U,. As before, call U, the kernel of a;
we know that it contains k*. If k is of characteristic 0, apply prop. 1 of
Chap. XII-1 to the pairing between X, and G, determined by (,z);
otherwise apply corollary 4 of prop. 2, Chap. XII-2; in both cases we see
that every character of k3 of finite order, trivial on U,, can be uniquely
written as yoa with ye X,. This implies that U, is the intersection of the
characters of kX, trivial on U, and on U,; therefore it is the closure of
U, U,, and we have U,= U, if and only if U,> U,. We also see now that
every character of kJ, trivial on U'(y) and on U,, must be of the form
y'oa with y'€X,; by corollary 2 of th. 1, § 1, this is trivial on U’'(y) if
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and only if the cyclic extension of k attached to ' is contained in k/,
i.e. if and only if ¥’ = ¥* with some veZ; as the intersection of the kernels
U(y’) for veZ is obviously U(y), this shows that U(y) is the closure
of U'(x) U, and that we have U(y)=U'(y) if and only if U'(y)= U,. Now
consider first the case of characteristic 0. Proceeding by induction on n,
we assume that, for all fields k of characteristic 0, (a) holds for every y
of order <n. Then U, kN, ,(ky) whenever k is such a field and k'
is a cyclic extension of k of degree <n; by formula (5) at the end of
§ 3, this implies U, =k*N., (Uy). Let L be the extension of k generated
by a primitive n-th root of 1; as this is abelian of degree <n over &,
we can find a sequence ky=L, k,....k.=k of fields between L and k,
such that, for 1 <i<r, k;_, is cyclic of degree <n over k;; therefore we
have, for 1 <i<r:

Uk.- = kl'( Nk{_ 1/k,~(Uk|~_ 1)-

By induction on i for 1<i<r, we see now at once that U,, is contained
in k;“{((k)5)", since this is so for i=0 by prop. 8. For i=r, we get U, < U,;
as we have seen above, this proves (b), and it implies U,c U'(y) for
every y of order n, which proves (a) for such characters and completes
the induction. Now let k be of characteristic p > 1. Take y and k' as in (a);
take ze U(y), so that (x,z),=1; then, if we put z=(z,) and n,=(x,,2,),>
these satisfy the conditions in th. 4. As th. 4 has been proved for charac-
teristic p>1, we conclude that there is a simple algebra A over k with
the invariants h,(A4)=n,; as this is condition (iv) in prop. 5 of § 3, we can
apply that proposition, the last assertion in which shows now that
ze U'(y). This proves (a). Just as above, we can now conclude, by apply-
ing formula (5) at the end of § 3, that U, =k N, ,(U,) for all cyclic
extensions k' of k. Assuming that n is prime to p, take for k' the constant-
field extension of k generated by a primitive n-th root of 1. Then prop. 8
gives U, <k’ (k); therefore the same is true for k.

We can now prove theorem 4 in the case of characteristic 0. For
every place v of k, call v(v) the order of #, in C*. One can construct a
character y such that, for every v, the order of y, is a multiple of v(v);
for instance, this will be so if we take for y a character attached to the
cyclic extension k' of k described in lemma 5 of § 3. Then, for every v,
z—(yx,,z), is a character of k; whose order, being equal to that of y,,
is a multiple of v(v); therefore we can choose z,€k, so that (y,,z,),=",-
If, in doing so, we take z,=1 whenever n,=1, z=(z,) is in ky, and the
assumption [ [#,=1 implies that z is in the kernel of yoa; therefore, by
prop. 9, it is in k™ Ny, (k)*), k' being the cyclic extension of k attached
to x. Writing z=0N,,(z') with z’ek}*, one sees at once, by combining
prop. 10 of Chap. IX-4 with corollary 3 of th. 1, Chap. IV-1, and with
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prop. 1 of § 1, that the cyclic algebra A=[k'/k;y,0] has the required
local invariants h,(A4)=7,, so that it solves our problem.

§ 7. The Hilbert p-symbol. By now, as will be seen in the next §, our
investigation is essentially complete, so far as only algebraic number-
fields are concerned. For the case of characteristic p>1, we still need
a symbol, similar to the Hilbert symbol studied in § 5 but based on the
factor-classes {&,0}, of Chap. IX-5.

In any field K of characteristic p> 1, we will denote by @ the endo-
morphism x—x — x” of the additive group of K; its kernel is the prime
field E,. We begin by considering a local p-field K of characteristic p;
as usual, we write R for its maximal compact subring, P for the maximal
ideal of R, and g for the module of K. Obviously, & maps R into R,
P into P, and, if ord(x)=v<0, we have ord(®(x))=pv<0, so that
&~ Y(R)=R.

ProposiTION 10. Let K, R, P and @ be as above; for xeK, zeK*,
put (x,2), k=Xp, x-2)g- Then ®(K) contains P and not R; the set of the
elements x of K, such that (x,z), k=1 for all ze K™ (resp. for all zeR™)
is ®(K) (resp, R+ ®(K)); the set of the elements z of K* such that
(x,2), k=1 for all xeK (resp. for all xeR) is (K™)? (resp. (K™)PR™).

For xeP, put ¥(x)= ) x"; clearly this is convergent and defines
n=0

an endomorphism of P, and one sees at once that both do ¥ and Yo
induce the identity on P. Therefore @ induces on P an automorphism
of the additive group of P, so that Pc@®(K). Call F the algebraic closure
of the prime field F, in K; by th. 7 of Chap. I-4, F is a field with g ele-
ments, and R=F + P, so that ®(R)=®(F)+ P. As the endomorphism
induced by @ on the finite field F has the kernel F,, it is not surjective;
therefore @ (R)#R; as ® ~!(R)=R, this shows that R is not contained
in @ (K). If (x,2), x=1 for all zeK™, y, . must be trivial; as we have
seen in Chap. IX-5, this is so if and only if xe @(K). Take any xe R+ & (K);
as R=F+ P and P<@(K), we can write x=a+®(u) with acF, uek;
then y, , is the same as y,, and is a character attached to the cyclic
extension of K generated by any root a of X —X?=a. As « is algebraic
over F, it is O or a root of 1 of order prime to p, so that K(«), hence also
X5, x> are unramified over K; therefore (x,z), x=1 for all ze R*. Now
take a root { of X —X%=1 in some algebraic closure of K, and put
g={—{" The Galois group of K({) over K is generated by the Frobenius
automorphism; as { is algebraic over F, this maps { onto {?={—1, so
that it leaves ¢ invariant; therefore ¢ is in F, K({) is the unramified ex-
tension of K of degree p, and y,, . is a character attached to that extension.
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Then the unramified characters over K, of order p or 1, are those of the
form (x, ) with veZ; consequently a character y,, , is unramified if and
only if it can be so written, i.e. if and only if x=ve¢+®(u) with uek;
then x is in R+ @(K). As to the last two assertions, one is nothing else
than prop. 10 of Chap. XII-3. Finally, if ¢ is as above, the kernel of
z-(g,z), ¢ is the subgroup of K* of index p containing R*; this is
(K*)PR™; for every xeR, we have seen that y, , is unramified, and it
is of order p or 1, so that the kernel of z—(x,z), x contains (K™)PR™.
This completes our proof.

COROLLARY. For each integer m=0, call Q'(m,K) the set of the ele-
ments z of K™ such that (x,z), x=1 for all xe P™™. Then this is an open
subgroup of K*, containing (K*)?; its index in K* is p-q™ ™ if m’ is the
largest integer <m/p. For every neighborhood U of 1 in K*, there is
m=0 such that Q' (m,K)c(K*)U. Moreover, Q' (0,K)=(K™)’R*; and,
for every m=0, the set of the elements x of K such that (x,z), x=1 for
all zeQ'(m,K) is P~"+®(K).

Let the finite field F be as above, and let « be a prime element of K;
by th. 8 of Chap. I-4, K may be identified with the field of formal power-
series in 7 with coefficients in F; therefore, if we call V,, the space of
polynomials of degree <m in n~! with coefficients in F, P~™ is the direct
sum of V,, and P, and V,, is a vector-space of dimension m+1 over F;
moreover, one verifies at once that V, n®(K)=@(V,,), with m’ as in our
corollary. By prop. 10, Q'(m,K) is the intersection of the kernels of the
characters z—(x,z), x of K* for xeV,,; therefore it is open and contains
(K*)?, and, by lemma 7 of § 5, all the characters of K™, trivial on
Q'(m,K), are of that form. This implies that the index of Q'(m,K) in K™
is equal to the number of distinct characters of that form, which is the
index of V,,n®(K) in V,;; as V,,, V,. have respectively g"*! and g™ *!
elements, and as the morphism @ of V,,, onto V,,n®(K) has the kernel F,,
that index is p-g™~ ™. By lemma 2 of Chap. XII-1, and lemma 7 of § 5,
the group G'= K> /(K™)? is compact, and its characters are those deter-
mined by the characters z—(x,z), x of K™ for xe K. Therefore the inter-
sections of the kernels of finitely many such characters make up a funda-
mental system of neighborhoods of 1 in G'. This is the same as to say
that, if U is any neighborhood of 1 in K*, one can find finitely many
characters z—(x;,z), x such that the intersection W of their kernels is
contained in (K ¥)? U; then W contains Q'(m,K) if we take m >0 such that
—m<ord(x;) for all i. By prop. 10, '(0,K)=(K*)’R*. Finally, if
z-(y,z), x is trivial on '(m,K), it must coincide with a character
z—(x,z), x with some xeV,,; by prop. 10, this is the same as to say
that yeV,+ ®(K); as (K)o P, and V,,+ P=P™™, this proves the last
assertion in our corollary.
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From now on, in this §, k will be an A-field of characteristic p. We
will need the following lemma:

LEmMA 8. If v is any place of k,kn(k,)’ =k?.

Clearly kn{k,)? is a field between k and k?; by lemma 1 of Chap.
VIII-5, it must be k or k. As (k,)? contains no prime element of k,, it
is not dense in k,; as k is dense in k,,(k,)’ cannot contain k.

PRrOPOSITION 11. For all x=(x,) in ky, and all z=(z,) in kx, almost
all the factors of the product

(x’ Z)p = I—[ (xw Zv)p, ky,

are equal to 1; it defines a locally constant mapping of k, x k} into the
group of the p-th roots of 1 in C; the set of the elements x of k, (resp.
of the elements z of ki) such that (x,z),=1 for all zekx (resp. for all
xeky) is d(k,) (resp. (kx)P).

All this follows at once from prop. 10.

COROLLARY 1. For every divisor m=Y m(v)-v>>0 of k, put
@ (m) =[] 2 (m(v).k,)

Then this is an open subgroup of kx, containing (k). For every neigh-
borhood U of 1 in k}, there is a divisor m such that Q' (m)c(k3)?U. The
set of the elements x of k, such that (x,z),=1 for all zeQ'(m) is

(ITps ") + @ (ky)

For all v, Q'(m(v),k,) is an open subgroup of k;, containing (k;)?,
and, for almost all v, m(v)=0, so that Q'(m(v),k,) contains r; ; this proves
the first assertion. In the second assertion, it is enough to consider a
neighborhood U=[]U,, where U, is a neighborhood of 1 in k}, for all v,
and U,=r) for almost all v; then our assertion follows at once from
the coro]lary of prop. 10. Assume that x=(x,) is as in the last assertion;
then, by the same corollary, we can write x,=y,+ @ (4,) with y,ep,"",
u,ek, for all v, and y,=x,, u,=0 whenever m(v)=0 and x,er,, hence

for almost all v. Then y:(yv) and u=(u,) are in k,, and x=y+® (u),
yel[lpo ™.

COROLLARY 2. Notations being as in corollary 1, assume also that
deg(m)>2g—2. Then (k™) =k*nQ'(m).

Clearly the right-hand side of this last formula contains (k™)?. Now
take Eek*; if EeQ'(m), we have (x,&),=1 for all xe[[p, ™" and also
for all xek, hence for all xek, by corollary 3 of th. 2, Chap. VI. By pro-
position 11 this implies e (k})?, hence £e(k*)? by lemma 8.
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COROLLARY 3. Notations being as in corollary 1, assume that
n=Y n(v)-v is a divisor of k, of degree >2g—2, such that m>pn. Then
the set of the elements x of k, such that (x,2),=1 for all zeQ'(m) is

([Tp, ™) + @ (k.
Again by corollary 3 of th. 2, Chap. VI, we can write
D(k)=2(H0)+2([p; ") .

Our assumptions imply that the second term in the right-hand side is
a subgroup of [ [ p, ™. Our assertion follows now from the last one in
corollary 1.

PROPOSITION 12. The set of the elements z of ky such that (£,z),=1
Jor all éek is k™ (kx)P.

Call that set X ; it is the intersection of the kernels of the charac-
ters x, .oa of k for all £ek; it contains k™ (k;)”. By lemma 2 of Chap.
XII-1, applied to G, =k /k*, k™ (kx)? is a closed subgroup of ki with
compact factor-group; by lemma 7 of § 5, every character of k¥, trivial
on X ,, must be of the form y, .oa with £ek. Choose a divisor 1>-0 of k,
of degree >2g—2. In view of corollary 1 of prop. 11, it will be enough
for us to show that X, is contained in W (m)=k> Q'(m) for all divisors
m=2m(v)-v>pn. By lemma 1 of Chap. XII-1, W(m) is of finite index
in kj; therefore it will be enough to show that X » W(m) and W (m) have
the same index in kj.

The index N of X, W(m) is equal to the number of distinct characters
of ki of the form Xp,:00, or, what amounts to the same, of the form
z—(¢,z),, with £ek, which are trivial on Q'(m). By corollary 3 of prop. 11,
the latter character is trivial on Q'(m) if and only if é€ U(m)+ & (k), with
U(m)=[]p, ™. As in Chap. VI, put A (m)=k~U(m). Then we see that N
is the index of @(k) in A(m)+ @(k), or, what amounts to the same, of
Am)nd (k) in A(m). Put m’=Zm’(U)-v, where m'(v), for each v, is the
largest integer <m(v)/p; call m, m’, n the degrees of m, m’,n, respectively;
then m>m'>n>2g-2. Clearly A(m)n®(k) is the same as P(A(m));
corollary 2 of th. 2, Chap. VI, shows that A (m), A (m’) are vector-spaces,
of dimension m—g+1 and m'—g +1 respectively, over the field of con-
stants F of k; as @ maps A(m’) onto A(m)~@(k) with the kernel F,, we
see that the latter group has p~'gq™ “?*! elements while A(m) has
g™~ %" ! elements. This gives N=p-g™~ ™.

Now we have to compute the index of W(m) in k3. Take a finite
set P of places of k, containing all the places v for which m(v)>0, and
satisfying the condition in the corollary of th.7, Chap.IV-4, i.e. such
that ky =k™ Q(P). Put:



§ 8. The kernel of the canonical morphism 271

Q' =[] (mo),k,)x ] r;-

veP vé P
Clearly this contains Q(P)?, and we have Q'(m)=(k, )’ Q", hence:

Wm)=k™(kx)?Q"=k*(k* QP)PQ"=k* Q"

Put now G=k* x Q(P), G'=k* x Q"; call f the morphism of G into k}
given by f(¢,u)=Cu for ¢ek™, ueQ(P), and call H the kernel of f. Then f
maps G onto k; , G’ onto W (m), and H consists of the elements (¢, 1)
with £ in E(P)=k™ nQ(P). We have now:

[kx:W(m)]=[G:HG']=[G:G']'[HG':G'] .
Here, in view of the corollary of prop. 10, [G:G'] is given by
[G:G]=[QP):Q]=]][k, :Q(m).k)]=pg"™™

veP
with c=card(P). Finally, [ HG':G'] is the same as the index of HNG' in
H, ie. as that of E(P)nQ" in E(P). Clearly E(P)n§" is contained in
k™ nQ'(m), which is (k) by corollary 2 of prop. 11, and it contains
E(PY; as E(P)n(k™)? is the same as E(P)?, we see that E(P)nQ" is
E(P)*, and it follows at once from th. 9 of Chap. IV-4 that its index in
E(P) is p¢~ 1. This completes the proof.

COROLLARY. If k is as above, and U, is the kernel of the canonical
morphism a, we have U, c k™ (U,).

By proposition 12, U, is contained in k*(kJ)?, so that, if u is any
element of U,, it can be written as u=£v? with £ek™, vek,. Take any
x€X,; call k' the cyclic extension of k attached to y. By prop. 9 of §6, the
kernel U(y) of yoais k™ Ny (ky"); as U, < U(y), this implies, by formula
(5) at the end of § 3, that U, =k™ N,.,(U, ). Again by proposition 12, U,
is contained in k"” (k}")?, so that U, is contained in k™ N, (k) )?; there-
fore, if u is as above, we can write u=# N, ,(w)® with nek™, wek,*. This
gives £n ™ =0T N, (w)P. As En~ ' is in k™ and in (k}), it is in (k)7
by lemma 8; writing it as {? with {ek™, we get v={"' N, ,(w), since p
is the characteristic. This shows that v is in U(y); as this is so for all
1€ X, itis in U,, which completes the proof.

§ 8. The kernel of the canonical morphism. We are now able to deter-
mine U, in all cases.

THEOREM 5. Let k be an A-field, and a the canonical morphism of kj
into the Galois group W of k,, over k. Then y— yoa is a bijective morphism
of the group X, of characters of U onto the group of the characters of kj
of finite order, trivial on k™.

19 Weil, Basic Number Theory
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Every character of k5 of order n, trivial on k*, is trivial on k*(k})",
hence on U,, by prop. 9 of § 6, if k is of characteristic 0; in that case, our
conclusion follows from this at once by applying prop. 1 of Chap. X11-1
to G, =k /k*. Now let k be of characteristic p> 1, and let w be a character
of kX of order n, trivial on k*. Write n=n’" p' with n’ prime top and i>0;
taking integers a, b such that n'a+ p'b=1, we have w = ' »” with @’ = w?®
of order n', and w”=w"* of order p', both being trivial on k. Just as
above, we conclude from prop. 9 of § 6 that ' is trivial on U,. On the
other hand, one concludes at once from the corollary of prop. 12 of § 7,
by induction on i, that U, is contained in k*(U,)*, hence in k™ (k})*',
and then, just as above, that @” is trivial on U,. This shows that w is
trivial on U,; our conclusion follows from this at once by applying
corollary 4 of prop. 2, Chap. XII-1, to G, =k, /k ™.

