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Foreword 

ApOp6v, .goxov aocplcrprizov 

A/q., Ilpop. Amp. 

The first part of this volume is based on a course taught at Princeton 
University in 1961-62; at that time, an excellent set of notes was prepared 
by David Cantor, and it was originally my intention to make these notes 
available to the mathematical public with only quite minor changes. 
Then, among some old papers of mine, I accidentally came across a 
long-forgotten manuscript by Chevalley, of pre-war vintage (forgotten, 
that is to say, both by me and by its author) which, to my taste at least, 
seemed to have aged very well. It contained a brief but essentially com- 
plete account of the main features of classfield theory, both local and 
global; and it soon became obvious that the usefulness of the intended 
volume would be greatly enhanced if I included such a treatment of this 
topic. It had to be expanded, in accordance with my own plans, but its 
outline could be preserved without much change. In fact, I have adhered 
to it rather closely at some critical points. 

To improve upon Hecke, in a treatment along classical lines of the 
theory of algebraic numbers, would be a futile and impossible task. As 
will become apparent from the first pages of this book, I have rather 
tried to draw the conclusions from the developments of the last thirty 
years, whereby locally compact groups, measure and integration have 
been seen to play an increasingly important role in classical number- 
theory. In the days of Dirichlet and Hermite, and even of Minkowski, 
the appeal to “continuous variables” in arithmetical questions may well 
have seemed to come out of some magician’s bag of tricks. In retrospect, 
we see now that the real numbers appear there as one of the infinitely 
many completions of the prime field, one which is neither more nor less 
interesting to the arithmetician than its p-adic companions, and that 
there is at least one language and one technique, that of the adeles, for 
bringing them all together under one roof and making them cooperate 
for a common purpose. It is needless here to go into the history of these 
developments; suffice it to mention such names as Hensel, Hasse, 
Chevalley, Artin; every one of these, and more recently Iwasawa, Tate, 
Tamagawa, helped to make some significant step forward along this 
road. Once the presence of the real field, albeit at infinite distance, ceases 
to be regarded as a necessary ingredient in the arithmetician’s brew, it 
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goes without saying that the function-fields over finite fields must be 
granted a fully simultaneous treatment with number-fields, instead of 
the segregated status, and at best the separate but equal facilities, which 
hitherto have been their lot. That, far from losing by such treatment, 
both races stand to gain by it, is one fact which will, I hope, clearly emerge 
from this book. 

It will be pointed out to me that many important facts and valuable 
results about local fields can be proved in a fully algebraic context, 
without any use being made of local compacity, and can thus be shown 
to preserve their validity under far more general conditions. May I be 
allowed to suggest that I am not unaware of this circumstance, nor of 
the possibility of similarly extending the scope of even such global results 
as the theorem of Riemann-Roth? We are dealing here with mathematics, 
not with theology. Some mathematicians may think that they can gain 
full insight into God’s own way of viewing their favorite topic; to me, 
this has always seemed a fruitless and a frivolous approach. My intentions 
in this book are more modest. I have tried to show that, from the point 
of view which I have adopted, one could give a coherent treatment, 
logically and aesthetically satisfying, of the topics I was dealing with. 
I shall be amply rewarded if I am found to have been even moderately 
successful in this attempt. 

Some of my readers may be surprised to find no explicit mention of 
cohomology in my account of classfield theory. In this sense, while my 
approach to number-theory may be called a “modern” one in the first 
half of this book, it may well be described as thoroughly “unmodern” in 
the second part. The sophisticated reader will of course perceive that a 
certain amount of cohomology, and in fact no more and no less than is 
required for the purposes of classfield theory, hides itself in the theory 
of simple algebras. For anyone familiar with the language of “Galois 
cohomology”, it will be an easy and not unprofitable exercise to translate 
into it some of the definitions and results of our Chapters IX, XII and 
XIII; in one or two places (the most conspicuous case being that of the 
“transfer theorem” in Chapter XII, 3 5), this even makes it possible to 
substitute more satisfactory proofs for ours. For me to develop such an 
approach systematically would have meant loading a great deal of 
unnecessary machinery on a ship which seemed well equipped for this 
particular voyage; instead of making it more seaworthy, it might have 
sunk it. 

In charting my course, I have been careful to steer clear of the arith- 
metical theory of algebraic groups; this is a topic of deep interest, but 
obviously not yet ripe for book treatment. Partly for this reason, I have 
refrained from discussing zeta-functions of simple algebras beyond what 
was needed for the sake of classfield theory. Artin’s non-abelian L-func- 
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tions have also been excluded; the reader of this book will find it easy 
to proceed to the study of Artin’s beautiful papers on this subject and 
will find himself well prepared to enjoy them, provided he has some 
knowledge of the representation theory of finite groups. 

It remains for me to discharge the pleasant duty of expressing my 
thanks to David Cantor, who prepared from my lectures at Princeton 
University the set of notes which reappears here as Chapters I to VII 
of this book (in many places with no change at .all), and to Chevalley, 
who generously allowed me to make use of the above-mentioned manus- 
cript and expand it into.Chapters XII and XIII. My thanks are also 
due to Iwasawa and Lazard, who read the book in manuscript and offered 
many suggestions for its improvement; to H. Pogorzelski, for his assis- 
tance in proofreading; to B. Eckmann, for the interest he took in its 
publication; and to the staff of the Springer Verlag, and that of the 
Zechnersche Buchdruckerei, for their expert cooperation and their 
invaluable help in the process of bringing out this volume. 

Princeton, May 1967. ANDRE WEIL 

Foreword to the third edition 

The text of the first edition has been left unchanged. A few correc- 
tions, references, and some brief remarks, have been added as Notes at 
the end of the book; the corresponding places in the text have been 
marked by a * in the margin. Somewhat more substantial additions will 
be found in the Appendices, the first four of which were originally 
prepared for the Russian edition (M.I.R., Moscow 1971). The reader’s 
attention should be drawn to the collective volume: J. W.S. Cassels and 
A. Frijhlich (edd.), Algebraic Number ITheory, Acad. Press 1967, which 
covers roughly the same ground as the present book, but with far greater 
emphasis on the cohomological aspects. 

Paris, June 1974 AND& WEIL 
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Chronological table 

(In imitation of Hecke’s “Zeittafel” at the end of his “Theorie der 
algebra&hen Zahlen”, and as a partial substitute for a historical survey, 
we give here a chronological list of the mathematicians who seem to 
have made the most significant contributions to the topics treated in 
this volume.) 

Fermat (160 l-l 665) 
Euler (1707-1783) 
Lagrange (17361813) 
Legendre (1752-1833) 
Gauss (1777-1855) 
Dirichlet (1805-1859) 
Kummer (1810-1893) 
Hermite (1822-1901) 
Eisenstein (1823-l 852) 
Kronecker (1823-1891) 

Riemann (18261866) 
Dedekind (1831-1916) 
H. Weber (1842-1913) 
Hensel(1861-1941) 
Hilbert (1862-1943) 
Takagi (1875-1960) 
Hecke (188771947) 
Artin (1898-l 962) 
Hasse (1898- ) 
Chevalley (I 9099 ) 



Prerequisites and notations 

No knowledge of number-theory is presupposed in this book, except 
for the most elementary facts about rational integers; it is useful but not 
necessary to have some superficial acquaintance with the p-adic valua- 
tions of the field Q of rational numbers and with the completions Q, 
of Q defined by these valuations. On the other hand, the reader who 
wishes to acquire some historical perspective on the topics treated in the 
first part of this volume cannot do better than take up Hecke’s unsur- 
passed Theorie der algebraischen Zahlen, and, if he wishes to go further 
back, the Zahlentheorie of Dirichlet-Dedekind (either in its 4th and final 
edition of 1894, or in the 3rd edition of 1879), with special reference 
to Dedekind’s famous “eleventh Supplement”. For similar purposes, the 
student of the second part of this volume may be referred to Hasse’s 
Klassenkbrperbericht (J. D. M. V., Part I, 1926; Part II, 1930). 

The reader is expected to possess the basic vocabulary of algebra 
(groups, rings, fields) and of linear algebra (vector-spaces, tensor- 
products). Except at a few specific places, which may be skipped in a 
first reading, Galois theory plays no role in the first part (Chapters I 
to VIII). A knowledge of the main facts of Galois theory for finite and 
for infinite extensions is an indispensable requirement in the second 
part (Chapters IX to XIII). 

Already in Chapter I, and throughout the book, essential use is made 
of the basic properties of locally compact commutative groups, including 
the existence and unicity of the Haar measure; the reader is expected to 
have acquired some familiarity with this topic before taking up the 
present book. The Haar measure for non-commutative locally compact 
groups is used in Chapters X and XI (but nowhere else). The basic facts 
from the duality theory of locally compact commutative groups are 
briefly recalled in Chapter II, $5, and those about Fourier transforms 
in Chapter VII, 0 2, and play an essential role thereafter. 

As to our basic vocabulary and notations, they usually agree with 
the usage of Bourbaki. In particular, this applies to N (the set of the 
“finite cardinals” or “natural integers” 0, 1,2,. . .), Z (the ring of rational 
integers), Q (the field of rational numbers), R (the field of real numbers), 
C (the field of complex numbers), H (the field of “classical”, “ordinary” 
or “Hamiltonian” quaternions). If p is any rational prime, we write F, 
for the prime field with p elements, Q, for the field of p-adic numbers 
(the completion of Q with respect to the p-adic valuation; cf. Chapter I, 
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9 3), Z, for the ring of p-adic integers (i.e. the closure of Z in Q,). The 
fields R, C, H, Q, are always understood to be provided with their usual 
(or “natural”) topology; so are all finite-dimensional vector-spaces over 
these fields. By F, we understand the finite field with q elements when 
there is one, i.e. when q is of the form p”, p being a rational prime and 
n an integer > 1 (cf. Chapter I, $1). We write R, for the set of all real 
numbers 2 0. 

All rings are assumed to have a unit. If R is a ring, its unit is written 
l,, or 1 when there is no risk of confusion; we write Rx for the multi- 
plicative group of the invertible elements of R; in particular, when K is 
a field (commutative or not), K” denotes the multiplicative group of 
the non-zero elements of K. We write R: for the multiplicative group 
of real numbers >O. If R is any ring, we write M,(R) for the ring of 
matrices with n rows and n columns whose elements belong to R, and 
we write 1, for the unit in this ring, i.e. the matrix (Sij) with dij= 1, or 0 
according as i=j or ifj. We write ‘X for the transpose of any matrix 
XEMJR), and tr(X) for its trace, i.e. the sum of its diagonal elements; 
if R is commutative, we write det(X) for its determinant. Occasionally 
we write M,,.(R) for the set of the matrices over R with m rows and y1 
columns. 

If R is a commutative ring, and T is an indeterminate, we write R [ T] 
for the ring of polynomials in T with coefficients in R; such a polynomial 
is called manic if its highest coefficient is 1. If S is a ring containing R, 
and x an element of S commuting with all elements of R, we write R[x] 
for the subring of S generated by R and x; it consists of the elements of 
S of the form F(x), with FER[T]. If K is a commutative field, L a field 
(commutative or not) containing K, and x an element of L commuting 
with all elements of K, we write K(x) for the subfield of L generated by 
K and x; it is commutative. We do not speak of a field L as being an 
“extension” of a field K unless both are commutative; usually this word 
is reserved for the case when L is of finite degree over K, and then we 
write [L: K] for this degree, i.e. for the dimension of L when L is regarded 
as a vector-space over K (the index of a group g’ in a group g is also 
denoted by [g :g’] when it is finite; this causes no confusion). 

All topologies should be understood to be Hausdorff topologies, 
i.e. satisfying the Hausdorff “separation” axiom (“separated” in the sense 
of Bourbaki). The word “homomorphism”, for groups, rings, modules, 
vector-spaces, should be understood with the following restrictions : 
(a) when topologies are involved, all homomorphisms are understood to 
hr continuous; (b) homomorphisms of rings are understood to be “uni- 
tary”; this means that a homomorphism ofa ring R into a ring S is assumed 
to map 1, onto 1,. On the other hand, in the case of groups, homo- 
morphisms are not assumed to be open mappings (i.e. to map open sets 
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onto open sets); when necessary, one will speak of an “open homo- 
morphism”. The word “morphism” is used as a shorter synonym for 
“homomorphism”; the word “representation” is used occasionally, as a 
synonym for “homomorphism”, in certain situations, e.g. when the 
homomorphism is one of a group into C ‘, or for certain homomorphisms 
of simple algebras (cf. Chapter IX, 9 2). By a character of a group G, com- 
mutative or not, we understand as usual a homomorphism (or “represen- 
tation”) of G into the subgroup of C” defined by zZ= 1; as explained 
above, this should be understood to be continuous when G is given as 
a topological group. The words “endomorphism”, “automorphism”, 
“isomorphism” are subject to the same restrictions (a), (b) as “homo- 
morphism”; for “automorphism” and “isomorphism”, this implies, in 
the topological case, that the mapping in question is bijective and bi- 
continuous. Occasionally, when a mapping f of a set A into a set B, 
both with certain structures (usually fields), determines an isomorphism 
of A onto its image in B, we speak of it by “abuse of language” as an 
“isomorphism” of A into B. 

In a group G, an element x is said to be of order n if n is the smallest 
integer B 1 such that x”=e, e being the neutral element of G. If K is a 
field, an element of K” of finite order is called a root of 1 in K; in 
accordance with a long-standing tradition, any root of 1 of order divid- 
ing it is called an n-th root of 1 in K; it is called a primitive n-th root of 
1 if its order is n. Thus the n-th roots of 1 in K are the roots of the 
equation X” = 1 in K. 

If a, b are in Z, (a, b) denotes their g.c.d., i.e. the element d of N such 
that dZ=aZ+ bZ. If R is any ring, the mapping n+n. 1, of Z into R 
maps Z onto the subring Z.1, of R, known as “the prime ring” in R; 
the kernel of the morphism n+n. 1, of Z onto Z. 1, is a subgroup of Z, 
hence of the form m.Z with mEN; if R is not (0) and has no zero-divisor, 
m is either 0 or a rational prime and is known as the characteristic of R. 
If m=O, n+n.1, is an isomorphism of Z onto Z.l,, by means of which 
Z. 1, will frequently be identified with Z. If the characteristic of R is a 
prime p > 1, the prime ring Z. 1, is isomorphic to the prime field F,. 

We shall consider left modules and right modules over non-commu- 
tative rings, and fix notations as follows. Let R be a ring; let A4 and N 
be two left modules over R. Then morphisms of M into N, for their 
structures as left R-modules, will be written as right operators on M; in 
other words, if o! is such a morphism, we write it as m+ma, where mGM; 
thus the property of being a morphism, apart from the additivity, is 
expressed by r(ma) = (rm)a for all rE R and all me M. This applies in 
particular to endomorphisms of M. Morphisms of right R-modules are 
similarly written as left operators. This notation will be consistently 
used, in particular in Chapter IX. 
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As morphisms of fields into one another are assumed to be “unitary” 
(as explained above), such morphisms are always injective; as we have 
said, we sometimes refer to a morphism of a field K into a field L as an 
“isomorphism”, or also as an embedding, of K into L. In part of this 
book, we use for such mappings the “functional” notation; beginning 
with Chapter VIII, Q 3, where the role of Galois theory becomes essential, 
we shall use for them the “exponential” notation. This means that such 
a mapping 1 is written in the former case as x-+2(x) and in the latter 
case as x-+x’. If L is a Galois extension of K, and 1,~ are two auto- 
morphisms of L over K, we define the law of composition (1,~)-+,4~ in 
the Galois group g of L over K as being identical with the law (,$p)+jlop 
in the former case, and as its opposite in the latter case; in other words, 
it is defined in the former case by (ilp)x=,@x), and in the latter case 
by x~P = (x”)p. For instance, if K’ is a field between K and L, and h is the 
corresponding subgroup of g, consisting of the automorphisms which 
leave fixed all the elements of K’, the automorphisms of L over K which 
coincide on K’ with a given one ;1 make up the right coset Ah when the 
functional notation is used, and the left coset h2 when the exponential 
notation is used. 

When A, B, C are three additively written commutative groups 
(usually with some additional structures) and a “distributive” (or “bi- 
additive”, or “bilinear”) mapping (a, b)-+ab of A x B into C is given, 
and when X, Y are respectively subgroups of A and of B, it is customary 
to denote by X. Y, not the image of X x Y under that mapping, but the 
subgroup of C generated by that image, i.e. the group consisting of the 
finite sums cxiyi with xieX and yieY for all i. This notation will be 
used occasionally, e.g. in Chapter V. 

For typographical reasons, we frequently write exp(z) instead of e’, 
and e(z) instead of exp(2rciz)=ezniz, for ZEC; ordinarily e(z) occurs only 
for ZER. 

Finally we must explain the method followed for cross-references; 
these have been inserted quite generously, with a view to helping the 
inexperienced reader; the reader is advised to follow them up only when 
the argument is not otherwise clear. Theorems have been numbered 
continuously throughout each chapter; the same is true for propositions, 
for lemmas, for definitions, for the numbered formulas. Each theorem 
and each proposition may be followed by one or several corollaries. 
Generally speaking, theorems are to be regarded as more important 
than propositions, but the distinction between them would hardly stand 
a close scrutiny. Lemmas are merely auxiliary results. Not all new con- 
cepts are the object of a numbered definition; all concepts, except those 
which are assumed to be known, are listed in the index at the end of the 
book, with proper references. Formulas are numbered only for purposes 
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of quotation, and not as an indication of their importance. When a 
reference is given thus: “by prop. 2”, “by corollary 1 of th. 3”, etc., it 
refers to a result in the same 9; when thus: “by prop. 2 of Q 2”, “by th. 3 
of 5 3”, etc., it refers to another 0 of the same chapter; when thus: “by 
prop. 2 of Chap. IV-2”, it refers to proposition 2 of Chapter IV, 4 2. 
Numbers of Chapter and Q are given at the top of every page. A table of 
the most frequently used notations is given below, in the order of their 
first appearance. 

Table of notations 

Chapter I. 
$2: mod,, mod,, mod,. 
0 3: Ix],,, Ixlao, Q, =R, 1x1”, Q, (v=rational prime or 00). 
0 4: K (any p-field), R, P, TC, q, ord,, ord, M ‘, M. 

Chapter II. 
5 3 : 1+ P” (as subgroup of K x for n > 1). 
0 5: (s,s*)~, (g,g*), G*, H,, pr*, L,, v, [u,u’]~, [u,~‘], x, cd(x). 

Chapter III. 
5 1: (for a place u of an A-field k) [xl,, k,, rv, pv (for q”, see Chap. VII-l); 

cc (as a place of Q), wlu, E,= EO,k,, E”, d,, LX,. 
§ 3 : End(E), Tr.d,lk, N,,, Trkglk, Nkflk. 

Chapter IV. 
0 1: P> Pm, k,(P)> k,, x, xv, Et,(PA E,, &A, d,,(p,4, W/Q,, (Elk)~. 
9 3: Au@), -@‘T, d,i(P>4X, I&. 
Q 4: k:, M, Q(P)=k,(P)“, Ql(P), E(P). 

Chapter V. 
9 2: km, Em, r, L,. 
9 3: P,, I(k), id(4, P(k), h, WI). 
$ 4: Idx A &I, R, ck. 

Chapter VI. 
d&a), a > k W4, WI, P(k), D,(k), g, div(x). 
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6 1: 4”, ikw-. 4 6). 
§ 2: @*, nq,, JJ”. 
9 3: Q(G), Q,, 0,. 

Chapter VII. 

§ 4: G,=k;lk”, WGJ, 01, ms, G:, Q,, M, N, co”, nw”, Z(o,@). 
5 6: G,(s), G(S), ck (Cf. Chap. v-4, G,(S), [k(S), z,(s). 

9 7: f(u), sw A, B, N,, @a,, IC = fl~v, a = (a,), b = (b,), G,, A(u), n,, I&o), 
f, ‘4 (ST 4. 

9 8: Gp, l(P), D(P). 

Chapter VIII. 
9 1: K, K’, n, q, R, P, n, q’, R’, P’, n’, f, e, Tr, N, 93, d, D(K’/K), D, 1’. 
$2: A. 
0 3: VW), 9,. 
0 4: b, 1, %k’lk, 92, a. 

Chapter IX. 

Chapter X. 
9 1: Hom(K w), Hom(KL; KM), End(KL), Aut(vL). 
9 3 : 2,X’, 2”; 2, u. 

Chapter XII. 
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Chapter I 

Locally compact fields 

0 1. Finite fields. Let F be a finite field (commutative or not) with the 
unit-element 1. Its characteristic must clearly be a prime p > 1, and the 
prime ring in F is isomorphic to the prime field F, = Z/pZ, with which 
we may identify it. Then F may be regarded as a vector-space over F,; 
as such, it has an obviously finite dimension f, and the number of its 
elements is q=pJ. If F is a subfield of a field F’ with q’=pf’ elements, F’ 
may also be regarded e.g. as a left vector-space over F; if its dimension 
as such is d, we have f’=df and q’=q*=p*f. * 

THEOREM 1. All finite fields are commutative. 

This theorem is due to Wedderburn, and we will reproduce Witt’s 
modification of Wedderburn’s original proof. Let F be a finite field of 
characteristic p, 2 its center, q=pf the number of elements of Z; if n is 
the dimension of F as a vector-space over Z, F has q” elements. The 
multiplicative group Fx of the non-zero elements of F can be partitioned 
into classes of “conjugate” elements, two elements x,x’ of Fx being called 
conjugate if there is YE Fx such that x’ = y- ‘xy. For each XE F ‘, call 
N(x) the set of the elements of F which commute with x; this is a sub- 
field of F containing Z; if 6(x) is its dimension over Z, it has qacx) elements. 
As we have seen above, n is a multiple of 6(x), and we have 6(x) < n unless 
XEZ. As the number of elements of Fx conjugate to x is clearly the index 
of N(x) x in F x, i.e. (q” - 1)/(q6’“’ - l), we have 

(1) q”-l=q-l+~qn_l 
x qw - 1’ 

where the sum is taken over a full set of representatives of the classes of 
non-central conjugate elements of F ‘. Now assume that n> 1, and call 
P the “cyclotomic” polynomial n(T- 0, where the product is taken 
over all the primitive n-th roots of 1 in the field C of complex numbers. 
By a well-known elementary theorem (easily proved by induction on n), 
this has integral rational coefficients; clearly it divides (T”- l)/(Td-- 1) 
whenever 6 is a divisor of n other than n. Therefore, in (l), all the terms 
except q - 1 are multiples of P(q), so that P(q) must divide q - 1. On the 
other hand, each factor in the product P(q) = n (q - i) has an absolute 
value > q- 1. This is a contradiction, so that we must have n= 1 and 
F=Z. 
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We can now apply to every finite field the following elementary result: 

LEMMA 1. If K is a commutative field, every finite subgroup of K x 
is cyclic. 

In fact, let f be such a group, or, what amounts to the same, a finite 
subgroup of the group of all roots of 1 in K. For every n > 1, there are at 
most n roots of X”= 1 in K, hence in r; we will show that every finite 
commutative group with that property is cyclic. Let CI be an element of r 
of maximal order N. Let /I be any element of r, and call n its order. If n 
does not divide N, there is a prime p and a power q=p” of p such that q 
divides n and not N. Then one verifies at once that the order of cr/P is 
the 1. c. m. of N and q, so that it is > N, which contradicts the definition of 
N. Therefore n divides N. Now X”= 1 has the n distinct roots &“ln in r, 
with 0 S i < n; as fi is a root of X”= 1, it must be one of these. This shows 
that a generates r. 

THEOREM 2. Let K be an algebraically closed field of characteristic 
p > 1. Then, for every f  > 1, K contains one and only one field F = F, 
with q = pf elements; F consists of the roots of X4=X in K; F ’ consists 
of the roots of X4- ’ = 1 in K and is a cyclic group of order q - 1. 

If F is any field with q elements, lemma 1 shows that F x is a cyclic 
group of order q - 1. Thus, if K contains such a field F, F ’ must consist 
of the roots of X4- ’ = 1, hence F of the roots of X4-X = 0, so that both 
are uniquely determined. Conversely, if q = pf, x-+x4 is an automorphism 
of K, so that the elements of K which are fixed under it make up a field F 
consisting of the roots of X4-X = 0; as it is clear that X4-X has only 
simple roots in K, F is a field with q elements. 

COROLLARY 1. Up to isomorphisms, there is one and only one field 
with q = pf elements. 

This follows at once from theorem 2 and the fact that all algebraic 
closures of the prime field F, are isomorphic. It justifies the notation F, 
for the field in question. 

COROLLARY 2. Put q = pf, q’ = pf’, with fa 1, f’> 1. Then F,, contains 
a field Fq with q elements if and only if f  divides f’; when that is so, F,, 
is a cyclic extension of Fq of degree f’/J; and its Galois group over F, is 
generated by the automorphism x-+x4, 

We have already said that, if F,, contains F,, it must have a finite 
degree d over F,, and then q’=qd and f’=df. Conversely, assume that 
f = df, hence q’ = qd, and call K an algebraic closure of F,.; by theorem 2, 
the fields F,, F,., contained in K, consist of the elements of K respectively 
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invariant under the automorphisms a,/? of K given by x + x4, x + x4’; as 
b=ad, F,, contains F,. Clearly a maps F,, onto itself; if 50 is the auto- 
morphism of F,, induced by a, F, consists of the elements of F,, invariant 
under cp, hence under the group of automorphisms of F,. generated by cp; 
this group is finite, since ‘pd is the identity; therefore, by Galois theory, 
it is the Galois group of F,. over F, and is of order d. 