COROLLARY 1. The kernel U, of a is the intersection of the closed
subgroups k™ (k)" of kx foralln=1.

In the proof of prop. 9, § 6, we have already seen that these are closed
subgroups; clearly, then, k*(kg)" is the intersection of the kernels of
all the characters of kj, trivial on k™, whose order divides n. Our assertion
follows now at once from theorem 5.

COROLLARY 2. If k is of characteristicp>1, U,=k™.

Write G,=G; x N, with G} =k}/k and N isomorphic to Z. As G}
is compact, and as it is obvious that it is totally disconnected, lemma 4 of
Chap. VII-3 shows that all its characters are of finite order; every such
character can be uniquely extended to one of G,, trivial on N, which is
then also of finite order, hence, by theorem 5, trivial on the image of
U, in G,. As corollary 2 of prop. 2, Chap. XII-1, shows that this image is
contained in G}, it must therefore be {1}, which is the same as to say
that U, =k™.

COROLLARY 3. If k is of characteristic 0, U, is the closure of k™k} .
in ky, kX . being the group of the ideles (z,) such that z,>0 for all real
places and z,=1 for all finite places v of k.

Write G,=G; x N, with G} =k4/k*, N being the image in G, of the
group M defined in corollary 2 of th. 5, Chap. IV-4. Call U’ the closure of
k*kX., in ki, U” its image in G, and put U;=U"n G;. Obviously
ky/kZ . is totally disconnected, so that the same is true of k3 /U’, hence
of Gy/U". As M is contained in U’, N is contained in U”, so that U"=
=U] x N and that G,/U" may be identified with G;/U] and therefore
is compact. This shows that every character of G, trivial on Uy, or, what
amounts to the same, every character of k;, trivial on U’, is of finite
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order. Consequently U, is contained in U’; as we already knew that it
contains U’, we see that it is U’.

In order to obtain more precise results about U, in the case of
characteristic 0, one needs an algebraic lemma:

LeMMA 9. Let | be a rational prime, K a field, not of characteristic I,
and K an algebraic closure of K. For each n>0, call K, the extension of K
generated by a primitive I"-th root of 1 in K. Then, if 142, or if 1=2 and
K=K,, K*n (K)"=(K*) for all n. If |=2, K¥K,, 2<m<n and
K, #K, ., then K" (K )" <(K*)*"™™

Take acK* N (K)"; assume at first that a is not in (K7)", and
let i be the smallest integer such that a is in (K}, ;)" and not in (K})"".
Then 1<i<n, K;#K;, |, and we can write a=x"" with x in K;,, and
not in K;. Call  a primitive I'*!-th root of 1 in K,,,, and put ¢=1¢’,
t=n"; ¢, ¢ are-roots of 1 of order I' and I, respectively, and are in K,.
We have K,, ; =K,(n), n'=¢, and ¢ is in K, and is not 1; therefore K, ,
is cyclic of degree [ over K;, with a Galois group generated by the auto-
morphism ¢ given by n°={n. Put 0=x°x""!; then #eK,,, and 6" =1,
so that § is a root of 1 of some order I dividing I"; therefore §° must be
of the form 6° with seZ; moreover, if v<i, 8 is in K;, so that we can take
s=1, while, if v>>i, we have #=6" with some reZ, hence n°=n*, {=n*"1,
and therefore s=1+1 (I'*!). By induction on h, one sees at once that
X" =x @1t for h=1, this gives 14+s4 -+ 1'=0 (P). If v<i,
we have s=1, so that the latter congruence implies v< 1. If v>1i, we have
s=1+al'witha=1(l);ifl#2,orifI=2and i>2, thisimplies s' =1+ b ['*1
with b=1 (I), which shows that (s'—1)/(s— 1) cannot be a multiple of /%,
hence also not of I'; as this contradicts what we have found above, we
conclude that v<{1 except possibly for /=2, i=1. Therefore, except in
that case, we can write 8=_' with teZ; writing then x'=#""x, we have
x"=x', so that x" is in K,, and a=x""", which contradicts the definition
of i. This proves that a is in (K})" if [#2, and, for [=2, it proves that,
if it is not in (K)*", it is in (K3)*". In the former case, write a=y" with
ye K. As the Galois group of K, over K is a subgroup of (Z/I7)*. the
degree d of K, over K divides /—1 and is prime to [; write l =de+["f; we
have a®=b" with b= N «(y), hence a=(d' b*)"". If =2, we have K, =K ;
if then a is not in (K *)*", we must have K # K,, and we can apply what
we have found above, with i=1; if at the same time K, # K,, , ,, the order
2" of 6 cannot be a multiple of 2"*!, so that it divides 2™; putting then
b=x*", we have b°=bh, so that b is in K, =K, and, if n>m, a=p*>"""
In the case =2, K # K,, one can easily show, by using similar arguments,
that (K *)?" is a subgroup of index 2 of K*n (K})?", the latter group
being generated by (K*)?" and (1+ w)?" if w is a generator of the group

19*
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of the roots u of 1 in K,, of order dividing 2", such that Ny, ((u)=1.
These facts will not be used here.

PROPOSITION 13. Let P be a finite set of places of k, containing P ;
put H=[]k) Then UnH is k3, if k is of characteristic 0, and {1}

veP
if it is of characteristic p> 1.

The latter assertion is obvious, since in that case U,=k™; we may
therefore assume that k is of characteristic 0. By corollary 1 of th. 5,
U, H is the same as the intersection of the groups k*(k{)"~ H for all
N=1. Anelement of ki belongs to the latter group if and only if it can be
written as £zV with fek™, z=(z,)eky and é=z," for all v not in P.
Take N=1I", where | is a rational prime; let k' be the extension of k
generated by a primitive N-th root of 1 in k, and k” the extension of k’
generated by any root of XV=¢ in k. Clearly, for all places w of k" which
do not lie above a place ve P, we have £e(k.,*)"; therefore, by corollary 4
of th. 2, Chap. VII-5, we have k" =k’, so that & is in (k’*)". By lemma 9,
this implies (k)Y if I+ 2. If I=2, call k, the extension of k generated
by a primitive 4-th root of 1; if k, =k, we have again Eetk™)N. If ky+k,
call 2™ the highest power of 2 dividing the order of the group of roots of 1
in k,; then lemma 9 gives £e(k™)Y with N'=2""N, provided n>m.
Taking N=2""* in the latter case, and otherwise N =1I", we se¢ that
k*(k\)¥nH is then contained in (k)" nH, which is the same as H".
This shows that U,nH is contained in H" for all primes / and all u>0.
Take any integer M > 1; for every prime ! dividing M, let I* be the highest
power of I dividing M ; we can find integers a(/) such that 1/M =Y 1" *a()).
Take any he U,n H, and, for each [, write h=(h)"" with hye H; then h=h'™
with i'=[](h)*®; therefore UynH < H™ for all M>1. In corollary 1
of th. 3, Chap. XII-3, we have shown that the intersection of all the groups
(k;)™, for a given finite place v of k, is {1}; this same intersection is
obviously C* if k,=C, and R} if k,=R. Therefore the intersection of
all the groups HMis k., so that U,nH is contained in kj,: as it
obviously contains it, this completes our proof.

COROLLARY. For every place v of k, k,, ,, is generated over k, by k.

This is trivial if k,=C, and it is obvious if k, =R, since then k, ;, is C
and is generated by a primitive 4-th root of 1 in k. Assume now that v
is a finite place. The union k, , of all unramified extensions of k, is
generated over k, by roots of 1; therefore, if k' is the subfield of k,
generated over k, by k., it contains k, . As in § 1, let U, be the Galois
group of k, ,,, over k,, and let p, be the restriction morphism of U, into 2A.
An automorphism « of k, ., over k, induces the identity on k" if and only
if it induces the identity on k,,, i.e. if and only if p,(«) is the identity.
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Assume that this is so; then, as k, ,<k’, o is in the Galois group of
k, ., Over k, o, so that, by corollary 2 of th. 3, Chap. XII-3, it can be written
as a=a,(z) with zer;. Then, by prop. 2 of § 1, we have p (o)=a(j,(2)),
where j, is the natural injection of k, into ky; if p,(x) is the identity,
Jjo(z) must be in U,; taking for P, in proposition 13, a set containing v,
we see now that o itself must then be the identity. This proves our corollary.

As an example for the above corollary, we may apply it to the case
k=Q; then, in combination with corollary 3 of th. 3, § 4, it shows that,
for every rational prime p, the maximal abelian extension of Q,, in an
algebraic closure of Q,, is generated by all the roots of 1. This could
also, of course, have been derived directly from the results of Chap. XII.

§ 9. The main theorems. The main results of classfield theory are
either immediate consequences of those found above, or can be derived
from them by following exactly the proofs given for the corresponding
theorems in Chap. XII.

THEOREM 6. If k is of characteristic 0, the canonical morphism a
determines an isomorphism of kx/U, onto the Galois group U of ka
over k, U, being the closure of k™ k., in ky; if k is of characteristic
p>1, a determines a bijective morphism of kx/k™ onto a dense subgroup
of W, and an isomorphism of ks/k™ onto the Galois group N, of k,, over
the union kg of all constant-field extensions of k.

The first assertion merely repeats part of prop. 1, Chap. XII-1,
corollary 3 of th. 5, § 8, being taken into account. The other assertions
repeat part of corollary 2 of prop. 2, Chap. XII-1, and [II"] of Chap. XII-1,
taking into account the fact that U,=k™ and that 9, has been deter-
mined in § 1.

THEOREM 7. Let k' be an extension of k of finite degree, contained in
k; put L=k Nkap. Then, for zeky, a(z) induces the identity on L if and
only if z is in k™ Ny (k).

The proof is identical to that of th. 4, Chap. XII-3, except that of

course one must now make use of th. 5 of § 8, instead of th. 3 of Chap. X1I-3,
and corollary 1 of th. 1, § 1, instead of corollary 1 of th, 2, Chap. XII-2,

COROLLARY 1. Assumptions and notations being as in theorem 7, call
B the subgroup of U corresponding to L. Then:

kK*NpalL) =k ™ Ny kX )=a" ' (B).

The latter equality is a restatement of theorem 7. Applying theorem 7
to k'=L, we get k™ Ny ,(Ly)=a"'(B).
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COROLLARY 2. For every extension L of k of finite degree, contained
in k,,, call B(L) the subgroup of W corresponding to L, and put N(L)=
=k*Np4(Ly). Then N(L)y=a"'(B(L)); B(L) is the closure of a(N(L))
in W; L consists of the elements of k., invariant under a(z) for all ze N(L),
and a determines an isomorphism of ki/N(L) onto the Galois group
A/B(L) of L over k. Moreover, L— N(L) maps the subfields of k,,, of finite
degree over k, bijectively onto the open subgroups of ky, of finite index
in ky and containing k™.

All this merely repeats prop. 3 of Chap. XII-1, the corollaries of
th. 5, § 8, being taken into account; one should notice here that, when k
is of characteristic 0, the group kX, , being a product of finitely many
factors isomorphic to R} or to C*, is generated by every neighborhood
of 1 in that group, and is therefore contained in every open subgroup

of k.

CoROLLARY 3. Notations being as in corollary 2, let I’ be the group
of the characters of U, trivial on B (L). Then the subgroup N(L) of kj
associated with L is the intersection of the kernels of the characters
w=7yoa of ky for yeI', and y—yoa is an isomorphism of I' onto the
group y of the characters of ky, trivial on N(L).

The first assertion is merely a restatement, in other terms, of the
equality N(L)=a~'(B(L)); similarly, the second one is a restatement of
the fact that a determines an isomorphism of k3 /N (L) onto 2 /B(L).

COROLLARY 4. Let y be any character of W; then, if L is the cyclic
extension of k attached to y, the subgroup N(L) associated with L is the
kernel of the character o= yoa of kj.

This is a special case of corollary 3, since here the group I' of that
corollary is the one generated by y.

COROLLARY 5. Let k and k' be as in theorem 7; let M be a subfield of
k,v, of finite degree over k, and call M’ its compositum with k'. Let U=
=k*NypM3), U'=k" Ny, o(MX) be the open subgroups of ky and
of k) associated with the abelian extensions M of k, and M’ of k', respec-
tively, by corollary 2. Then U’ =N (U).

The proof is identical to that of corollary 3 of th. 4, Chap. XII-3.

THEOREM 8. Let k' be an extension of k of finite degree, contained
in ky,; let a, a’ be the canonical morphisms of ki into U, and of ki into
the Galois group W of k., over k', respectively. Let t be the transfer homo-
morphism of W into W, and j the natural injection of k, into k. Then
toa=a’oj.
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The proof is identical to that of th. 6, Chap. XII-5, except that here,
of course, one must use th. 7, instead of th. 4 of Chap. XII-3.

§ 10. Local behavior of abelian extensions. Let & be as above; let v
be any place of k; as in § 1, we choose an algebraic closure K, of k,,
containing the algebraic closure k of k. If k' is any extension of k of
finite degree, contained in k, prop. 1 of Chap. III-1 shows that the sub-
field of K, generated by k’ over k, may be identified with the completion
k., of k' at one of the places w lying above v. If k¥’ is a Galois extension
of k, with the Galois group g, we can apply corollary 4 of th. 4, Chap. I11-4,
as we have already done in similar cases on earlier occasions. This shows
that k;, is a Galois extension of k,; if b is its Galois group over k,, the
restriction morphism of fy into g is injective and may be used to identify
with a subgroup of g; then the completions of k" at the places of k' lying
above v are in a one-to-one correspondence with the cosets of b in g
and are all isomorphic to k..

We now apply this to the case when k' is abelian over k. Then, by
corollary 2 of th. 7, § 9, its Galois group g is isomorphic to ky/U with
U=N(K)=k* N, ,(ky), U being then an open subgroup of ki of
finite index. More precisely, if B is the subgroup of the Galois group A
of k,,, over k, corresponding to k', the canonical morphism a determines
an isomorphism of k; /U onto g=UA/B. On the other hand, if k,, k, are
as above, k,, is an abelian extension of k,, with which corollary 2 of
th. 4, Chap. XII-3, associates the open subgroup U,=N,, , (k) of
k, . Call U, as before, the Galois group of k, ,, over k,; call B, the
subgroup of U, corresponding to ki ; then the same corollary shows
that the canonical morphism a, of k, into 2, determines an isomorphism
of k; /U, onto h =A,/B,. The relation between these various groups is
given by the following:

PROPOSITION 14. Assumptions and notations being as above, the
subgroup U, of k;, associated with k., is given by U =k nU. If g is
identified with ky/U by means of a, and b with k,/U, by means of a,,
the restriction morphism of by into g is the same as the morphism of k} /U,
into ky/U determined by the natural injection j, of k' into ky, and the
places of k' which lie above v are in a one-to-one correspondence with the

cosets of ki Uinkj.

Take any z,ek,, and put a=aqa,(z,). By prop. 2 of § 1, the automor-
phism of k,,, induced by a is p (o) =a(z) with z=j,(z,). As k., is generated
by k’ over k,, « induces the identity on k;, if and only if p,(x) induces the
identity on k’; in view of corollary 2 of th. 4, Chap. XII-3, and of corollary 2
of th. 7, § 9, this amounts to saying that z, is in U, if and only if j,(z,) is
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in U, which we express by U,=k; nU. The second assertion in our
proposition follows at once from the same facts; they also imply that
the image of hin g can be identified with that of k) in k5 /U, which is
kXU/U, and that g/h can be identified with ki /k, U. As we have
recalled above, the places of k' above v correspond bijectively to the
cosets of § in g, hence also to those of k, U in kj; this completes the
proof. Our proposition and its proof remain valid when v is an infinite
place, since theorem 4 of Chap. XII-3, and its corollaries, remain valid
for R and C, as has been observed at the time. The relations between the
various groups and morphisms considered above are illustrated by the
following diagram.

ky A

v v

o K2/, b -

v

Jo | Py

ki/U = g

™

kX A

COROLLARY 1. Let y be the group of the characters of ky, trivial
on U; let y, be the group of the characters of ki, trivial on U,. Then the
mapping which, to every we?y, assigns the character w, induced by ® on
k., is a surjective morphism of y onto y,, and the order of its kernel is

equal to the number of places of k' lying above v.

Clearly w - w, determines a morphism of y into y,. Every character
of kX, trivial on U,, can be uniquely extended to one of k; U, trivial on
U, and this can be extended to one of k;, which then belongs to y;
therefore the morphism in question is surjective. Its kernel consists of
the characters of kj, trivial on k U ; this is the dual group to k;/k;U;
in view of the last assertion in proposition 14, its order is therefore as
stated in our corollary.

COROLLARY 2. Assumptions being as above, assume also that v is a
finite place of k. Then the modular degree f, and the order of ramification
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e, of k,, over k, are given by

f=LkS iy U d=lky Uiry U}, e=[r;U,:U,]=[r U:U].

By the corollary of prop. 6, Chap. XII-2, and corollary 2 of th. 4,
Chap. XII-3, the maximal unramified extension of k, contained in k, is
the one associated with the subgroup r} U, of k' ; the first part of our
corollary follows from this at once; the second part is an immediate
consequence of the first.

COROLLARY 3. Assumptions being as in corollary 2, k,, is unramified
over k, if and only if Uor); when that is so, the automorphism of k'
over k, induced by the Frobenius automorphism of k,, over k,, is the image
in a=kx/U of any prime element n, of k,, and it is an element of g of
order f.

To say that k;, is unramified over k, is to say that e=1, so that the
first assertion is a special case of corollary 2. The second one follows
at once from proposition 14, combined with corollary 4 of th.1,
Chap. XII-2, which says that a,(x,) is here the Frobenius automorphism
of k;, over k,.

Notations being as in corollaries 2 and 3, we know from the corol-
lary of prop. 3, Chap. VIII-1, that k., is unramified over k, if and only
if its different over k, is r,,. In view of the definitions of the different
and of the discriminant in Chap. VIII-4, and of the fact that the com-
pletions of k', at the places of k' lying above v, are all isomorphic to k.,
it amounts to the same to say that k, is unramified over k, if and only
if v does not occur in the discriminant of k' over k. By corollary 3 of
prop. 14, this is so if and only if U = r} . This qualitative result can be
refined into a more precise one, as follows:

THEOREM 9. Let k' be an extension of k of finite degree, contained
in k,y; let U=k N, (ky) be the subgroup of kj associated with k', and
call y the group of the characters of kg, trivial on U. For each wevy, call
f(w) the conductor of w. Then the discriminant D of k' over k is given by
D=[]f(w), or by D= Y f(w), according as k is of characteristic 0 or not.

wey wey

Let notations be the same as in corollary 2 of prop. 14; let p, be the
maximal ideal in the maximal compact subring r, of k,; call p? the dis-
criminant of k,, over k,, and v the number of places of k' lying above v.
As the completions of k’ at these places are all isomorphic to k., they
all make the same contribution to the discriminant ®, so that their
total contribution is p2”* (resp. év-v). Let y, be defined as in corollary 1
of prop. 14; call w;, for 1<i<d, the distinct elements of y,, and, for
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each i, call p/* the conductor of w;; by corollary 2 of th. 5, Chap. XII-4,
we have =), f(i). By corollary 1 of prop. 14, each w; is induced on k;
by exactly v characters wey. Our assertion is now obvious.

THEOREM 10. Assumptions and notations being as in theorem 9, the

Dedekind zeta-function of k' is given by {;.(s)= [] L(s, w).
wey

It is enough to prove this for Re(s)>1, when the infinite products
for these functions are absolutely convergent; and then it is enough to
show that, for each finite place v of k, the contribution of the places
of k" above v to {,.(s) is equal to the product of the contributions of v
to the products L(s,w). If f is as in corollary 2 of prop. 14, the contri-
bution of w to the product ,.(s) is (1—g, /%)~ '; that is also the contri-
bution of each one of the places of k" above v, so that, if v is their number,
their total contribution is (1 —g,’*)™". On the other hand, for wevy,
the contribution of v to L(s,w) is 1 unless w, is unramified, and
(1-wy(m,)g, 5)"* if it is unramified. In view of corollary 1 of prop. 14,
their product is equal to [[(1 —w'(r,)q, *) ", where the latter product
is taken over all the distinct characters o’ of k;, trivial on U, and on r},
i.e. trivial on r} U,. By corollary 2 of prop. 14, the group k; /r} U, is
of order f; clearly it is generated by the image of =, in it, hence cyclic;
therefore there are f characters ', and the values they take at =, are
the f-th roots of 1 in C. This implies that the product [[(1 —'(x,)1),
for every teC, is equal to 1 —¢/, which completes our proof.

COROLLARY. Assumptions and notations being as in theorems9
and 10, assume also that k is an algebraic number-field. Then Z . (s)=
712 T] A (s,w), where n is the degree of k' over k, and p is the number

wey
of real places of k such that the places of k' above them are imaginary.

Here Z,(s) and A(s,w) are the functions defined in theorem 3 of
Chap. VII-6, and in theorem 5 of Chap. VII-7, respectively. In view of
theorem 10, what we have to show is that each infinite place v of k contri-
butes the same G-factors to both sides of the formula in our corollary.
Define v as above; then the total contribution to Z,.(s) of the v places
of k" above v is G,(s)” or G,(s)’, according as w is real or not. The con-
tribution of v to A (s,w) is G,(s+s,) or G,(s+ s,) according as v is real
or not, s, depending upon w, in the manner described in Chap. VII-7.
Here o, has to be trivial on U,, which, being an open subgroup of k;,
is C* if k,=C, and either R* or R} if k,=R. If w, is trivial on k, we
must put s,=0; if not, we must have k,=R, U,=R% and w,(x)=x"1|x|,
hence s,=1. As the degree of k;, over k, is [k, : U,], it is 2 in the latter
case, and otherwise 1. Taking now corollary 1 of prop. 14 into account,
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we see that the contribution of v to [[A(s,w) is G,(s)® if v and w are
real, G,(s)" if they are both imaginary, and G,(s)*G,(s+1)" if v is real
and w imaginary. In the latter case, we have v=n/2, e.g. by corollary 1
of th. 4, Chap. I1I-4. Our corollary follows now at once from these facts
and from the identity G,(s)=nG,(s)G,(s + 1), which is the same as the
identity between gamma functions already quoted at the end of Chap. X.

§ 11. “Classical” classfield theory. The reinterpretation of our results,
in the traditional language of this theory, depends upon the following
facts:

(a) Let U be the set of all the open subgroups of k3, containing k™;
let W be the set of those which are of finite index in k5, and U” the set
of those which are contained in k4 and of finite index in k.. Lemma 1
of Chap. XII-1 shows that W= and U =40 if k is an algebraic number-
field, and that U=WoU" if k is of characteristic p> 1.

(b) Let 8 be the set of all the fields between k and k,,,, of finite degree
over k; when k is of characteristic p> 1, let 8, be the set of all the fields
between k, and k,,, of finite degree over k,. Then corollary 2 of th. 7,
§ 9, defines a one-to-one correspondence between U’ and K, while, by
the last assertion in th. 6, § 9, and Galois theory, there is a one-to-one
correspondence between U” and K, when k is of characteristic p> 1.

(c) As the open subgroups of any group are the kernels of its mor-
phisms onto discrete groups, we may regard the open subgroups of kj
in (a) as kernels of such morphisms, and describe these morphisms in
terms of morphisms of the groups I(P), D(P), in the manner explained
in Chap. VII-8. In order to reinterpret the results of Chap. VII-8 more
conveniently for our present purposes, we will modify its notations as
follows.

As in Chap. VII-8, when P is any finite set of places of k, contain-
ing P, we write G, for the group of the ideles (z,) of k such that z,=1
for all veP, and G} for the group of the ideles (z,) such that z,=1 for
veP, and z.er;, ie. |z,|,=1, for v not in P. We will now write L, for
the free group generated by the places v not in P, that group being
written multiplicatively; this may be identified in an obvious manner
with the group I(P) or D(P) of Chap. VII-8, according to the charac-
teristic of k. We write [, for the morphism of G, onto L, with the
kernel G}, given by (z,)- [ [v"® with r(v)=ord,(z,); moreover, for every

v¢P
£ek* such that Ler) for all finite places veP, we write pr(£) =] ]v*®
v¢P
with p(v)=ord (&) for v not in P.
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DEFINITION 1. A subgroup J of Lp will be called a congruence group
if one can find, for every ve P, an open subgroup g, of k;, contained in r;
when v is finite, such that pr(§)eJ for every &€ () (k™ ng,); the group
g=[1g, will then be called a defining group for J.

veP

Clearly it would make no difference in this definition if the groups g,
were restricted to be of the form 1+ p* with m>1 for every finite veP.

PROPOSITION 15. Notations being as above, call W(P) the set of the
open subgroups of ki containing k™ and containing r, for all v not in P.
Then, for each UeW(P), the formula UnGp=151(J) defines a congruence
subgroup J=J(U,P) of Lp; a group g=[]g,, where the g, are as in de-
finition 1, is a defining group for J if and only if it is contained in U;
U is the closure of k™ Iz 1(J) in ky. and the canonical homomorphism of
kx onto ki /U determines an isomorphism of Lp/J onto ki /U. Moreover,
U—J(U, Py maps U(P) bijectively onto the set of all congruence subgroups
of Lp.

Take Uel(P); call w the canonical homomorphism of k; onto the
discrete group I'=kj/U; as the morphism of G, into I' induced by w
is trivial on G5, it can be written as @olp, where ¢ is a morphism of L,
into I; clearly the kernel of ¢ is J. By the corollary of prop. 17, Chap.
VII-8, this implies that J is a congruence subgroup of Lp; then, by
prop. 17, Chap. VII-8, w is the unique extension of @ol, to &y, trivial on
k™, and it is trivial on g if g is a group of definition for J, so that gc U
when that is so. By prop. 15 of Chap. VII-8, kG, is dense in kg ; this
implies that ¢olp maps Gp surjectively onto I', so that ¢(Lp)=1T, and also
that Un(k* Gp)is dense in U; this is the same as k* - (UNGp),i.e. k™ 15 1(J).
Conversely, let J be any congruence subgroup of L, and call ¢ the
canonical homomorphism of L, onto the discrete group I'=L,/J; again
by prop. 17 of Chap. VII-8, ¢olp can be uniquely extended to a mor-
phism w of k} into I, trivial on k™ ; if then U is the kernel of @, we have
UeU(P) and J=J(U,P). Finally, if the groups g, are as in def. 1, and if
g=11g. every ée () (kX ~g,) is in g x Gp, so that, if g= U, the projec-
tion of £ onto Gp is in UNGp, and the image of that projection in Lp,
which is the same as pr(¢), is in J; thus ¢ is then a defining group for J.

COROLLARY 1. Notations being as in proposition 15, let P' be a finite
set of places of k, containing P. Then, if J is any congruence subgroup
of Lp, J’=JNL, is a congruence subgroup of Lp; if J=J(U,P) with
UeW(P), J'=J(U,P).

Here it is understood that L. is to be regarded as a subgroup of L,
in the obvious manner, for P'> P. Clearly, then, Y(P)cU(P'). If now
Uell(P) and UnGp=I;1(J), it is obvious that UnGp =I51(J') with
J'=JnLy; our corollary follows at once from this and proposition 15.
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COROLLARY 2. Let P P’ be two finite sets of places of k, containing P, ;
let J, J' be congruence subgroups of Lp and of Lp., respectively. Then
k* 15 Y(J) and k* 15.1(J) have the same closure U in ky if and only if there
is a finite set P", containing P and P', such that JALp.=J NLp.; when
that is so, the same is true for all finite sets P” containing P and P’, and
Uisin W(PNP').

Call U, U’ the closures of the two sets in question; then, by pro-
position 15, J=J(U,P) and J'=J(U',P’). If U=U", it follows at once
from proposition 15 that U is in W(PnP’); therefore, by corollary 1, if
P"sPUP, JALp. and J'nLp. are both the same as J(U,P"). On the
other hand, if there is P” and J” such that P">PUP and J"=JnLp=
=J'"nLp., corollary 1 gives J'=J(U,P")=J(U’,P"), hence U=U" by
proposition 15.

When two congruence groups J, J' are as in corollary 2, one says
that they are equivalent. Since every open subgroup U of kX, contain-
ing k*, belongs to U(P) when P is suitably chosen, it is now clear that
there is a one-to-one correspondence between the set U of all such
groups and the set of equivalence classes of congruence groups. There-
fore the one-to-one correspondence between U and K (resp. RUK,)
mentioned above under (b) determines a similar correspondence between
8K (resp. RUSK,) and the equivalence classes of congruence groups. This
will now be described more in detail.

To begin with, it is obvious, from proposition 15 and its corollaries,
that, when an equivalence class of congruence groups is given, there is
a smallest set P such that this class contains a congruence subgroup J
of Lp; in fact, if U is the open subgroup of k; corresponding to that
class, P consists of the infinite places,and of the finite places v such
that r; is not contained in U; if we write U,=Unk; for all v, this is
the same as to say that r; is not contained in U,. Similarly, there is
then a largest defining group for J; this is [] g,, where g,= U, for every

veP
infinite place, and g,= U nr, for every finite ve P. When one considers

only defining groups for which g, is of the form 1+ pJ* with m>1 when v
is finite, one must then take, for each such veP, the smallest integer
m(v)=1 such that 1+ p™ is contained in U,. If k is of characteristic
p>1, the divisor ) m(v)-v is then called “the conductor” of U and of
every congruence group equivalent to J. If k is of characteristic 0, one
puts m(v)=0 or 1, for each real place v of k, according as U, isR* or R ;
one puts m(v)=0 for all imaginary places v of k; attaching then a sym-
bol p,, called an “infinite prime”, to each infinite place v of k, one calls

the symbol | | py* “the conductor” of U, of J, and of the congruence
veP
groups equivalent to J.
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In the case of characteristic p>1, it is obvious that a congruence
subgroup J of L corresponds to an open subgroup U of k} if and only
if it consists of divisors of degree 0 when L, is identified with the
group D(P) of divisors prime to P. From now on, this case will be ex-
cluded; in other words, when the characteristic is not 0, we consider
exclusively open subgroups of k of finite index in k, abelian extensions
of k of finite degree, and congruence groups which contain at least one
divisor of degree #0. This being understood, we can make use of prop. 14
of § 10 and its corollaries. In particular, if k' is the abelian extension
of k corresponding to the open subgroup U of kJ, corollary 4 of that
proposition shows that U contains 7, if and only if k|, is unramified
over k, for all w above v, i.e. if and only if v does not occur in the dis-
criminant D of k" over k. We will write 4 for the set consisting of the
infinite places of k and of those occurring in the discriminant D; then
there is a congruence subgroup J of Lp, corresponding to U, if and only
if Po A. As to the conductor of U, if we leave aside the infinite places,
it is, in an obvious sense, SUp,., (f(w)) if notations are as in th.9 of § 10;
as to the infinite places, the proof of the corollary of th. 10, § 10, shows
that such a place occurs in the conductor if and only if it is real and the
places of k" lying above it are imaginary.

Before discussing the relation between the congruence groups asso-
ciated with U and the Frobenius automorphisms, we introduce some
definitions, valid for an arbitrary Galois extension k’ of k of finite degree.
Call g the Galois group of k’ over k; let v be any place of k, and w a place
of k" lying above v. By corollary 4 of th. 4, Chap. III-4, we can identify
the Galois group b of k,, over k, with a subgroup of g by means of the
restriction morphism of ) into g. If v is a finite place, and &, is unramified
over k,, b is cyclic and generated by the Frobenius automorphism ¢,,
of k;, over k,; after h has been identified with its image in g, ¢, may
be regarded as an element of g; this is called the Frobenius automorphism
of k' over k at w. If w' is another place of k' above v, the same corollary
shows that there is a k,-linear isomorphism of k, onto k.., determined
by an automorphism ¢ of k" over k; then the Frobenius automorphism
of k' over k at w' is 6™ !¢, 6. Clearly ¢, is the identity if and only if v
splits fully in k'. In particular, let k, k' be algebraic number-fields; let 1, v’
be their maximal orders; let p,, p,, be the prime ideals, in r and in t’
respectively, corresponding to v and to w; then t/p,, '/p,, are finite fields,
with g=¢q, and q'=g,, elements, respectively, and ¢,, is the automor-
phism of k" over k which determines on t'/p], the automorphism x— x4,
This may also be defined as the automorphism ¢ of k' over k for which
&2=¢ (p),) for every éer’.

If, in addition to the above assumptions, we also assume k' to be
abelian over k, i.e. g to be commutative, ¢, is the same for all the places w
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above k; in this case, the only ong with which we are concerned here,
o, is called the Frobenius automorphism of k' over k at v; we will denote
it by (k'/k|v), or (k'|v) when there is no risk of confusion. We may now
reinterpret corollary 3 of prop. 14, § 10, as follows. As in that corollary,
call U the open subgroup of ki associated with k', and identify the
Galois group g of k' over k with k; /U by means of the canonical mor-
phism. Take P> A4, with 4 defined as above. The canonical homomor-
phism of ki onto g=kj/U is trivial on r) for every v not in 4, so that
it induces on G, a morphism of G, into g, trivial on Gp, which deter-
mines a morphism ¢ of L,=G,/G} into g. Corollary 3 of prop. 14, § 10,
says now that, for every v not in P, ¢(v) is the Frobenius automorphism
@,=(k'|v) of k" over k at v, as defined above. This morphism ¢ of L,
into g, defined for P> 4, will be denoted by m—(k'/k{m); onc writes
(k'|m) instead of (k'/k]m) when there is no risk of confusion, and calls
this “the Artin symbol”. It may be characterized as the morphism of L,
(or, what amounts to the same, of the group of ideals I(P), or of the group
of divisors D(P), according to the characteristic) into g which maps
every place of k, not in P, onto the Frobenius automorphism of k’ over k
at that place. In view of prop. 15, we have thus proved that this mor-
phism is surjective and that its kernel J=J(U, P) is a congruence sub-
group of L,. When one takes for P all the finite sets of places contain-
ing A, the kernels J(U, P) make up an equivalence class of congruence
groups; they are all contained in J(k')=J(U, A).

The above results show also that a finite place v of k splits fully in &’
if and only if it belongs to J(k'). It follows now from prop. 15 of Chap.
VIII-5 that, if k" is a separable extension of k contained in k, and if
almost all the places of k belonging to J(k) split fully in k", k" is
contained in k’. Obviously this implies that there are infinitely many
places of k belonging to J(k’); it will be seen in § 12 that the same is true
for all the cosets of J(k') in L,. The corollary of prop. 15, Chap. VIII-5,
shows also that, if k” is a Galois extension of k, it contains k' if and only
if almost all the places of k which split fully in k" are in J(k’). From this,
it follows that, if k' and k” are two abelian extensions of k contained
in k, k” contains k' if and only if there is a set P for which J(k")nL, is
contained in J(k')nLp; this may also be considered as a consequence
of the results of § 9, combined with prop. 15 of this §. In particular, k' is
uniquely determined by the equivalence class of congruence groups
determined by J(k"); this, too, is an immediate consequence of the results
of §9 and of prop. 15 of this § Traditionally, one says that k' is “the
classfield” for that class of congruence groups or for any group belong-
ing to that class.