COROLLARY 3. Notations being as in corollary 2, assume that f’ = df: 
Then, for every n> 1, the elements of Fq., invariant under x+x4”, make 
up the subfield of F,, with qr elements, where r = (d, n). 

Let K be as in the proof of corollary 2; the elements of K, inva- 
riant under x+x4”, make up the subfield F’ of K with q” elements; then 
F’nF,, is the largest field contained both in F’ and F,,; as it contains 
F,, the number of its elements must be of the form q’, and corollary 2 
shows that r must be (d,n). 

0 2. The module in a locally compact field. An arbitrary field, provided 
with the discrete topology, becomes locally compact; thus the question 
of determining and studying locally compact fields becomes significant 
only if one adds the condition that the field should not be discrete. 

We recall the definition of the “module” of an automorphism, which 
is basic in what follows. For our purposes, it will be enough to consider 
automorphisms of locally compact commutative groups. Let G be such 
a group (written additively), 2 an automorphism of G, and a a Haar 
measure on G. As the Haar measure is unique up to a constant factor, ;1 
transforms a into ca, with CER; ; the constant factor c, which is clearly 
independent of the choice of a, is called the module of J. and is denoted by 
mod&). In other words, this is defined by one of the equivalent formulas 

(2) 44X))=mo40a(X), Sf(~-‘(x))da(x)=modo(~)Sf(x)da(x), 

where X is any measurable set, f any integrable function, and 
0 < a(X) < + co, s fd a + 0; the second formula may be written symbolical- 
ly as da@(x)) = mod,(l) d a(x). If G is discrete or compact, the first formula 
(applied to X = {0}, X = G, respectively) shows that the module is 
1. Obviously, if A, A’ are two automorphisms of G, the module of /z 0 A’ 
is the product of those of I and 1’. We shall need the following lemma: 

LEMMA 2. Let G’ be a closed subgroup of G, and A an automorphism 
of G which induces on G’ an automorphism A’ of G’. Put G”= G/G’, and 
call 1” the automorphism of G” determined by A modulo G’. Then: 

mod,@)=mod,(~)mod,.(l”). 

In fact, it is well-known that one can choose Haar measures a,a’,a” 
on G, G’, G” so as to have, for every continuous function f with compact 
support on G: 
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here I denotes the image of x in G”, and the function Sf(x + y)dcc’(y), 
which is written as a function of XEG, but is constant on the classes 
modulo G’ in G, is to be understood as a function of x on G” in the obvious 
manner. Applying I to both sides, one gets the conclusion of the lemma. 

Now, if K is any topological field, and aEKX, x-+ax and x+xa 
are automorphisms of the additive group of K; if K is locally compact, 
we may consider their modules. Similarly, if I/ is a topological left vector- 
space over K, v + a u is an automorphism of V for every a EK ’ ; if V is 
locally compact, we may consider the module of this automorphism; 
this will be denoted by mod,(a); we also define mod,(O) to be 0. In other 
words, if p is a Haar measure on I/ and X any measurable subset of V 
with 0 <p(X) < + cc (e.g. any compact neighborhood of 0 in V), mod,(a) 
is defined, for all aE K, by 

mod,(a) = s 

In particular, for any locally compact field K, we define mod,(a) to be 
the module of x + a x in K if a f: 0, and 0 if a = 0. It will be seen later that 
the module of x+x a is always the same as that of x--f ax. Clearly, if 
K =R, C orH,mod,(a)is equal, respectively, to 1 al, 1 aI2 =aZor 1 aI4 =(aii)2. 

In the rest of this section, K will denote, once for all, a nondiscrete 
locally compact field (commutative or not), and a a Haar measure on 
the additive group of K. 

PROPOSITION 1. The function mod, is continuous on K, and mod,(a b) = 
=mod,(a)mod,(b) for all ae:K, ~EK. 

The latter assertion is obvious. Now let X be a compact neighborhood 
of 0 in K. For any a E K and any E > 0, there is an open neighborhood U 
of the compact set aX such that a(U)< a(aX) +E: let W be a neighbor- 
hood of a such that WX c U. Then, for all XE W we have 

mod,(x) <mod,(a) + a(X)- ’ E. 

This shows that mod, is upper semicontinuous. In particular, it is con- 
tinuous at 0. As mod,(x) =mod,(x- ‘))I for x $0, it is also lower semi- 
continuous everywhere on K ‘, hence continuous on K ‘. 

As K is not discrete, prop. 1 shows that there is, for every E > 0, a E K 
such that 0 <mod,(a) <E, hence also, for every M > 0, beK such that 
mod,(b) Z M. As mod, is not bounded, K cannot be compact. 

PROPOSITION 2. For all m > 0, the set B, of the elements x of K such 
that mod,(x) <m is compact. 
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Let V be a compact neighborhood of 0 in K; let W be a neighborhood 
of 0 such that WVc r As above, we can choose IE T/n W such that 
0 <mod,(r) < 1; by induction on n, we have FE I/ for all n z 1. If r’ is any 
limit point of the sequence {rn},21, mod,(r’) must be 0, since mod,(F) 
has the limit 0 for n-+ + co. Therefore that sequence can have no other 
limit point than 0; as it is contained in the compact set V, it has the limit 0. 
Now take m>O and UEB,; as Pa tends to 0, there is a smallest integer 
v~Osuchthatr’a~~;ifaisnotin~,thenr”~’a~I/,hencer”a~T/-(rI/). 
Call X the closure of V-(r v); clearly X is compact, and 0 is not in X; 
therefore, if we put p = inf,,, mod,(x), we have p > 0. Let N be an integer 
such that mod,(r)N <n/m. Then, if aE B,, a+ V, and v is defined as above, 
we have 

hence v<N. This proves that B, is contained in the union of the com- 
pact sets V, r-‘V,...,r- NV. As prop. 1 shows that B, is closed, this 
completes the proof. 

COROLLARY 1. The sets B,, for m > 0, make up a fundamental system 
of neighborhoods of 0 in K. 

Let V be any compact neighborhood of 0 in K; take 
m > ~up,,~mod,(x), so that B, 1 V; call X the closure of B, - V, and put 
m’ = inf xsXmod,c(x). Then 0+X and XcB,, so that, by prop. 2, X is 
compact; therefore 0 <m’ < m. Take 0 <p < m’; then B, c B,, B,nX = @9, 
hence B, c V. 

COROLLARY 2. For UE K, lim,,+,a” = 0 if and only if mod,(a) < 1. 

COROLLARY 3. A discrete subfield of K is finite. 

Let L be such a field. If UE L, we must have mod,(a) d 1, since other- 
wise, by corollary 2, the sequence {a-n},a0 would be contained in L and 
not discrete. Therefore L is a discrete subset of the compact set B,, 
hence finite. Of course this cannot happen if K is of characteristic 0. 

THEOREM 3. Let V be a topological left vector-space over K, and 
let V’ be a finite-dimensional subspace of V, with a basis {ul, . . . , v,}. Then 
the mapping 

of K” onto V’ is an isomorphism for the structures of K” and V’ as topological 
left vector-spaces; V’ is closed in V and locally compact. 

Let f  be the mapping defined above; it is bijective, K-linear, and 
continuous by the definition of a topological vector-space. In order to 
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show that it is an isomorphism, it is enough to prove that f-r is conti- 
nuous, i.e. that f is an open mapping; in view of corollary 1 of prop. 2 
and of the linearity off, we need only show that the image of (I?,)” by f 
contains an neighborhood of 0 in I/” for every m >O. Call S the subset 
of K” defined by 

sup,mod,(x,) = 1. 

Then 04s; by prop. 1, S is closed; it is contained in (B,)“, hence compact 
by prop. 2. Therefore O+f(S), and f(S) is compact. Hence there exists a 
neighborhood W of 0 in r/: and a neighborhood of 0 in K which we may 
assume to be of the form B, with E > 0, such that B, WC V-f(S), i.e. 
y wnf(S)=O h w  enever mod,(y) GE. Now take m>O, and take a~ K 
such that 0 <mod,(a) < me. Let u = cxiui be any point in V’n a w  other 
than 0, and take h such that supimod,(xJ =mod,(x,); then x,#O. Put 
+=x,1 xi for l<ibn, and 

Ur=$XfUi=X~lU. 
1 

As (x;,...,xh) is in S, we have u’~f(S); as UEU~ we have u’~yW with 
y = xi i a; by the definition of W and E, this implies mod,(y) > E, hence 
mod&x,) < E- ’ mod,(a) <m. Therefore (x1,. . ., x,) is in (B,)“, and u is 
in the image of that set by J We have thus shown that this image contains 
V’n a W, which is a neighborhood of 0 in I’. Let now w  be in the closure 
of V’ in r/: and apply what we have proved to the finite-dimensional 
subspace V’ of V generated by V and w; we see then that V’ must be 
closed in V’. As this implies that WE V, it completes the proof of the 
theorem. 

COROLLARY 1. Every finite-dimensional left vector-space ouer K can 
be provided with one and only one structure of topological left uector- 
space ouer K. 

In fact, if V is of dimension n, one can define such a structure on V by 
means of any K-linear bijective mapping of K” onto I’; the unicity is an 
immediate consequence of th. 3 applied to V From now on, every such 
vector-space will tacitly be assumed to carry the structure defined by 
this corollary. 

COROLLARY 2. Zf V is a locally compact topological left vector-space 
ouer K, then V has a finite dimension d ouer K, and mod,(u)=mod,(u)d 
for every UE K. 

The latter assertion, for a space of dimension d, is an immediate 
consequence of Fubini’s theorem and of the fact that such a space is 
isomorphic to Kd by corollary 1. Now assume merely that V is locally 
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compact, and take a E K such that 0 <mod,(a) < 1. Then, by corollary 2 
of prop. 2, lima”=O, hence mod,(a)< 1. Let V” be a subspace of V of 
finite dimension 6; by th. 3, it is closed in V; put V’= V/V’. By lemma 2 
we have then 

mod,(a) = mod,~(a)mod,.(a) = mod,(a)dmod,.(u), 

and therefore, since mod,,,(u) also must be < 1 if I” #{O}, and is 1 if 
v= (0): 

mod,(u) <mod,(a)‘. 

This gives an upper bound for 6. valid for the dimension of all finite- 
dimensional subspaces of V; therefore I/ itself has a finite dimension. 

If V is a left vector-space over K, of finite dimension II, topologized 
as we have said above, Fubini’s theorem shows at once that every sub- 
space of I/’ of dimension n’ < n is of measure 0. Now let A be any K-linear 
mapping of I/ into V; if it is of rank n, it is an automorphism of V also in 
the topological sense, and we may consider its module mod,(A). If it is 
of rank n’ <n, it maps V’ onto a subset of I/ of measure 0, and we define 
mod,(A) to be 0. 

COROLLARY 3. Let A be an endomorphism of a left vector-space V of 
finite dimension over K. If K is commutative, then mod,(A) = mod,(det A). 

Call n the dimension of I/ If A is of rank <n, the assertion is clear. 
If not, identify V with K” by choosing a basis for V. It is well-known that 
every automorphism of K” can be written as a product of automorphisms 
of the following three types: (a) permutations of the coordinates; 
(b) mappings of the type 

(X1,%, ..., x,)+(axl,x2,...,x,) 

with a~ K x ; (c) mappings of the type 

( 

n 

(Xl,-%, . ..Y x,) ~ X,+ CUiXi,X2,...,X, 
i=2 ) 

For type (a), the assertion is obvious; for types (b) and (c), it follows 
from a straightforward application of Fubini’s theorem, just as in classi- 
cal analysis (where one proves the theorem for the case K = R). 

PROPOSITION 3. The function mod, induces on K” un open homomor- 
phism of K ’ onto a closed subgroup r of R :. 

Call r, r’ the images of K” and of K under the mapping mod,; 
clearly r is a subgroup of R; , and T’=Z’u (0). For every m>O, the 
intersection of r’ with the closed interval [O,m] is the image of B, under 
mod,; by prop. 1 and 2, this is compact; therefore r’ is closed in R,, 
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and r is SO in R: . Now call U the kernel of mod, in K ‘, i. e. the set 
{xEKJmodK(x)= l}. Let I/ be any neighborhood of 1 in K ‘, and V its 
image under mod,; in order to prove the openness of the homomorphism 
mod, of K x onto r, we have to show that V” is a neighborhood of 1 in r. 
Assume that this is not so; then there is a sequence (y,) in r-- V’ such 
that lim y, = 1. For each n, let U,E K ’ be such that Y,, = mod,(a,). By 
prop. 2, the sequence (a,) has at least one limit point a; clearly mod,(a) = 1, 
i.e. UE U. But UV is a neighborhood of U, and so there must be some n 
such that U,E U V, hence YE v’. This contradicts the assumption. 

THEOREM 4. There is a constant A>0 such that 

(3) mod& + y) < A sup(mod,(x), mod,(y)) 

,for all XEK, ~GK. If (3) is valid ,for A= 1, then the image r qf K” under 
mod, is discrete in R; . Morever, (3) is valid for 

A = SUP,,K, modn(x) < I modal + X), 

and this is the smallest value of A for which it is valid. 

Define A by the last formula; clearly 1 <A < + co. For x = y = 0, (3) 
is obvious; otherwise we may, after interchanging x and y if necessary, 
assume that x # 0 and mod,(y) <mod,(x). Put z = y x- ‘; then mod,(z) < 1, 
hence mod,(l + z) < A, and therefore 

mod,(x + y) = mod,(l + z)modK(x) <A mod,(x). 

This proves (3). Also, taking y= 1 and XEB, in (3), with B, as in prop. 2, 
we see that the value we have chosen for A is the smallest for which (3) 
can be valid. Now assume A= 1. Then the image of 1 +B, by mod, is 
contained in the interval [0, l] ; as this, by prop. 2 and 3, must contain a 
neighborhood of 1 in r, r must be discrete. 

COROLLARY. Zf (3) is valid with A= 1, then mod,(x + y)= mod,(x) 
whenever mod,(y) < mod,(x). 

As (- 1)’ = 1, we have mod,( - l)= 1, hence mod&-y) =mod,(y). 
As x = (x + y) + ( - y), our assumptions imply 

mod,(x) d ~w(~odK(x +Y), md,(y)) <n-m-l,(x), 

hence the conclusion. 

DEFINITION 1. The inequality (3) with A = 1 is called the ultrametric 
inequality; if this is valid, then mod,, and K itself, are said to have the 
ultrametric property, or to be ultrametric. 

$j 3. Classification of locally compact fields. Here we shall need the 
following elementary lemma : 
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LEMMA 3. Let F be a ,function on the set N of natural integers, with 
values in R,. Assume that F(mn)= F(m)F(n) for all m, n, and that there is 
A > 0 such that 

F(m + n) d A w@‘(m), F(n)) 

for all m, n. Then either F(m)< 1 for all m, or there is I >O such that 
F(m) = m* for all m. 

The first assumption on F implies, for m=O, that F(O)=0 unless F 
is the constant 1, and, for m= 1, that F(l)= 1 unless F is the constant 0; 
it also implies that F(mk) = F(m)k for all integers k > 1. Leaving aside the 
trivial cases where F is the constant 0 or 1, we may assume that F(0) = 0 
and F(mk) = F(m)k for all integers k > 0. Put f(m) = sup(0, log F(m)), this 
being understood to mean in particular that f(m) = 0 whenever F(m) = 0. 
Our lemma amounts now to saying that f(m) = 1 log m for all m > 2, with 
some constant I > 0. Put a = sup(0, log A); then we have, for all m, n, k: 

f(m”) = kf(m), .f(mn) G(m) +f(nh .f(m + 4 G a + sup(f(m), f(n)). 

The last relation gives, by induction on r: 

(4) 
I  

f(Z ) m, <rr+sup,(f(m,)). 1=0 
Now let m, n be integers 22; m may be expressed in the form 

m= jj eini, 
i=O 

with n’dm<rffl, and O<ei<n for O<i<r. Put 

b = su~(f(Q f(l), . . ., f(n - 1)). 

Then we have, for every i: 

f(ei n’) d b + if(n), 

and therefore, in view of (4): 

f(m) < r a + b + r-f(n). 

AS n’ < m, i.e. r log n < log m, this gives 

f(m)-- a+fW + b 
logm ’ logn logm ’ 

In this inequality, replace m by mk; this does not change the left-hand side, 
and,fork-++co,weget 

JY!!!l ~ 
logm 

< a+.f(n) 
logn . 
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Now replace n by nk; for k-+ + 00, we get 

f(m) G f(n) 
logm logn ’ 

Interchanging m and n, we see that f(m)/logm is constant for m>2; as 
we have observed above, this proves the lemma. 

Now we consider again a non-discrete locally compact field K. For 
greater clarity, in the rest of this section, we shall denote by 1, (not by 1) 
the unit-element of K; then the prime ring in K consists of the elements 
rn. 1, with mgZ; if K is of characteristic p> 1, then p’ l,=O. For meN, 
we write F(m)=mod,(m . lK); then, for every mEZ and every x~K, we 
have mod,(mx) = F(lml)mod,(x). 

LEMMA 4. Assume that F is bounded, i.e. that mod, is bounded on 
the prime ring in K. Then F 6 1, and mod, is ultrametric on K. 

Since F(mn)=F(m)F(n), the first assertion is obvious. Now let A 
beasinth.4of§2;taken31,putN=2”,andletx,,...,x,beNelements 
of K. By induction on n, one gets the inequality 

mod, i$lxi ( 1 
< A”sup,(mod,(x,)). 

Replacing some of the xi by 0, one sees that this same inequality remains 
valid whenever N < 2”. Applying this to the relation 

(X + y)Z”= if (y ) xiy2”-i ) 

we get 

mod,(x + y)‘” < A”+ ’ sup, mod,(x)imod,(y)2”-i 

Assume for instance that mod,(y) < mod,(x); as F < 1, we get: 

mod,(x + y)“” <A”+ 1 mod,(x)2”. 

Thisissoforalln>l;forn-++co,weget 

mod& + y) d mod,(x), 

i.e. the ultrametric inequality. 

Next we recall the definition of the usual “valuations” on the field Q 
of rational numbers. Let first p be a rational prime. Every x E Q ’ can be 
written in one and only one way in the form x=p”alb, where n, a, b are 
integers, b >O, and a and b are relatively prime to each other and to p; 
when that is so, put IxlP=p-“; also, put lO[,=O. The function x + lxla 
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defined in this way on Q is known as the p-adic valuation on Q; clearly it 
satisfies the ultrametric inequality; it determines a topology on Q, viz. 
the one defined by the distance function 

The completion of Q for this metric is the field of p-adic numbers and is 
denoted by Q,; the closure of Z in that field is the ring of p-adic integers 
and is denoted by Z,. Clearly the p-adic valuation on Q can be extended 
by continuity to Q, and remains ultrametric on Q,; this extension is 
still denoted by (~1~. It is easily seen that Z, is compact (the reason for 
this may be expressed by saying that Z, is the “projective limit” of the 
finite groups Z/p”Z for n+ + co); as it is a neighborhood of 0 in Qp, Q, 
is locally compact; clearly it is not discrete. 

On the other hand, we shall write 1x1, whenever convenient, instead 
of 1x1, for the “ordinary” absolute value on Q and on R. As R is nothing 
else than the completion of Q for the distance function lx-y] m, we shall 
sometimes write Q, for R. Thus the symbol Q,, where u may be either 00 
or a rational prime, denotes any one of the completions Q, =R and 
Q, of Q. 

THEOREM 5. Let K be a non-discrete locally compact field; put 

F(m)=mod,(m . lK) ftir rng N. Then: either (a) K is of characteristic 
p>l,and thenF(m)=Ofirm-O(mod.p)andF(m)=l for(m,p)=l;or 
(b) K is a division algebra of finite dimension S over a field Q,, and then 
F(m) = (ml:. 

By prop. 1 and th. 4 of 9 2, F satisfies the assumptions in lemma 3; 
hence, by that lemma, it is of the form m+m’ with A>O, or it is < 1. 
Assume that we are in the latter case; with B, as in prop. 2 of 0 2, this 
means that the sequence (m . lK), for rnE N, is contained in B,; as B, is 
compact, it must have at least one limit point a. Then, by corollary 1 of 
prop. 2, there are, for every E>O, infinitely many meN such that 
mod,(m . 1, -a) <s. Let m, m’ be two such integers, with m cm’. Since 
F d 1 implies, by lemma 4, that mod, is ultrametric, we have then 

mod,(m’ .l, -m . lK) GE, ~ 

i.e. F(m’ - m)< E. In particular, this shows that there are integers n 3 1 
such that F(n)< 1; let p be the smallest of such integers. Since F(mn)= 
= F(m)&‘(n) for all m, n, clearly p must be a prime. For any XE N, we have 
F(px)< 1, hence F(l +px)= 1 by the corollary of th. 4, $2. For any 
integer m3 1, prime to p, we have mp- ’ E 1 (p), hence F(mP- ‘) = 1 by 
what we have just proved, and therefore F(m) = 1. If K is of characteristic 
p’> 1, then F(p’)=O, so that p’ can be no other than p; then F is as stated 
in case (a) of our theorem. If K is of characteristic 0, F(p) cannot be 0, 
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and we may put F(p)=p-‘. with L>O; then F(m)=lmli for all m, as one 
sees at once by writing m=p”m’ with (m’,p)= 1. Accordingly, whenever 
K is of characteristic 0, F must be of the form m--+lmlt with 1>0. The 
mapping n -+ n . 1, of Z onto the prime ring Z . 1, of K is then an algebraic 
(not necessarily a topological) isomorphism, which can be extended to 
an isomorphism of Q onto the prime field in K; to simplify the language, 
identify the latter with Q by means of that isomorphism. From what we 
have found about F, it follows at once that mod, induces the function 
x+1x1: on Q; therefore, by corollary 1 of prop. 2, $2, the topological 
group structure induced on Q by that of K is the one determined by the 
distance function Ix-~1,. As the closure of Q in K is locally compact, 
hence complete for that structure, it follows that this closure is isomorphic 
to the completion Q, of Q for the valuation U. As the prime ring, hence 
also the prime field, are clearly contained in the center of K, the same is 
true of Q,. Now K can be regarded as a vector-space over Q,; as such, 
by corollary 2 of th. 3, $2, it must have a finite dimension 6, and we have, 
for every XEQ”, mod,(x)=modo,(x)“. To complete the proof, it only 
remains to be shown, in the case u= co, that mod,(m)= m for WE N, 
which is clear, and, in the case v=p, that modoJp)=p- ‘; this follows 
at once from the fact that Z, is a compact neighborhood of 0 in Qp, and 
that its image p. Z,, under x -+px, is a compact subgroup of Z, of 
index p, so that its measure, for any Haar measure CI on Qp, is p- i a(Z,). 
It will be convenient to formulate separately what has just been proved: 

COROLLARY. In the case (b) of theorem 5, mod,(x) = 1x1: for XEQ,. 

DEFINITION 2. A non-discrete locally compact field K will be called 
a p-field if p is a prime and mod,(p. lK) < 1, and an R-Jield if it is an algebra 
over R. 

By lemmas 3 and 4 and th. 4 of § 2, the image P of K ’ under mod, is 
discrete when K is a p-field, so that such a field cannot be connected; this 
shows that a topological field is an R-field if and only if it is connected and 
locally compact. It is well known that there are no such fields except R, 
C and the field H of “ordinary” (or “classical”) quaternions; a proof for 
this will be included in Chap. 1X-4. 

9 4. Structure of p-fields. In this section, p will be a prime and K will 
be a p-field with the unit element 1. 

THEOREM 6. Let K be a p-field; call R, R ’ and P the subsets of K 
respectively given by 

R= (xEKImod,(x)< l}, R” = {xEKJmodK(x)= l}, 
P=‘(xEKlmodK(x)< l}. 
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Then K is ultrametric; R is the unique maximal compact subring of K; 
R” is the group of invertible elements of R; P is the unique maximal left, 
right or two-sided ideal of R, and there is rc~P such that P = I-CR = R rc. 
Moreover, the residual ,field k= R/P is a finite field qf characteristic p; 
if q is the number of its elements, the image P of K X in RT under mod, 
is the subgroup of R; generated by q; and mod,(z) ‘4-l. 

The set R is the same as the one previously denoted by B, ; it is com- 
pact, and so is Rx. By th. 5 of 5 3, mod, is d 1 on the prime ring of K; 
therefore, by lemma 4 of !J 3, K is ultrametric. This, by th. 4 of 5 2, is the 
same as to say that R + R = R; as R is obviously closed under multipli- 
cation, it is a ring. Clearly every relatively compact subset of K which is 
closed under multiplication is contained in R; therefore R is the maximal 
compact subring of K. The invertible elements of R are those of R”. 
By th. 4 of Q 2, P is a discrete subgroup of R; ; let y be the largest element 
of f which is < 1, and let ZE K ’ be such that mod,(z)= y. Clearly y 
generates P; therefore, for every XE K x, there is one and only one neZ 
such that mod,(x) = y”; then xzpn and n-“x are in R ‘. It is clear that 
P = rc R = R rcn; this implies that P is compact. As R-P = R x, P has the 
maximal properties stated in our theorem. As R is a neighborhood of 0, 
and R = R + R, R is open; so is P; as R is compact, k = R/P is finite. As 
p. 1 E P, the image of p. 1 in k is 0, so that k is of characteristic p; if it 
has q elements, q is the index of P = rc R in the additive group of R. There- 
fore, if CI is a Haar measure on K, a(R) = qa(n R), hence mod,(rc) = q- ‘. 
This completes the proof. 

DEFINITION 3. With the notations of theorem 6, q will be called the 
module of’ K; any element TC of K ’ such that P = n R = R 71 will be called 
a prime element of K. For any XE K x, the integer n such that mod,(x) = q-” 
will be denoted by ord,(x). For each nE Z, one writes P”= I? R = R 7~“. 

We will write ord(x), instead of ord,(x), when there is no danger of 
confusion. We also put ord(O)= + co; then P” is the set of the elements 
x of K such that ord(x) > n. With these notations, we can state as follows 
some corollaries of theorem 6 : 

COROLLARY 1. Let (x0,x,, . ..) be any sequence with the limit 0 in K. 

Then the series+xmxi is commutatively convergent in K. 
0 

For each n E N, put 

E, = SUpi, n mod,(xi). 

Our assumption means that lime,=O. Let now S, S’ be two finite sums 
of terms in the series C xi, both containing the terms x0,x1, . . . , x, and 
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,possibly some others. The ultrametric inequality gives mod,@ -S’) < E,. 
The conclusion follows from this at once (the “filter” of finite sums of 
the series 1 xi is a “Cauchy filter” for the distance-function mod,(x - y)). 

C~R&ARY 2. Let 5 be an element of P, other than 0; put n=ord(& 
and let A be a full set of representatives of the classes modulo P” in R. 
Then, for all VEZ, every XEP”” can be expressed in one and only one way 
in the form 

Cm 

with aiE A for all i Z v. 

Writing x=x1(’ with x’ER, we see that it is enough to deal with the 
case v = 0. Then one sees at once, by using induction on N, that one can 
determine the aiE A in one and only one way by the condition 

x- ,f ait’ (pncN+ ‘)) 

i=O 

for N=O,l, . . . This is equivalent with the assertion in our corollary. 

COROLLARY 3. Every automorphism of K (as a topological fieldi 
maps R onto R, P onto P, and has the module 1 when it is viewed as an auto- 
morphism of the additive group of K. 

COROLLARY 4. For every aE Kx, the automorphisms x -+ax and 
x-txa of the additive group of K have the same module. 

This follows at once from corollary 3, applied to the automorphism 
x+a - ’ xa. As the same fact is easily verified for the field H of “ordinary” 
quaternions, it holds for all locally compact fields. 

COROLLARY 5. Let K be a commutative p,field, and K’ a division 
algebra over K. Then K’ is a p-field; every automorphism of K’ over K in 
the algebraic sense is a topological automorphism; and, tf R and R’ are 
the maximal compact subrings of Kand of K’, and P and P’ are the maximal 
ideals in R and in R’, then R= KnR’ and P= KnP’. 

Regarding K’ as a finite-dimensional vector-space over K, we provide 
it with its “natural” topology according to corollary 1 of th. 3, 9 2. As 
this is unique, it is invariant under all K-linear mappings of K’ onto 
itself, and in particular under all automorphisms of K’ over K. Identifying 
K, as usual, with the subfield K. 1,. of K’, we see that K’ is not discrete. 
By corollary 2 of th. 3,§ 2, and th. 5 of4 3, it is a p-field. The rest is obvious. 

COROLLARY 6. Assumptions and notations being as in corollary 5, 
call q and q’ the modules of K and of K’, respectively; let 7t be a prime 
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element of K, and put e = ord,.(n). Then q’ = q’, where f is an integer 2 1, 
and the dimension of K’ over K is ef 

Put k = R/P and k’ = R’IP’; in view of the last assertion of corollary 5, 
we may identify k with the image of R in k’= R’/P’; if then f is the degree 
ofk’ over k, we have q’= qf. Now apply corollary 2.of th. 3,§ 2, to mod,(z) 
and to mod,,(n); we get the result stated above. 

The last corollary shows in particular that ordK,(n) is > 1 and is 
independent of the choice of the prime element n in K. This justifies the 
following definition: 

DEFINITION 4. Let assumptions and notations be as in corollaries 5 
and 6 of theorem 6. Then e is called the order of ramification of K’ over 
K, and f the modular degree of K’ over K; K’ is said to be unramified 
over K tf 1’ = 1, and to be fully ramiJied over K if f = 1, 

PROPOSITION 4. Let K be a commutative p-field; let K’ be a fully 
ramified division algebra of finite dimension over K; let R, R’ be the 
maximal compact subrings of K and of K’, respectively, and let n’ be a 
prime element of K’. Then K’=K(x’), R’=R[z’], and K’ is commutative. 

Let P, P’ be the maximal ideals in R and in R’, respectively, and 
let A be a full set of representatives of the classes modulo P in R. As 
K’ is fully ramified over K, corollaries 5 and 6 of theorem 6 show at once 
that A is also a full set of representatives of the classes modulo P’ in R’. 
Applying corollary 2 of th. 6 to K’, R’, P’ and A, and to e =n’, we see 

e-1 

that the elements of R’ of the form 1 ain”, with a,eA for 06 i<e- 1, 
i=O 

make up a full set of representatives A’ of the classes modulo Pfe in R’. 
Take now a prime element rc of K, and put e=ord,.(n); e is the order 
of ramification of K’ over K, hence also the dimension of K’ over K, 
by corollary 6 of th. 6. Applying now corollary 2 of th. 6 to K’, R’, P”, A’ 
and to E =rc, we see that every element of Prev can be written in one 

+CC 
and only one way in the form c ain’, with a$A’ for all j3 v. As K is 

contained in the center of K’, zJEommutes with 71’; therefore, in view of 
the definition of A’, every such element can be written as 

with aiiE A for 0~ i<e- 1, j>v, or, what amounts to the same in view 
e-1 

of corollary 2 of th. 6, as 1 a, rcli with CX~E P’ for 0 < i < e - 1. This shows 
i=O 

that K’ = K(rt’), and, for v = 0, it shows that R’ = R[n’]. As K is contained 
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in the center of K’, rc’ commutes with all elements of K; therefore K’ is 
commutative. 

COROLLARY 1. Let K be a commutative p-field of characteristic p; 
call KP its image under the endomorphism x+xp, and let rt be a prime 
element of K. Then K is a fully ramified extension of KP of degree p, and 
K = KP(n). 

Put K’=KP; x-+xp is an isomorphism of K onto K’, which we may 
use to transfer to K’ the topology of K; K may then be regarded as a 
topological vector-space over K’; as such, by corollary 2 of th. 3, 5 2, it 
must have a finite dimension. This shows that K is of finite degree over 
K’. As K and K’ are isomorphic, they have the same module, so that 
the modular degree of K over K’ is 1. By proposition 4, this implies 
that K=K’(rc); as rtP~K’, the degree of K over K’ must be p or 1. As 
ord,(n)= 1, 7~ is not in KP, so that Kf K’. Therefore K is of degree p 
over K’. 

COROLLARY 2. Let K be as in corollary 1, and let K be an algebraic 
closure of K. Then, for every n30, K contains one and only one purely 
inseparable extension of K of degree p”; this is the image KP-” of K 
under the automorphism x+xpm” of I?. 

It follows at once from corollary 1 that KP-’ is of degree p over K; 
by induction on n, one sees then that KP-” is of degree p” over K. On 
the other hand, it is well-known, and easily proved, that, if K’ is purely 
inseparable of degree <p” over K, it must be contained in KP-“. Our 
conclusion follows from this at once. 

THEOREM I. Let K be a p-field; call q its module, R its maximal com- 
pact subring and P the maximal ideal of R. Then K” has at least one 
subgroup of order q - 1; every such subgroup is cyclic; if M x is such a 
subgroup, the set M=M” u(0) is a full set of representatives of the 
classes modulo P in R, and there is a prime element rt of K such that 
nMx = Mx TC. If K is commutative, there is only one such group M x ; 
it is the group of the roots of 1 of order prime to p in K. 

The construction of M” depends upon the following lemma: 

LEMMAS. Foralln>O,(l+P)P”~l+Pn+l. 

This can be immediately verified by induction on n. It amounts to 
saying that, if x E 1 (P), xp”z 1 (,“+I). 

Now call p the canonical homomorphism of R onto k= R/P. By th. 2 
of 9 1, k” is cyclic of order q- 1. In particular, for all XER’, we have 
p(x)“- l= 1, i. e. x4-i = 1 (P). If q = pf. lemma 5 shows now that 
x(4- i)q” E 1 (PJn+ ‘); this can also be written as 

x4”+‘zx4” (pfi+l). 
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Applying now corollary 1 of th. 6 to the series 

we see that it is convergent for all xeRX, so that we may write 

o(x) = lim,, + o. x4” 

for XER~, and of course also for XGP, hence for all XE R. Clearly 
o(xy)=w(x)o(y) whenever xy=yx; in particular, we have w(x”)=o(x)” 
for all XE Rx, VEZ. As the above series for o(x) shows, we have o(x) = x (P) 
for all XE R; obviously o(x) = 0 for XEP, and lemma 5 shows that o(x) = 1 
for x~l+P. Therefore w-‘(O)=P and o-‘(l)=l+P. As xq-‘el+P 
for all XE R x, we have w(x)“- 1 = 1 for XE R ‘. Take a representative x1 
in Rx of a generator of the cyclic group kx = (R/P) x, and put pu, = w(x,); 
for FEZ, we have py = 1 if and only if w(xt)= 1; as this is equivalent to 
x; = 1 (P), hence to II = 0 (4 - 1) in view of our choice of x1, this shows 
that pI generates a cyclic subgroup of R ’ of order 4 - 1. Conversely, 
let P be any finite subgroup of K” of order n prime to p; clearly it is a 
subgroup of R ‘. The image of 4, in the multiplicative group (Z/nZ) x of 
the integers prime to n modulo n, must have a finite order N; then 
qN E 1 (n). As z” = 1 for every ZEP, we get now zqNY = z for all v 3 0 and all 
ZET, hence w(z)=z, so that z= 1 (P) implies z= 1. This shows that the 
morphism of P into kx = (R/P)’ induced by p is injective, and therefore 
that P is cyclic, that its order divides 4 - 1, and that, if it is of order 4 - 1, 
Tu{O} is a full set of representatives of R/P in R. In particular, if K is 
commutative, we see that o induces on R ’ a morphism of Rx onto the 
group My of the (q- 1)-th roots of 1 in K, that it maps R onto 
M = M ’ u {0), and that it determines a bijection of R/P onto M; moreover, 
every subgroup P of K ’ of order prime to p is then contained in Mx ; in 
particular, M x contains all the roots of 1 of order prime to p in K. As to 
the existence of a prime element of K with the property stated in our 
theorem, it is trivial if K is commutative. Assume that this is not so, 
and take any prime element n of K. For every UE K x, x + axa- ’ is an 
automorphism of K; by corollary 3 of th. 6, it maps R onto R, P onto P, 
so that it determines an automorphism L(a) of k = R/P; clearly a +1(a) 
is a homomorphism of Kx into the group of automorphisms of k. For 
aERX, A(a) is &p(a)<p(a)-‘, which is the identity since k is commu- 
tative. Therefore, if a is any element of Kx , and ord(a) = n, A(a) = 3.(rY. 
By corollary 2 of th. 2,§ 1, applied to k and to the prime field in k, A(n) 
must be of the form 5 + tp’; this means that we have, for every XE R: 

nxf’=xp* (P), 

or, what amounts to the same: 

7cx~xpr71 (P’). 
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Take now Mx as above, and put 

n’= - 1 ,g’p-1. 
paMX 

In view of the above congruences, each one of the q - 1 terms in the sum 
in the right-hand side is E n modulo P2. Since q . 1 EP, this gives 

n’=(l -q)n=7t (P’), 

which implies that rc’ is a prime element of K. At the same time, the 
definition of 7~’ gives 

for all ,ueMX, and therefore n’Mx = M x 7~‘. This completes the proof. 
One could show, by a similar argument, that, if Mx and Nx are two 
subgroups of K” of order q- 1, there is a prime element rc of K such 
that nM” =NXn. 

COROLLARY 1. If K and M are as in theorem 7, and K is of charac- 
teristic p, then M is a subfield of K. Zf at the same time K is commutative, 
M is the algebraic closure of the prime field in K. 

Let k, be the prime field in K, and let ~1 be a generator of the group 
M x. Then k,(p) is a commutative field of characteristic p in which the 
equation X4--X=0 has q roots, viz., the elements of M; therefore, by 
th. 2 of 0 1, M is a field. If K is commutative, every element, other than 0, 
of the algebraic closure of k, in K is a root of 1 of order prime to p, 
again by th. 2 of 9 1; therefore, by theorem 7, it must be in M. 

COROLLARY 2. Let K be a commutative p-field, q its module, and K’ 
an extension of K of finite degree, generated by roots of 1 of order. 
prime to p. Then K’ is unramified and cyclic over K, and its Galois group 
over K is generated by an automorphism cp which induces the permutation 
p--+,uq on the group of roots of 1 of order prime to p in K’. 

By corollary 5 of th. 6, K’ is a p-field. Let R, P, q, k, p, Mx be as in 
theorem 7 and its proof, and let R’, P’, q’, k’, p’, M’” be similarly defined 
for K’. By theorem 7, K’ is generated over K by M’ ‘, i.e. by the roots of 
X4,-i = 1; therefore it is a Galois extension of K, and an automorphism 
of K’ over K is uniquely determined by the permutation it induces on 
M’“. By corollary 5 of th. 6, we have R=KnR’, P=KnP’; we may 
therefore identify k with a subfield of k’, and then p is the mapping 
induced by p’ on R. Let a be an automorphism of K’ over K; as it maps 
R’ onto R’, P’ onto P’, and leaves fixed every element of R, it determines 
an automorphism A(cY) of k’ over k. Then 1, i.e. the mapping a+;l(a), is 
a morphism of the Galois group of K’ over K into that of k’ over k. By 
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corollary 2 of th. 2, 0 1, A( 01 must be of the form t+[qS. Therefore we ) 
have, for all p E M’ ’ : 

P’w4 = P’wq”= P’(Pqs). 

As p’ induces on M’ ‘, by theorem 7, an isomorphism of M’ x onto k’ x, 
this implies that a(p) = pqS. In particular, if s = 0, i.e. if n(a) is the identity, 
c1 is the identity; this shows that I is injective; therefore, if n is the degree 
of K’ over K, and f that of k’ over k, we have II <J As q’ = qf, corollary 6 
of th. 6 shows now that K’ is unramified over K and that n = f, so that I 
is an isomorphism of the Galois group of K’ over K onto that of k’ over k. 
In view of corollary 2 of th. 2, § 1, this completes our proof. 

COROLLARY 3. Let K and q be as in corollary 2; then a division 
algebra of finite dimension over K is unramijied if and only if it is commu- 
tative and can be generated over K by roots of 1 of order prime to p. For 
every f > 1, K has one and (up to an isomorphismi only one unramified 
extension of degree f, this is the extension generated over K by a primitive 
(qf- l)-th root of 1. 

Let K’ be an unramified division algebra of dimension f over K; let 
q, q’ be the modules of K and of K’, respectively; then q’ = q’, by corollary 6 
of th. 6. Take a subgroup M’” of K’ ’ of order q’ - 1; by theorem 7, it is 
cyclic; take a generator p of M’ ‘, and put K” = K(p). Clearly K” is commu- 
tative; as it contains M’ x, its module is at least q’, so that, by corollary 6 
of th. 6, its degree over K is at least f; therefore K” = K’, which, together 
with corollary 2, proves the first part of our corollary. Now take any 
f‘Bl;putq’=qf, and call K’ the extension of K generated by a primitive 
(q’- l)-th root of 1, or, what amounts to the same, by the set M” of all 
the roots of X4’-’ = 1; by theorem 7, its module is at least q’, so that, by 
corollary 6 of th. 6, its degree over K is at least f. On the other hand, by 
corollary 2, it is unramified and cyclic over K, and its Galois group over 
K is generated by the automorphism cp defined there; as qf induces the 
identity on M’ ‘, it is the identity, so that the degree of K’ over K is at 
most f. Therefore it is f. As the foregoing results show that every unrami- 
fied extension of K of degree S must contain an extension isomorphic 
to K’, this completes our proof. 

COROLLARY 4. Let K’ be a finite extension of a commutative p- 
field K; call f its modular degree over K, and e its order of ramification 
over K. Then there is a unique maximal unramified extension K, of K, 
contained in K’; it is of degree f over K, and K’ is fully ramified of degree 
e over K,. 

This follows at once from the foregoing results, K, being generated 
by the roots of 1 of order prime to p in K’. 
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DEFINITION 5. Let K be a commutative p-field, and K’ an unramified 
extension of K; the generator cp of the Galois group of K’ over K which 
is defined by corollary 2 of theorem 7 is called the Frobenius automorphism 
of K’ over K. 

In corollary 2 of theorem 6, one can take for 5 a prime element n 
of K, and then take for A the set M defined in theorem 7. For commu- 
tative fields of characteristic p, this gives the following: 

THEOREM 8. Every commutative p-field of characteristic p is iso- 
morphic to a field of formal power-series in one indeterminate with coefJi- 
cients in a finite field. 

Take notations as in theorem 7; corollary 1 of th. 7 shows that M is 
a field with 4 elements. Taking 5 = n: and A = M in corollary 2 of th. 6, 
we get for every XE K with ord(x) > n a unique series expansion 

+‘X 

i=n 

with pie M for all i 3 n. One verifies at once that the rules for the addition 
and multiplication of such series are the usual ones for formal power- 
series in algebra (or for convergent power-series in classical analysis). 
Moreover, this is an isomorphism also in the topological sense if the 
field of formal power-series is provided with its usual topology, that for 
which the ring R, of “integral” power-series (those containing no power 
of the indeterminate with an exponent CO), and the ideals generated 
in it by the powers of the indeterminate, make up a fundamental system 
of neighborhoods of 0. We recall that, for this topology, the ring R, of 
integral formal power-series in one indeterminate over any finite field F 
is compact, since the additive group of R, is clearly isomorphic to the 
product of enumerably many groups isomorphic to F; therefore the 
corresponding field is locally compact. Thus theorem 8 shows that the 
commutative p-fields of characteristic p are all of that type, so that (up 
to an isomorphism) they are in a one-to-one correspondence with the 
finite fields F,, with 4 = pn, n 2 1. 

By a local field, we will understand a commutative non-discrete 
locally compact field. We have thus obtained a complete list of the local 
fields of characteristic p> 1, while those of characteristic 0 are given by 
theorem 5 of 9 3; they are R, C and the finite algebraic extensions of the 
fields Qp, for all p. 

Using the same idea as in the proof of theorem 8, we give now one 
more result for the non-commutative case. 

PROPOSITION 5. Let K be a p-field, commutative or not, with the 
maximal compact subring R. Then the center K, of K is a p-field; if d 
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is the modular degree of K over K,, its order of ramification over K, is 
also d, and its dimension over K, is d2; it contains a maximal commutative 
subfield K 1 which is unramified and of degree d over K,. Moreover, if K 1 
is such, and if R, is its maximal compact subring, K has a prime element TC 
with the following properties: (a) red is a prime element of K,; 
(b){l,...,xd-l } is a basis of K as a left vector-space over K, , and generates 
R as a left RI-module; (c) the inner automorphism x + 7c- ’ x TC of K induces 
on K, an automorphism CI which generates the Galois group of K, over K,. 

Let notations be as in theorems 6 and 7; choose M and n as in theo- 
rem 7, and apply corollary 2 of th. 6 to rr and M; this shows that, for every 
nE Z, each XE P” can be uniquely written as 

with ,U~E M for all i > n. Therefore an element of K is in the center 
f 

,ofK 
if and only if it commutes with rc and with every element of M or, what 
amounts to the same, with some generator of the cyclic group M “). As 
x-71 -I xrc induces a permutation on M, some power of it must induce 
the identity on M; this amounts to saying that there is v > 0 such that 
rr” commutes with every element of M. Then K, contains rc’” for all 
nE Z; this proves that it is not discrete; as it is clearly closed in K, it is 
locally compact; if now we consider K as a vector-space, hence an algebra, 
over K,, we see, by corollary 2 of th. 3,§ 2, that it has a finite dimension 
over K,; corollary 5 of th. 6 shows then that K, is a p-field. Call 4 the 
module of K,, d the modular degree of K over K,, and K, the field gen- 
erated over K, by M, or, what amounts to the same, by any generator of 
the cyclic group Mx; as Mx is of order qd- 1, such a generator is a 
primitive (qd - l)-th root of 1, so that, by corollary 3 of th. 7, K, is unrami- 
fied of degree d over K,. As x + n: -I xrc induces a permutation on M, 
and the identity on K,, it induces on K, an automorphism c1 of K, 
over K,. An element of K, commutes with all the elements of M; it 
commutes with rc if and only if it is invariant under a; in other words, the 
elements of K, which are invariant under CI are those of K,, so that CI 
generates the Galois group of K, over K,; it is therefore of order d, so 
that, as we have seen above, red is in K,, and rcy is not in K, unless v is a 
multiple of d. Now take XE K and ,ULE Mx ; write x in the form (5). Then we 
have 

where we have put 
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In this last formula, the last factor on the right-hand side belongs to 
M ‘, so that ,u: is in M. In view of the unicity of the expansion (5) for 
x EK, this shows that x = p- ’ xp, i.e. that x commutes with ~1, if and only 
if & = pi for all i. Now clearly, for each i, pf = pi if and only if either pi = 0 
or rci commutes with p. Consequently, x commutes with all elements of 
M x if and only if xi does so whenever pi#O. In view of what has been 
proved above, this is so if and only if pi=0 whenever i is not a multiple 
of d; we have then 

x = 1 ,u&cd)‘. 
I 

As x~EK,, x is then in the closure of K,, hence in K, itself, which is 
therefore a maximal commutative subfield of K. It is also clear now, in 
view of (5) and of the unicity of (5), that { 1, n, . . . , red- ‘} is a basis of K as a 
left vector-space over K,, that it generates R as a left R,-module, and 
that red is a prime element of K,, hence also of K, since it lies in K,. As 
this implies that the order of ramification of K over K, is d, it completes 
the proof. 

Notations being as in proposition 5, let cp be the Frobenius auto- 
morphism of K, over K,; as this also generates the Galois group of K, 
over K,, we must have cp = a’, with r prime to d and uniquely determined 
modulo d. It will be shown in Chapter XII that, when K, is given, d and 
r may be chosen arbitrarily, subject to these conditions, and characterize 
the structure of the division algebra K uniquely; in other words, two 
division algebras of finite dimension over K,, with the center K,, are 
isomorphic if and only if they have the same dimension d2 over K,, and 
the integer r has the same value modulo d for both. 

We conclude this Chapter with a result about the maximal compact 
subrings in p-fields. We recall that, if R is any commutative ring, and x 
an element of a ring containing R, x is called integral over R if and only 
if it is a root of some manic polynomial over R, i.e. of some polynomial 
with coefficients in R and the highest coefficient equal to 1. 

PROPOSITION 6. Let K be a p-field and K, a p-field contained in the 
center qf K; let R, R, be the maximal compact subrings of K and of K,. 
Then R consists of the elements of K which are integral over R,,. 

Let x be in K and integral over R,; this means that it satisfies an 
equation 

x”+a,x”-‘+ ... +a,=0 

with aiE R, for 1< i < n. Assume that x is not in R, i.e. that ord,(x) < 0. 
Then x # 0, and we have 

1= -a,~-‘_ ... -a,x-“; 
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here all the terms in the right-hand side are in the maximal ideal P of 
R, so that 1 EP, which is absurd. Conversely, let x be any element of R. 
By corollary 2 of th. 3,s 2, K has a finite dimension over K,; therefore, 
if we put K’ = K,(x), this is a commutative field and a finite extension of 
K,. Call F the irreducible manic polynomial, with coefficients in K,, such 
that F(x) = 0; in some algebraic closure of K’, call K” the field generated 
over K, by all the roots of F, so that F splits into linear factors in K”. As 
K’, K” are finite extensions of K,, they are p-fields; call R’, R” their maxi- 
mal compact subrings. Then R’ = K’nR = K’n R”; as x is in R, it is in R’ 
and in R”. As F is irreducible, every root x’ of F in K” is the image of x 
under some automorphism of K” over K,; as such an automorphism 
maps R” onto R”, all such roots are in R”. Therefore all the coefficients 
of F are in R”; as they are in K,, they are in R,. This completes the proof. 

If K is commutative, proposition 6 may be expressed by saying that 
R is the integral closure of R, in K. 



Chapter II 

Lattices and duality over local fields 

0 1. Norms. In this 9 and the next one, K will be a p-field, commu- 
tative or not. We shall mostly discuss only left vector-spaces over K; 
everything will apply in an obvious way to right vector-spaces. Only 
vector-spaces of finite dimension will occur; it is understood that these 
are always provided with their “natural topology” according to corollary 1 
of th. 3, Chap. I-2. By th. 3 of Chap. I-2, every subspace of such a space I’ 
is closed in I! Taking coordinates, one sees that all linear mappings of 
such spaces into one another are continuous; in particular, linear forms 
are continuous. Similarly, every injective linear mapping of such a space 
I/ into another is an isomorphism of I’ onto its image. As K is not com- 
pact, no subspace of I/ can be compact, except (0). 