The above characterization of the class of congruence groups for
which k' is “the classfield” is based solely on the “Artin symbol”; another

20%
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one will now be derived from the fact that U=k™ N,.,(k}*). More ge-
nerally, if we take for k' any extension of k of finite degree, th. 7 of §9,
and its corollaries, show that the group U=k" N,.,(ky) is the open
subgroup of finite index of k; associated with the maximal abelian ex-
tension L of k, contained in k. Take any finite set P of places of k, con-
taining P, ; for each ve P, take an open subgroup g, of k,, contained
in rj when v is finite; put g= [ [ g,, U,=k™ g Gp and J,=J(U,, P); then,

veP

in the notation of def. 1, J, is the subgroup of L, consisting of the ele-
ments pr(¢) for Ee() (k¥ ng,). As U, U contains Gp, it determines a con-
gruence group J=J(U,U,P), given by Iz '(J)=U,UNG,. Call Hp the
group of the ideles (z;,) of k' such that z,, =1 for every place w of k' lying
above a place ve P, and H} the group of the ideles (z,,) of k’ such that
z,,=1 when w lies above a place veP, and |z,|,=1 otherwise; then
L'p=Hp/H} is the free group generated by the places of k" which do not
lie above P. As N;.,, maps Hp into Gp and Hj into Gp, it determines a
morphism N of L, into Lp, which is the same as the morphism %,.,
(resp. ;) of Chap. VIII-4 when L, L, are interpreted as groups of
ideals (resp. of divisors) of k" and of k. By prop. 15 of Chap. VII-8, k'* H,,
is dense in k", so that k* Ny, (Hp) is dense in U. As U is open in kj,
this implies that we have

U,U=k*gGp Ny ulHp).

From this, one concludes immediately that J is the subgroup of L,
generated by J, and N(L}). Call k” the classfield for the congruence
group J; this is the abelian extension of k associated with the open
subgroup U, U of kj, so that it is contained in the abelian extension L
of k associated with U. Call n, n, the degrees of k' and of L, respectively,
over k; it is now clear that the index of J in Lp, which is equal to that
of U,Uin kj and to the degree of k” over k, is <n,, and that it is equal
to n, if and only if U,c U, hence k” =L; this will be the case when P is
taken large enough, and g small enough. We see at the same time that the
index of J in Lp is always <n, and that it is equal to n if and only if k'
is abelian over k and is the classfield for J. In other words, when a con-
gruence subgroup J of L, is given, an extension k' of k of finite degree is
abelian and is the classfield for J if and only if J contains (L) and has
an index in L, equal to the degree of k' over k.

Finally, we can reinterpret corollary 5 of th. 7, § 9, as follows. As above,
let k’ be an extension of k of finite degree. Let M be an abelian extension
of k contained in some extension of k', and call M’ the compositum of M
and k’. Assume that M is the classfield for a congruence subgroup J of
Lp. Let v be a place of k, w a place of k’ above v, ¥’ a place of M’ above



§11. “Classical” classfield theory 287

w, and u the place of M below u'; M. is the compositum of &, and M’,
hence of k,, and M, hence of k., and M,. If v is not in P, M, is unramified
over k,; this implies that M}, is then unramified over k. Therefore M’
is the classfield for some congruence subgroup J' of Lp. Now let U, U’
be the open subgroups of ky, ki*, respectively associated with M and
with M’; by corollary 5 of th. 7, §9, U'= N, ;(U). By prop. 15, J, J' can
be defined by I; '(J)=UnNGp and by the similar formula for J', U’;
therefore an element m’ of Ly is in J' if and only if it is the image of an
element z' of Hp such that z’eU’, i.e. Ny.,(2)eU; as N, maps Hp
into Gp, this is equivalent to N,.,(z)e U N G, hence to Jt(m')eJ. There-
fore we have J'=N"1(J).

As an illustration, we will now apply the above considerations to
the case k=Q, which has been treated from another point of view in § 4.
Take k' =Q(¢), where ¢ is a primitive m-th root of 1; as before, identify its
Galois group g with (Z/mZ)* by assigning to the automorphism &— &%,
with xeZ, (x,m)=1, the image of x in (Z/mZ)™. As we have observed
before, it is obvious that, for every rational prime p, not dividing m, and
for every place w of k" above p, k,, is unramified over Q,, and that the
Frobenius automorphism of k' over Q at p is the one given by ¢—¢?,
i.e. the image of p in (Z/mZ)*. Consequently, only primes dividing m
can occur in the discriminant of k" over Q, and k' is the classfield for some
congruence subgroup J of the group L,, of the fractional ideals of Q,
prime to m; L,, can be identified in an obvious manner with the group
of the fractions r =a/b, where a, b are two integers >0, both prime to m.
Moreover, the Artin symbol r—(k'/Q|r) is the morphism of L, into
(Z/mZ)* which maps every prime p, not dividing m, onto its image in
(Z/mZ)™; clearly this maps every integer a>0, prime to m, onto its
image in (Z/mZ)*, and its kernel J consists of the elements a/b of L,
for which a=b (m). It can easily be verified that the “conductor” for this
group J is 1 if m=1 or 2, that it is p_,(m/2) if m is even and m/2 is odd, and
that it is p,,m in all other cases. Except in the trivial cases m=1 or 2,
when k'=Q, one may express this by saying that the conductor is p,, ',
where m’ is the smallest integer such that Q(g) is generated over Q by a
primitive m'-th root of 1. As we have seen, this implies that the primes
occurring in the discriminant of Q(g) over Q are those which divide m’;
it would be easy now to compute that discriminant itself, by means of
th. 9 of § 10. It is also a consequence of what we have seen above that,
if k is any algebraic number-field, and ¢ is again a primitive m-th root of 1,
k(e) is the classfield for the congruence subgroup J' of the group L, of
fractional ideals of k, prime to m, consisting of the fractional ideals m
such that M(m)eJ, where J is as defined above.
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§ 12. “Coronidis loco”. The results of § 10 give the answer to a
question which could not be settled in Chap. VII-5.

THEOREM 11. Let @ be any non-trivial character of kj, trivial on k*.
Then L(1,w)+0.

Except for the case w?=1, this is contained in corollary 2 of th. 2,
Chap. VII-5. Assume now that w is of order 2; call U its kernel, which is
an open subgroup of k; of index 2, containing k*. By corollary 2 of
th. 7,§ 9, there is a quadratic extension k' of k associated with U. By th. 10
of § 10, we have

Lel9) = () Lis, ).

If k is of characteristic 0, by the corollary of th. 3, Chap. VII-6, both
{, and {,. have a simple pole at s=1, and their residues there, whose
values are given by that corollary, are >0. The same is true when k is
of characteristic p> 1, by th. 4 of Chap. VII-6. Therefore L(1,w)>0.

One should observe that the above proof can be extended in an
obvious manner to any non-trivial character w of k; of finite order,
trivial on k™, by applying th. 10 of § 10 to the cyclic extension k' of k
associated with the kernel U of w; so far as the conclusion of theorem 11
is concerned, this adds nothing new to what has already been proved
by a different method in corollary 2 of th. 2, Chap. VII-5, but it supplies
some important relations between the class-numbers of k and k’ and the
values of the corresponding L-functions at s=1; more generally, th. 10
of § 10 shows at once that similar relations hold for all abelian extensions
of k of finite degree. One should also note that, if w,, for seC, has the
same meaning as in Chap. VII, and if one replaces w by w;, w in theorem 11,
one finds that L(1+it,w)+#0 for all teR.

COROLLARY. Let ki be an A-field contained in k; let V be a set of finite
places of k, such that, for almost all the finite places v of k, not in V, the
closure of kg in k, is not k,. Let @ be a non-trivial character of kj, trivial
on k™, such that o, is unramified at all the places veV. Then the product

q(k Vo,9)=[[(1-w,(m,)q;°) "
vevV
is absolutely convergent for Re(s)>1 and tends to a finite limit, other
than 0, when s tends to 1.

For almost all v, by th. 1 of Chap. VIII-4, k, is unramified over the
closure (kg), of kq 1n k,, so that its modular degree over (k,), is equal to
its degree over the same field. In view of this, the assumption made
above about V is identical with that made in corollary 3 of th. 2, Chap.
VII-5. That being so, the proof of the latter corollary can be applied here;
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when that is done, one sees that our assertion is an immediate conse-
quence of theorem 11, combined with corollary 3 of prop. 1, Chap. VII-1.

THEOREM 12. Let L be an A-field, k, an A-field contained in L, and o
an automorphism of L over k,. Then there are infinitely many places w
of L such that L., is unramified over the closure of ko in L, and that the
Frobenius automorphism of L., over that closure induces o on L.

Call k the subfield of L consisting of the elements of L, fixed under «;
as ko < k< L, L has a finite degree d over k; by Galois theory, this implies
that L is cyclic over k, its Galois group g over k being the one generated
by a. For each place v of k, call u the place of k, which lies below v, and
let w be any place of L above v; then the closure of kq in L, is (k,),. By
th. 1 of Chap. VIII-4, there is a finite set P of places of k, containing P,
such that, when v is not in P, k, is unramified over (k,),, and L, over k,,
hence also over (k,),. Call then ¢ the Frobenius automorphism of L.,
over (k,),; as this generates the Galois group of L, over (k,),, it leaves no
element of L, fixed except those of (k;),; therefore, if it induces o on L,
we must have k< (k,),, hence k,=(k,),, and then, in view of our defini-
tions in § 11, « is the Frobenius automorphism of L over k at v. Call M|,
the set of the places v of k, not in P, such that k,+ (k,),; for every place v
of k, not in PUM,, call ¢, the Frobenius automorphism of L over k
at v; call M, the set of the places v of k, not in PuM,, for which ¢,=a,
and call V the complement of PUMy UM, in the set of all places of k.
Clearly the assertion in our theorem amounts to saying that M, is not a
finite set, and M, is finite if and only if ¥ has the property described in
the corollary of th. 11. Assuming now that V has that property, we will
derive a contradiction from this assumption. With our usual notations,
call y a character of U attached to the cyclic extension L of k; here, of
course, A is the Galois group of k,, over k, and L is regarded as a subfield
of k,,. Let ‘B be the subgroup of U corresponding to L; then we may write
g=U/B, and the group of the characters of g consists of the characters
' for 0<i<d. Put w=yoa; then, by corollary 3 of prop. 14, § 10, w, is
unramified if and only if L, is unramified over k,, and then the Frobenius
automorphism ¢, of L over k at v is the image of x, in g under the mor-
phism of k; onto g determined by a. This gives now, with the notation
of the corollary of th. 11:

q(k,V,0',5)= [T (1 = x'(@.)g; )%

vevV

For brevity, call this ¢;(s); we have now

loggi(s)=Y Y (@) q;™/n,

veV n=1
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this being absolutely convergent for Re(s)> 1. This gives:
d—1 .
Y. 1@ Hloggls)=
i=0

=) ( x"(a“%)) 4.5+ Y, Y Y A ehg, "/n.

vev veV n=2 i=0

i=

In the right-hand side, all the coefficients in the first series are 0, since
@,# a for ve V. On the other hand, ¢,>2 for all v, so that, for each v
and for Re(s)> 1, we have

+ + o

Y lay™l/m<s Y q,7<q, %
=2 =2

n n

Therefore the second series in the right-hand side of the above formula
is majorized by d)_q, ?, which is convergent by prop. 1 of Chap. VII-1.

We have thus shown that the left-hand side remains bounded for Re(s)> 1.
On the other hand, the corollary of th. 11 shows that, for 1<i<d,
logg;(s) remains bounded when s tends to 1, and corollary 3 of th. 2,
Chap. VII-5, shows that loggq,(s) does not. This is a contradiction.

CoORrROLLARY. Notations being as in definition 1 of § 11, let J be a con-
gruence subgroup of Lp; if k is of characteristic p> 1, assume that J con-
tains divisors of degree #0. Then there are infinitely many places of k in
every coset of J in Lp.

In fact, let k" be the “classfield” for J, as explained in §11; call g
its Galois group over k. It has been shown in § 11 that the places v of k,
in a given coset of J in Lp, are those places, not in P, where the Frobenius
automorphism of k' over k is a given one. Our assertion is now a special
case of theorem 12.

As an illustration for theorem 12, take k,=Q, and take for L the field
generated by a primitive m-th root of 1. Then our theorem says that,
if a is any integer prime to m, there are infinitely many rational primes
congruent to a modulo m. This is Dirichlet’s “theorem of the arithmetic
progression”, and the proof given above for theorem 12 is directly
modelled on Dirichlet’s original proof for his theorem.

Finally, let w, k and k" be again as in the proof of theorem 11, so that
we have

Cir(8)=Ci(s) Lis, ).
If k is of characteristic 0, we have also, by the corollary of th. 10, § 10:
Z,(s)=n" Z\(s) A(s,w),
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where p is as explained in that corollary. Now write that the functions
in these formulas satisfy the functional equations contained in theorems 3
and 4 of Chap. VII-6 and theorems S and 6 of Chap. VII-7. Writing that
the exponential factors must be the same in the functional equations for
both sides, one gets nothing new; the relation obtained in this manner is
an immediate consequence of th. 9 of §9. Writing that the constant
factors are the same on both sides, one gets xkw(b)=1, with x and b
defined as in theorems 5 and 6 of Chap. VII-7. This will now be applied
to a special case. Assume that we have taken for w a character of k of
order 2, trivial on k™ Q(P,), or, what amounts to the same, trivial on k™,
on k; whenever v is an infinite place, and on r, whenever v is a finite
place. According to prop. 14 of Chap. VII-7, we have then x,=1 for all v,
hence k= 1, and the idele b is the same as the differental idele a. Therefore,
for every such character w, we have w(a)=1. Here, if k is an algebraic
number-field, @ may be assumed to have been chosen as in prop. 12 of
Chap. VIII-4,i.e. so that id(a) is the different d of k over Q; if k is of charac-
teristic p> 1, we know, by the definition of a differental idele in Chap.
VII-2, that c=div(a) is a divisor belonging to the canonical class. On the
other hand, the conditions imposed on @ amount to saying that it is
trivial on k*(kx)?Q(P,); therefore a is in that group. As kj/k* Q(P,)
may be identified with the group I(k)/P(k) of the ideal-classes of k, if k
is an algebraic number-field, and with the group D(k)/P(k) of the divisor-
classes of k if k is of characteristic p > 1, we have thus proved the following
thcorem (due to Hecke in the case of algebraic number-fields):

‘THEOREM 13. If k is an algebraic number-field, there is an ideal-class
of k whose square is the class defined by the different of k over Q. If k
is of characteristic p> 1, there is a divisor-class of k whose square is the
canonical class of k.
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(The places in the text to which these notes belong have been marked by a * in the
margin.)

P.1: Cf. E. Witt, Hamb. Abhandl. 8 (1931), 413.

P. 27: The analogy in the text can be pursued much further. Let K and V
be as in definition 1; call two norms N, N' on V equivalent if N'/N is
constant on V. Then the quotient of the set of all K-norms on V by this
equivalence relation can be identified with the so-called “building”
associated by F.Bruhat and J. Tits (cf. Publ. Math. IHES, n°41, 1971)
with the group Aut(V), i.e. with GL(n, K) if V= K"; this corresponds to
the “Riemannian symmetric space” associated with GL(n, K) for
K =R, C or H in the classical theory. An “apartment” of that building
consists of the points determined by norms of the form given by pro-
position 3 for a fixed decomposition V=V, +---+ V, of V. The “buildings”
associated with the other “classical groups” over K can also be inter-
preted by means of norms in the spaces on which these groups operale.

P. 74: The proof of theorem 4 given in the text is the one due to G. Fuji-
saki (J. Fac. Sc. Tokyo (I) VII (1958), 567-604). It is in this proof that the
“Minkowski argument” (which appears here in the form of lemma 1,
Chap. I11-4) plays a decisive role, just as it did at the corresponding place
in the classical theory.

P.101: For a treatment (due to C.Chevalley) of the topic of “lincar
compacity”, cf. Chapter I1, §§ 27-33, of S. Lefschetz, Algebraic Topology,
A.M.S. 1942. In a locally linearly compact vector-space V over a
(discretely topologized) field K, one can attach, to each linearly compact
open subspace W, an integer d(W) so that, if Wo W', d(W)—d(W') is
the dimension of W/W' over K ; this takes the place of the Haar measurc
in the theory of locally compact groups.

P. 122: The proof given here is Tate’s (cf. J. Tate, Thesis, Princeton 1950=
Chapter XV of Cassels-Frohlich, Algebraic Number Theory, Acad. Press
1967).

P. 125: The proof given here, based on lemma 7, is the classical one, due
to Hadamard (Bull. Soc. Math. 24 (1896), 199-220), with the improve-
ments due to F. Mertens (Sitz.-ber. Ak. Wiss., Wien (Math.-nat. K1.), 107
(1898), 1429-1434).
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P.126: In fact, it will be seen (cf. proof of th. 11, Chap. XII1-12) that, if
w*=1, w#1, there is a quadratic extension k' of k such that

pk, P, s)=p(k', P',s) p(k, P,s)""

where P’ is the set of places of k" above P; in substance, this is equivalent
to the “law of quadratic reciprocity” for k. As both factors in the right-
hand side have a simple pole at s=1, this proves the assertion. That
proof, however, can be replaced by a simple function-theoretic argument,
as follows. Note first that, for w? =1, the product

p(8)=p(k, P, w, s) p(k, P, s)

is a product of factors respectively equal to

(1—g7)7 =3 (n+1)g;™
n=0
or to s

(I—q; )7 =3 g, %"
n=0

according as A(v)is | or —1. Expanding this into a Dirichlet series, we
get for p,(s) a series with coefficients in R, which diverges for s=0. By
an elementary lemma, originally due to Landau (cf. €. g. E.C. Titchmarsh,
The Theory of Functions (2nd ed.), Oxford 1939, §9.2) the function
defined by such a series must have a singular point on R, . On the other
hand, in view of our results in §§ 6-7, p,(s) would be holomorphic in the
whole plane if p(k, P, w, sy was 0 at s=1. Cf. also the remark at the end
of the proof of th. 11, Chap. X1II-12, and the Notes to p. 288.

P.152: The theorem expressed by formula (11) is due to J. Herbrand
{J. de Math. (IX) 10 (1931), 481-498); hence the name we have given to
“the Herbrand distribution”.

P.165: This argument is incomplete. Before applying prop.2 to C/C,
Z, M, one should first observe that M, regarded as a (C/C’')-module, is
both faithful and simple. For any ze Z, the mapping m—zm is an endo-
morphism of M as a (C/C’)-module, hence also of M as a C-module,
hence of the form m—E&m with £e K; therefore Z is isomorphic to K,
and C/C"is an algebra over K in the sense of § 1 (this was tacitly assumed
in the text). The proof proceeds then as before.

P.178: Cf. R. Brauer, Math. Zeit. 28 (1928), 677-696.

P.202: An alternative proof {communicated by A. Dress) is as follows.
Call N=n? the dimension of 4 over k; take o as in the text; identify
End, (A4) with M,(k) by means of the basis «. Then prop. 3 of Chap. IX-1
defines an isomorphism F of A® A° onto My(k). As a®u is a basis of



294 Notes to the text

A® A° over k, F determines, for almost all v, an isomorphism F, of the
r,-lattice A, generated in 4,® A° by a®a onto My(r,); when that is so, by
th. 1 of Chap. X-1, 4, is a maximal compact subring of 4,®A?; as easily
seen, this implies that «, is a maximal compact subring of 4,. By th. 1 of
Chap. X-1, there is then a division algebra D over k,, an integer v and an
isomorphism ¢ of M,(D) onto A, such that ¢ maps M, (R) onto «,,
R being the maximal compact subring in D. Let n be a prime element
of k,; using prop. 5 of Chap. I-4, one sees easily that R/zR and M, (R)/
nM,(R) are simple rings (i.e. that they have no non-trivial two-sided
ideals) if and only if D=k,. Consequently, A4 is unramified at v if and
only if the ring a,/na, is simple; but it must be so if v is as above, as one
sees at once by using the isomorphism F, and the fact that the ring
My (r)/m My(r,) 18 simple.

P. 206: Cf. M. Eichler, Math. Zeit. 43 (1938), 481-494.

P.208: This statement is obviously false if K is of characteristic p>1;
for instance, it contradicts the results of Chap. XII-3 if those of Chap. 1I-3
are taken into account. If K is of characteristic 0, the statement is correct.

P. 241: The proof of the transfer theorem given here is the one due to
C. Chevalley (J. Math. Soc. Japan 3 (1951), 36-44). For another proof,
cf. Appendix I in this volume.

P. 256: Cf. H. Hasse, Math. Ann. 107 (1933), 731-760.

P.262: The content of proposition 8 may be expressed by saying that,
in the duality between kS /(k5)" and itself defined by the Hilbert symbol
(cf. prop. 7), the image of k* in that group (which is a discrete subgroup
with compact factor-group) is self-dual, i.e. that it is the group “ associated
by duality” with itself in the sense of Chap. II-5.

P. 273: Cf. C. Chevalley, loc. cit. (in the Note to p. 241).
P. 288: Cf. above, Note to p. 126.

P. 288: Of course the same argument applies to w=1; in other words,
(,(1+it)#0 for teR, t+0. As first shown by Hadamard for k=Q (loc.
cit., Note to p.125), this fact is essentially equivalent to the *prime
number theorem” (more precisely, the “prime ideal theorem”) for k.

P. 291: This proof (originally arising from a suggestion by J.-P. Serre) is
taken from J. V. Armitage, Invent. Math. 2 (1967), 238-246.
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The transfer theorem

1. As in Chap. [X-3, take an arbitrary field K and an extension K’
of K of finite degree n, contained in K,,; write ®, ® for the Galois
groups of K, over K and over K, respectively. Call ¢ the transfer
homomorphism of G/®" into 6'/6&"; as explained in Chap. XII-5,
this may be defined by means of any full set {c,, ..., 6,} of representatives
of the cosets ¢ ®' of ®" in &.

Let /' be any factor-set of K’ (cf. Chap. IX-3, def. 4). For any p, o, t
in ®, and for 1 <i<n, we can write pa;, 60;, 70, uniquely in the form

(1) poi=0;%, 00;=0,f;, T0;=0y;,

with 1<j, k, I<n and with «;, f8;, 9, in . Then the formula

(p.o,1)>f(p,0,7) ﬂf (0, B,y

defines a factor-set f of K; we will write f=v(f"). If 2 is a covariant
mapping of &' x %’ into st,_p, we can define quite similarly a covariant
mapping z=v(z) of & x & into K ; then, if f' is the coboundary of z/,
v(f') is the coboundary of v(z). Therefore v maps coboundaries into
coboundaries and determines a morphism, for which we also write v,
of factor-classes of K’ into factor-classes of K. If, for each i, we replace
6; by 0;4; with 4,e®’, then, for a given f, v(/’) is modified by the co-
boundary of the covariant mapping

R N WA A oy AV APy e

where j. k. %;. ff; are as in (1). This shows that the morphism v for factor-
classes does not depend upon the choice of the g;.

2. Now let notations be as in Chap. [X-4; instead of {y, 0}, however,
we will write {y, 0}x; and we write {0}, for the similarly defined
symbol over K'.

LEMMA A. Let y' be a character of ®'; then, for all (e K *:
et Ok =v({{, 0}x).

As in Chap. IX-4, write y'=eo @', where @' is a mapping of &’ into
the interval [0, 1] on R; @ is constant on cosets modulo &' . Then
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yot=eocd with ¢=@'o¢; if p and the o; are as in (1), this gives (by
definition of the transfer) ¢(p)=® ([ J«;). In the formula to be proved,

both sides are defined as the classes of certain factor-sets; one has to
show that those factor-sets differ only by the coboundary of some co-
variant mapping z. For any p, ¢ in ®, define the «;, f; as in (1), and put
z(p, 0)=0" where N is the integer

N=Y &' Bar )= ([T fioi ).

It is trivial to verify that z is then a covariant mapping with the required
property.

LEMMA B. Let y be a character of ®, and y' its restriction to ®&'. Then,
Jor all e K'*, we have

va NK’/K(()/)}K =v({x.0}x).

The proof is similar to that of lemma A. Write y=eo @; both sides
of the formula to be proved are defined as the classes of certain factor-
sets; one verifies that the latter differ by the coboundary of the covariant
mapping z given, for all p, o, by the formulas

z(p, o) =[ 10",

1

N=®(cp™ )~ DB )+ B ()~ Py,

where j, k, a;, §; are given by (1), so that the N, are integers.

3. Now we take for K a commutative p-field. In view of the definition
of the canonical morphism in Chap. XII-2, the local “transfer theorem ™,
i.e. theorem 6 of Chap. XII-5, is equivalent to the following statement:

THEOREM. Let K, K’ be as in theorem 8 of Chapter X11-5; then, for all
1€Xy and all e K*, we have

() ot, 0= O)g-.

Consider the symbol # defined in Chap. XII-2; let #' be the corre-
sponding symbol for K'. In view of lemma A, the theorem will be proved
if we show that, for any factor-class ¢’ of K', we have n[v(c')]=7'(c'). By
th. 1 of Chap. XII-2, we may write ¢’ in the form {y’, 0}y with an un-
ramified character ¥’ of ®' and some #'cK'. Then ¥ is attached to a
cyclic extension K'(¢) of K’ generated by a root u of 1 of order prime
to p, and it is the restriction to &' of a suitably chosen character y of &
attached to the cyclic unramified extension K(u) of K. Our conclusion
follows now at once from lemma B, combined with th. 2 of Chap. XII-2.
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4. In order to deduce the global transfer theorem (theorem & of
Chap. XIII-9) from the local one, we first observe the following. Let
notations be as in Chap. XIII-10; let k' be an extension of k of finite
degree, contained in k. For any place v of k, and any place w of k'
lying above v, let U, be the Galois group of k|, ., over k,,, and p), the
restriction morphism of U, into the Galois group A of k., over k'.
Call ¢, t,, the transfer homomorphisms of U into A" and of A, into A,
respectively. Then we have

tope=T1(po 1),
w/v
the product being taken over all the places w of k' lying above v; the
proof of this is easy (and purely group-theoretical) and will be left as an
exercise to the reader. This being granted, the global transfer theorem
is an immediate consequence of the local theorem and of the definitions.



Appendix 11
W-groups for local fields

1. For the formulation of Shafarevitch’s theorem and related results,
it 18 convenient to introduce modified Galois groups, to be called
W-groups, as follows. Let K be a commutative p-field; as in Chap. XII-2,
let Ko=K(M) be the subfield of K, generated over K by the set I of
all roots of 1 of erder prime to p in K,,. Let & be a Galois extension of
K between Ky and K,; let ®, G, be the Galois groups of & over K and
over K,, respectively. Let ¢ be the restriction to R of a Frobenius
automorphism of K., over K. We put

MW= U o"®,
neZ
and give to B the topology determined by a fundamental system of
neighborhoods of the identity in 6, (e.g., by all open subgroups of ®,).
This makes 98 into a locally compact group with the maximal compact
subgroup ®,; MW/G,, is discrete and isomorphic to Z. With this topology,
I3 will be called the W-group of & over K; it has an obvious injective
morphism ¢ into ®, which maps it onto a dense subgroup of .

Call g the module of K; the Frobenius automorphism ¢ determines
on M the bijective mapping u—u?=y" and ¢" determines on IR, for
cvery neZ, a bijection which we write as u—p2 with Q=g". Then W
may be described as consisting of those automorphisms w of & over K
which determine on 9 a bijection of the form pu—u®=u? with Q=¢",
neZ; when w and Q are such, we will write |w]g=0"" and call |®|y
the module of «w in W. Clearly w—|wly is @ morphism of MW into R
with the compact kernel 6, and it maps I8 onto the subgroup of R
generated by g.

2. If &' is any Galois extension of K between K, and &, and I' is the
Galois group of & over &, we may clearly identify the W-group of &
over K with 2B/I'. On the other hand, let K’ be any finite extension of K
between K and K; let &' be the Galois group of & over K', and 2’ its
W-group over K'; clearly we have ' =6""(®’). As & and its cosets in &
are open in ®, T’ is open in W and has a finite index, equal to that of &’
in ® and to the degree of K’ over K. If K’ is a Galois extension of K, we
can identify its Galois group over K with 2B/28" as well as with /6.
Conversely, let W' be any open subgroup of I of finite index in IB.
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Then &, I8 is open in B, and therefore belongs, in the sense of Galois
theory, to some finite extension K, (&) of K, contained in & Let Lbe a
finite Galois extension of K between K(&) and &. Let ¢’ be in W' and
not in ®&,; replacing ¢’ by ¢ ~' if necessary, we may assume that
[¢'|lgg==q" with n>0. Take an integer v>0 such that ¢"* induces the
identity on L; call K” the compositum of L and of the unramified ex-
tension K,,, of degree nv of K in K, and let MW" be the W-group of &
over K”. Take any we”; as w induces the identity on K,,, we have
lw|g=¢g"*" with some ieZ. Then w¢’' ¥ induces the identity on K, and
on L, hence on K (&), so that it is in T Thus IB” is contained in IW'". As
we have seen that the Galois group of K” over K may be identified with
YB/AB", this shows that W' belongs to some field K’ between K and K",
and, more precisely, that it is the W-group of & over K'. Thus we see
that W-groups have the same formal properties as Galois groups.

In particular, a cyclic extension L of K of degree n corresponds to
an open subgroup B’ of W of index n whose factor-group is cyclic and
may be identified with the Galois group of L over K, and conversely. If
y 1s a character of ® attached to L, it determines a character yod of I3,
also of order n; conversely, a character of I is of the form yoé if and
only if it is of finite order. We will frequently (by abuse of notation) make
no distinction between a character y of ® and the corresponding
character of .

3. In applying the above concepts, the field & will mostly be taken
of the form L,,, where L is a finite Galois extension of K. In particular,
we will always denote by Wy the W-group of K,, over K. It follows at
once from prop.7 and corollary 2 of th. 3, Chap. XII-3, that the image
o(Wy) of Wy in the Galois group U of K,, over K is the same as the
image a (K *) of K* in U under the canonical morphism a. Consequently,
there is a canonical isomorphism wg of K* onto Wy such that a=dowy.
Moreover, it follows from the same results that |wg(0)|y, =10|x for all
feK™.

Let for instance L be cyclic of degree n over K; as L is contained
in K,,, it corresponds to an open subgroup I" of Wy, of index n, and we
may identify Wy/I" with the Galois group g of L over K; every character
of g may be regarded as a character of Wy, trivial on I'. If y is such a
character of order n, 1.e. if it is attached to L (in the sense of Chap. 1X-4),
then, by the definition of the canonical morphisms a and wy, y [wg(0)].
for any 8e K*, is the Hasse invariant h(4)=(y, 0)x of the cyclic algebra
A=[L/K;y, 0] over K.

4, Let K' be any extension of K of finite degree; we assume that
K., 1s contained in K[,,. Let &, &' be Galois extensions of K and of K',

sep*

respectively, such that Kyc Qe R <Kl ,. Let W, W be the W-groups

sep-

of & over K and of K over K’, respectively. Then, just as for ordinary
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Galois groups, there is a restriction morphism of W' into I, which we
again denote by p; obviously |p(@')|gm=]0"|g for all @' eIW'. Such is the
case, for instance, if R=K,,, &' =K}, ; it is then an immediate conse-
quence of th. 2, Chap. XII-2 (just as in corollary ! of that theorem) that
powg =wgo Ng .

5. On the other hand, let &, ! be two Galois extensions of K such
that Kopc R XK ; let I, W be their W-groups over K, and let I
be the Galois group of & over K Then we can identify I8 with I'/T,
and the canonical morphism of I onto W preserves the module. Thus
Ris abelian over K if and only if I" contains the closure of the commutator-
group of W'

Now take any finite extension K’ of K, contained in K. ,; let & be
any Galois extension of K between K, and K., e.g. K, itself. Call ,
€ the W-groups of K over K and over K, respectively: write Q°, Q' for
the closures of their commutator-groups; as €' is an open subgroup of
finite index of 2, we may introduce, just as in Chap. XII-5, the transfer
homomorphism ¢ of Q/Q into Q/Q°. As K,,, K}, are respectively the
maximal abelian extensions of K and of K’, contained in &', the Galois
groups of & over K, and over K}, are & and Q'°, respectively, and we
may identify Wy with Q/Q° and Wy, with Q'/Q’¢, so that t maps W into
Wy.. Combining now the transfer theorem (cf. Chap. XII-5 and Appen-
dix I) with our definitions for the W-groups, one sees at once that the
theorem in question may be expressed by the formula

towg=wy °f,

where j is the natural injection of K* into K'*. Clearly this implies
that ¢ is injective and maps Wy onto wy. (K ™).



Appendix 1

Shafarevitch’s theorem

This theorem gives the structure of the W-group of L,, over K when-
ever K is a commutative p-field and L a finite Galois extension of K.
We begin by supplementing the results of Chapter IX with some addi-
tional observations.

1. Let assumptions and notations be as in Chap. IX, so that K is an
arbitrary field, ® the Galois group of K., over K, and all algebras
over K are understood to be as stated in Chap. IX-1. Let 4 be a central
simple algebra of dimension n* over K. Let L be an extension of K of
degree n, and f a K-linear isomorphism of L into 4. Call V' the vector-
space of dimension n over L, with the same underlying space as A4,
defined by (&, x)—xf(é) for £eL, xeA. For every acA, the mapping
x—ax is an endomorphism F(a) of V; F is then a representation of 4
into End,(V), and, by corollary 5 of prop. 3, Chap. IX-1, its L-linear
extension F; to A, is an isomorphism of 4; onto End, (V). Let zeA be
such that zf (&)= f(&)z for all £€L; then x—xz is in End (V) and com-
mutes with F(a) for all ae A; therefore it is in the center of End, (V), i.e.
of the form x—xf({) with some (e L, so that z=f({). In other words,
f(L)is its own “commutant” in 4, and f(L*) its own centralizer in 4.
Let now f’ be another embedding of Linto A;let V', F’ be to f” what V,
F are to f. As noted in Chap. IX-2, it follows from prop. 4, Chap. [X-1
that there is an isomorphism Y of V onto V' such that F'=Y 'FY.
This means that Y is a bijection of 4 onto A such that Y(xf (&)=
Y(x)f'(&)and Y(ax)=aY(x)forall Ee Land all x, ain A. Take x=1,and
put b=7Y(l,); then we see that beA* and that f'=b""fb. In other
words, two embeddings £, f’ can differ only by an inner automorphism
of A. In particular, let g be the group of all automorphisms of L over K;
then, for every aeg, there is b,eA* such that f(&*)=b;'f(¢)b, for all
EeL; consequently, the normalizer N of f(L*) in A* is given by N=
b, f(L*), and N/f(L*) can be identified with g. For any o, § in g,
bzs b,b,; commutes with L*, so that we can write b,by=b,; A(x, f) with
Ao, B)e L*. Moreover, the b, are linearly independent over L in V; for
otherwise, taking a maximal subset {b,} of linearly independent ones
among them, we could write, for any b, not in that set, b,=Y b, f(£,);
then, writing that f(n) b,=b, f (") for all ye L, we get a contradiction.
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2. In particular, assume that L is a Galois extension of K, so that g
is its Galois group; at the same time, simplify notations by identifying L
with f(L) by means of f. Then the b, make up a basis of V over L, so that
A consists of the elements Y b, &, with & €L for all a. Clearly A is com-
pletely defined as an algebra by the multiplication laws:

(1) babﬂ:baﬂl(a7ﬁ)’ éba:baéa

for all o, f in g and all e L. Moreover, writing that (b, b;) b, is the same
as b,(b; b,), one gets

(2) i(dﬁ, V);‘(a’ ﬁ)y:}~(aaﬁy) )*(ﬁ’ V)

Conversely, let L be a Galois extension of K of degree n, contained in
K,.,; ® being as before, call $ the Galois group of K., over L, so that
the Galois group of L over K is g=®/9. For any pe®, write p* for the
image of p in g=®/9. For any mapping 4 of g x g into L*, we define an
$H-regular covariant mapping f of & x ® x ® into K., by

(3) (p,0,7) = fp, 0, D) =A(t* a* !, % p* ~1)";

this is a factor-set if (and only if) A satisfies (2). It is now casily verified
that the algebra 4 defined by means of f by Brauer’s construction
(as described in the proof of lemma 4, Chap. [X-3) is precisely as above
if we call b, the element of 4 given (in terms of that construction) by the
covariant mapping (p, ) = 0 s yq+-

As in § 1, consider the normalizer N = U b, L* of L* in 4™ ; write N¢
for its commutator-group, and t for the transfer homomorphism of
N/N¢into L*. As the definition of 7 is invariant with respect to all inner
automorphisms of N, and as such automorphisms determine the identity
on N/N¢ v must map N/N¢ into the subgroup of the elements of L*which
are invariant under such automorphisms, i.¢. into K *. On the other hand,
regarding 7 as a morphism of N into L*, and calculating it {(according to
definition) by means of the representatives b, of the cosets of L* in N,
one sees at once that, on L, 7 coincides with Ny .