DEFINITION 1. Let V be a lef vector-space over the p-field K. By 
a K-norm on V we understand a function N on V with values in R,, such 
that: (i) N(u)=0 if and only if u=O; (ii) N(xu)=mod,(x)N(u) for all 
XE K and all VE V; (iii) N satisfies the ultrametric inequality 

(1) N(u + w) d sup(N(W’W)) 
for all 0, w in V 

On K”, one defines a K-norm N, by putting N,(x) = 
suPl GiQn (mod,(x,)) for all x=(x1, . . . , x,) in K”. As every vector-space 
of finite dimension over K is isomorphic to a space K”, this shows that 
there are K-norms on all such spaces. 

One can obviously use any K-norm on V in order to topologize V, by 
taking N(v - w) as distance-function. 

PROPOSITION 1. Let V be a left vector-space of finite dimension over 
the p-field K. Then every K-norm N on V defines the natural topology 
on V In particular, every such norm N is continuous, and the subsets L, 
of V defined by N(u) d r are compact neighborhoods of 0 for all r>O. 

As to the first assertion, in view of corollary 1 of th. 3, Chap. I-2, we 
need only show that the topology defined by N on V makes V into a 
topological vector-space over K. This follows at once from the inequality 

N(x’u’-xv)< sup(mod,(x’)N(v’-u), mod,(x’-x)N(u)) 

which is an immediate consequence of def. 1. Therefore N is continuous, 
and the sets L, make up a fundamental system of closed neighborhoods 
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of 0; in particular, L, must be compact for some r>O. Now, for any 
s>O, take aeKX such that mod,(a) < r/s; then, as one sees at once, L, 
is contained in a- 1 L,; therefore it is compact. 

COROLLARY 1. There is a compact subset A of V-(O) which con- 
tains some scalar multiple of every v in V- (0). 

Call 4 the module of K, and take a K-norm N in I! If 71 is a prime 
element of K, we have mod,(n)= q- ‘, by th. 6 of Chap. I-4, hence 
N(?u) = q-“N(v) for all nEZ and all VE V. Let A be the subset of V defined 
by q-l < N(v) < 1; by proposition 1, it is compact; and, for every v#O, 
one can choose nEZ so that rc’v~A. 

Corollary 1 implies the fact that the “projective space” attached 
to V is compact. 

COROLLARY 2. Let cp be any continuous function on V- {0), with 
values in R, such that q(av)=q(v) f or all aEKX and all VE V- (0). Then 
cp reaches its maximum at some point v1 of V- (0). 

In fact, this will be so if we take A as in corollary 1 and take for v1 
the point of A where cp reaches its maximum on A. 

COROLLARY 3. Let f be any linear form on V, and N a K-norm on V. 
Then there is v, f0 in V, such that 

(2) N(v)- ’ mod,(f (v)) G NV,)- ’ moddf (vl)) 
for all v#O in I/: 

This is a special case of corollary 2, that corollary being applied to 
the left-hand side of (2). If one denotes by N*(f) the right-hand side of (2), 
then N*(f) is the smallest positive number such that 

mh(f (v)) d N*(f). N(v) 

for all VE y and f+ N*(f) is a K-norm on the dual space of K i.e. on the 
right vector-space made up of the linear forms on V (where the addition 
is the obvious one, and the scalar multiplication is defined by putting 
(fa)(v)=f(v)a when f is such a form, and aEK). 

By a hyperplane in I/: one understands a subspace of V of codimen- 
sion 1, i.e. any subset H of V defined by an equation f (v)=O, where f 
is a linear form other than 0; when H is given, f is uniquely determined 
up to a scalar factor other than 0. Now, if (2) is valid for all v # 0, and for a 
given norm N, a given linear form f # 0 and a given vl # 0, it remains so 
if one replaces f by fa, with aEK ‘, and vl by bv, with bEK”; in other 
words, its validity for all v#O depends only upon the hyperplane H 
defined by f =0 and the subspace W of V generated by v,; when it 
holds for all v # 0, we shall say that H and W are N-orthogonal to each 
other. 
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PROPOSITION 2. A hyperplane H and a subspace W of V of dimen- 
sion 1 are N-orthogonal if and only if V is the direct sum of H and W and 
N(h+w)=sup(N(h),N(w)) for all heH and WE W. 

Let H be defined by f (0) = 0, and assume first that H and W are 
N-orthogonal. Then (2) is satisfied if one replaces u1 in it by any WE W 
other than 0. This implies that f(w) is not 0, for otherwise f would be 0; 
therefore V is the direct sum of H and IV Now replace u in (2) by h + w 
with hEH; as f(h+w)=f(w)#O, (2) gives N(h+w)>N(w). Applying 
the ultrametric inequality (1) to h = (h + w) + (- w), we get N(h) < N(h + w); 
applying it to h+ w, we get the formula in our proposition, for w#O; as 
it is trivial for w  = 0, this proves the necessity of the condition stated there. 
Now suppose that V is the direct sum of H and W; take any v#O, and 
write it as u = h + w  with hE H and WE W, so that f (0) = f (w). If w  # 0 and 
N(h + w) > N(w), then we have 

NW ’ mod,(f (u)) Q N(w)- ’ mod,(f (w)). 

As the right-hand side does not change if we replace w  by any generator 
u1 of W, this shows that (2) holds for any such u i, and any u not in H. For 
UE H, i.e. w  =O, it holds trivially. This completes the proof. 

Accordingly, we shall also say that two subspaces I”, V” of V are 
N-orthogonal to each other whenever V is the direct sum of I” and I”: 
and N(u’ + u”) = sup(N(u’), N(u”)) for all U’E V” and all U”E V”. 

PROPOSITION 3. Let V be of dimension n ouer K, and let N be a 
K-norm on V Then there is a decomposition V= VI + .*. + V, of V into 
a direct sum of subspaces J$ of dimension 1, such that N(x Vi) = sup, N(ui) 
whenever U,E v for 1 < i < n. Moreover, if WI = r/: W,, . . . , W, is a sequence 
of subspaces of V such that W is a subspace of VP- 1 of codimension 1 for 
2 Q i < n, then the & may be so chosen that Wi = K + ... + V, for all i. 

This is clear for n = 1. For n > 1, use induction on n. By corollary 3 of 
prop. 1, we may choose u1 so that the space VI generated by ui is N- 

orthogonal to Wz; then, by prop. 2, N(u; + w2) = sup(N(u;), N(wZ)) when- 
ever u; E VI, w2 E W, . Applying the induction assumption to the K-norm 
induced by N on W,, and to the sequence W,, . . . . W,, we get our result. 

COROLLARY. To every subspace W of V, there is a subspace W’ which 
is N-orthogonal to W. 

Take a sequence WI, . . . , W,, as in proposition 3, such that W is one 
of the spaces in that sequence, say Wi. Take the & as in proposition 3. 
Then the space IV = VI + ... + VP i is N-orthogonal to W 

PROPOSITION 4. Let N, N’ be two K-norms in V. Then there is a 
decomposition V= VI + ... + V, of V into a direct sum of subspaces J$ of 
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dimension 1, such that N(C vi) = supiN and N’(x ui) = supiN’ 
whenever USE v for 1~ i < n. 

For n= 1, this is clear. For n> 1, use induction on n. Applying co- 
rollary 2 of prop. 1 to cp = N/N’, we get a vector or # 0 such that 

N(u)N’(u)- ’ Q N(u,) N’(u,)- l 

for all u # 0; call Vi the space generated by vi. By the corollary of prop. 3, 
there is a hyperplane W which is N-orthogonal to Vi ; then, if f= 0 is 
an equation for w we have 

N(u)- ’ mo4JfW) 6 N(uJ ’ moddf(ud 

for all u # 0. Multiplication of these two inequalities gives 

N’(u)- l mod,(f(u)) < N’h- ’ mod,(f(u,)), 

which means that W is N’-orthogonal to V, . Applying now prop. 2 to N, 
V, and W, and also to N’, V, and W, and applying the induction assump- 
tion to the norms induced by N and N’ on W, we get the announced 
result. 

One should notice the close analogy between propositions 3 and 4, * 
and their proofs, and the corresponding results and proofs for norms 
defined by positive-definite quadratic forms in vector-spaces over R, 
or hermitian forms in vector-spaces over C or H. For instance, prop. 4 
corresponds to the simultaneous reduction of two quadratic or hermitian 
forms to “diagonal form”. 

0 2. Lattices. In this section, K will again be a p-field, and we shall 
use the notations introduced in Chapter I. In particular, we write R 
for the maximal compact subring of K, P for the maximal ideal in R, 
q for the module of K, and rc for a prime element of K. For neZ, we 
write P” = 71” R = R rc”. 

We shall be concerned with R-modules in left vector-spaces of finite 
dimension over K; if V is such a space, an R-module in V is a subgroup 
M of V such that R.M=M. 

PROPOSITION 5. Let V be a left vector-space of finite dimension over K. 
Let M be an R-module in V, and call W the subspace of V generated 
by M ouer K. Then M is open and closed in W; it is compact if and only if 
it is finitely generated as an R-module. 

Let ml, . . . . m, be a maximal set of linearly independent elements 
over K in M; they make up a basis of W over K. By th. 3 of Chap. I-2, 
the set Rm, + ... + Rm, is an open subgroup of W; as both M and W-M 
are unions of cosets with respect to that subgroup, they are both open. 
If M is compact, it is the union of finitely many such cosets and therefore 
finitely generated; the converse is obvious. 
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On the other hand, in view of corollary 2 of th. 6, Chap. I-4, a closed 
subgroup X of I/ satisfies R . X=X if and only if rcX c X and a X c X 
for every a in a full set A of representatives of R/P in R. In particular, if 
q = p, i.e. if R/P is the prime field, we may take A = (0, 1, . . , p - 11, and 
then aX c X for all SEA, so that X is then an R-module if and only if 
rr XcX. In the case K = Q,, we may take rc =p, and then every closed 
subgroup of I/ is a Z,-module. 

In K itself, viewed as a left vector-space over K, every R-module, 
if not reduced to {0}, is a union of sets P”, and thus is either K or one of 
these sets. 

DEFINITION 2. By a K-lattice in a left vector-space V of finite dimen- 
sion over K, we understand a compact and open R-module in V. 

When no confusion can occur, we say “lattice” instead of K-lattice. 
If L is a p-field contained in K, every K-lattice is an L-lattice; the converse 
is not true unless L = K. 

Clearly, if L is a lattice in V, and W is a subspace of V, L nW is a 
lattice in W; similarly, if f is an injective linear mapping of a space V 
into K f-‘(L) is a lattice in V; if f is a surjective linear mapping of V 
onto a space I/“, f(L) is a lattice in V. 

If N is a K-norm in v the subset L, of V defined by N(v) < r is a 
K-lattice in V for every r > 0. In fact, (iii), in def. 1 of 4 1, together with (ii) 
applied to x= - 1, shows that it is a subgroup of E then (ii) shows that 
it is an R-module, and prop. 1 of 0 1 shows that it is a compact neighbor- 
hood of 0 in v hence open since it is a subgroup of r This has a converse; 
more generally, we prove : 

PROPOSITION 6. Let M be an open R-module in V; for every VE V, put 

N,(v) = infxtKX ,xveM mod,(x)- ‘. 

Then the function N, on V satisfies conditions (ii) and (iii) in definition 1 
of 5 1, and M is the subset of V defined by N,(v) < 1; N, is a K-norm if 
and only if M is a K-lattice in V 

For aEKX, we have x,av~M if and only if x=ya-’ with yv~M; 
this gives N,(av) = mod,(a) NM(v); as N,(O)=O, this is also true for 
a=O. Therefore N, satisfies (ii) of def. 1. For each VE r/; call M, the set 
of the elements x of K such that x VE M; as this is an open R-module in K, 
it is either K or a set P” with some neZ. If M,= K, N,(v) =O; if M,= P”, 
we have x VE M if and only if mod,(x) d q-“, so that N,(v) = q”. In parti- 
cular, we have N,(v) < 1 if and only if M, 1 R, hence if and only if VE M. 
Let v, w be in V and such that NM(v) 3 N,(w); then M,cM,, so that 
XVEM implies x WEM, hence also x(v+ w)EM; therefore M,+,I> M,, 
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hence N,(u + w) < N,(u); this proves (iii) of def. 1. Finally, M is a 
K-lattice if and only if it is compact, and N, is a K-norm if and only if 
N,(v) > 0 for all v # 0, i. e. if and only if M, # K for u # 0. By prop. 1 of 4 1, 
if N, is a K-norm, M is compact. Conversely, assume that M is compact, 
and take u#O; then M, is the subset of K corresponding to (Ku)nM 
under the isomorphism x+xv of K onto Ku; therefore M, is compact 
and cannot be K. This completes our proof. 

COROLLARY 1. An open R-module M in V is a K-lattice if and only 
if it contains no subspace of V other than 0. 

It has been shown above that, if M is not compact, NM cannot be a 
K-norm, so that there is u # 0 in V such that N,(v) = 0, hence M, = K, i.e. 
Ku c M. Conversely, as every subspace of r/; other than 0, is closed in V 
and not compact, no such subspace can be contained in M if M is compact. 

COROLLARY 2. Let M be an open R-module in V; let W be a maximal 
subspace of V contained in M, and let W’ be any supplementary subspace 
to W in V Then Mn W’ is a K-lattice in W’, and M =(MnW’)+ W 

The first assertion is a special case of corollary 1; the second one is 
obvious. 

Proposition 6 shows that every K-lattice in V may be defined by an 
inequality N(v)< 1, where N is a K-norm; this was our chief motive in 
discussing norms in 0 1. For a given K-lattice M, the norm N, defined 
in prop. 6 may be characterized, among all the norms N such that M is 
the set N(v)< 1, as the one which takes its values in the set of values 
taken by mod, on K, i.e. in the set {O}~{q~}~~z. 

PROPOSITION 7. Zf V has the dimension 1 over K, and if L is a K-lattice 
in V, then V has a generator u such that L= Rv. 

Take any generator w of V; the subset L, of K defined by XWE L 
must be of the form P”; taking u = rc”w, we get L= Ru. 

THEOREM 1. Let L be a K-lattice in a left vector-space V of dimen- 
sion n over K. Then there is a basis {ul,. . . , u,,} of V such that L= 1 R Vi. 
Moreover, if WI = V, W, ,..., W, is any sequence of subspaces of V such 
that Wi is a subspace of VV- 1 of codimension 1 for 26 i<n, the vi may 
be so chosen that, for each i, {vi,. . ., v,,} is a basis of w.. 

Take a K-norm N such that L is defined by N(u)< 1. Choose sub- 
spaces VI,..., V, of V as in prop. 3 of 5 1; then L=x(LnK). Applying 
prop. 7 to v and LnK for each i, we get the basis (vi). 
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Theorem 1 may be applied for instance whenever K’ is a p-field con- 
taining K, and R’ is the maximal compact subring of K’. Clearly, if K’ 
is viewed as a left vector-space over K, R’ is a K-lattice in K’. Therefore 
there is a basis {yl,..., y,} of K’ over K such that R’ = C R yi; then, if 
we write, for any ye R’, yyi= xaijyj, with aijeK for 1 <i, j< n, all the 
aij must be in R. In particular, if K is commutative, these relations, which 
hold in the commutative field K(y), imply det(y . l,- A)=O, where 1, 
is the unit matrix and A=(aij), so that we get an alternative proof for 
the second part of prop. 6, Chap. I-4. 

THEOREM 2. Let L, L’ be two K-lattices in a left vector-space V of 
,finite dimension over K. Then there is a basis {vl, . . . . v”} of V, and a 
sequence of integers (vl ,... ,v,), such that L=xRv, and L’=cP”’ vi. 

Take K-norms N, N’ such that L is defined by N(v)< 1 and L’ by 
N’(u)< 1. Choose subspaces VI,. . ., V, of V as in prop. 4 of Q 1; then 
L=c(LnK) and L’=x(L’nF$. For each i, apply prop.7 to r/;. and 
Ln& and also to v and L’n v; this gives vi such that LnK = Rvi and 
vi such that L’n vi= Rv:. Writing vi=xivi with x,eK )o and putting 
vi = ord (xi), we get integers vi with the required property. 

COROLLARY 1. Let V and L be as in theorems 1 and 2, and let M be 
an R-module in V. Then there is a basis {vl,. . . , v,} of V over K, and there 
are integers r, s and v1 ,. . .,vr, such that O<r<s<n, L=xRv, and 

M= i Pv’vj+ i Ku,. 
j=l II=*+1 

Let W be the subspace of V generated by M, and W’ the maximal 
subspace contained in M; call s the dimension of W, and r the codimen- 
sion of W’ in W. In th. 1, choose the sequence WI,. . . , W, so that it includes 
W and W’. Then th. 1 gives us a basis {wr , . . . , w,} of V which generates L 
as an R-module and contains bases for W and for W’; renumbering this 
basis in an obvious manner, we may assume that { w1 , . . . , w,} is a basis 
for Wand that (w~+~,..., w,} is one for W’. Call W” the subspace of V 
with the basis {We,..., w,}. By prop. 5, M is open in W; therefore, by 
corollary 2 of prop. 6, we have M = M’+ W’, where M’= Mn W” is a 
K-lattice in W”. Applying now th. 2 to M’ and to L’= L nW”, we get a 
basis {ui ,..., u,} for W”, and integers v1 ,..., v,, such that L’=xRv, and 
M’= x PvJ vj. Taking vi= wi for i> r, we get the basis required by our 
corollary. 

COROLLARY 2. Every finitely generated R-module 9JI is the direct 
sum of finitely many summands, each of which is isomorphic either to R 
or to a module R/P’ with v>O. Moreover, the number of summands of 
type R, and, for each v, the number of summands of type R/P”, are uniquely 
determined when YJI is given. 
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Let YJI be generated by elements nt, ,...,m,. Take a vector-space V 
of dimension n over K, with a basis {ol,. . . , v,} ; put L= x R Ui. Then 
the formula 

CXiVi -+ CXirni, 

where the xi are taken in R for 1 < i < II, defines a morphism of L onto !IJIm; 
therefore ‘3JI is isomorphic to L/M, where M is the kernel of that mor- 
phism. Apply now corollary 1 to L and M; as M c L, we have vj > 0 for 
1 <jdr, and r = s. Our first assertion follows from this at once. As to 
the second one, put YJIi = x”9JI for all i 20; as these are R-modules, their 
quotients mi=~i/fmi+ 1 are R-modules; as 7cn =0 for all ne’%,, ‘$ may 
be regarded as a module, i.e. as a vector-space, over the field k= RIP; 
as such, it has a dimension ni, which depends only upon ‘9JI and i. Write 
now 9JI as a direct sum of modules R and R/P’, in numbers respectively 
equal to N, and N,; then one sees at once that n, = N, + 1 N,. There- 
fore N,= ni for i large enough, and N,=n,- 1 -n,. 

v>i 

COROLLARY 3. In corollary 1, the integers r,s, vl,. . . , v, depend only 
upon L and M. 

As s is the dimension of the subspace W generated by M, and s-r is 
the dimension of the maximal subspace contained in M, they depend 
only upon M. Now put L, = LnW, and take i30 such that 76 L, c M; 
our assertion follows now at once from the application of corollary 2 
to the R-module M/(n’L,). 

In corollary 2, the number of summands of W isomorphic to R is 
called the rank of m; with this definition, we have: 

COROLLARY 4. Let %Q be a finitely generated R-module, and !D? a sub- 
module qf ‘9X. Then the rank of Yll is the sum of those of ‘9X’ and of !Dl/!U?‘. 

As in the proof of corollary 2, write 9JZ as L/M, where L is the lattice 
CRv, in the vector-space V with the basis {vI , . . ., v,,), and M is an 
R-module. Then the inverse image of YJI’ in L is an R-module L: and the 
three modules in our corollary are respectively isomorphic to L/M, 
Lj/M and L/L: Let W, V’ be the subspaces of V respectively generated 
by M and by I.‘; then, as corollary 1 shows at once, the ranks of L/M, 
L;IM and L/L’ are respectively the codimensions of W in V, of W in V’ 
and of V’ in V. 

$3. Multiplicative structure of local fields. Let notations be as above; 
then, for each integer n 2 1, the set 1+ P” of the elements x of R which 
are G 1 (P”) is clearly an open and compact subgroup of R ‘, and these 
subgroups make up a fundamental system of neighborhoods of 1 in R x. 
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Moreover, th. 7 of Chap. I-4 shows that Rx = M ’ . (1 + P) if M ’ is any 
subgroup of order q- 1 of Rx, and th. 6 of Chap. I-4 shows that 
Kx = ITI. Rx if ITI is the discrete subgroup of K ‘, isomorphic to Z, 
which is generated by any prime element rc of K. In these formulas, the 
products are “semidirect”. 

From now on, until the end of this 9, it will be assumed that K is 
a commutative p-field; then the above products are direct products, so 
that we may write K”=nxR” and R”=M” x(l+P); moreover, by 
th. 7 of Chap. I-4, Mx is now the group of roots of 1 of order prime to p 
in K. Consequently, the investigation of the structure of K x amounts 
to that of 1 +P. 

Take any XE 1 + P; then, for every UE Z, xa is in 1 + P, and the map- 
ping a+xa is a homomorphism of the additive group Z into the multi- 
plicative group 1+ P; as lemma 5 in the proof of th. 7, Chap. I-4, shows 
that x’el +P’+l whenever a = 0 (p”), i.e. 1 alp < p ‘, this homomorphism 
is continuous when Z is provided with the p-adic topology, i.e. that 
induced on Z by Q,; as 1 +P is compact, it can therefore be uniquely 
extended to a continuous homomorphism, which we again denote by 
u-+x’, of the additive group Z, into the multiplicative group 1 +P. If 
XE 1 +P”, x0 is in 1 + P” for all a~ Z, hence for all a~ Z,. From this, using 
the formula y”(x”)- ’ = (yx- *)bxb-a, one concludes at once, in the usual 
manner, that the mapping (a,x)+x” of Z, x (1 +P) into 1 +P is con- 
tinuous. One verifies then immediately that this mapping defines, on 
the group 1 +P, a structure of Z,-module (the “addition” of vectors 
being written multiplicatively, and the “scalar multiplication” by elements 
of Z, being written exponentially). 

PROPOSITION 8. If n is any integer prime to p, and v any integer 3 1, 
x+x” induces on 1 +P” an automorphism of 1 +P”;(K x), is an open sub- 
group of Kx , of index n . (n,q - 1) in K x ; if n divides q - 1, that index is n2. 

The first assertion is a special case of the fact that x-+x0 is an auto- 
morphism of 1 + P” whenever a is an invertible element of Z,; it implies 
that (Kx )” is open in K ‘. Moreover, as we have seen above, K ’ is the 
direct product of the group L’, which is isomorphic to Z, of the cyclic 
group M x of order q- 1, and of 1 +P; therefore the index of (K “)” in 
K ’ is the product of the similar indices for L’, Mx and 1 + P; clearly, 
these are respectively equal to n, to the g.c.d. (n,q - 1) of y1 and q - 1, 
and to 1. This proves our proposition. 

We will now determine the structure of the Z,-module 1 + P; this 
depends upon the characteristic of K. If K is of characteristic 0, it is 
a finite algebraic extension of Qp, so that, as we have observed, its 
maximal compact subring may be regarded as a Q,-lattice in K; th. 1 
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of 5 2 shows then that it is the direct product of factors, all isomorphic 
to Z,, whose number is equal to the degree of K over Q,. 

PROPOSITION 9. Let K be a commutative p--eld of characteristic 0, 
with the maximal compact subring R. Then there is an integer m 3 0 such 
that 1 + P, as a (multiplicatively written) Z,-module, is isomorphic to the 
(additively written) Z,-module R x (Z,/p”Z,); m is then the largest integer 
such that K contains a primitive pm-th root of 1. 

For any XE R and aEN, the binomial formula may be written as: 

(1 +x)a= 1 +ax+axiiz ‘;I f 
( 1 

xi-‘/i. 