3. Assumptions being as in § 2, let K’ be a field between K and L,
corresponding to a subgroup g’ of g. One verifies at once that an element
of A commutes with all elements of 1 ,- K’ if and only if it is of the form
> b, &,, with £,eL and &, =0 unless xeg’. Clearly these elements make
up a subring A’ of 4 (the “commutant” of K’ in 4) which is the algebra
over K’ defined by means of K', L and the restriction of 1 to g'x g just
as A was defined above by means of K, L, 4; in particular, it is a central
simple algebra over K'.

4. Let K, L, A be again as in § 2; consider the case where g is cyclic;
if o is a generator of g, we have g={1,a, ...,a" '}. For f=0o, we have
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by &b, =&, so that we may take by, =b for 0<i<n—1.If N and 7 are
as in § 2, we also see at once that t(b,)="b}; similarly, for any aeb, L*,
we may take 1,a,...,a""' as the representatives of the cosets of L* in N,
and see thus that 7(a)=a", hence a"€ K *. In particular, if we put =57, 0 is
in K*; it is clear that A4 is then no other than the cyclic algebra defined in
prop. 11 of Chap. [X-4, 1.e. the algebra [L/K; y, 0] if y is the character of
a given by y(x)=e(1/n).

Under those same assumptions, we have, for every &el*,
E-lp-téh, =¢*~1; therefore the image U of L under £ — &* ! is con-
tained in N° Conversely, the image of b, in N/U commutes with the
image of L in N/U  as these images generate N/U, N/U is commutative,
so that U> N°¢. Therefore, in this case, N¢ is the same as U, i.e. (by
Hilbert’s theorem) the same as the kernel of the morphism N, of L*
into K*.

5. As in §2, let K be any field, and L a Galois extension of K of
degree n, with the Galois group g.

LEMMA A. Let ¢ be a morphism of a group G onto g; let H be its kernel.
Let w be a morphism of H into L* ; assume that we have, for all ge G and
all heH:

(4) w(g™"hg)=w(hP®.

Then there is a central simple algebra A of dimension n* over K, containing
L, such that w can be extended to a morphism w* of G into A* satisfying

w*(g7) Ew*(g)=E"®

for all geG and all E€ L. Moreover, these conditions determine A and o*
uniquely, up to isomorphism; and w*(G) L* is then the normalizer of L*
in A*.

For each aeg, choose g,eG such that ¢{g,)=a. For any «, f§ in g,
we can write g, g;=g,,h(x, f) with h(x, f)e H. Writing that (g,g,) g, is
the same as g,(g; g,), we get

hioaB,y)- g, " hx, B) g, =h(a By) (B, 7).

Putting A(a, f)=w[h{a, f)], we see now, in view of (4), that 4 satisfies
(2), so that we can construct an algebra 4 = Z b, L with the multiplication
laws (1). It is then obvious that the formulas w*(g, hY=h, w(h), for all
aeg, he H, define a morphism w* with the required properties. If 4", »'*
have the same properties, then, putting b, =w'*(g,), we see that the b,
satisfy relations similar to (1); from the results of §2, it follows then
that they are a basis for 4" over L and that A, w'* differ from A, o*
only by an isomorphism of 4 onto A4'.
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6. Now consider the following situation. Let K, L, g be as before;
let L be a Galois extension of K, containing L and contained in K,
of finite degree d over L. Call I; 4 the Galois groups of L' over K and
over L, respectively, so that g=17/4. Let G be a group, ¢’ 2 morphism of
G onto I, H' the kernel of ¢’, and @’ a morphism of H' into L * ; we assume
that these data satisfy (4) when they are substituted there for G, @, H, w
respectively, so that we can apply lemma A to them. This determines an
algebra A’ of dimension n® d? over K. Call i the canonical morphism of
I onto g=TI/4; put p=yo¢ and H=¢ ~'(4); ¢ is a morphism of G
onto g with the kernel H. To simplify notations, assume that H' is com-
mutative, and let H be the commutator-group of H; then we can define
(as in Chap. XII-5) the transfer homomorphism t of H/H¢ into H’', and
regard it as a morphism of H into H'; we have t(g='hg)=g~'t(h) g for
all ge G and he H. Now put o=w'o t. We have, for all he H, heG

w(g ' hg)=w(h)*®;

for ge H, this implies that w(h) is invariant under ¢’ (H)= 4, so that it is
in L* and that we may replace ¢’ by ¢ in the above formula. Therefore
we can apply lemma A to G, H, ¢, w; this defines an algebra 4 of dimen-
sion n? over K. The following lemma and its proof are due to Artin
and Tate (E. Artin and J. Tate, Classfield theory, Harvard 1961, Chap.
XHI-3, th. 6, p. 188):

LEMMA B. Let A, A’ be as above; then, in the Brauer group B(K), we
have Cl(A)=Cl(A'Y* withd=[L:L)].

For each £eT, choose g, G such that ¢'(g,)=¢; for all £, » in I, put

W(Em=gz'g8; V(En=wlhEn].

As in the proof of lemma A, Cl(A’) is determined by 4, or, in the language
of Chap. IX-3, by the factor-set /' of K determined in terms of 1’ by the
formula similar to (3). On the other hand, the definition of the transfer
gives, for any he H:
h)= r[ (gql’(h—)(]) “h-gg).
feAd

Choose a full set M of representatives of the cosets £4 of A4 in[’; for any
¢el, call p(&) the representative in M of the coset 4. The elements g,,
for pe M, make up a full set of representatives of the cosets of H in G,
so that we may use them, as in the proof of lemma A, to construct a
factor-set defining Cl(A); this is done as follows. Take any two elements
&nof I put a=p (), B=pln), y=p(&n), d=y~'ap; put

h(év n)—’:gy_lgagﬂ’ l(é’ n):w[h(éa 7))],
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as these are constant on cosets of 4 in I', A may be regarded as a mapping
of gx g into L*, and a factor-set f defining Cl(A) is given in terms of 4
by (3). By the definition of w, we have

M=o [;_[ 250 87" 2.2580)
cA
For any 8e 4, put
O=pon",  0'=a0E =afOEn) .

When 6 runs through 4, so do &', 8” and 0. In G, we have the following
(easily verified) group-theoretical identity:

850 85 ' 8,858 =H (y, 00" W (0", Emh' (&, n)
g LR OO (0, 0)] g, B0, ) R (B, ).
For every e[, put
c@=o'[[[H (), 0 H (6,0 ].

8c4

Then, taking into account the fact that ' satisfies (4), we get

A m=c@ el cEm =t X (&'

This proves the lemma; in fact, if f, /” are as above, ff'~¢is the coboundary
of (p, 6)=c(op'Y.

7. From now on, we will take for K a commutative p-field. Also, if G
is any topological group (e.g. a W-group), we will denote by G° its topo-
logical commutator-group, i.e. the closure of its commutator-group in
the algebraic sense.

Let A be any central simple algebra over K; if its dimension over K
is n?, we can write it as M, (D), where D is a division algebra of dimension
(n/d)* over K; then Cl(A) is the same as CI(D), and this, as shown in
th.1 of Chap. XII-2 and its corollaries, is of order n/d in the Brauer
group B(K); in other words, the Hasse invariant h(A) is a root of 1 of
order n/d, and it is of order n if and only if 4 is a division algebra. By
corollary 2 of th.2, Chap.XII-2, combined with corollary3 of th.3,
Chap. IX-3, this implies that every separable extension Lof K of degree n
can be embedded in A; in view of §1 above, this embedding is unique,
up to an inner automorphism of A, so that we can apply to K, L and A
all the results of that §. In particular, if Lis a Galois extension of K with
the Galois group g, and if N is the normalizer of L* in 4>, the inner
automorphisms x—a~*xa, for aeN, induce g on L, and we can thus
identify N/L* with g.
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8. A straightforward application of lemma A gives now:

THEOREM L. Let K be a commutative p-field, L a Galois extension of K
of degree n; let W, W, be the W-groups of L, over K and over L, respectively.
Then there is a central simple algebra A of dimension n* over K, an em-
bedding of L into A, and an isomorphism w of the normalizer N of L* in
A onto W, such that the restriction of w to L* is the canonical isomorphism
w; of L* onto W, and that, for every ae N, the automorphism induced on L
by x—a~'xa is the restriction of w(a) to L.

In fact, in lemma A, substitute W, W, for G, H; for ¢, substitute the
canonical morphism of W onto W/W, when W/W, is identified with the
Galois group of L over K (cf. Appendix II, § 2); for w, substitute w .
Then (4) follows at once (by “transport of structure”™) from the fact that
w, is “canonically” attached to the pair (L, L,,). Under these circum-
stances, it is obvious that the morphism w* of lemma A is an isomorphism
of Wonto N its inverse w has then the required properties.

COROLLARY 1. In theorem1, A, L and w are uniquely characterized
(up to an isomorphism) by the properties stated there.

Also this is part of lemma A. The algebra A, with a given embedding
of Linto A4, will be called the canonical algebra for the pair (K, L); w will
be called the canonical isomorphism of N onto W.

COROLLARY 2. With A and w as above, write v for the reduced norm
in A over K. Then, for all aecN:

|vA/K(a)|K:|m(a)|W-

In fact, both sides define morphisms of N into RX; as such, they
must be equal if they coincide on a subgroup of N of finite index, e.g.
on L*. On L*, v, coincides with Ny (cf. the proof of lemma 4, Chap.
[X-3), and w with w,; therefore, for a=£¢L*, the left-hand side is [&],,
and the right-hand side is |w, ()|y,; in view of Appendix I, § 3, this
proves our assertion.

COROLLARY 3. With A, L, N as above, the transfer homomorphism t of
N/N¢into I* is injective and maps N/N¢ onto K> ; if it is regarded as a
morphism of N onto K*, then, for every aeN, wg[1(a)] is the restriction
to K, of the automorphism w(a) of L, over K.

This follows at once from the transfer theorem, as reformulated for
W-groups at the end of Appendix I, § 5, when this is combined with the
above results.

9. With the same notations as in § 8, the structure of W will now be

completely determined by Shafarevitch’s theorem (I.R. Shafarevitch,
C. R. Ac. Sc. URSS 53 (1946), 15-16):
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THEOREM 11. Let K, L, n be as in theorem 1. Then the canonical algebra
for (K, L) is the division algebra with the Hasse invariant e(1/n) over K.

We will write (K; L) for the Hasse invariant h(A4) of A; we have to
prove (K; LY=e(1/n), and this will imply that 4 is a division algebra.
The proof will consist of three steps:

(a) Let K be as above; let L, I’ be as in §6; call W', W", W,. the
W-groups of L, over K, L, L, respectively; take for ' the inverse of the
canonical isomorphism w,. of L* onto Wj.; let t be the transfer homo-
morphism of W”/W"¢ into W,.. As in Appendix 11, § 5, we can identify
W"/W"e with W,. If then we call w the inverse of the canonical iso-
morphism w,; of L* onto W, =W"/W"¢, the transfer theorem, as restated
in Appendix 11, § 5, gives w=w'ot. We are therefore exactly in the situ-
ation described in § 6, and lemma B gives (K ; L)=(K; L) withd=[L:L].

(b) Let K, L, n be as in theorem I; let K’ be any cyclic extension of K
of degree n, e.g. the unramified one. Call I the compositum of Land K’
in K,.,; put K;,=K'nLand d=[L:K,]. Then L is of degree d both
over L and over K'; consequently, by (a), (K; L) and (K; K') are both
equal to (K; L)’ In particular, we see that (K; L) depends only upon n,
and that it is enough to prove our theorem in the cyclic case.

(c) Take L cyclic over K; take notations as in §4 above; with those
notations, A4 is the cyclic algebra [L/K;y, 8] with 8=1(b,). In view of
Appendix 11, § 3, we have h{A)=y[wg(6)]}. By corollary 3 of theorem I,
§8, wg(0) is the restriction to K,, of the automorphism w(b,) of L,,
over K; by theorem I, the restriction to L of the latter automorphism,
and therefore also of the former one, i1s the one induced on L by the
automorphism x—b;'xb, of A, which is o This gives h(A4)=y(x)=
e(1/n), which completes the proof of Shafarevitch’s theorem.
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The Herbrand distribution

I. We begin by stating some general facts about the Herbrand
distributions, as defined in Chap. VIII-3. Let again K be a commutative
p-field.

LEMMA A. Let &, 8 be two Galois extensions of K, finite or not, such
that KcKc K. Let 6, G, O be the Galois groups of R over K, of K
over K and of R’ over R, respectively; let @ be the canonical morphism of &’
onto ®=6'/H. Let H, H' be the Herbrand distributions on ® and on &',
respectively. Then, for every locally constant function f on ®, we have
H(f)=H'(fo®)

This is obvious. We may express the conclusion by saying that H is
the image (more precisely, the “direct image ™) of H' under @.

LEMMA B. Let K be a Galois extension of K, finite or not. Let K' be
an extension of K of finite degree, contained in K, with the order of rami-
fication e and the differental exponent d over K. Let ®, ®' be the Galois
groups of & over K and over K', respectively, let H, H' be the Herbrand
distributions on ® and on ®&'. Then, for every locally constant function
on ®, equal to 0 outside &', we have H'(f)=eH([f)—df (c), where ¢ is the
identity in ®.

This is also obvious. It may be expressed by saying that H' coincides
with eH on open and compact subsets of &, disjoint from ¢, or more
briefly that it coincides with eH on ® outside ¢; this fact, together with
the trivial condition H'(1)=0, determines H' completely in terms of H.

2. Now let assumptions and notations be as in §1 of Appendix II.
Let H be the Herbrand distribution on ®; as has been shown in the
proof of lemma 3, Chap. X1I-4, it is 0 outside ®&,. More precisely:

LemMa C. Let K, K, &, &, ®, be as in §1 of Appendix 11. Then the
support of the Herbrand distribution H on ® is G,,.

Take any 1e ®,, other than the identity; take any open subgroup 6’
of ®, not containing 1; then, by Chap. VIII-3, we have H(®" 1)<0 for
all open subgroups ®” of ®'. Now take A ® — ®,,; then there is a root u
of 1 of order prime to p such that u*+ y; call & the open subgroup of &
corresponding to K(x). Then A is not in &', and, by Chap. VIII-3, we
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have H(®" A')=0 whenever 'e®’4 and ®" is an open subgroup of &',
so that H is 0 on &' A.

As noted above, it also follows from the definition of H that H(®%)=0,
so that, in view of lemma C, H(®,)=0.

Let now W be the Wegroup of K& over K. Clearly there is a unique
distribution H on B which coincides with H on ®, and is 0 outside G, .
This will be called the Herbrand distribution on 1B. As explained in
Chap. VIII-3, we extend it to a linear form, also denoted by H, on the
space of locally constant functions on IR,

3. Now we will apply theorems I and II of Appendix III, §§ 8-9. As
in those theorems, we take a Galois extension L of K, of finite degree n;
we call W, W the W-groups of L,, over K and over L, respectively. We
call A the canonical algebra for (K, L), N the normalizer of L* in 4%,
and w the canonical isomorphism of N onto W. We use the isomorphism
w ! of Wonto N to transport to N the Herbrand distribution on W, and
denote again by H this distribution on N. Our purpose is to give an
explicit formula for H on N.

As before, we write v, for the reduced norm in A4 over K; moreover,
we put || x| =|v,x(x)| for every xe A. In view of corollary 2 of theorem I,
Appendix 11, § 8, and of lemma C above, the support of H on N is the
compact subgroup N, of N determined by |a|=1, i.e. the kernel of the
morphism a—||a| of N into R}. As noted above, we have H(1)=0.

Let da be the Haar measure on N, normalized so that the measure of
N, is 1. The following theorem, in substance, is due to J. Tate and Shankar
Sen (J. Ind. Math. Soc. 27 (1964), 197-202):

THEOREM. For any locally constant function f on N, we have:
(1) H(f)=-[[f@—-f(1)]-11,—a|" da.
No

As both sides of (1) are O for f'=1, it is enough to prove it for the case
f(1,)=0; this will be assumed from now on. The proof will consist of
several steps:

(a) Take the “abelian case” where L=K, n=1, A=K, N=K*,
Ny=R*; as usual, we write R for the maximal compact subring of K,
and P for its maximal ideal. Clearly it is enough to verify (1) when f is
the characteristic function of any set X of the form X =(1+ P*)¢ with
0<ord(1 —¢&)<v; then H(X) is given by theorem 5 of Chap. X1I-4. At
the same time, the integrand in (1) is 0 outside X and has on X the
constant value g with p=ord (1 —¢). As 1+ P" has the index g°~'(g—1)
in R*, this proves (1) in this case.