For i> 2, call p” the largest power of p dividing i; if h =O, i- 1 > h; if 
h > 0, then, as i 2 ph, one verifies at once that i - 1 > h except for i =p = 2, 
so that 2(i - 1) > h in all cases. Therefore, in the above formula, the sum 
in the last term in the right-hand side is in pR whenever x~p’R. This 
gives, for x~p~ R, aEN: 

(3) (1+x)“-l+ax b--R), 

which must remain valid, by continuity, for all xep2 R and aEZ,, since 
N is dense in Z,. Now call d the degree of K over Q,; by th. 1 of 0 2, 
we can find a basis {ur,..., vd} of K over Q, such that R = c Z,ui. By (3), 
wehavenow,for l<i<d,v>l,a,~Z,: 

and therefore : 

It follows from this that, if x1 gp2 R, we can define by induction a sequence 
(x1,x2 ,... ), with x,~p”+l R for all va 1, by putting, for each v: 

with a,,EZ, for 1 didd, and then 

1+x Y+l=(l+XY)~(l+p%i) Pp\-l”i,. 
I 

It is now clear that we have 

(5) 
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where the bi are given, for 1~ i 6 d, by 

bi= ypy-‘aVi . 
v=l 

This shows that, as a multiplicative Z,-module, the group 1 +p2 R is 
generated by the d elements 1 +p* ui; as it is an open subgroup of the 
compact group 1 f P, hence of finite index in 1 + P, and as 1 + P, as a 
Z,-module, is generated by the elements 1 +p2ui and by a full set of 
representatives of the classes module 1 +p* R in 1 +P, this implies that 
1 +P is finitely generated. Now assume that (5) can hold with x1 =0 
while the bi are not all 0; then, taking for v - 1 the smallest of the orders 
of the bi in QP, we can write bi=pYwlai with ~31, ai~Z for l<i<d, 
and the a, not all in p Z,. Then (4) gives x airi = 0 (p R), i.e. f(P-‘ai)ui~R, 
which contradicts the definition of the ui. This shows that 1 +p* R, as 
a Z,-module, is the free module generated by the 1 +p2 vi, so that it is 
isomorphic to (Z,)d. We can now apply corollary 4 of th. 2, 4 2, to the 
Z,-modules 1 + P and 1 +p* R. As their quotient is finite, it is of rank 0; 
as 1 +p* R is isomorphic to (Z,)d, it is of rank d. Therefore 1 + P is of 
rank d, hence, by corollary 2 of th. 2, § 2, the direct product of d factors 
isomorphic to Z, and of finitely many factors, each isomorphic to a 
module Z,/p’Z,. As the latter are finite groups, their product is the 
group of all elements of finite order in 1 +P and is itself a finite group, 
whose order is a power of p; it is therefore the group of all roots of 1 
in 1 +P; by lemma 1 of Chap. I-l, if p” is the largest of the orders of 
its elements, it is cyclic of order pm, hence, as a Z,-module, isomorphic 
to ZP/pmZ,. Finally, writing K” as the direct product of n, M” and 
1 +P, we see that any root of 1 in K whose order is a power of p must 
be in 1 + P. This completes the proof. 

COROLLARY. Let K be as in proposition 9. Then, for every integer 
n B 1, (K ’ )” is an open subgroup of Kx, of finite index in K x, and that 
index is n (n, r) . mod,(n)- ’ if r is the order of the group of all roots 
of 1 in K. 

Clearly the latter group is the direct product of M” and of the 
group of roots of 1 in 1 +P, which is of order p”; therefore it is cyclic 
of order r = (4 - l)p”, and K ’ is the direct product of ZZ, of that group, 
and of a Z,-module isomorphic to R. Now nR is an open subgroup of 
the additive group R, whose index in R, by the definition of mod,, is 
mod,(n)-‘. The conclusion follows from this at once, by the same 
argument as in the proof of prop. 8. 

PROPOSITION 10. Let K be a commutative p-field of characteristic p. 
Then 1 +P, as a Z,-module, is the direct product of a countably infinite 
family of modules isomorphic to Z,. 
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By th. 8 of Chap. I-4, we may regard K as the field of formal power- 
series in one indeterminate rc, with coefficients in the field F, with q = pf 
elements. Here it is easy to give explicitly a family of free generators 
for the Z,-module 1 + P. In fact, take a basis {ai,. . . , Mu} for F, over the 
prime field F,. As generators of 1 +P, we take the elements 1 +clirc”, 
where 1 $ i<f, n running through the set of all integers >O, prime to p. 
For any N > 0, put N = np’, with v 20 and n prime to p. For any integers 
a,>0 (1 <i<f), we have 

ibl(l +Cli7Cnn)aiPY= n (1 +Bi7CN)“‘G 1 +($aipi)nN (PN+l) 
I 

with pi = crf’. As x + xp” is an automorphism of F, over F,, the pi also 
make up a basis of F, over F,; thus, for any given c(EF~, one may, in 
one and only one way, choose integers a, such that O<ai <p and that 
caiai=cl. Now take any x1 EP; we define inductively a sequence 
(x1,x,, . ..). with xN~PN for all N > 1, as follows. For each N, putting 
N =np” with n prime to p as above, we choose the integers a, so that 
O<aicp for l<i<fand that 

yN= JJ(1 +Cl$rn)aiP”= 1 +x, (PN+l), 

which can be done in one and only one way in view of the foregoing 
remarks, and put then 

One sees at once, putting these formulas together, that they give for 
1 +x1 an expression as a convergent infinite product of factors of the 
form (1 +LX~~C”)~, with 1 < i<f, n prime to p, and beZ,,. Moreover, the 
above calculations show also that this expression is unique, which proves 
our assertions. 

5 4. Lattices over R. The concept of lattice, as developed for p-fields 
in $0 1-2, cannot be applied to R-fields. The appropriate concept is here 
as follows : 

DEFINITION 3. By an R-lattice in a vector-space V of finite dimen- 
sion over an R-field, we understand a discrete subgroup L of V such that 
V/L is compact. 

We have to recall here some elementary facts about discrete sub- 
groups. Let G be a topological group, r a discrete subgroup of G, and 
cp the canonical mapping of G onto G/T. Then, if U is a neighborhood 
of the neutral element e in G, such that U-i. U contains no element 
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of r other than e, cp induces, on each set of the form g U with gcG, a 
homeomorphism of that set onto its image in G/T; one expresses this by 
saying that cp is a “local homeomorphism”; one may say that it is a 
“local isomorphism” in U if r is normal in G, since in that case it maps 
the group law in G onto the group law in G/T. Assume that G is locally 
compact, and let a right-invariant measure CL be given on G. Then it is 
easily seen that there is one and only one measure CL’ on G/T such that, 
whenever X is a measurable subset of G which is mapped by cp in a one- 
to-one manner onto its image X’=q(X) in G/T, cr’(X’) is equal to a(X); 
in particular, this will hold for every measurable subset of every set g U, 
where U is as above. Then, if f is any continuous function with compact 
support in G, we have 

(6) 

here we have put Q=cp(g), and the integrand in the right-hand side, 
which is written as a function of g but is constant on cosets gr, is to 
be understood as a function of 4. This, in fact, is clear if the support off 
is contained in any set g U, and the general case follows from this at 
once; also, as well known in integration theory, the validity of (6) for 
continuous functions with compact support implies its validity for all 
integrable functions, and for all measurable functions with values in R,. 
Clearly, CI’ is invariant under the action of G on G/T if and only if M is 
left-invariant; this will be so, in particular, whenever G/T is compact, 
since then G/T is a set of finite measure which is invariant under the 
action of G. Then, if at the same time r is normal in G, a’ is a Haar measure 
on G/T. 

Things being as above, CI’ will be called the image of M in G/T; we will 
denote this image simply by a when no confusion is likely. The following 
lemma (which takes the place of what was known as Minkowski’s theo- 
rem in classical number-theory) is now obvious: 

LEMMA 1. Let G be a locally compact group with a Haar measure a; 
let r be a discrete subgroup of G, such that G/T is compact; let X be a 
measurable subset of G such that a(X)>a(G/T). Then there are two 
distinct elements x, x’ of X such that x-l x’er. 

One should only note that, since G/T is compact, any right-invariant 
measure on G is also left-invariant; therefore the Haar measure CI is 
bi-invariant, and its image in G/T is well-defined. 

LEMMA 2. Let G, CI and r be as in lemma 1, and let r, be a discrete 
subgroup of G, containing r. Then r has a finite index [r, :r] in rI, and 
this is given by 

a(G/r) = [r, : r] a(G/r,). 
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As G/T is compact, there is a continuous function f0 3 0 with compact 
support on G, such that 

fl(Y)=ypowo 

for all gE G. Then the function f=fO/fi is continuous on G, has the same 
support as fO, and is such that x:f(gY), where the sum is extended to 
all YES, is 1 for all g; this implies that the similar sum, extended to all 
YEAS, has the constant value [r, :r]. If now we apply (6) to G, f and r, 
and also to G, f and Tr, we get the result in our lemma. 

From these facts, we now deduce the following classical result about 
R-lattices : 

PROPOSITION 11. Let L be a subgroup of a vector-space V of dimen- 
sion n over R. Then the following three statements are equivalent: (i) L is 
an R-lattice in V; (ii) L is discrete in V, finitely generated, and contains 
a basis for V over R; (iii) there is a basis {vl, . . ., v,} of V over R which 
generates the group L. 

Assume (iii), and consider the isomorphism 

(7) (x 1, ...2 xn)+Cxivi 

of R” onto V; L is the image of Z” under that isomorphism; therefore it 
is discrete in v and V/L is isomorphic to (R/Z)“, hence compact. There- 
fore (iii) implies (i) and (ii). Now assume (i); let W be the subspace of V 
generated by L, and call W’ a supplementary subspace to W in I/. Then 
V as a locally compact group, is the direct product of W and W’, and L 
is a discrete subgroup of W; therefore V/L is isomorphic to the direct 
product of W/L and W’. This cannot be compact unless W’ is so; then 
W’ must be {0}, and W= V, so that L contains a basis of V over R. Now 
let CI be the Haar measure on V which is such that a( V/L) = 1. For every 
basis B=(v,, . . . . v,} of V, contained in L, call ‘ps the isomorphism of 
R” onto V defined by (7); this maps Z” onto the sublattice L, of L gener- 
ated by B, and maps the Lebesgue measure ;1 on R” onto some scalar 
multiple rn, 1 CY of c(. As A(R”/Z”) = 1, we have rn; 1 a( V/L,) = 1; by lemma 2, 
this shows that m, is the index of L, in L. Now choose B so that this 
index has the smallest possible value; it will be shown that then LB= L. 
In fact, assume that L contains a vector w, not in L,, and write w = caivi 
with coefficients ai in R; as w is not in L,, at least one of the ai, say a1, 
is not in Z; replacing then w by w-mu, with mEZ, mta,<m+l, we 
may assume that O<a,<l. Now put v;=w, vt=vi for 2<i<n, and 
B’={v;, . ..) v;}; clearly B’ is a basis for V, contained in L. A trivial cal- 
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culation shows that cp; ‘0 qB’ is the automorphism of R” given by 

(Xl, ..*, X,)~(a,x,,x,+~,x,,...,x,+u,x,), 

whose module is a, (cf. corollary 3 of th. 3, Chap. I-2). Take a measurable 
set X in R”; put Y=cp,(X) and Y=qpBZ(X). By the definition of mB, mBT, 
we have a(Y) = mB L(X), a(Y) = mBT L(X); therefore qsP ocpi ‘, which maps 
Y onto Y’, has the module mBS/mB. Since ‘pB,o(pil can be written as 
(PB’OkG lo (Ps+YGA it has the same module as cp; ’ 0 (Pi,. Thus we get 
m,./m,=a, < 1, which contradicts the definition of B. This completes 
the proof, as it shows that (i) implies (ii) and (iii). 

0 5. Duality over local fields. Among the most important properties 
of commutative locally compact groups are those which make up the 
content of the “duality theory”. We recall that, if G is such a group, a 
character of G (in the sense of that theory) is a continuous representation 
of G into the multiplicative group of complex numbers of absolute value 1. 
Ifg* is such a character, its value at a point g of G will frequently be written 
as (g,g*)c, for which we write (g,g*) if there is no danger of confusion. 
We shall write the group law on G additively; and, on the set G* of the 
characters of G, we put a commutative group structure, also written 
additively, by writing 

GMlT +S:)c=(s,sT>c.(S~S:)c; 

one should note that the neutral element of G*, which is denoted by 0 
in this additive notation, corresponds to the “trivial” character of G 
with the constant value 1 on G. One topologizes G* by assigning to it 
the topology of uniform convergence on compact subsets of G; this 
makes it into a locally compact group, called the topological dual of G, 
or simply its dual if there is no danger of confusion. Conversely, the 
characters of G* are the functions g* -+(g,g*)c, for all gEG, and this 
determines an isomorphism between G and the dual of G*. In other 
words, G may be identified with the dual of G* by writing 

and it will always be tacitly assumed that they are so identified. The 
group G is compact if and only if G* is discrete; therefore G is discrete if 
and only if G* is compact. 

If H is any closed subgroup of G, the characters of G which induce 
the trivial character on H make up a closed subgroup of G*, which will 
be denoted by H, and is said to be associated with H by duality; it is 
isomorphic to the dual of G/H. When G is regarded as the dual of G*, 
the subgroup of G associated with H, is then H itself, which is therefore 
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isomorphic to the dual of G*/H,. As H is open in G if and only if G/H 
is discrete, we see that it is so if and only if H, is compact; consequently, 
H, is open in G* if and only if H is compact. Similarly, H is discrete if 
and only if G*/H, is compact, and G/H is compact if and only if H, is 
discrete. 

All this may be applied to the additive group of any left vector- 
space I/ of finite dimension over a non-discrete locally compact field K 
(commutative or not). In that case, if T”r is the topological dual of y and 
if U*E I/*, then, for every UEK, the function u++(au,u*), on V is clearly 
again a character of x which we will denote by u*a; one verities at once, 
by going back to the definitions, that this makes I’* into a right vector- 
space over K; by corollary 2 of th. 3, Chap. I-2, its dimension must be 
finite. In other words, the structure of Tr* as a right vector-space over K 
is defined by the formula 

(8) (au,u*),=(u,u*a),. 

Conversely, if I/ and I/* are dual groups, and T/* has a structure of right 
vector-space over K, (8) may be used in order to define I/ as a left vector- 
space over K. Thus we may still identify I/ with the dual of V* when their 
structures as vector-spaces over K are taken into account. If L is any 
closed subgroup of x the subgroup L, of V+ associated with L by 
duality consists of the elements u* of I” such that (u,u*)~= 1 for all 
UE L; in view of (8), this implies that, if L is a left module for some subring 
of K, L, is a right module for the same subring, and conversely. In parti- 
cular, if K is a p-field and R is the maximal compact subring of K, L is a 
left R-module if and only if L, is a right R-module. As we have seen that 
L is compact and open in I/’ if and only if L, is so in V*, we see that L 
is a K-lattice if and only if L, is one. When that is so, we say that the 
K-lattices Land L, are dual to each other; then a L and L, a- ’ are dual 
to each other for every ~EK”. On the other hand, if K is R, C or H, 
then, clearly, L is an R-lattice if and only if L, is one. 

On the other hand, if I’ is as above, we may consider its algebraic 
dual V’, which is the space of K-linear forms on K as well-known, if we 
denote by [v, u’]~ the value of the linear form U’ on V at the point u of q 
we can give to V’ a “natural” structure of right vector-space over K by 
means of the formula 

[au,u’b],=a[u,u’],b, 

valid for all u E V, U’E V’ and all a, b in K. If 1 is any character of the additive 
group of K, then, for every U’E V’, there is an element u* of the topological 
dual V+ such that (u,u*),=~([u,u’]~) for all UE E We shall use this 
operation in order to establish the relation between the algebraic and 
the topological dual. 
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THEOREM 3. Let K be a non-discrete locally compact field, and V 
a left vector-space of finite dimension n over K; let x be a non-trivial 
character of the additive group of K. Then the topological dual V* of V is 
a right vector-space of dimension n over K; the formula 

(v,v*),=~([~,u’]~) for all VE V 

defines a bijective mapping v’-+v* of the algebraic dual V’ of V onto V*; 
if x(xy)= I for all x, y in K, this mapping is an isomorphism for the 
structures of I/‘, V* as right vector-spaces over K. 

Let X, be the topological dual of K. The structure of K as a left 
vector-space of dimension 1 over itself determines on X, a structure of 
right vector-space over K; as such, it has a certain finite dimension d. 
Similarly, the structure of K as a right vector-space over K determines 
on X, a structure of left vector-space of a certain dimension d’ over K. 
Let V be as in theorem 3; by taking a basis of V over K, V can be written 
as the direct sum of n subspaces of dimension 1; therefore its dual T/*, 
as a right vector-space, is isomorphic to the direct sum of n spaces iso- 
morphic to X,, and has therefore the dimension nd. Similarly, the dual 
of P is a left vector-space of dimension ndd’; as it is isomorphic to V, 
with which we have in fact agreed to identify it, we get ndd’ =n, hence 
d = d’ = 1. Now let x be as in theorem 3 ; this defines an element c* # 0 in 
the additively written group X,, so that we have x(t)= (t,c*), for all 
t EK. As d’ = 1, every element of X, can be uniquely written as xc*, with 
XEK; as d= 1, every element of X, can be uniquely written as c*y, with 
~EK. Therefore the relation xc* =c*y determines a bijection CI of K 
onto itself, and one verifies at once that this is an automorphism of K. 
In view of (8), c* y is the character t -+x(y t) of K, and similarly xc * is 
t + X(tx). Therefore X(t x) = x(a(x) t) for all x, t in K, and this determines CI 
uniquely; in particular, a induces the identity on the center of K, and it 
is the identity if and only if x(t x) = x(x t) for all x, t in K. Now consider 
the mapping VI-+ v* of V’ into V* which is defined in theorem 3; take 
XEK, put w’=v’x, and assume that the mapping in question maps w’ 
onto w*. We have 

In view of the definition of v* and w*, this gives 

for all v, hence w* = v*a(x). It is customary to express this by saying that 
the mapping v’ + v* is a-semilinear. At the same time, it is clearly injective; 
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foru*=Omeansthat~([v,o’],,)isl f or all ZIE V, hence also that x(x [u, u’],) 
is 1 for all XEK and all UE V; as x is not trivial, this implies [u, u’]“=O for 
all u, hence u’ =O. As I” and I/* have the same dimension II over K, an 
cr-semilinear mapping of I” into I’* cannot be injective without being 
bijective; this completes the proof. For purposes of reference, we formu- 
late separately the result about the characters of K: 

COROLLARY. Let K and x be as in theorem 3; then every character 
of K can be uniquely written as t +X(tx), with XE K, and also as t+X(yt), 
with ~EK. 

A more “intrinsic” way of formulating theorem 3 would be to say 
that there is a canonical isomorphism, given by the formula in th. 3, 
between I/* and the tensor-product V’@,X, (and similarly between 
V* and X, 0, I” if V is given as a right vector-space); this will be left 
to the reader. One may also note that there is always a non-trivial 
character x of K for which x(xy)=x(yx) for all x, y; for instance, one 
may take x= xOoz, where T is the “reduced trace” in K over its center K, 
(cf. Chap. 1X-2), and x0 is a non-trivial character of K,; the same result 
could be deduced from the fact that, in view of the Skolem-Noether 
theorem (which will be proved as prop. 4 of Chap. IX-l), a in the proof 
of th. 3 must be an inner automorphism of K. Of course the distinction 
between right and left becomes entirely superfluous if one considers only 
commutative fields. 

It is frequently convenient, having chosen once for all a character 
x of K with the properties described in theorem 3, to identify the topo- 
logical and algebraic duals of every vector-space over K by means of 
the isomorphism described in that theorem; when doing this, one will 
refer to x as “the basic character”. In particular, K will then be identified 
with its own topological dual, as shown in the corollary of th. 3. When 
this is done for a p-field K, the subgroup of K associated by duality with 
each subgroup of the form P” must be of the same form, since in general 
the dual of a K-lattice is a K-lattice. In order to give a more explicit 
statement, we set up a definition: 

DEFINITION 4. Let K be a p-field, R its maximal compact subring 
and P the maximal ideal of R. Then the order of a non-trivial character 
x of K is the largest integer VE Z such that x is 1 on P- ‘; it will be denoted 
by ord(x). 

In other words, P-’ is the dual K-lattice to R when K is identified 
with its dual by means of x; this shows that v is finite. 
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PROPOSITION 12. Let K be a p-field and x a non-trivial character 
of K of order v. Then, for any nEZ, x(x t) = 1 for all t E P” if and only if 
XEP-n-Y. 

This is obvious, and amounts to saying that the dual K-lattice to 
P” is Pmnmy when K is identified with its dual by means of x. 

As to the explicit construction of characters for local fields, the case 
of R is well-known; there one may take as basic character the one given 
by x0(x)= e(x)= e2nix; m C or H, one may then take as basic any character 
x0 0 f ,  where f  is an R-linear form other than 0 (e.g. the trace over R). 
If K is a local field of characteristic p, one may write it as a field of formal 
power-series x = xai T’ with coefficients in F,, and take as basic the 
character of order 0 given by ~(x)=$(a- i), where $ is a non-trivial 
character of the additive group of F,. For Qp, an explicit construction 
will be given in Chap. IV-2, as part of the proof of theorem 3 of that 
Chapter. 



Chapter III 

Places of A-fields 

0 1. A-fields and their completions. By an algebraic number-field, it 
is customary to understand a finite algebraic extension of Q. One main 
object of this book, and of number-theory in general, is to study algebraic 
number-fields by means of their embeddings into local fields. In the last 
century, however, it was discovered that the methods by which this can 
be done may be applied with very little change to certain fields of charac- 
teristic p > 1; and the simultaneous study of these two types of fields 
throws much additional light on both of them. With this in mind, we 
introduce as follows the fields which will be considered from now on: 

DEFINITION 1. A field will be called an A-field ij it is either a finite 
algebraic extension of Q or a finitely generated extension of a finite 
prime field F,, of degree of transcendency 1 over F,. 

Thus, if k is an A-field of characteristic p> 1, it must contain a trans- 
cendental element t over F,, and it is then a finite algebraic extension of 
F,(t). Therefore, if once for all we denote by T an indeterminate, so that 
F,(T) is the field of rational functions in T with coefficients in F,, an 
A-field of characteristic p is one which is isomorphic to a finite algebraic 
extension of F,(T). One should note that such a field always contains 
infinitely many fields isomorphic to F,(T). 

We shall study A-fields by means of their embeddings into local 
fields. In view of theorems 5 and 8 of Chap. I, it is permissible, up to 
isomorphism, to speak of the set of all local fields. In fact, for a given 
p> 1, the local fields of characteristic p are, up to isomorphism, in a 
one-to-one correspondence with the finite fields F, with 4 = p” elements, 
while the local p-fields of characteristic 0 are isomorphic to the subtields 
of an algebraic closure of Q, which are of finite degree over Q,. It will 
be seen later (as a consequence of lemma 1, Chap. X1-3) that there are 
only enumerably many fields of the latter type; this will not be needed 
here. It is now legitimate to speak of the set of places of an A-field ac- 
cording to the following definition: 

DEFINITION 2. Let ;1 be an isomorphic embedding of an A-field k 
into a local field K; then (n,K) will be called a completion of k if ;l(k) is 
dense in K. Two completions (&K), (n’,K’) of k will be called equivalent 
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if there is an isomorphism p of K onto K’ such that ,I’=poA. By a place 
of k, we shall understand an equivalence class of completions of k. 

DEFINITION 3. A place of an A-Jield k, determined by a completion 
(&K) of k, will be called real if K is isomorphic to R, imaginary if K is 
isomorphic to C, infinite in both of these cases, and jinite in all other cases. 

Let v be a place of k, as above; clearly, for all completions (1,K) of k 
belonging to v, the function mod, 02 on k is the same; this will be written 
x-+jxl,. If 2) is imaginary, mod,(x-y) ‘/’ is a distance-function on K; 
in all other cases, mod,(x-y) is such a function. Therefore we can 
always obtain a completion of k, belonging to V, by taking the completion 
of k with respect to the distance-function lx - yl,* with c1= l/2 if v is imag- 
inary and c(= 1 otherwise. This completion will be denoted by k, and 
will be called the completion of k at v; for all xek,, we shall write 
1x1, = mod,“(x). If v is a finite place, we write rV for the maximal compact 
subring of k,, and p, for the maximal ideal in r,; these are the subsets of 
k, defined respectively by lxlV< 1 and by 1x1,< 1. 

As shown by th. 5 of Chap. I-2, Q has one infinite place, corresponding 
to the embedding of Q into R=Q,; this place will be denoted by co. 
The same theorem shows that the finite places of Q are in a one-to-one 
correspondence with the rational primes, with which they will usually 
be identified, the place p corresponding to the embedding of Q into Q,. 

The knowledge of the places of Q provides us with a starting point 
for determining the places of algebraic number-fields, considered as 
finite algebraic extensions of Q. In order to proceed in the same way 
for A-fields of characteristic p > 1, we have to know the places of FJ T). 
Before determining them, we first give some general results about places 
of algebraic extensions. 

PROPOSITION 1. Let k be any field, k, an infinite subfield of k, and A 
an isomorphic embedding of k into a local field K. Then the closure 
K, of ;l(k,) in K is a local field, and the closure of 1(k) in K is the field 
generated by I(k) over K,. 

The first assertion follows at once from corollary 3 ofprop. 2, Chap. I-2. 
Then, by corollary 2 of th. 3, Chap. I-2, K must have a finite degree over 
K,, so that, by th. 3, Chap. I-2, every vector-space over K, in K is closed 
in K. The field K, generated by A(k) over K, is such a vector-space; on 
the other hand, the closure of 2(k) in K is clearly a field, and it contains 
;i(k,), hence K,, and I(k); therefore it is K,. 

COROLLARY. Let k be an A-field, k’ a finite algebraic extension of k, 
and w a place of k’. Let ;1 be the natural injection of k’ into its completion 
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kk at w. Then kk is a finite algebraic extension of the closure of A(k) in 
kk, and the injection of k into that closure, induced on k by A, determines a 
place v of k. 

In view of our definitions, this is a special case of prop. 1; it enables 
us to set up the following definition: 

DEFINITION 4. If k, k’, w and v are as in the corollary of prop. 1, we 
say that v is the place of k which lies below w, and that w lies above v; and 
we write w/v. 

When that is so, we shall usually identify k, with the closure of k 
in kk. 