(b) Take now the general case, and take a field K’ between K and L,
corresponding to a subgroup ¢ of the Galois group g of L over K; put
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n'=[L:K"). Then, so far as A, L, N, K and K’ are concerned, we are in
the situation considered in § 3 of Appendix III; if we write N=| )b, L*
and A=) b,L as there, we have seen in that § that the “commutant”
algebra of K" in 4 is A'=) b, L, where the sum is taken over all leg’;
this is a central simple algebra of dimension n'2 over K, and the nor-
malizer of L* in 4% is the subgroup N'={ )b, L* of N, the union being
taken again over all Aeg’. In view of our observations in § 2 of Appen-
dix IL, it is clear that the canonical isomorphism w of N onto W maps N’
onto the W.group W' of L,, over K'; corollary 1 of theorem I, Appen-
dix I1I, § 8, shows now that A’ is the canonical algebra for (K’, L), and
that the canonical isomorphism of N’ onto W' is the restriction w’ of w
to N'. Consequently, if H' is the Herbrand distribution on N’, lemma B
shows that, on N’ and outside 1,, H' coincides with eH, where e is the
order of ramification of K’ over K. Now call (1') the formula, similar
to (1), with H', A’, N’ substituted for H, 4, N. For any f, equal to 0 out-
side N’ (and at 1,, as assumed above), call H,(f), H,(/f) the right-hand
sides of (1) and of (1'), respectively; it will be shown now that H{(f)=
eH(f).

Take any x'e4’*; by corollary 1 of prop. 6, Chap. IX-2, and corol-
lary 3 of th.3, Chap. -2, the automorphism y'—-x’y of the additive
group of A’ has the module

mod ;. (X')=[v 4k (X[
Similarly, the module of y—x"y in A4 is
mod , (x)=|v 4, (x)k.

But we may also regard A4 as a left vector-space over the division alge-
bra A’; as the dimensions of 4 and A" over K are n*> and n’'?d with
d=[K':K]=n/n', A has the dimension d over A. By corollary 2 of
th. 3, Chap. I-2, we have then mod,(x')=mod . (x')*. This gives

IVA/K(X’HK =V (X

Therefore the integrands in H,(f) and Hj(f) are the same. Put now
No=N'nN,. If K, is as before (cf. §2), w maps N, onto the Galois
group &, of L,, over K,, and similarly it maps N onto the Galois
group of L,; over the compositum K= K’'K,; therefore the index of
N{ in Ny is equal to the degree of Kj over K, which is the same as that
of K" over K'n Kj; this is e, by corollary 4 of th. 7, Chap. I-4. Conse-
quently, if d'a is the Haar measure on N, normalized so that the measure
of Ny is 1, we have d'a=e-da on N'. This gives H (f)=eH,(f), as we
had asserted.

{c) In particular, apply (b) to the case K'= L. In view of (a), it shows
that (1) holds whenever f is 0 outside L* (and at 1 ).
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(d) To prove (1), it is enough to show that both sides coincide on
each coset of L* in N; we have found in (c) that they do so on L* itself;
we still have to verify that they coincide on all other cosets. In other
words, let b, L* be any coset of L* in N, other than L*; we have to show
that (1) holds whenever f is 0 outside b, L*. Let @' be the cyclic subgroup
of g generated by «; let K’ be the field between K and L, corresponding
to g'; apply to K’ what has been proved above in (b). We see thus that it
is enough to verify (1) for f equal to 0 outside b, L*. Writing now K, N,
g instcad of K', N', g, we see that our theorem will be proved if we
verify (1) under the additional assumptions that g is cyclic of order
n>1, generated by 7 and that f is O outside the coset b, L*.

(e) That being now assumed, we are once more in the situation
described in §4 of Appendix III. Let notations be the same as there;
N¢is then the same as the kerncl U of the morphism N, x of L* into K*;
as we have |&|,=|N,x(§)lg for all SeL*. U is compact. By corollary 3
of theorem I, Appendix I1I, § 8, the transfer T of N into L* has the kernel
N¢=U and maps N onto K*; the same corollary shows also that, if we
identify N with W by means of w, and K* with W, = W/W* by means of
wg, T becomes the canonical morphism of W onto W/W¢- therefore we
can apply lemma A of §1 above, and conclude that the direct image
under t of the Herbrand measure H on W is the Herbrand measurc Hy
on K*, as given by (a) above. In other words, for any locally constant
function F on K*, equal to 0 at 1, we have

(2) H(Fot)=Hg(F)=— [ F(x)-|1—x|g'd*x,
s

with the Haar measure d*x on K normalized so that the measure of
R* is 1. Clearly a locally constant function on N can be written as
F ot if and only if it 1s constant on the cosets of U.

We have to prove (1) for those functions f on N which arc 0 out-
side b, L*. Observe now that both sides of (1) are clearly invariant under
all inner automorphisms of N, and in particular under any automorphism
a—~Eal~'withée . Foraeb, L ,wehavea ' a=¢E% hencefaé '=au
with u=¢*~!. By Hilbert’s theorem, the kernel U of Nk is the group
consisting of the elements u=¢*"! for e LX; consequently, on the coset
b, L, the inner automorphisms a—&al~!, for £eL*, induce the same
mappings as the translations a—a u for ue U. Therefore, if f is 0 outside
b, L, both sides of (1) remain unchanged, for any ueU, when one
replaces f by the function a— f(au); hence they are still unchanged if
we replace f by a— f(a), where f(a) is the mean value of u— f(au) on U
for the Haar measure on U. Thus our theorem will be proved if we
verify (1) for such a function f, i.e. for one which is 0 outside b, L* and
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constant under the translations a—au. From now on, let / be such a
function; as we have seen, it can be written as f =Fo 1.

As before, put §=1(b,). As 1 coincides with N; , on L*, it maps the
cosets b L* of L* in N, for 0<i<n, onto the cosets 0° Ny x (L") of Ny (L*)
in K*, respectively; as it maps N onto K*, and as its kernel U is con-
tained in L*, K* is the disjoint union of these n cosets (a result which is
substantially contained in corollary 2 of th. 3, Chap. XII-3). In particular,
a function f = F o 7 is 0 outside b, L if and only if F is 0 outside O Ny (L")
To complete our proof, we have to compare the right-hand sides of (1)
and of (2) for such a pair of functions f, F. By corollaries 2 and 3 of
theorem I, Appendix IIL, § 8, we have |1(a)|x=la| for allae N; therefore
1 '(R*)=N,, and the direct image of the measure da in (1) is the measure
d*x in (2). Now take any aeb,L*; in §4 of Appendix I1], we have seen
that t(a)=a"eK*, and that the &', for 0<i<n, may be taken as re-
presentatives of the cosets of ¥ in N and therefore also as a basis of 4
over L; consequently, if {r,,....#,_,} is a basis of Lover K, the elements
ainj, for 0<i, j<n, make up a basis of A over K. In order to evaluate
the integrand of (1) for aeb, L*, put u=|| 1 ,—a|. Then the automorphism
z—(1,—a)z of the additive group of 4 has the module y". On the other
hand, this module may also be expressed by means of corollary 3 of
th. 3, Chap. -2, in terms of the determinant of the linear substitution
determined by that automorphism on the basis {a'#;}; this determinant
is easily seen to have the value (I —x)", with x=a¢"=1(a). This gives
u=|1—x|g. Therefore, for x=1(a), the integrands in the right-hand sides
of (1) and of (2) are the same. This concludes the proof.
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Examples of L-functions

In this Appendix, we will discuss L-functions when the groundfield
is either Q or of the form F_(T).

1. Take k=Q; then, in substance, the determination of the quasi-
characters of k;/k* is given by the remarks following lemma6 of
Chap. XIII-4 and does not depend upon classfield theory. As shown
there, every such quasicharacter w can be uniquely written as ,/, where
, is the principal quasicharacter z— |z[,, trivial on Q* x [[Z), and
where  is a character of finite order, trivial on Q* xR ; ¥ is well
determined by its values on HZ; and has the same conductor as w;
this conductor is &1 if i/ 1. As observed in Chap. VII-7 (see the remarks
following th. 5), L(s, ) is then the same as L(s+t,¥). Consequently it
will be enough to consider the L-functions attached to characters of
finite order.

Let m be an integer >1. For each rational integer >0, prime to m,
define an idele z, by putting (z,),= 1 for every rational prime p dividing m,
and (z,),=a at all other places v of Q; for two such integers a, b, we have
Z,,=12,2,- Let @ be a character of finite order of Qf, trivial on Q~,
with a conductor dividing m; it is also trivial on R’. For every rational
integer a>0, put A(ag)=w(z,) if a is prime to m, and A(a)=0 otherwise;
for all a and b, we have A(ab)=A(a) A(b). For a prime to m, we can also
write A(a)=w(u,), where u,=a™ ' z, is the idele given by (u,),=a~" when p
divides m, and (u,),=1 at all other places. In view of the definition of the
conductor of w, this shows that A(a)=1 whenever a=1 modm, which
implies that 1(a)=A(b) when a and b are prime to m and a=b modm.
Consequently, 4 defines in an obvious manner a character y of (Z/mZ)*.
We will say that A and y are associated with o.

Conversely, let y be a character of (Z/mZ)”* ; for every integer a>0,
put A(a)=y (@), where a is the image of a in (Z/mZ)*, if a is prime to m,
and 4 (a) =0 otherwise; such a function A is known as a Dirichlet character
modulo m. Let u=(u,) be any element of HZ; ; as in the proof of corol-
lary 1 of th. 3, Chap. XIII-4, there is an integer a >0 such that aeu, ' + mZ,
for every prime p; then a is prime to m and uniquely determined modulo m:
call @, the image of a in (Z/mZ)*. Then u— a, is a morphism of HZ;
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mto (Z/mZ)*, and we define a character w of ]—[Zl,x (or, what amounts
to the same, a character w of Q, trivial on Q* x R7) by putting w(u)=
z(@,) = 4(a). Clearly the conductor of w divides m, and A and y are asso-
clated with o in the sense defined above. With the notations of th. 3,
Chap. XIII-4, we have @w= yoaq, this being in substance nothing else than
corollary 1 of that theorem.

With those same notations, the Dirichlet character A is called primitive
if m is the conductor of w; this is so if and only if there is no divisor m’
of m, other than m, such that A(a)=1 whenever a is prime to m and
a=1modwm'. If A is not primitive, i.¢. if there is such a divisor m’, we can
define a primitive Dirichlet character modulo m’ by putting 1'(a)=0
when « is not prime to m’ and A'(a)=A(b) whenever a is prime to m’, b is
prime to m, and a=b modm'. One sees at once that A and A’ are associated
to the same character o of HZ;.

Now let w be as above; call m its conductor, and let 1 be the primitive
Dirichlet character modulo m associated with . According to (11) of
Chap. VII-7, the L-function belonging to w is given by

Lis,0)=[]1-A@)p™) ' =Y Aa)a™",

where the product is taken over all rational primes p, and the sum over
all integers a>0. In view of prop.1 of Chap. VIi-1 and its corollary 1,
both are absolutely convergent for Re(s)>1. These are the original
L-functions introduced by Dirichlet in 1837.

2. From now on, we will consider fields of the form k=F q(T), with T
transcendental over F ; we will write co for the place of k for which
IT|,>1 (cf. th.2 of Chap. I1I-1). We first give a characterization of such
fields:

LEMMA 1. An A-field k, with the field of constants F=F , is of genus O
if and only if it is isomorphic to F(T).

Take k= F(T); if n is an integer >0, and if £ek*, th. 2 of Chap. I11-1
shows that div(£)> —n - oo if and only if £ is a polynomial of degree <n
in F[T1]; then corollary 2 of th. 2, Chap. VI, applied to the divisora=n-
for n large, gives g=0. Conversely, let k be of genus 0. By corollary 5 of
th. 2, Chap. VII-5, k has a divisor m of degree 1. By corollary 2 of th. 2,
Chap. V1, there is £ek™ such that div()> —m; then div({)+m is a
positive divisor of degree 1 and therefore of the form v, where v is a place
of degree 1, and, by the same corollary, there is Tek™, not in F, such
that div(T)> —v. Then k is an algebraic extension of F(T); if oo is the
place of F(T) for which |T|_>1, v is the only place of k above c. In
Chap. VIII-6, we have extended th. 4 of Chap. III-4 to arbitrary algebraic
extensions of A-fields (separable or not); we can therefore apply that
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theorem, or more precisely the part of it contained in its corollary 1, to
the extension k of F(T). This shows that k= F(T).

3. From now on, we take k=Fq(T); with co defined as above, k_, has
the prime element T~ and is the field of formal power-series in T !
with coefficients in F;; k7 has the direct product decomposition
I'xF  x(1+p,), with I'={T"},.,.

LEMMA 2. We have the direct product decomposition
ki=k*xITx(1+py)x][]rs,

where the product is taken over all the places v400 of k, and T is the sub-
group {T"},.z of k.

The proof is similar to that of lemma 6, Chap. XIII-4, and may be
left to the reader.

LemMMA 3. Let w be a quasicharacter of kj, trivial on k> ; let | be its
conductor, and n the coefficient of oo in §. Then a place v+ o occurs in
fif and only if w induces on r) a character w,=+1; we have n>2 if and
only if w induces a non-trivial character on 1+p_ ; we have n=0 if and
onlyif wis1onl+p, and [[w,(c)=1 for every ceF [, the product being
taken over all the places v+ oo of k.

The first two assertions are obvious. As F ck>, we have w_(c) ™' =
nwu(c) for ceF*; this gives the last assertion.

4. As in Chap. X114, we conclude from lemma 2 that every quasi-
character of k,, trivial on k™, can be (uniquely) written as w,w, where w,
is the principal quasicharacter z — |z|}, and where o is a character of
finite order, trivial on k* xI, well determined by its values on
(1+p,)x[]r). As above in § 1, it will be enough to consider the L-func-
tions attached to such characters . We will write § for the conductor
of w, n for the coefficient of oo in §, and we put f=rn-00 +{,, so that f,
contains only places v400. We call f, f, the degrees of f, f,, so that
f=n+f,. In view of th.2 of Chap. I1I-1, there is a monic polynomial &
of degree f, in F_[T] such that div(®)=f, — f; - cc.

5. By th. 6 of Chap. VII-7, the L-function L(s, w) attached to w is a
polynomial P of degree f—2 in u=¢~° if w1, i.e. if f>0: this implies
that f cannot have the value 1 (a fact easily verified also from lemma 3).
We will write P as [[(1 —o;u); in other words, we call 1/, ..., 1o, _,
the roots of P. As w is a character, we have w™ ! =@; therefore the func-
tional equation in th. 6 of Chap. VII-7 shows that the roots of P are also
&/q,-..,%;_,/q. In particular, if f=3, we have «, & =g¢; this is known
as the “Riemann hypothesis™ for this case.

22 Weil, Basic Number Theory
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Actually the “Riemann hypothesis™ is generally true. This means,
in the first place, that, if k is any A-field of characteristic p> 1, with the
field of constants F , all the roots of the polynomial P in th. 4 of Chap. VII-6
have the absolute value g~ #; in view of th. 10 of Chap. XIII-10, the same
is true of all the roots of P for L(s, w)= P(q™*) whenever w is a character
of finite order of k; /k*; for an elementary proof (depending only upon
the theorem of Riemann-Roch as given in Chap. VI, but not upon any
deeper results in algebraic geometry), the reader may be referred to
E. Bombieri, Séminaire Bourbaki n° 430 (juin 1973).

6. We will write 6(F) for the degree of any polynomial F in F,[T].
Notations being as in §§ 3-4, let ¥ be a multiple of @ in F [T], other
than 0. If F is any monic polynomial, prime to ¥ in F,[T], we define
an idele z, as follows: put (zp),=1 for every place v4=00 occurring in
div(¥), and also for v=oo; at all other places v of k, put (z;),=F. For
two such polynomials F, F', we have z,p=zpz,. For every monic
polynomial F, put A(F)=w(zg) if F is prime to ¥, and A(F)=0 otherwise.
For F prime to ¥, this can also be written as A (F) = w (uy), whereu, =F 'z,
is the idele given by (uz),=F ! when v= o0 or when v occurs in div(¥P),
and (ug),=1 at all other places. This shows that A(F)=w_ (F)~! whenever
F=1mod¥; for F=T?+¢,T* ' ++-- 4¢;, with 6=5(F), this can also
be written as )

M) =0 (T°F) =0, 1+, T '+ +¢;, T,

since o (T)=1. We will say that 4 is defined modulo ¥ and that it is
associated with w.

Conversely, assume that ¥ is given in F,[T], that 4 is a C-valued
function on the monic polynomials in F [ T], and that w, is a character
of the group 1+ p_, with the following properties: (a) A(F)=0 if and only
if F is not prime to ¥; (b) A(FF)=A(F)A(F’) for all F, F’; (c) A(F)=
(T ~*PF)* whenever F =1 mod ¥. Take any ideleu in (1 +p,,) x [ [r*;
there is a monic polynomial F, uniquely determined modulo ¥, such that
Feu;'+¥r, for all v+ co. Put then

wW=w, @u,) o, (TP F)AF).

Then w is a character of (1+p)x []r,*, inducing @, on 1+p_; if &
belongs as before (§ 4) to the conductor of w, it divides ¥ ; moreover, A is
the function, defined modulo ¥, which is associated to w in the sense
explained above. We will call A primitive if ® =P, i.. if there is no divisor
Y’ of ¥, of degree < (W), such that the condition (c) is satisfied when-
ever F is prime to ¥ and =1 mod ¥".

7. Now, w being given, and notations being as before, let 4 be the
primitive function, defined modulo @, which is associated with . Then,
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in formula (11) of Chap. VII-7, the factor corresponding to a place
vFo0 is
(1 —l(n)q‘“""))_l

if w is the prime polynomial defining the place v. As to the factor cor-
responding to the place oo, it can be written as (1 -/, ¢~ *)~! if we put
A, =0 or 1 according as w is ramified or not at co. Therefore the L-func-
tion defined by w is given by

Lis)=(1—A_q7 %! n(l —(n) q*sa(n))_1
f-2

=(1 _looq—s)—l ZA(F)q_SMF): n (1_aiq—s)

i=1

where the product is taken over all the prime polynomials and the sum
over all the monic polynomials in F,[T], and the a; are as defined in § 5.
If we take the coefficient of g~* (the “trace”) in both sides, we get the
“trace formula”
f-2
1) —dp— L MT+0)= Y o,
ceFy i=1
The left-hand side of (1) will be denoted by S(4); for special choices of 4,
it is an important number-theoretical constant. As we shall see, this is
already so for f=3; in that case, as we have seen in § 5, the functional
equation implies o, &, =g and therefore |S(4)|*=gq. In the general case,
one can apply the “Riemann hypothesis™ (§ 5), which gives:

@) ISAI<(f-2)¢*.

8. Without restricting ourselves to the case k=F (T), we will prove
the following elementary lemma, which will give us another significant
property of the sums S(4):

LEMMA 4. Let k be any A-field of characteristic p> 1, with the field of
constants F . Let w be any quasicharacter of k; /k*, with the conductor f.
Put ¢=q, K=kF,, o'=woN.,. Let L(s)=P(q™*) be the L-function
L(s, ), and L(s)=P'(q'"®) the L-function similarly attached to k' and o'.
Then:

v~—1

G) P)= [ Pitw),

where ¢ is a primitive v-th root of 1 in C. Moreover, the conductor of o'
is 1(f), with 1 as in Chap. VI11-4,

We will prove (3) by making use of (11), Chap. VII-7, and comparing
the contributions of a place v of k to the right-hand side and of the places
w of k" above v to the left-hand side (as in the proof of the much deeper

22-
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th. 10 of Chap. XIII-10). Let v be a place of k of degree d, so that q,=q*;
put d=(d, v)and D=dv/$. If w is a place of k" above v, we have k|, =k, F,,
q,,=4q"; k., is the unramified extension of k, of degree v/5; by corollary 1
of th. 4, Chap. I11-4, there are ¢ such places w; by corollary 3 of the same
theorem, we have w,=w,°oN, , . Using prop.1 and prop.3 of
Chap. VIII-1, one sees at once that w has the same coefficient in the con-
ductor of &' as v in that of w; this proves the final assertion in the lemma;
in particular, unless w, is unramified, the contributions of v and w to
both sides of (3) are 1. Assume now that w, is unramified; as in Chap. VII-7,
put A,=w,(r,), Where 7, is a prime element of k,; then =, is also a prime
element of k/,, and we have w/, (n,)=A"°. Put u=q~% u'=q'~*=u". The
contribution of the place v to P(u)is (1 —2,u%)~", so that its contribution
to the right-hand side of (3) is

v—1

[T —2,&9uh~t =(1-2"°uP)=2.

i=0
As the contribution of w to the left-hand side of (3) is
(=2l gy) ' =0-1"Pu?)~,

and as there are ¢ such places, this proves the lemma. This proof remains
valid even if w is a principal quasicharacter w,; in that case, it is to be
understood that L(s), L(s) are then no other than {, (s+1), {;.(s+1). For
w=1, our lemma may be regarded as a special case (a trivial one) of
th. 10, Chap. XIII-10.

We can also formulate our lemma by saying that, if P has the zeros
a; ', P’ has the zeros o;". In particular, we can apply this to formula (1)
of §7. Let k=F(T), w, @, 1 be as in §7; put ¢'=¢", k'=F,(T), o'=
woNy.,, and call A’ the primitive function, defined modulo @, which
is associated with o’ in the sense of §6. Then, for every monic polynomial
F' in F_[T], we have A'(F')=A(N,,F’). In view of this, of (2) and of
lemma 4, we get now:

f-2

4) SA)=—=Ap— Y ANep(T+c)]= Y .

c’'eFgr i=1
In particular, this gives, for f=3:
%) SA)y=S8)".

9. We will now consider some special cases; we begin with the cases
where =3 and all the places occurring in { are of degree 1.

If v is a place of k of degree 1, other than oo, it belongs to a prime
polynomial n,=T—a; then we write v=(a). Replacing, if necessary,
T by (@T+ p)/(y T+ ), with suitable values of o, B, y, & in F,, we can
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transform any three places of k of degree 1 into oo, (0), (1). Therefore,
if { is as we have said, we may assume that it is 3- 00 or 2- 00 4(0) or
oo +(0)+(1).

(a) Take f=00+(0)+(1). For v=(0), w,! determines a character
Xo* lonr) /[(14p,)=F<;similarly, for v=(1), w, ! determines a character
x1+1 on FJ; lemma3 shows that y,x, +1. We have ¢=T(T —1).
If we put x,(0)=y%,(0)=0, then, for every monic polynomial F, we have
AF)=y2o(F(0)x,;(F(1)). The corresponding L-function is L(s)=
1—8(A) g%, with

S(A)=— 2 xole) s (1 +c).

ceF,

(b) Take f=2- 0 +(0). For v=(0), w, ! determines a character y+1
onF; ;forv=o0,wy" determinesa character s +1on (1+p,)/(1 + p%)=F,
Put »(0)=0. For F=T’+¢,; T°" '+ +¢;, we have A(F)=y(c;)¥(c,).
This gives L(s)=1-S(1) g~ %, with

S)=— Y 1))
ceFy
(c) Take f=3-00; then @=1; w determines a character w, on
(1+p.,)/(1+p3), which must be of the form

o 1+, T +e, T 2+ Y=w 1+, T Yo, (1+c,T™2)
o 1 2 o0 0 2
=fle) " le) ™,

where obviously i must be a non-trivial character of the additive group
F,. This is a character if and only if we have, for all x, y in F,:

fx+y)=fx) O (xy) .

When that is so, one says that f is a “character of the second degree”
of F_; if the characteristic p is not 2, this is so if and only if f is of the form
x—WYlax—x?/2) with aeF,. For F=T’+¢, T* '+ +c,, we have
AF)=f(c,){¥(c,). This gives L(s)=1—-S(A)g *, with

S(A)=— ZFf(C)-

These formulas show that S(4) is a “Gaussian sum” in case (b),
a “Jacobi sum” in case (a) (cf. A. Weil, Bull. AM.S. 55 (1949), p. 497);
the relation (5) for such sums is known as the theorem of Hasse-Daven-
port. In all three cases, we have |S(4)|=gq*. The sums S(1) in cases (b)
and (c) occur prominently among the “local constant factors™” (sometimes
also known as “root-numbers ™) in the functional equations of L-functions;
the relation (5) for these cases plays a significant role in representation-
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theory (cf. e.g. A. Weil, Dirichlet series and automorphic forms, Lecture
Notes no. 189, Springer 1971, p. 154).

The only remaining cases, for f=3, are those for which § is either
of the form v, with v of degree 3, or of the form v +w, with v of degree 2
and w of degree 1 (one may then assume w=c0). We leave the explicit
determination of the corresponding L-functions to the reader. Replacing
k by k' =kF,, with ¢'=¢> resp. 4%, one gets as L'(s) a function of the type
described in (a).

10. Examples with >3 can be obtained by taking n>2 and
f=n-o+ Y v;, where the v; are distinct places, other than co, of respec-
tive degrees d;. For each i, let ; be the prime polynomial defining v,,
and call {; a root of 7; in an algebraic closure of F, . Call y; the character
determined by w™! on /(1 +p,)=F(£)*, and put y,(0)=0. Then, for
F=T°+¢,T° '+ +c;, we have

MF)=w,(1+¢, T 4+, T [] 0l FED)-

Conversely, this defines an L-function whenever w, and the y; are non-
trivial. The main result about the corresponding sums is the one given
by (2), i.e. by the “Riemann hypothesis”.

For n=2, we have seen in §9(b) that w;' must be of the form ¥ (c,),
where V is a non-trivial character of the additive group F,. This gives:

(6) | 2 v@]Tute+ &)l<a* Xd;-
ceFy
11. For instance, take f=2 - co + v, where v is of degree 2, and p+2;
then we may assume that v is defined by n=T? — 4, with 4 in F,* and not

in (F; )%; let &, &’ be the two roots of z. As g is odd, F, has one (and only
one) character y of order 2; put  (0)=0. Then, for F as before, we may take

AF)=y(c) x [F (@) F ()]
This gives:
SA==Y Y@ =A==Y b))+ Y ¥x)=-2Y ¥ (x)
ceF, xeX x¢X xeX

where X is the set of those xeF, for which x*—4 is in (F))* Take
B,CinF, suchthat4BC=4; then xisin X ifand only if it can be written
as Bu+ Cu"1 with ueFJ, and in that case it can be so written in two
ways. Therefore:

S()= =Y ¢y (Bu+Cu™).
This is known as a “Kloosterman sum™; (6) gives |S(1)|<24?.

12. More general examples can be constructed by means of the
following lemma:
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LEMMA 5. Let § be a non-trivial character of the additive group F,.
Let F be a polynomial of degree n in F [ X1, with F(0)=0. Then there is a
character w_, of 1 +p,,, of order p, of conductor (T~ Ny with some N<n+1,
such that o, (1+cT~Y)=y(F(c)) for all ceF,.

It is clearly enough to prove this for F=aX", n>0, acF,. Take
indeterminates X;, X,,... and U; consider the ring of formal power-
series in U, with coefficients in Q[X,,X,,...]; in that ring, put

V=3 X,U" We can write:

n=1

d _ © .
0 log(1+V)=(1+V)'——= Y BU"!,
with PeZ[X,, ..., X,] for all n>1; we have
P(X,,0,...,0)=(—1)""1 X",

a0
Put W= Y Y,U" with other indeterminates Y,, and write

n’
n=1

A+V)1+W)=1+ iz”U"

n=1

with the Z, in Z[X,, Y, X,, Y,,...]. We have
B(Zy, ... 2)=F(Xy, ... X )+ B(Y;, ..., ¥).

Consequently, if K is any field, we can define a morphism Q2 of the multi-
plicative group of the power-series 1 +c¢, U +c, U?+ --- with coefficients
in K, into the additive group of K, by putting

Ql+c,U+c, U +--)=(—1)""1aP(c,,...,c,),

with aeK*, so that Q(1+cU)=ac}. To prove the lemma, it is now
enough to take K=F, U=T"", w, =} Q.

Combining this with the formulas of §10 and with the Riemann
hypothesis, we get

| Y V(FE e+ el<g n—1+3d)

ceFy i

whenever F is a polynomial of degree n>0.
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(285).

coboundary, 1X-3, d. 5 (175).
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completion, III-1, d. 2 (43—44); — at (a
place), IT1-1 (44).

conductor, VII-3,d. 7 (117), VII-7
(133—134).

congruence group, XI1I-11, d. 1 (282).

constant: — -field extension, XIII-1 (247);
field of —s, IV-4 (77); locally —, VII-2
(106).

covariant, IX-3, d. 3 (172).

cyclic: — algebra, IX-4, d. 6 (184); — ex-
tension, 1X-4 (180); — factor-class,
— factor-set, IX-4 (181).

Dedekind zeta-function, VII-6, d. 8 (129).

defining group, XIII-11, d. 1 (282).

deg, VI (96).

degree: (of a place, of a divisor), VI (96);
modular —, I-4, d. 4 (15).

denominator, V-3 (87).

different, VIII-1, d. 1 (140), VIII-4, d. 3
(153).

differental : — exponent, VIII-1, d. 1 (140);
— idele, VII-2,d. 4 (113).

disconnected : totally —, VII-3 (114).

discriminant, V-4, d. 6 (91), VIII-2, d. 2
(144), VIII-4, d. 4 (156), VIII-4 (157).

div, VI (97, 100).
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(100); principal —, VI (97).

dual: —lattice, II-5 (39); — measure, VII-2
(105); — system, VI (99); algebraic —,
11-5 (39); topological —, II-5 (38).

duality (associated by —), I1-5 (38).

Eisenstein polynomial, VIII-2 (147).

embedding, P & N (XVI); natural —,
VIII-4 (154); proper —, I1I-2 (50).

End, IT1-3 (53), X-1 (188—189).

endomorphism, P & N (XV).

Euler product, VII-1 (102).

exponent (differental —), VIII-1, d. 1 (140).

factor-class, 1X-3 (175); cyclic —, 1X-4
(181).
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factor-set, IX-3, d. 4 (175); cyclic —, I1X-4
(181).

faithful, IX-1 (162).

field of constants, IV-4 (77).

finite: — field, I-1 (1); — place, I1I-1, d. 3
(44).

Fourier transform, VII-2 (105).

fractional ideal, V-3, d. 4 (85).

Frobenius automorphism, 1-4, d. 5 (20),
XII-2 (221), XIII-1 (247), XIII-11
(284—285).

fully: — ramified, 1-4, d. 4 (15); to split —,
VIII-5 (158).

fundamental set, V-4 (89).

genus, VI, d. 1 (100).

Hasse invariant, XII-2 (221, 224), X1II-3
(252).

Herbrand distribution, VIII-3 (152), XIi-4
(239).

hermitian form, X-3 (198).

Hilbert symbol, XIII-5 (262).

Hom, X-1 (188—189).

homomorphism, P & N (XIV); transfer —,
XII-5 (241).

H-regular, [X-3,d.2 (171).

id, V-3 (87).

ideal: fractional —, V-3, d. 4 (895).

ideal-class, V-3 (87).

idele, idele group, 1V-3 (71); differental —,
VII-2, d. 4 (113).

image (of a Haar measure), II-4 (36).

imaginary (place), [1I-1, d. 3 (44).

infinite (place), I11-1, d. 3 (44).

integral (over a ring), -4 (22).

invariant (Hasse —), cf. Hasse.

inverse (algebra), IX-1 (164).

isomorphism, P & N (XV).

k-lattice, V-2, d. 3 (83).
K-lattice, 11-2, d. 2 (28).
K-norm, I1-1, d. 1 (24).

lattice: dual —, II-5 (39): k- —, V-2,d. 3
(83); K- —, I1-2, d. 2 (28); normal —,
X-1(193), X1-4 (212); Q- —, V-1,d. 1
(80); R- —, 11-4,d. 3 (39).

left order, X-1(192), XI-4 (212).

L-function, VII-7 (133).

lie (to — above, below), I11-1, d. 4 (45).

local field, I-4 (20).

locally constant, VII-2 (106).

maximal order, V-2 (82), X-1 (191), XI-4
Q1.

mod, -2 (3—4).

modular degree, 1-4, d. 4 (15).

module: (of an automorphism) I-2 (3); (of

a p-field) I-4, d. 3 (13); (of an idele)
V-3 (73).

monic, P & N (XIV).

morphism, P & N (XV); canonical —,
XII-1 (215), XII-2 (224), XIII-1 (245);
natural —, 1X-3 (171); restriction —,
IX-3 (173).

multiplicative character, XIII-2 (250).

N, 111-3 (53).

RN, V-3, d. 5(88), VIII-4 (155).

natural: — embedding, VIII-4 (154);
— morphism, IX-3 (171).

norm, 111-3 (53), V-3, d. 5 (88), VIII-4 (155);
K- — 11-1,d. 1 (24); reduced —, [X-2
(169); regular —, I11-3 (53).

normal lattice, X-1 (193), XI-4 (212).

N-orthogonal, II-1 (25—26).

numerator, V-3 (87).

ord, 1-4, d. 3 (13), I1-5, d. 4 (41).

order, P & N (XV), V-1,d. 2 (81), X-1 (191
—192), XI-4 (211—212); — (of a char-
acter), I1-5, d. 4 (41); — of ramification,
I-4, d. 4 (15); left, right —, X-1 (192),
XI1-4 (212); maximal —, V-2 (82), X-1
(191), XI-4 (211).

orthogonal: N- —, 1I-1 (25—26).

orthonormal, X-3 (198).

p-adic, 1-3 (11).

pairing (canonical —), XII-1 (215), XII-2
(224), X1I1-1 (245).

p-field, 1-3, d. 2 (12).

place, 111-1, d. 2 (43—44); finite, imaginary,

infinite, real —, II1-1, d. 3 (44).

Poisson summation formula, VII-2 (106).

polynomial: — mapping, III-3 (52); Eisen-
stein —, VIII-2 (147); prime —, III-1
(46).

power-series (formal —), -4 (20).

prime: — element, -4, d. 3 (13); — poly-
nomial, I1I-1 (46); — to P, VII-8 (136);
mutually —, V-3 (86).

primitive root of 1, P & N (XV).

principal : — divisor, VI (97); — ideal, V-3
(87); — quasicharacter, VII-3, d. 6
(115).

proper embedding, I11-2 (50).
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Q-lattice, V-1, d. 1 (80).

quasicharacter, VII-3, d. 5 (115); principal
—, VII-3, d. 6 (115).

quasicompact, VII-3, d. 5 (115).

quasifactor, IV-1 (60).

ramification: groups of —, VIII-3 (149);
order of —, I-4, d. 4 (15).

ramified, X1-1(202); cf. unramified ; fully —,
-4, d. 4 (15); tamely —, VIII-1 (142).

rank, II-2 (31).

real (place), I11-1, d. 3 (44).

reduced (norm, trace), IX-2 (169).

regular: (norm, trace), I11-3 (53); — repre-
sentation, II1-3 (53); - —, IX-3,d. 2
(171).

regulator, V-4, d. 7 (94).

representation, P & N (XV); L- —, [X-2
(168), regular —, IT1-3 (53).

restriction morphism, I1X-3 (173).

R-field, 1-3, d. 2 (12).

right order, X-1 (192), XI-4 (212).

R-lattice, I1-4, d. 3 (35).

rootof I, P & N (XV).

self-dual (Haar measure), VII-2 (105).
separable algebraic closure, IX-2 (168).

separably algebraically closed, I11-2 (52).

similar, IX-3 (170).

simple, IX-1, d. 1 (162).

split (to — fully), VIII-5 (158).

standard (function), VII-2, d. 1 (106), d. 2
(108), d. 3 (110).

symbol: Hilbert —, XIII-5 (262).

Tamagawa measure, VII-2 (1 13).

tamely ramified, VIII-1 (142).

topological dual, II-5 (38).

totally disconnected, VII-3 (114).

Tr, 1113 (53).

trace, I1I-3 (53); reduced —, IX-2 (169); re-
gular —, II1-3 (53).

transfer, XII-5 (241).

trivial: (— algebra), 1X-3 (170); (— factor-
set), IX-3, d. 5 (175).

ultrametric, -2, d. 1 (8).
unramified, 1-4, d. 4 (15), VII-3 (117), XI-1
(202), XII-2, d. 1 (222).

valuation, I-3 (11).

zeta-function, VII-6, d. 8 (129).
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