THEOREM 1. Let k be an A-Jield, k’ a finite algebraic extension of k, 
and v a place of k. Then there is a place of k’ which lies above v, and there 
are only jinitely many such places. 

Let K be an algebraic closure of k,, and k” the algebraic closure of k 
in K; as k” is algebraically closed, there is at least one isomorphism 2 
of k’ into k” over k. Call K, the field generated by 2(k’) over k,; this is a 
finite algebraic extension of k,, so that, by corollary 1 of th. 3, Chap. I-2, 
we can give it its topological structure as a vector-space of finite dimen- 
sion over k,; this makes it into a local field. Then, by prop. 1, (&K,) is 
a completion of k’, and it determines a place of k’ which clearly lies 
above v. Conversely, let w be any place of k’ above v. Then, by the corollary 
of prop. 1, k; is algebraic over k,, so that there is at least one isomorphism 
cp of k; into K over k,; let 2 be the isomorphism of k’ into K induced on 
k’ by q; clearly ;1 maps k’ into k”. By prop. 1, k; is generated by k’ over 
k,, so that cp(kL) is the same as the field denoted above by K,; moreover, 
again by corollary 1 of th. 3, Chap. I-2, cp is a topological isomorphism 
of kk onto K,, so that w is the same as the place of k’ determined by the 
completion (A, K,) of k’. Thus there are at most as many places of k’ above 
v as there are distinct isomorphisms /z of k’ into k” over k. As k’ is a finite 
algebraic extension of k, it is well-known (and easily proved) that there 
are only finitely many such isomorphisms. 

COROLLARY. An A-field has at most a finite number of injinite places; 
it has at least one if it is of characteristic 0, and none otherwise. 

The last assertion is obvious; the others are a special case of th. 1, 
since clearly a place of an A-field of characteristic 0 is infinite if and 
only if it lies above the place cc of Q. 

Now we proceed to the determination of the places of F,(T); more 
generally, we will determine those of F,(T), where F, is any finite field. 
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It will be convenient to say that a polynomial rr in F,[T] is prime if 
it is manic and irreducible in F,[T] and if its degree is >O. 

THEOREM 2. The field k =F,(T) has one and only one place u for which 
ITI,>l; fir this place, T-’ is a prime element of k,, and the module 
of k, is q. For each prime polynomial n in F,[T], k has one and only one 
place v such that Inl,< 1; for this place, n: is a prime element of k,, and 
the module of k, is q6 if 6 is the degree of rc. All these places are distinct, 
and k has no other place. 

Let v be a place of k. Assume first that 1 Tj,< 1; then F,[T] is con- 
tained in r,. Call p the canonical homomorphism of r, onto the finite 
field r-“/p,; it induces on F,[T] a homomorphism of F,[T] onto its 
image, whose kernel p,nF,[ T] is clearly a prime ideal in F,[T]. As 
F,[T] is infinite, and r-,/p, is finite, this ideal cannot be (0); therefore 
it is the ideal rc . F,[T] generated in F,[T] by some prime polynomial 71. 
Then 1~1, < 1, and we have lalV= 1 for every polynomial M. prime to rc 
in F,[T]. Every (Ekx can be written in the form 5 = rc”a/cl’ with nEZ 
and u,a’in F,[T] and prime to rc; when 5 is so written, we have 151,=lnlz; 
in particular, 5 is in rv if and only if n > 0, i.e. if and only if it can be written 
as 4 = /I/IX with c(, B in F4[ T] and CI prime to rc. As F,(T) is dense in k,, 
the range of values taken by 1x1, is the same on F,(T) as on k,; this im- 
plies that n is a prime element of k,. Now let 6 be the degree of rr. The 
image of F,[ T] in rO/pv is isomorphic to F,[T]/rc . F4[ T], which is an 
extension of F, of degree 6, hence a field with q6 elements; clearly the 
image of every element of r,nF,(T) must then be in that same field, 
which is therefore no other than rv/pv, since F,(T) is dense in k,; this 
shows that q6 is the module of k,, and we have l~j,=q-~. Consequently, 
the function lrl, on k is uniquely determined by rr, so that, when rc is 
given, there can be at most one place u of k with the properties we have 
described. Assume now that ] TJ, > 1; then 1 T- ‘1” < 1, and we may proceed 
exactly as before, substituting the ring F4[ TP ‘1 for F,[T], and T- 1 
for rc; then it is easily seen that, if 5 = /I/U with polynomials a,/? in F4[ T], 
other than 0, of respective degrees a,b, we have l(lv=qbPo. It is now 
clear that, if rc is any prime polynomial, InI, cannot be < 1 except for the 
place v described above, if there is such a place, and that the same holds 
for T-l. In order to show the existence of those places, take first the 
case rc= T; then the ring F,LT] can be embedded in an obvious manner 

into the ring of formal power-series f ai T’ with coefficients in F,; clearly, 
0 

if we extend this to the corresponding fields, we get a place of k, corre- 
sponding to n = T. Exchanging T with T- ‘, we get the same result for 
T-l. Now take a prime polynomial n of degree 6; then F,(T) contains 
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the field F,(z) and is algebraic over it; its degree d over F,(z) is <6. As 
we have just proved, there is a place w of F,(n) for which lrcl,=qP i. 
By th. 1, F,(T) has a place u lying above w. By corollary 2 of th. 3, Chap. I-2, 
we have then 17tll: = lrcl”, = qPd. This completes our proof, and shows also, 
incidentally, that d = 6. 

COROLLARY. Notations being as in theorem 2, let v be the place 
of k corresponding to the prime polynomial 7~ of degree 6. Then the poly- 
nomials of degree < 6 in F4[ T] make up a full set of representatives of 
the classes in rV modulo p”. 

This follows at once from what has been proved above and from 
the fact that these polynomials make up a full set of representatives of 
the classes in F4[ T] modulo 7-c. 

From now on, it will be convenient to say that a property, involving 
a place of an A-field k, holds for almost all places of k (or, if no confusion 
is likely, that it holds almost everywhere) if it holds for all except a finite 
number of such places. This will be of use, for instance, in formulating 
our next result. 

THEOREM 3. Let k be an A-field and < any element of k. Then [(I,< 1 
for almost all places v of k. 

This is clear for k=Q, since we can then write <=a/b with a, b in Z 
and b#O, and ICI,< 1 for all the primes p which do not divide b. Now 
let k be an A-field of characteristic 0, i.e. an algebraic number-field. 
Then 5 satisfies an equation 

with coefficients ai in Q. Let P be the finite set consisting of co and of 
all the primes which occur in the denominators of the ai. By th. 1, the 
set P’ of the places of k which lie above the places of Q belonging to P 
is finite. Take any place u of k, not in P’; then the place p of Q which 
lies below v is not in P, so that lailp < 1 for 1 d i < n; therefore 5 is integral 
over Z,. By prop. 6 of Chap. I-4, this implies that 5 is in r,,, i.e. that 
l<l,< 1. For an A-field k of characteristic p > 1, one could give a 
similar proof; one may also proceed as follows. If 4 is algebraic over 
the prime field, we have 14 1” = 1 or 0 for all U, according as 5 # 0 or 5 = 0. 
If not, k is algebraic over F,(t). Let v be a place of k, and let w be the place 
of F,(t) lying below it. By corollary 2 of th. 3, Chap. I-2, ItI”> 1 if and 
only if 151, > 1. By th. 2, F,(t) has only one place w with that property. 
In view of th. 1, this completes the proof. 
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COROLLARY I. Let E be a finite-dimensional vector-space over an 
A-field k. Let E,E’ be two finite subsets of E, both containing bases of E 
over k. For each finite place v of k, put E,=E@, k,, and call E,,EL the 
r,-modules respectively generated by E and by E’ in E,. Then, for almost 
all v, E,=.$. 

Here, as on all similar occasions from now on, it is understood that E 
is regarded as embedded in E, by means of the injection e+e@l,“. 
Put s={e,,..., e,} and E’ = {e;, , e:}. As E contains a basis for E over k, 
we may write (perhaps not uniquely) eJ= xcjiei for 1 <jbs, with coefli- 
cients cji in k. Then EL c E, whenever all the lcjilu are < 1, hence for almost 
all v. Interchanging E and E’, we get the assertion in our corollary. 

COROLLARY 2. Let d be a finite-dimensional algebra over an 
A-field k. Let CI be a finite subset of ~2, containing a basis of d over k. 
For each finite place v of k, put dv=&Qkkv, and call CL, the t-,-module 
generated by CI in ~4,. Then, for almost all v, M, is a compact subring 
of d”. 

Put fz={a,,. ..,a,} and a’={l,ai ,..., a,}. As a contains a basis of & 
over k, we may write aiaj= ~cij,,a,, for 1 < i,j < r, with coefficients cijh 
in k. Then I& is a subring of ~4” whenever all the lcijhla are d 1, hence 
for almost all v; obviously, it is compact; and a, = cx: for almost all v. 

9 2. Tensor-products of commutative fields. If k is an A-field and 
k’ a finite algebraic extension of k, the proof of theorem 1 gives a construc- 
tion for the places of k’ which lie above a given place of k. This will now 
be replaced by another one, based on the consideration of the tensor- 
product k’Okk,. To simplify matters, we shall deal only with the case 
where k’ is separable over k; this is adequate for our purposes because 
of the following lemma: 

LEMMA 1. Every A-field of characteristic p> 1 is isomorphic to a 
separably algebraic extension of F,(T) of finite degree. 

Let k be such a field; write it as F,,(x,, . . .,xN), where at least one of 
the xi, say xi, has to be transcendental over F,. We will prove, by induc- 
tion on N, that there is an xi such that k is separable over F,(Xi). This 
is clear if N = 1, and also if x2,. . . , xN are all algebraic over F,, since in 
that case, by th. 2 of Chap. I-l, they are separable over F,, so that k is 
separable over F&x,). If that is not so, then, by the induction assumption, 
F,(x 2,. . . ,x,) is separable over F,(Xi) for some i 32, say over F,(x,), so 
that k itself is separable over F,(x,, xJ. As k has the degree of trans- 
cendency 1 over FP, there is an irreducible polynomial @ in F,[X,, X2] 
such that @(xi, x2) = 0. Then @ is not of the form @‘p with @’ in F,[X,,X,]; 
as every element c( of F, satisfies up=c(, this is the same as to say that @ 
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contains at least one term @X;Xi where a # 0 and a or b is prime 
to p. If for instance a is prime to p, x1 is separable over FJx,), so that 
also k is separable over F,(x,). 

In the rest of this 0, we shall be concerned with the purely algebraic 
properties of tensor-products of the form k’OkK, where k is any field, 
k’ a separably algebraic extension of k of finite degree, and K is any 
field containing k; in $4, this will be applied to the case where k is an 
A-held and K a completion of k. We dispose first of a side-issue. 

LEMMA 2. If a commutative ring B can be written as a direct sum 
of fields, it can be so written in only one way; and a homomorphism of B 
into a field must be 0 on all except one of the summands of B. 

Let B be the direct sum of the fields K,,. . . , K,; put e, = lKi. Then 
Ki= e, B, and B has the unit-element l,=xei. Clearly the solutions of 
the equation X2 =X in B (the “idempotents” of B) are the partial sums 
of the sum xe,; consequently the ei are uniquely characterized as those 
among the solutions of X2=X in B which cannot be written as e+ e’, 

I where e, e’ are solutions of X2 = X, other than 0. If f is a homomorphism 
of B into a field K’, it must map each e, onto a solution of X2 =X in K’, 
hence onto 1 or 0. If f(ei)=l, then f(ej)=O for all j#i, since eiej=O 
for ifj; this implies that f is 0 on Kj. 

PROPOSITION 2. Let k be a field and k’= k(5) a separable extension 
of k generated by a root t of an irreducible manic polynomial F of degree n 
in k[X]. Let K be a field containing k; let F,,. . ., F, be the irreducible 
manic polynomials in K[X] such that F = FI . . . F,, and, for each i, let ti 
be a root of Fi in some extension of K. Then the algebra A= k’@,K 
over K is isomorphic to the direct sum of the fields K(ti). 

As k’ is separable over k, F is without multiple roots in all extensions 
of k, so that the Fi are all distinct. Call p the k-linear homomorphism 
of the ring k[X] onto k’, with the kernel F. k[X], which maps X onto 4; 
this can be uniquely extended to a K-linear homomorphism p’ of K [X] 
onto A, which has then the kernel F. K[X] and determines an iso- 
morphism of A’= K [XI/F. K [X] onto A. We will now show that A’ 
is isomorphic to the direct sum B of the algebras Bi= K[X]/F, . K[X] 
over K; as these are respectively isomorphic to the fields K(&) in our 
proposition, our proof will then be complete. Let f be any element 
of K [Xl; call 7 its image in A’, and 6 its image in Bi for every i. Clearly 
each x is uniquely determined by f, so that &(f,, . . .,x) is a homo- 
morphism cp of A’ into B. As the Fi are mutually prime, it is well-known 
(and easy to prove, by induction on r) that there are polynomials p 1,. . . , p, 
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in K[X] such that F-i =CpiFi-‘; this implies, for all i and all j# i: 

(1) piFi-‘F=l (F,); PiF[‘FEO (Fj). 

Take r polynomials fi, . . . , f, in K[X]; for each i, call x the image of 
fi in Bi; put f=CpiF;‘Ffi, and call f the image of f in A’; then ,T is 
uniquely determined by the x, so that (yl,. . ., x)-T is a mapping t,Q 
of B into A’. Clearly $ocp is the identity on A’, and (1) shows that cpo$ 
is the identity on B. Therefore cp is an isomorphism of A’ onto B. 

Let k, k’ and K be as in proposition 2. Clearly an isomorphism A of 
k’ into an extension K’ of K induces the identity on k if and only if it 
is k-linear. Such an isomorphism will be called proper above K if K’ is 
generated by 1(k’) over K; then (A, K’) will be called a proper embedding 
of k’ above K. Two such embeddings (,&K’), (A’,,“) will be called equi- 
valent if there is a K-linear isomorphism p of K’ onto K” such that 
A’=pol. One will notice that these are the algebraic concepts under- 
lying definition 2 and proposition 1 of # 1. 

PROPOSITION 3. Let k be a field, k’ a separably algebraic extension 
of k of finite degree n, and K a field containing k; put A= k’@,K. Then, 
up to equivalence, there are only finitely many proper embeddings (pi, Ki) 
(1~ i < r) of k’ above K; the sum of the degrees of the Ki over K is n. The 
mapping (A,, . ,A,) of k’ into the direct sum B of the fields Ki is a k-linear 
isomorphism of k’ into B, and its K-linear extension cp to A is an iso- 
morphism of A onto B. 

We may write k’= k(l), and then, calling F the irreducible manic 
polynomial in k[X] with the root I$ apply prop. 2 to k, k’, 5, F and K; 
this shows that there is a K-linear isomorphism 40 of A onto the direct 
sum B of certain fields Ki. For each i, call pi the projection from B to 
Ki; then pi= pio(p is a K-linear isomorphism of A onto Ki, and ,U~ induces 
on k’ a k-linear isomorphism Izi of k’ into Ki. Clearly ,U~ is the K-linear 
extension of Ai to A, so that cp, which is the same as (pl,. . .,p,.), is the 
K-linear extension of (A 1 ,..., A,) to A. If ili was not proper above K, 
there would be a field K”#Ki, between K and Ki, such that Ai would 
map k’ into K”; then pi would map A into K”, and not onto K,. Now 
let il be any k-linear isomorphism of k’ into a field K’ containing K, and 
call p the K-linear extension of A to A; ,U is then a homomorphism of A 
into K’, so that ,~ocp-’ is a homomorphism of B into K’. By lemma 2, 
this is 0 on all except one of the summands Ki of B, so that we can write 
it as so/Ii, where 0 is a K-linear homomorphism of Ki into K’; as these 
are fields, and as 0 is not 0, r~ must be an isomorphism of Ki onto its 
image K: in K’. This gives ~L=cJO~~, hence A=aoA,; if K;# K’, A, which 
maps k’ into K:, is not proper; therefore, if II is proper, g is an iso- 



52. Tensor-products of commutative fields 51 

morphism of Ki onto K’, so that (2, K’) is equivalent to (&, Ki). Finally, 
if at the same time we had A=o’oAj with j# i, 0’ being an isomorphism 
of Kj into K’, this would imply ~=Q’oP~, hence ~0qO-l =a’opj, and 

cIo(P- l would not be 0 on Kj. In particular, if il is proper, (2, K’) is not 
equivalent to more than one of the embeddings (& Ki); this shows that 
the latter are all inequivalent, which completes our proof. 

COROLLARY 1. Notations being as above, let ,I. be any k-linear iso- 
morphism of k’ into a field K’ containing K. Then there is a unique i, 
and a unique isomorphism o of Ki into K’, such that A=oo&. 

This was proved above; it is also an immediate consequence of pro- 
position 3 and of the fact that, if K” is the subfield of K’ generated by 
A(k’) over K, (2, K”) is a proper embedding of k’ above K, so that it must 
be equivalent to one of the (&, Ki). 

COROLLARY 2. Notations being as above, assume also that k’ is a 
Galois extension of k, with the Galois group G. Let (A, K’) be any proper 
embedding of k’ above K. Then K’ is a Galois extension of K; to every 
automorphism p of K’ over K, there is a unique OEG such that poA=Aoo, 
and p-0 is an isomorphism of the Galois group of K’ over K onto a 
subgroup H of G. The proper embeddings of k’ above K, up to equivalence, 
are all of the form (Aoa, K’) with ok G; if 6, CT’ are in G, (1-o o’, K’) is equi- 
valent to (iloo,K’) if and only if (T’E Ho. 

Clearly A(k’) is a Galois extension of k; as K’ is generated by A(k’) 
over K, this implies that K’ is a Galois extension of K, and that the 
restriction to A(k’) of the automorphisms of K’ over K defines an injective 
morphism of the Galois group H, of K’ over K into that of i(k’) over k; 
this is equivalent to the first part of our corollary. For LEG, (200, K’) 
is obviously a proper embedding of k’ above K; if (T, c’ are in G, (/log’, K’) 
is equivalent to (Aoo, K’) if and only if there is an automorphism p of K’ 
over K such that Roo’=poloo, i.e. poA=;lo(o’oa-‘); this is so if and 
only if 0’00 -r is in H. Therefore the number of inequivalent proper 
embeddings of that form is equal to the index of H in G, i.e. to n/n’ if 
n, n’ are the degrees of k’ over k, and of K’ over K, respectively. By pro- 
position 3, the sum of the degrees of the fields Ki over K, in any set of 
inequivalent proper embeddings (&, Ki) of k’ above K, must be bn; 
therefore, up to equivalence, there can be none except those of the form 
(loo, K’). 

A useful special case of corollary 2 is that in which k’ is a subfield 
of K’, generating K’ over K; one may then take for 2 the identity; the 
proper embeddings of k’ above K can all be written in the form (a, K’), 
with LEG, and the morphism p+a of the Galois group of K’ over K 
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into that of k’ over k is the restriction to k’ of the automorphisms of 
IS over K. 

COROLLARY 3. Let k and k’ be as in proposition 3, and let K be an 
algebraically closed or separably algebraically closed field containing k. 
Then there are n, and no more than n, distinct k-linear isomorphisms 
Al,...,& of k’ into K; they are linearly independent over K; if A, A’ are 
any two of them, and K is an algebraic closure of k, there is an auto- 
morphism a of K such that 1’ = MO/~. 

A field K is said to be separably algebraically closed if it has no 
separably algebraic extension, other than itself. The first assertion in 
our corollary, which is obvious, is inserted here for the sake of reference, 
and as an illustration of proposition 3, of which it is a special case; 
in fact, if K is as in our corollary, all the Ki in that proposition must be 
the same as K. The second assertion (a well-known theorem, due to 
Dedekind, and easily proved directly) can be deduced as follows from 
proposition 3. Assume that cci&=O, i.e. that ~cil,(S)=O for all CEk’, 
with tie K for 1 < i < n. The pi and pi being as in the proof of proposition 3, 
this implies 1 ci pi = 0, hence 1 ciBi = 0, which is clearly impossible unless 
all the ci are 0. The last assertion, also inserted here for the sake of re- 
ference, follows at once from the unicity, up to an isomorphism, of the 
algebraic closure of k, which implies that each ;li can be extended to an 
isomorphism of an algebraic closure E of k’ onto K. 

COROLLARY 4. Assumptions and notations being as in corollary 3, 
assume also that k’ is a Galois extension of k. Then all the Ai map k’ onto 
the same subfield of K. 

This follows at once from corollary 2. 

$3. Traces and norms. We first recall the concept of “polynomial 
mapping”. Let E, E’ be two vector-spaces of finite dimension over a field I; 
with infinitely many elements; let E= {e, ,..., e,} and c’= (e’, ,..., ek} be 
bases for these spaces over k. Then a mapping f of E into E’ is called 
a polynomial mapping if there are polynomials Pj in k[X,, . . . ,X,] such 
that 

f (TXiei) =~Pj(x~y...T%Je; 

for all values of the xi in k. This is clearly independent of the choice of 
the bases a,~‘; moreover, since k has infinitely many elements, the poly- 
nomials Pj are uniquely determined by f, E and E’. If E’ = k, f is called 
a polynomial function; the degree of the corresponding polynomial P 
is then independent of E and is called the degree off. If K is any field 
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containing k, put EK= E OkK and Ek = E’ QkK; then there is one and 
only one polynomial mapping of EK into E;( which coincides with f 
on E; this will be called the extension off to Ek and E;( (or more briefly 
to K) and will again be denoted by f; with respect to the bases E,E’ of 
E,, E;( over K, it is given by the same polynomials Pj as before. 

If E is as above, we write End(E) for the ring of endomorphisms of E, 
considered as an algebra over k. If amend, we write tr(a) and det(a) 
for the trace and the determinant of a; the former is a linear form, and 
the latter is a polynomial function of degree equal to the dimension 
of E, on End(E) considered as a vector-space over k. 

Now let A’ be an algebra of finite dimension over k; as always, it is 
tacitly assumed to have a unit element 1. For every a~&‘, call p(u) the 
endomorphism x-ax of LX’ when & is viewed as a vector-space over k; 
writing End(d) for the algebra of all endomorphisms of that vector- 
space, one may thus consider p as a homomorphism of d into End(d); 
it is known as the regular representation of d; as ~2 has a unit, it is an 
isomorphism of d onto a subalgebra of End(d). The trace and the 
determinant of p are known as the regular trace and the regular norm, 
taken in c&’ over k, and are denoted by Tr,d,, and N.d,k, or (when there 
can be no confusion) by Tr and by N, respectively; the former is a linear 
form on d viewed as a vector-space over k, and the latter is a poly- 
nomial function, of degree equal to the dimension of ~2 over k. If K is 
a field containing k, and L&’ is extended to the algebra d, = ~2 OkK 
over K, the regular trace and the regular norm in dK over K are the 
extensions of Tr,,, and N,d,k to A!‘~, and will still be denoted by Tr.d,k 
and Ndlk. When & is a field k’ of finite degree over k, one drops the 
word “regular” and calls Pkflk, N,,,, the trace and the norm in k’ over k. 
These concepts will now be applied to the situation described in 0 2. 

PROPOSITION 4. Let k be a field, k’ a separably algebraic extension 
of k of finite degree n, and K a field containing k. Put A= k’ BkK; let 
(& Ki)l S ig ,. be a maximal set of inequivalent proper embeddings of k’ 
above K, and let pi, for each i, be the K-linear extension of Ji to A. Then, 
for all aeA: 

In fact, let notations be the same as in prop. 3 of 9 2 and its proof, 
and put b= q(a). For every i, b has the projection fl,(b)=&a) on Ki. 
Then Trkf,,Ja) and Nktlk( a are the trace and the determinant of y+ by ) 
regarded as an endomorphism of B. Taking for B a basis consisting of 
the union of bases for the Ki over K, we get the formula in proposition 4. 
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COROLLARY 1. If k and k’ are as in proposition 4, the k-linear form 
Tr kt,k on k’ is not 0. 

In proposition 4, take for K an algebraically closed field contain- 
ing k; then Ki= K for all i, and proposition 4 gives Tr,,,,(a)=‘&(a). 
With the same notations as before, put b=cp(a), hence Pi(b)=pi(a); as 
the projections pi(b) of b on the summands of B can be chosen arbitrarily, 
we can choose them so that Tr,,,Ja) is not 0. As TrkPjk on A is the extension 
to A of the k-linear form Tr,.,, on k’, and the former is not 0, the latter 
is not 0. 

COROLLARY 2. Notations and assumptions being as in proposition 4, 
we have, for all x~k’: 

~kr,k(x) = C TrK,,JUx)), NwpAX)= nNKi,d4(X)). 
I i 

COROLLARY 3. Let k, k’ be as in proposition 4; let K be an algehw 
ically closed field containing k, and call AI, ..,, 2, the distinct k-linear 
isomorphisms of k’ into K. Then, for all XE k’ : 

~krjkb) = CAi(X), Nk,,k(~) = fl A(x). 
I I 

This follows at once from proposition 4 and corollary 3 of prop. 3,s 2. 

COROLLARY 4. Let k and k’ be as in proposition 4, and let k” be a 
separably algebraic extension of k’ of finite degree. Then: 

Trk..,k = Tr,,,ko Ek,C,k,, NkeTlk = Nkfjko N,.,,. . 

Take for K an algebraic closure of k”; define the Ai as in corollary 3; 
similarly, call n’ the degree of k” over k’, and call ,I;, for 1 <j< n’, the 
distinct k/-linear isomorphisms of k” into K. Each Li can be extended to 
an automorphism ‘pi of K. Put nyj = qio,I> for 1~ i < n, 1 <j < n’; these are 
k-linear isomorphisms of k” into K. Clearly ,Irj = Ai1 implies i = h, since 
$. induces li on k’, and j = 1, since cp,: ‘o,I;J = 1). Moreover, if 2” is any 
k-linear isomorphism of k” into K, it must induce on k’ one of the iso- 
morphisms li, and then cp,~ ‘oil” is k’-linear and must be one of the ,I;, 
so that 2” = &. Now corollary 3 gives, for x E k”: 

~ks&4= CAi”(x)= CVi(Cl>(x)) 

= $qi( Tr,.,,~~x)) =‘I,$( Trk,.,Jx)) = Trkzjk( E,., ,.(x)). 
1 

This proves our first assertion. The formula for the norm can be proved 
in exactly the same manner. 
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For the sake of completeness, we will also deal briefly with the 
trace and the norm for inseparable extensions. Let k’ be any algebraic 
extension of k of finite degree; it is well known that it contains a unique 
maximal separable extension kb of k, and that it is purely inseparable 
over it; let q=p” be the degree of k’ over kb, p being the characteristic; 
it is easily seen that x¶E kb for all xek’. Take a basis {t,, . . ., c,> of k’ 
over kb; take UE k’. Then k’, as a vector-space over k, is the direct sum of 
the subspaces ti kb for 1 <i < q, and these are invariant under x +aqx 
since a46 kb. Therefore we have 

Nk,,k(aq) = Nkoyk(aq)q> 
which obviously implies 

Nkpjk(4 = Nkdik4aq). 

Call n, the degree of kb over k, so that the degree of k’ over k is n=n,q. 
If K is an algebraically closed field containing k, each k-linear iso- 
morphism of kb into K can be uniquely extended to one of k’ into K; 
therefore, by corollary 3 of prop. 3, 9; 2, there are n, such isomorphisms 
Ai (1 < i < n,), and the above formula for Nkflk, together with corollary 3 
of prop. 4 applied to kb and k, gives, for all x~k’: 

Nk,,k(~) = n ,$(x)“‘““. 

Now let k” be any finite extension of k’. Proceeding exactly as in the 
proof of corollary 4 of prop. 4, we get again 

N k”/k - - Nk’,kONk”,k’ , 

which is therefore valid, whether k’ and k” are separable over k or not. 
As to the trace, the elementary properties of the determinant, and 

the definition of the trace and the norm, show that, if JZZ is any algebra 
over k, R,,,(x), as a linear form on &, is the sum of the terms of degree 1 
in the polynomial function N.,,(l +x) when the latter is expressed as a 
polynomial in the coordinates of XE& with respect to some basis of JZZ 
over k. This, applied to the present situation, shows that TrkTjk(x) is the 
sum of the terms of degree 1 in N,,,,(l +x). As the latter is equal to 
Nkb,k(l +x4), it contains only terms whose degree is a multiple of q. 
This shows that Trkrjk - - 0 if q > 1, and therefore, in view of corollary 1 of 
prop. 4, that Trkrjk + 0 if and only if k’ is separable over k. 

PROPOSITION 5. Let k’ be a separably algebraic extension of k of 
degree n, and let {al, . . . , a,,} be a basis of k’ over k. Then the determinant 
of the matrix 

(fik,jk(Wj)), <i,j<n 

is not 0. 
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In view of corollary 1 of prop. 4, this is contained in the following 
lemma, which will also be useful later: 

LEMMA 3. Let k’ be any extension of k of degree n; let E be the 
vector-space over k underlying k’, and let A be any linear form on E, other 
than 0. Then (x, y) -+1(x y) is a non-degenerate bilinear form on E x E; one 
can identify E with its algebraic dual E’ by putting [x, y] =1(x y); and, if 
a,, . . . . a,, is a basis of k’ over k, the determinant of the matrix (l(aia,)) 
is not 0. 

As il is not 0, there is aEk’ such that A(a)#O. For each ygk’, define a 
k-linear form A, on k’ by &(x)=n(x y) for all x~k’. Then y --+A,. is a mor- 
phism of E into its dual E’. This has the kernel 0, since y #0 implies 
,$,(a y- ‘)# 0, hence A,#O. As E and E’ have the same dimension over k, 
this shows that y +/z, is an isomorphism of E onto E’; identifying E and 
E’ by means of that isomorphism, we get [x, y] =1(x y). By definition, 
this is the same as to say that (x, y)+A(xy) is non-degenerate. Finally, 
if the matrix (,I(aiaj)) had the determinant 0, one could find y,, . . . . y,, 
in k, not all 0, so that CI(aiaj)yj=O, hence, putting y= xajyj, ;l,(aJ=O 

for all i, and therefore’ A,=O, which contradicts what his been proved 
above. 

0 4. Tensor-products of A-fields and local fields. Let k be an A-field 
and k’ a separable extension of k; let v be a place of k, and k, the completion 
of k at v. Then, by prop. 1 of 0 1 and its corollary, the completions (&K’) 
of k’ which induce on k its natural injection into k, are the same as the 
“proper embedding? of k’ above k, as defined in $2. We may therefore 
use propositions 2 and 3 of 5 2 in order to determine the places of k 
above v; this will be done now. 

THEOREM 4. Let k be an A-jield, k’ a separably algebraic extension 
of k of finite degree n, and c( a basis of k’ over k. For every place v of k, 
let k, be the completion of k at v, and put A,= k’ Okk,; for every finite 
place v of k, call r, the maximal compact subring of k,, and a, the r-,-module 
generated by a in A,. Let wl, . . . . w, be the places of k’ which lie above v; 
for each i, call k; the completion of k’ at wi, li the natural injection of k’ 
into k; and nLi the k,-linear extension of lli to A,. Then the mapping 
QV = (pl,. . .,nL,) is an isomorphism of A, onto the direct sum B, of the fields 
ki, and, for almost all v, it maps a, onto the sum of the maximal compact 
subrings r-i of the fields ki. 

The first assertion is just a special case of prop. 3 of § 2, obtained by 
taking K= k, in that proposition; more briefly, but less accurately, it 
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can be expressed by saying that the completions k; of k’ at the places of 
k’ which lie above v are the summands of k’Okk, when this is written as a 
direct sum of fields. Now take for v any finite place of k; clearly the sum 
of the r; is the maximal compact subring of B,; therefore its image p, 
under @” -i is the maximal compact subring of A,, and we have to show 
that this is the same as CL, for almost all v. As each of the ri contains rv, 
pv is a k,-lattice in A,; by th. 1 of Chap. 11-2, we can find a basis 

IU “,I? . ..ru”..> of A” over k, such that pv is the r,-module generated by 
that basis. For almost all v, by corollary 2 of th. 3, 0 1, ~1, is a compact 
subring of A,, hence contained in p,; call P the finite set of places of k 
for which this is not so. Put c1= {a,, . . . , a,}; for v not in P, CI, is contained 
in p”, so that we can write ai= CC,,~~U,,~ with c,,ijEr, for 1 <i,jgn; the 
matrix C”=(C,,~~) is then in M,,(rJ, and we have cr,=p, if and only if C, 
is invertible in M,(r,), i.e. if and only if its determinant is invertible in rU. 
Now, writing Tr for the trace Tr,.,,, call A the determinant of the matrix 

M=(Tr(aiaj))l<i,j<n; 

A is in k, and, by prop. 5 of $3, it is not 0. Applying th. 3 of 6 1 to A and to 
A-‘, we see that 1 Al,= 1 for almost all v. On the other hand, if u is any 
element of A,, Tr(u) is the trace of x -+UX in A,; writing u . u,,~ = xdij~v,j 
with dijek, for 1~ i,j<n, we get Tr(u)= xdii. As pv is a ring, all the dij 
are in r, if UEP,; this shows that Tr maps pU into ro. Therefore, if we write 
N, for the matrix (Tr(u,,iu,,j)), N, is in M,(r,,). Substituting now 
~c~,~~u,, j for a, in the matrix M, we get M = C,N,‘C,, hence A = 
=det(N,,) det(CJ2. Here N,, is in M,(r,,), and so is C,, if a is not in P; 
and 1 Al,= 1 for almost all v. Clearly this implies that Idet(C,)IU= 1 for 
almost all v, as was to be proved. 

In Chap. VIII, it will be shown that theorem 4 remains valid even 
if k’ is not assumed to be separable over k. 

COROLLARY 1. Assumptions and notations being as in theorem 4, the 
sum of the degrees over k, of the completions k; of k’ at the places wi 
of k’ which lie above v is equal to the degree n of k’ over k. 

In fact, this sum is the dimension of B, over k,, while that of A, 
over k, is n. 

COROLLARY 2. Let k be an algebraic extension of Q of degree n; 
call rl the number of the real places of k, and r2 the number of its imaginary 
places. Then rl + 2r, = n. 

We get this by replacing k, k’, v by Q, k, cc in corollary 1. 
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COROLLARY 3. Assumptions and notations being as in theorem 4, the 
extensions qf Trkfjk and N,.,, to A, are given by 

Trk’lk(X) = 1 Trk:jkhi(x))? Nk,jk(X) = nNki,k,(pi(X)). 

This follows at once from the application of prop. 4 of 9 3 to the 
situation described in theorem 4. 

COROLLARY 4. Assumptions and notations being as in theorem 4, 
assume also that k’ is a Galois extension of k, with the Galois group G. 
Let w be one of the places wi of k’. Then the completion k; of k’ at w is 
a Galois extension of k,; the restriction to k’ of the Galois group H of kk 
over k, determines an isomorphism of H onto the subgroup of G, consisting 
of the automorphisms of k’ over k which leave w invariant; the wi are the 
images of w under G, and all the kf are isomorphic to k;. 

Let A be any isomorphic embedding of k’ into a local field K, such 
that l(k’) is dense in K; then, by definition, this determines a place of k’, 
and the image of that place by an automorphism 0 of k’ is to be under- 
stood as the place determined by the embedding /zoo of k’ into K. That 
being so, we get our corollary by combining theorem 4 with corollary 2 
of prop. 3, 9 2, the latter being applied to the natural injection of k’ 
into k;. 



Chapter IV 

Adeles 

5 1. Adeles of A-fields. Throughout this Chapter, k will denote an A- 
field; if v is a place of k, k, will denote the completion of k at v; if v is a 
finite place of k, we write Y, for the maximal compact subring of k, and 
pU for the maximal ideal of ro, these being the subsets of k, respectively 
defined by 1x1”< 1 and by (xl,< 1. We write P, for the set of the infinite 
places of k, and P for any finite set of places of k, containing P,. For 
any such set P, put 

(1) k,(P) = n k, x n r,, 
VEP W+P 

where the second product is taken over all the places of k, not in P. 
With the usual product topology, this is locally compact, since the k, 
are so and the rv are compact. On k,(P), we put a ring structure by 
defining addition and multiplication componentwise; clearly this makes 
k,(P) into a topological ring. Set-theoretically, k,(P) could be defined 
as the subset of the product n k, consisting of the elements x=(x,) of 
that product such that Ix,l,< 1 for all u not in P. If P’ is also a finite set 
of places of k, and P’I>P, then k,,(P) is contained in k,(P’); moreover, 
its topology and its ring structure are those induced by those of k,(P’), 
and k,(P) is an open subset of k,(P’). 

Now we define a locally compact topological ring k,, the “ring of 
adeles” of k. Set-theoretically, this is to be the union of all the sets k,(P); 
in other words, it consists of the elements x=(x,) of the product n k, 
which satisfy Ix,I,< 1 for almost all a. The topological ring structure of 
k, will be defined by prescribing that each k,(P) is to be an open subring 
of k,. This means firstly that, if x=(x,) and y=(y,) are in k,, then 
x+y=(x,+y,) and xy=(x,y,); it is clear, in fact, that these are both in 
k,. Secondly, we get a fundamental system of neighborhoods of 0 in the 
additive group of k, by taking such a system in any one of the k,(P), for 
instance in k,(P,) which is the smallest one of the sets k,(P); equivalently, 
we get such a system by taking all the sets of the form n U,, where U, 
is a neighborhood of 0 in k, for all v,and U, = rv for almost all v. 
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DEFINITION 1. By the adele ring k, of the A-field k, we understand 
the union of the sets k*(P) defined by (l), when one takes for P all the 
finite sets of places of k which contain the set of all infinite places. The 
topological ring structure of k, is that for which each k,(P) is an open 
subring of k,. 

The elements of k, will be called the adeles of k. 
Take a place v of k; when P contains v, one can write k,(P) as the 

product of k, with an infinite product; denoting the latter by ka(P,v), 
we may proceed with the products ki(P,v) just as we have done for the 
products k,(P), taking now for P all the finite sets of places of k which 
contain P, and u. The union of all the kX(P,v) is then a locally compact 
ring k;(v), and k, is obviously isomorphic to the product k, x k;(v); 
by means of this isomorphism, the first factor k, of the latter product is 
obviously mapped onto the set of the adeles x=(x,) for which x, = 0 at 
all places w + v; this set will be called the quasifactor of k, belonging to v, 
and will always be identified with k,. The mapping (x,)+x, of k, onto 
k,, which corresponds to the projection from the product k, x k;(v) 
onto its first factor, will be called the projection from k, onto the quasi- 
factor k,; it is obviously continuous. Clearly, too, instead of one place u 
of k, one could start with any finite set P, of such places so as to write 
k, as the product of the fields k, for UE P, and of one more factor. 

Take any character x of the additive group of k,; it induces on 
k,(P), for every P, a character xP of k*(P), and on the quasifactor k,, 
for every v, a character xv of k,. It is well-known that a character of an 
infinite product of compact groups must induce the trivial character 1 
on almost all the factors; this, applied to the character induced by xP 
on the product nrV in (l), shows that xv is trivial on r, for almost all v; 
then we have, for all x =(x0) in k, : 

(2) x(x)= nx”(x”); 
0 

the product here is taken over all the places v of k; for each x=(x,) in k,, 
almost all the factors are equal to 1. 

Let 5 be an element of k. In view of th. 3 of Chap. III-l, we define an 
adele .x=(x,) by putting x,= 5 for all v; we write this p(t), and call 40 the 
canonical injection of k into k A; we will frequently identify k with its 
image in k, by means of cp when there is no danger of confusion. 

Let E be a vector-space of finite dimension n over k. For each place 
v of k, we will write E,=EOkk,; as usual, we take E to be “naturally” 
embedded in E, by the injection e+e@ 1,“. On the other hand, since k 
has been embedded in k, by the canonical injection cp defined above, we 
may consider the tensor-product E, = EQkk,, and regard E as being 
“naturally” embedded in it by the mapping e+e@)cp(l). We define the 
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topology of E, as the coarsest one for which the extensions to k, of the 
linear forms on E are continuous. Equivalently, take a basis E of E 
over k; this determines an isomorphism ofk”onto E, hence an isomorphism 
of (kA)n onto E,; the topology of E, is that which is obtained by trans- 
ferring to E, the topology of (k,)” by means of that isomorphism; it 
would be easy to verify directly that this does not depend upon E. 

Let E and E’ be vector-spaces of finite dimension over k, and let f be 
a polynomial mapping of E into E’; then f can be extended in an obvious 
manner to a mapping of E, into Ea, viz., the one which is defined by the 
same polynomial equations if E, E’ are identified with spaces k”, k”, and 
consequently E,, EL with (kA)n, (k,)” by the choice of bases for E, E’ 
over k. This extension off will again be denoted by f; it is clearly conti- 
nuous, since addition and multiplication are continuous in k,. 

PROPOSITION 1. Let E be a vector-space of finite dimension n over k. 
Let E be a finite subset of E, containing a basis of E over k. For each 
finite place v of k, call E, the r,-module generated by E in E,. For each 
finite set P of places of k, containing P,, write 

E,(P,4 = n E, x n E,. 
VEP V&P 

Then each EA(P,e) is an open subgroup of E,, and E, is the union of these 
subgroups. 

This should be understood in the sense that each product E,(P,&) is 
endowed with its product-topology, and that the latter coincides with 
the one induced by that of E,. Clearly E, is a k,-lattice in E,, hence open 
and compact in E,, for all finite places v. Therefore E,(P,&) is an open 
subgroup of E,(P’, E) whenever P c P’. Take a basis E’ of E over k, and 
use it to define an isomorphism of k” onto E, hence one of (kA)n onto E,; 
then our definitions show at once that E, is the union of the sets E,(P,&‘), 
and that these are open in E,. By corollary 1 of th. 3, Chap. III-l, there 
is a finite set PO of places of k, containing P,, such that E, = E; when v is 
not in P,. This shows that E, is the union of the sets E,(P,&), and also, 
for P’ 3 PuP,~, that E,(ee) is open in E*(P’,E’), hence in E,. Of course 
one could use proposition 1 to define directly the topology of E,, just as 
the topology of k, has been defined above; corollary 1 of th. 3, Chap. III-l, 
would then show this to be independent of E. 

COROLLARY 1. Assumptions and notations being as in proposition 1, 
let C be a compact subset of E,. Then there is a finite set P of places of k, 
such that C c E,(P, E). 
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As C is contained in the union of the open sets EA(P,&), it must be 
contained in the union of finitely many such sets E*(&,E), hence in 
E,(P,e) for P = U Pi. 

If JZ! is any algebra of finite dimension over k, we will denote by &,, 
the topological ring obtained by extending the multiplication law of .SYY 
to the space d, in the manner explained above. Clearly this may be 
regarded as an algebra over k,, and k,. 1 ,d is a closed subspace and a 
subring of &*, isomorphic to k,. 

COROLLARY 2. Let & be an algebra of finite dimension over k, and 
c( a finite subset of SI’, containing a basis of d over k. For each finite place 
v of k, call CI, the r,-module generated by a in ~2,. For each finite set P of 
places of k, containing P,, write 

d,(P,a)= n d” x n a,. 
VSP VfP 

Then there is such a set P, with the property that dA(P,a) is an open 
subring of -OeA whenever P 1 P,; and &A is the union of these subrings. 

This follows at once from corollary 2 of th. 3, Chap. III-l, and from 
proposition 1. 

Take now an algebraic extension k’ of k, of finite degree. As k’ is an 
A-field, we may apply to it our general construction, obtaining thus its 
adele ring k;. On the other hand, we may regard k’ as an algebra over k 
and apply to this algebra the construction given above; this gives a ring 
which we write as (k’lk),; as we have seen, it is an algebra over k,, and 
contains the closed subring k,. l,,, which we identify with k, in the 
obvious manner. It is a central fact in the theory of adeles that the rings 
ka, (k’/k), defined in this way are canonically isomorphic; this will be 
proved now, but only for the case where k’ is separable over k. The 
inseparable case will be treated in Chap. VIII-6. 

THEOREM 1. Let k be an A-field and k’ a separably algebraic exten- 
sion of k of finite degree. Then there is a unique isomorphism @ of (k’/k), 
onto ki with the following properties: (i) @ induces the identity on k’ 
when k’ is naturally embedded both in (k’lk), and in PA ; (ii) on each quasi- 
factor (k’lk), of (k’/k),, @ induces a k,-linear isomorphism @, of (k’/k), 
onto the product of the quasifactors kk of ka corresponding to the places 
w of k’ which lie above v. 

Write ,& for the algebra k//k, i.e. for k’ considered as an algebra 
over k. Then s+‘~, in the notation explained above, is the same as (k’/k),, 
and d, the same as (k’/k),, i.e. as the algebra k’& k, over k, which was 
studied in Chap. 111-4. For a finite number of summands, a “direct sum” 
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is the same as a product; we may therefore interpret th. 4 of Chap. III-4 
as defining an isomorphism @” of (k’/k), onto the product n kk of the 
fields kk for the places w lying above v; this is k,-linear and maps every 
5s k’ onto the element (5, . . . ,t) of n k:, and it is uniquely characterized 
by these properties. Similarly, if we take a basis CI of k’ over k, the same 
theorem shows that, for almost all v, @” maps a, onto the product flrk 
of the maximal compact subrings of the fields kk; let P, be a finite set of 
places of k, containing P,, such that @, has that property for all v not 
in P,. For each place w of k’, call f(w) the place of k lying below it. Then, 
for P zP,, the mappings @, determine in an obvious manner an iso- 
morphism QP of dA(P,a) onto ki(f- l(P)), where s4,(P,a) is the open 
subring of &A = (k’/k), defined as in corollary 2 of prop. 1. As every set 
f-‘(P) is finite, and every finite set P’ of places of k’ is contained in 
f- ‘(P) for P=f(P’), ka is the union of the sets ka(f- ‘(P)) for PIP,. 
As QP, coincides with GP on the domain of definition of GP whenever 
P, zP, there is an isomorphism @ of d, onto ka which coincides with 
Qi, on that domain whenever PxP,. It is now clear that @ has the pro- 
perties stated in our theorem and that it is uniquely characterized by 
these properties. 

COROLLARY 1. Assumptions and notations being as in theorem 1, 
call f(w), for every place w of k’, the place of k lying below w. Then, if 
x=(x,) is in k,, a(x) is the element y = (y,) of ka such that y, = xfCWJ for 
every place w of k’. 

This follows at once from the fact that Q(1) = 1 and that QV is k,-linear 
for every v. 

From now on, k, will usually be identified with its image in ka by 
means of the isomorphism, induced on k, by @, which is described in 
corollary 1. Clearly k, is thus a closed subring of ki. 

COROLLARY 2. Let k and k’ be as in theorem 1; let E/k’ be a vector- 
space of finite dimension over k’, and call E/k the underlying vector-space 
over k. Then the identity mapping of Elk onto Elk’ can be uniquely extended 
to a k,-linear mapping of (E/k), into (E/k’),, and this is an isomorphism 
of (E/k), onto (E/k’),. 

In view of corollary 1, this is merely a restatement of theorem 1 if 
E = k’; the case E = k’” follows from this immediately, hence also the 
general case, since E can always be identified with a space k’” by the 
choice of a basis. 

According to the definitions given above, the k-linear form Trkfjk and 
the polynomial function NkTlk on the space k’, considered as a vector- 
space over k, may be extended to mappings TrkTIk, Nkrlk of (k’/k), into k,; 
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then Trkpiko @- 1 and NkTlko@- ’ are mappings of ka into kA. We will 
simplify the formulation of the next corollary by identifying in it (k’/k), 
with ka by means of @, so that the latter mappings may be written 
simply as Tr,,,, and NkTlk. 

COROLLARY 3. Let x1=(x;) be any element of ki; put y= Trk,,Jx’) 
and z = Nk,,,Jx’), Then y, z are the elements (y,), (z,) of k, respectively 
given by 

Y, = 1 %.,,k, (xiv), z, = n N,,,” NJ 
WV WI0 

for every place v of k, the sum and the product being taken over all the 
places w of k’ which lie above v. 

This is an immediate consequence of prop. 4, Chap. 111-3, and th. 1. 

$ 2. The main theorems. In view of lemma 1 of Chap. 111-2, every 
A-field is a separably algebraic extension of one of the fields Q and 
F,(T). Theorem 1 of 5 1 enables us now to prove properties of adele 
spaces by dealing first with the special cases k= Q and k =F,(T). This 
method will presently yield some important results; in stating them, we 
simplify notations by identifying A-fields, and vector-spaces over such 
fields, with their natural images in the corresponding adele spaces, as 
explained in 3 1; in the proofs, we shall again use cp to denote the canonical 
injection of an A-field k into k,. 

THEOREM 2. Let k be an A-field and E a vector-space qf finite dimen- 
sion over k. Then E is discrete in EA, and E,/E is compact. 

In view of corollary 2 of th. 1, 4 1, and of lemma 1 of Chap. 111-2, it 
is enough to prove this for k = Q and k=F,(T). If n is the dimension 
of E, E is isomorphic to k”, so that, if the theorem is proved for E = k, 
it must be true in general. Thus we need only treat the cases E = k= Q 
and E = k =F,(T). We begin with Q. 

For each prime p, call Q(P) the set of the elements < of Q such that 
15/,, < 1 for all the primes p’ other than p. Clearly this is a subring of Q, 
consisting of the numbers of the form p-“a with neN and aeZ. 

LEMMA 1. For every prime p, we have Q p = Q@)+ Z, and QcP)nZ,= Z. 

The first assertion follows at once from corollary 2 of th. 6, Chap. I-4, 
applied to Qp, to the prime element p and to the set of representatives 
(OJ,..., p-l}.Th e second one is obvious. 

LEMMA 2. Put A, = R x n Z,, and call 4p the canonical injection 
of Q into QA. Then Q* = q(Q) + A, and rp(Q)nA, = q(Z). 
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With the notation of(l), 5 1, A, is the same as Q*((co}); it is there- 
fore an open subring of QA. The second assertion in the lemma is obvious. 
Now take any x=(x,) in Q A; call P the set of the primes p such that xp 
is not in Z,; it is a finite set. For each PEP, the first part of lemma 1 
shows that we may write xp = 5, + xb with 5: EQ(~) and X;E Z,. For p not 
in P, put [,=O and x>= xp. Put now 5 = Iif tp, the sum being extended 
to all p, and y=x-q(5). If y=(y,), we have, for every prime p: 

yp=xp-5,- 1 e,r=x;- 1 5,- 
P’f P P’fP 

By the definition of Qcp), all the terms in the right-hand side are in Z,. 
This shows that y is in A,, hence x in cp(Q)+A,. 

We can now prove our theorem for E = k=Q. As A, is open in QA, 
the first assertion will be proved if we show that cp(Q)nA,, i.e. q(Z), 
is discrete in A,; this is clear, since its projection onto the factor R of 
the product A, is Z, which is discrete in R. Now call I the closed interval 
[ - l/2, l/2] in R, and put C = Z x nZ,. Clearly A, = q(Z) + C, hence 
QA = q(Q) + C. As C is compact, this completes the proof. 

For E = k=F,(T), the proof is similar but simpler. For each place v 
of k, call kc”’ the set of the elements 5 of k such that [<I,,,< 1 for all the 
places w of k, other than v. 

LEMMA 3. For every place v of k, k,= kc”‘+ r, and k’“‘nr,=F,. 

The last assertion is obvious in view of the definition of the func- 
tions 151, on k which was given in the proof of th. 2, Chap. III-l. As to 
the first one, it is enough to consider a place attached to a prime poly- 
nomial rc of F,[T], since otherwise we merely interchange T and T- ‘. 
Then it follows at once from corollary 2 of th. 6, Chap. I-4, applied to k,, 
to the prime element rc and to the set of representatives supplied by the 
corollary of th. 2, Chap. III-l. 

LEMMA 4. Put A, = nr”. Then kA =cp(k)+ A, and q(k)nA, = cp(Fp). 

With the notation of(l), 0 1, A, is the same as k*(p); it is a compact 
open subring of k,. The last assertion is again obvious. Now take x=(x,) 
in k,. For every u for which Ix,I,> 1, lemma 3 shows that we may write 
x =t +x’ with t Ek(“) and x’Er 
x:=x:. P1L;f <=E”< 

For all other places v, put c,=O and 
v and y = f; - G(t). Just as in the proof of lemma 2, 

we get YEA,. 
The theorem is now obvious for E = k =F,(T), since A, is compact 

and open in k, and F, is finite. This completes the proof. 

Now we consider a vector-space E over an A-field k, its algebraic 
dual E’, and the corresponding adele spaces E,,Ei. We write [e,e’] for 
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the value at a point e of E of the linear form determined by a point e’ of E’, 
and we use the same notation for the extension of this bilinear form to 
EA x EA. As the additive group of EA is a locally compact commutative 
group, we may consider its topological dual, which we denote by Ei; 
and we write (e,e*) for the value at eeE, of the character determined 
by e*E EX. With these notations: 

THEOREM 3. Let k be an A-field and x a non-trivial character of kA, 
trivial on k. Let E be a vector-space of finite dimension over k; let E’ 
be its algebraic dual, and EX the topological dual of EA. Then the formula 

(e,e*) =x([e,e']) for all eEE, (e’EEA,e*EEi) 

determines an isomorphism e’-+e* of Ei onto Ei. Moreover, if e’ is such 
that x([e,e’])=l for all eeE, then e’EE’. 

The last statement amounts to saying that the isomorphism e’+e* 
of EL onto Ei defined in our theorem maps E’ onto the subgroup of Ez 
associated by duality with the discrete subgroup E of EA. 

We begin by treating the case E= k = Q. Use again the same nota- 
tions as in the first part of the proof of th. 2. In view of lemma 2, every 
character of A,, trivial on (p(Z), can be uniquely extended to a character 
of QA, trivial on q(Q). We get such a character x by putting x(x) = e( -x,) 
for x = (x,)E A, (we recall that we write e(t) = ezni’ for t ER). If we extend 
this to a character x of QA, trivial on cp(Q), and call xv, for every place v 
of Q, the character induced by x on the quasifactor Q, of Qa, then x 
is obviously characterized by the following facts: it is trivial on q(Q), 
xP is trivial on Z, for every prime p, and x,(x) = e( -x) for XER. In order 
to calculate xP, consider again the group Q(P) defined in the proof of 
th. 2, and take any ~EQ (p). Then tgZPf for all primes p’ #p, so that we 
have, by (2) of 0 1: 

and therefore x,([)=e(c). By lemma 1, xp is completely determined by 
this and by the fact that it is trivial on Z,, and its kernel is Z,; it is there- 
fore of order 0 in the sense of def. 4 of Chap. II-5 

Now let x’ be any character of QA; for every place v of Q, call XL 
the character induced by x’ on the quasifactor Q, of QA. By the corollary 
of th. 3, Chap. 11-5, we can write XL uniquely in the form x:(x) = x,(a,x) 
with a”EQ,. As we observed when writing formula (2) of 0 1, xb must be 
trivial on Z, for almost all p if x is to be continuous on QA; this implies 
Xp(ap)= 1, hence a,EZ, for almost all p; therefore a= (a,) is in QA, so 
that, by (2) of $j 1, x’ is the character x, of Q* given by ~,(x)=~(ax) for 
all XEQ~. We have thus shown that the mapping a+XII of QA into the 
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topological dual G=Qi of QA is surjective. One sees at once that it 
is continuous and injective, so that it is a bijective morphism of QA onto 
its dual G. Call r the subgroup of G associated by duality with p(Q), 
i.e. consisting of the characters of QA, trivial on cp(Q); as x has that 
property, the same is true of x, for all asp, so that u+xo maps q(Q) 
into r. Conversely, let b be such that x~E~. As in the proof of th. 2 
for Q, put C = I x n Z, with I = [ - l/2,1/2]. We have shown there that 
Q*=(P(Q)+C; therefore we may write b=cp(t)+c with ~EQ, CEC, and 
then X,E T. Writing c = (c,), we have now, since cPe Z, for all p: 

hence c, = 0 since c, EZ. Therefore xc is trivial on A, = R x nZ,; as 
it is trivial on q(Q), lemma 2 shows that it is trivial on QA, so that c =O, 
hence bEp(Q). Therefore a+~~ maps q(Q) onto T. Finally, as q(Q) is 
discrete in QA, and QJq(Q) is compact, the duality theory shows that r 
is discrete in G and that G/T is compact. Consequently a+xo determines 
a bijective morphism of the compact group Q*/q(Q) onto the compact 
group G/T; it is well-known that this must be an isomorphism. As G is 
“locally isomorphic” to G/T, and QA to QJq(Q), this implies that 
a-+x0 is bicontinuous, so that it is an isomorphism. This completes the 
proof for E=k=Q. 

Now take E= k= F,(T). In analogy with Q, call co the place of k 
for which T-l is a prime element (although this is of course not an 
infinite place). Then IT-‘\, =p-I. We may now apply corollary 2 of 
th. 6, Chap. I-4, to k,, to the prime element T- ’ and to the set of re- 
presentatives F,, and therefore identify k, with the field of the formal 
power-series 

+cO 

x= c aiT-’ 
i=n 

where n EZ and u,EF, for all i 2 n. Call $ the character of the additive 
group of F, given by r&l) = e(l/p) ; call xrn the character of k, defined by 
putting x,(x)= $(-a,) when x is given by (3); for XEF,[T], we have 
a, =O, hence x,(x) = 1. Now put A, = k, x nr,, the product being taken 
over all the places u of k other than cc; with the notation of (l), 9 1, 
this is kA(( cc}); it is an open subring of k, and contains the set A, defined 
in lemma 4, so that, by that lemma, k,=cp(k)+A,. When (Ek, (p(t) is 
in A, if and only if 151,< 1 for all the places v of k attached to prime 
polynomials in F,[T], hence if and only if 5 is in F,[T]. This means 
that cp(k)nA, =rp(F,[T]). A ccordingly, every character of A,, trivial on 
(p(F,[TJ), can be uniquely extended to one of k,, trivial on q(k). Applying 
this to the character x of A,, given by x(x)=x,(x,) for x=(x,)E&, 
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we get a character x of k, which can be characterized by the following 
facts: x is trivial on q(k); for every u# co, the character xv induced by x 
on k, is trivial on r”, and x induces on k, the character xa, defined above. 
In order to calculate xv for a place v attached to a prime polynomial rc 
of degree 6 in F,[T], call kg’ the set of the elements 5 of k such that 
ItI,,,< for all the places w  of k other than v, and lcl,<l; the same 
proof which was given for lemma 3 shows now that k, is the direct sum 
of kr’ and r,; as xv is trivial on r”, it is therefore completely determined 
by its values on k, . (“) Take tJEkt); this can be written as l=n-“a, where 
HEN and CI is a polynomial of degree < n6 in F,[T]. Call a, the coef- 
ficient of T”‘-’ in CI. As rc is manic, it can be written as Tao, where o 
is in F,[ T- ‘1 and has the constant term 1. This gives 

in the ring rm, hence xm(t)= $(-a,) by the definition of xou. Now we 
have, by (2) of $1: 

and therefore x,(t)= $(a,), which completes the determination of x0. 
Furthermore, if 5 is as above and not 0, call d the degree of the poly- 
nomial a, and a the coefficient of Td in CI; then ~“(5 T”‘- lVd) has the value 
$ (a), which is not 1 since a # 0. This shows that, if l is in k$” and not 0, 
~“(5 t) cannot be 1 for all t er,. As xv is trivial on ru, and as k, = k$” + r,, 

we conclude now from prop. 12 of Chap. II-5 that the character xv is 
of order 0 in the sense of def. 4 of Chap. 11-5. In other words, if x is in k, 
and such that x&t)= 1 for all LET,, x must be in r,. 

Now we can proceed just as in the case of Q. Let x’ be any character 
of k,. For each place u of k, the character XL induced by x on k, can be 
written as x~(x)=xV(uox) with u”Ek,; then, from the fact that XL must 
be trivial on rv for almost all v, we conclude that a = (a,) must be in k,, 
so that x’ is the character xa defined by x,(x)=x(ux). As before, we see 
that a+~~ is a bijective morphism of k, onto the topological dual 
G= k: of k,,, and that it maps q(k) into the subgroup r of G associated 
by duality with q(k). Assume that xber for some bek,; by lemma 4, we 
may write b=cp(t)+c with rEk, CEA,,; then xc is trivial on q(k). Put 
c=(c,), so that c,Er’, for all v; then there is HEFT such that c,=y (T-l); 
replacing < by 5 + y and c by c - cp (y), we get c, E 0 (T- ‘). We have now 

1 =x,(cp(l))=x(c)=xm(c,), 

which implies, in view of the definition of x~, that c, is in T-‘rm, and 
therefore that xm(c, t)= 1 for all tEr,. Consequently, xc is trivial on A,, 
hence on kA by lemma 4. This gives c = 0, hence beep(k). The proof can 
now be completed just as in the case of Q. 
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We can now complete the proof of our theorem by a purely formal 
argument. Denote by T(E/k,x) the statement in theorem 3. What we 
have proved above can be expressed by saying that, for each one of the 
fields k = Q and k = FJ T), there is a character x of k, for which T(k/k, 2) 
is true. Obviously this implies that T(k”/k,x) is true for every II, so that 
T(E/k,X) is true for every vector-space E over k. In particular, take a 
finite algebraic extension k’ of k; as in lemma 3 of Chap. 111-3, write E 
for the underlying vector-space over k; choose a k-linear form 1 on E, 
other than 0, and identify E with its algebraic dual E’ by putting 
[x,y] =l(xy). We can then extend 1 to a mapping of EA into k,, the 
identification between E and E’ to one between EA and EL, and then we 
have again [x,y] =A(xy) for x, y in E*=(k’/k)*. If we write x’=xo& this 
is clearly a non-trivial character of E,, trivial on E. If now we assume 
that k’ is separable over k, we can identify EA with ka by means of the 
isomorphism @ described in th. 1 of $1. When this is done, x’ becomes 
a non-trivial character on ka, trivial on k’, and the statement T(E/k,X) 
becomes exactly T(k’/k’, x’). As we can take for k’ any A-field, taking for k 
either Q or F,(T), we see that, for every A-field k, theorem 3 is true for 
at least one choice of x. Now assume T(k/k,x) for such a field, and let x1 
be another character with the properties stated in theorem 3; T(k/k,X) 
implies that x1 is of the form x1(x)= x(ax) with aek and a #O. Then 
the mapping e’ +e* defined as in theorem3, but by means of x1, is 
composed of the similar mapping defined by x and of the mapping 
e’+ae’ of Ea into itself. As the latter is clearly an automorphism of Ei, 
mapping E’ onto itself, we see that T(E/k,X) is equivalent with T(E/k,X,). 
This completes the proof. 

COROLLARY 1. Let x be as in theorem 3, and call xv, for every place v 
of k, the character induced by x on the quasifactor k,, of k. Then, for 
every v, xv is non-trivial, and, for almost all finite places v of k, xv is 
of order 0 in the sense of def. 4, Chap. 11-5. 

For each agk,, call xcl the character of k, defined by x,(x)= I. 
If x was trivial on the quasifactor k,,, that quasifactor would be in the 
kernel of the morphism a--+~~ of k, into its topological dual; as theorem 3 
says that this is an isomorphism, this would be a contradiction. In parti- 
cular, for every finite place v of k, we may put v(v) = ord (x,) in the sense 
of def. 4, Chap. 11-5. For each mapping v+n(v) of the set of finite places 
of k into Z, call G(n) the group of the elements x=(x,) of kA such that 
ord(x,)>n(v) for all finite places v, and H(n) the subgroup of G(n) con- 
sisting of the elements x=(x,) of G(n) such that x,=0 for all infinite 
places w of k. In view of the definition of the topology in kA in 9; 1, it is 
obvious that G(n) is open in k,, if and only if n(v)<0 for almost all v. 
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It is also clear that H(n) is compact if n(u)>0 for almost all u; conversely, 
by corollary 1 of prop. 1, 9 1, and with the notation of (1) 9 1, every 
compact subset of kA is contained in one of the sets k,(P), so that H(n) 
cannot be compact unless n(u)>0 for almost all v; therefore this is 
necessary and sufficient for the compacity of H(n). Now prop. 12 of 
Chap. 11-5, combined with the fact that x,,, is not trivial for any infinite 
place of k, shows that the set of elements x of kA such that x(xy)= 1 for 
all y~G(0) is H(-v), and that the set of elements x such that x(xy)= 1 
for all y~H(0) is G( - v). If we identify kA with its topological dual by 
means of the isomorphism described in theorem 3, this means that 
H( - v) and G( - v) are the subgroups of kA respectively associated by 
duality with G(0) and H(0). As G(0) is open and H(0) is compact, duality 
theory shows that H( - v) must be compact and G( - v) open. As we have 
seen, this implies that -v(v) 20 for almost all u and that -v(v) <O for 
almost all v. 

COROLLARY 2. Let E be a vector-space of finite dimension over k, 
and let v be any place of k. Then E + E, is dense in EA. 

If this is true for E = k, it is clearly true for E = k” and therefore for 
every E. If k+ k, were not dense in kA, there would be a non-trivial 
character of k, which would be trivial both on k and on k,; this contra- 
dicts corollary 1. 

As in the case of local fields, it is frequently convenient, having chosen 
once for all a “basic character” x with the properties described in theo- 
rem 3, to identify the topological dual of EA with the space Ei by means 
of the isomorphism in that theorem, for all vector-spaces E of finite 
dimension over k. For every quasifactor k,, of k,, one will then take as 
“basic character” the character x, induced by x on k,., and use this to 
identify the topological and algebraic duals of vector-spaces over k, as 
explained in Chap. 11-5. This being understood, we have: 

COKOLLARY 3. Let assumptions and notations be as in proposition 1 
of 5 1. Let E be a vector-space over k, and E’ its algebraic dual. Let E, E’ be 
finite subsets of E and of E’, respectively, containing bases of these spaces 
over k. For each place v of k, identify EL with the topological dual of E, 
as explained above. Then, for almost all finite places v of k, EL is the dual 
k,-lattice to E,. 

For E = E’ = k and E = E’ = {l}, this is just a restatement of corollary 1; 
it is an immediate consequence of that corollary if E = {e,, . . ., e,} is a 
basis of E and E’= {e;, . ,eL} is the dual basis to E, determined by 
[ei, e>] = 1 if i =j and 0 if i #j. The general case follows from this at once 
by corollary 1 of th. 3, Chap. III-l. 
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6 3. Ideles. As before (cf. Chap. III-3), if E is a vector-space of finite 
dimension over any field k, we write End(E) for the ring of endomorphisms 
of E, considered as an algebra over k. We will write Aut(E) for the group 
of automorphisms of E; this is the same as the group End(E)” of in- 
vertible elements of End(E), and it is the subset of End(E) determined 
by det(a)#O; therefore, if k is a topological field, Aut(E) is an open 
subset of End(E); clearly it is a topological group for the topology in- 
duced on it by that of End(E). If K is a field containing k, End(E,) is the 
same as End(E),=End(E) &K, and the determinant in End(E,) is the 
extension to that space of the determinant in End(E). 

Let d be an algebra of finite dimension over k; call p its regular 
representation into End(&), as defined in Chap. 111-3, and write ~2’) as 
usual, for the group of invertible elements of ~2. Take any a~&; then 
p(a) is the endomorphism x-ax of the vector-space underlying &‘; if 
it is an automorphism, it is surjective, so that there is bEz2 such that 
ab=l,; then b=a-‘, and aesd’. As the converse is obvious, this 
shows that ~2 x is the subset of & determined by Ndik(a)#O. Therefore, 
if k is a topological field, dx is open in ~2; moreover, p is then a topologi- 
cal isomorphism of JZZ onto a subalgebra of End(&), which maps &’ 
onto p(&)nAut(&‘); this implies that JZJ’ is then a topological group 
for the topology induced on it by that of ~2. 

Now, d being an algebra of finite dimension over an A-field k, 
consider the group &‘; of invertible elements of the ring &*. The 
simplest examples, e.g. d= k, show that x+x-’ is not continuous on 
that group for the topology induced on it by that of &,. We will give 
it the coarsest topology for which the injection into &, and x+x-l 
are both continuous; this is more conveniently stated as follows: 

DEFINITION 2. Let d be an algebra of finite dimension over the 
A-field k. Then we denote by ~&i the group of invertible elements of dA 
with the topology for which x+(x,x- ‘) is a homeomorphism of &‘; onto 
its image in &A x d,. 

It is customary (particularly in the case &= k) to call cd;, with this 
topology, the idele group of zz!, and to call its elements the ideles of d. 
Obviously (x,y)+xy and x+x-l are continuous on JZ?‘~, so that our 
definition does make it into a topological group. At the same time, if 
we call f the mapping (x,y)+x y of JZ? x d into & and its natural exten- 
sion to ~2~ x -01,, our definition says that &i is homeomorphic to the 
subset f -‘({ 1)) of the latter space; as f is continuous, this is a closed 
set, so that di is locally compact. It is also clear that SZ? x is canonically 
embedded in &i; as x-+(x,x-i) maps it onto the intersection off-‘((1)) 
with the discrete subset d x & of &A x&~, it is a discrete subgroup 
of SG!;. 
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One can give an alternative definition of the idele group of d, equi- 
valent to definition 2, by using corollary 2 of th. 3, Chap. III-l, and 
corollary 2 of prop. 1, 4 1. As in these results, take a finite subset c1 of &, 
containing a basis of ~2 over k, and call cl”, for each finite place u of k, 
the r,-module generated by a in &,. By corollary 2 of th. 3, Chap. III-l, 
there is a finite set P, of places of k, containing P,, such that, for all u 
not in P,, CI, is a compact subring of d0 (containing the unit element). 
For each v, as we have seen, &‘pe,X is an open subset of dpe,, and x+x-’ 
is continuous on it; therefore x+(x,x-l) maps it homeomorphically 
onto its image in &, x &‘,. For v not in P,, R,” is the set of the elements 
of G?,X which are mapped into CI, x c(, by x+(x,x-i); therefore it is an 
open compact subgroup of &‘,” and an open compact subset of M,. We 
shall now prove the following result, analogous to corollary 2 of prop. 1, 
$1: 

PROPOSITION 2. Let d, a, a,, and PO be as explained above. Let P 
be any finite set of places of k, containing P,. Then the group 

(4) &*(P,a)“=n&; xnL$ 
VEP NP 

is an open subgroup of d i ; the topologies induced on it by those of ~2; 
and of &‘A are both the same as the product topology for the right-hand 
side of (4); and &; is the union of these groups. 

Let &*(P,a) be defined as in corollary 2 of prop. 1, $1. The topology 
induced on &*(P,cI)’ by that of &, is the same as that induced by that 
of &,(P,a), hence the same as the product topology for the right-hand 
side of (4). For each u, &‘,X is open in &,, and x--*x- ’ is continuous on 
it; therefore x--*x-l is continuous on &*(P, a)’ for that product topology. 
This implies that x+(x,x-‘) is a homeomorphism of &*(P,c1)’ onto 
its image in d* x &*; therefore the product topology on that set is 
also that induced by &;. Furthermore, JB,(P,a)” is the subset of &; 
which is mapped by x+(x,x-‘) into &*(P,a)xs$,(P,a); as the latter 
set is open in &A x &*, and as ~2~ x &A is the union of sets of that form, 
this completes the proof. 

COROLLARY. An element a =(a,) qf k, is in k; if and only if a,#0 
for all v and laolo= 1 for almost all v. For every finite set P of places of k, 
containing P,, the group 

k,(P)“=nkz x nrf 
IJEP fJ+p 

is an open subgroup of k;, and k; is the union of these groups. 

The first statement is obvious; the rest is a special case of propo- 
sition 2. 
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For every element a = (a,) of ki , we will write 

the product being taken over all the places a of k; in view of the corollary 
of prop. 2, almost all the factors of that product are equal to 1 whenever 
a is in ki . Usually, when there is no danger of confusion about the field 
of reference, we will write IalA instead of lalk, for this product; it is some- 
times called the module of a. 

PROPOSITION 3. Let E be a vector-space sf $nite dimension n over k. 
Put SZZ= End(E), and let a=(~,) be an element qf SC@‘~. Then the follow- 
ing assertions are equivalent: (i) a is indi ; (ii) det(a) is in k: ; (iii) e-tae 
is an automorphism of EA. When that is so, the module of the latter auto- 
morphism is ldet(a)l,. Moreover, the mappings a+det(a) and a-+)det(a)l A 
are morphisms of ~2: into k; and into R; , respectively. 

Take a basis E for E over k; we will use it to identify E with k” and 
~4 with M,(k). Then a basis c( for A over k is given by the “matrix units” 
aAp for l<&p<n, where alp is the matrix (xij) given by xlfl= 1 and 
xij=O for (i,j)# (n,~). For every place v of k, an element a, of M,(k,) is 
invertible in M,(k,) if and only if det(a,) # 0; for every finite place v of k, 
an element a, of M,(r,) is invertible in M,(r,) if and only if det(a,) is 
invertible in r”, i.e. if and only if (det(aJV= 1. With the notations of 
prop. 2 and its corollary, this amounts to saying that a is in s$,(P,a)” 
if and only if det(a) is in k,(P)’ ; clearly this implies the equivalence of 
(i) and (ii) in our proposition, and it also shows that the mapping 
a-+det(a) of &i into k; is continuous on &‘,,(P,a) ’ for every P, hence 
on ~2;. As it is clear that the mapping z-+IzI~ of k; into R; is continu- 
ous on k,,(P) ’ for every P, hence also on ki, a-t Idet(a)l, is a continuous 
morphism of ~4; into R; . If a is in &‘i, it has an inverse a- 1 in d,, 
and then the endomorphism e+ae of E, has the inverse e-a-’ e, so 
that it is an automorphism. Conversely, take any a = (a,) in d,; prop. 1 
of 0 1, applied to d and CI, shows that a, is in M,(k,) for all u and in M,(r,) 
for almost all v. The same proposition, applied to E and E, shows that a 
fundamental system of neighborhoods of 0 in E, is given by the sets 
U = n U,, where U, is a neighborhood of 0 in E,=(k,)” for all v, and 
U, = (r,)” for almost all v. If e + ae is an automorphism of E,, it must map 
every neighborhood of 0 onto a neighborhood of 0; this implies that a, 
is invertible in M,(k,) for all v, and that, for almost all v, the image of 
(r,)” under a, contains (r,)“, i.e. that a, -’ is in M,(r,) for almost all v. As 
we have observed above, this is the same as to say that a is in ~4:. Let 
then P be a finite set of places of k, containing P,, such that a, is in M&J ’ 
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for all u not in P. As the set E,(P,a) is open in E, and invariant under 
e + ae, the module of e + ae in E, is the same as its module in that set; 
this, in view of the definition of that set in prop. 1 of 4 1, is the product 
of the modules of the automorphisms e,+a,>e, of its factors; these, by 
corollary 3 of th. 3, Chap. I-2, are respectively equal to Idet(aJ,, which 
completes our proof. 

COROLLARY. Let d be an algebra of finite dimension over k, and 
let a be an element qf .d,. Then the ,following assertions are equivalent: 
(i) a is in ~2; ; (ii) N&a) is in k; ; (iii) x+ax is an automorphism qf the 
additive qroup qf d,. When that is so, the module of that automorphism is 
1 N +(a)l,. Moreocer, a+ N d,k(a) and a+ 1 N +(a)[, are morphisms qf ~4’; 
into ki and into R; , respectively. 

As we are always assuming that S! contains a unit, (iii) implies (i). 
All our other assertions follow at once from proposition 3, applied to 
the underlying vector-space E of JZZ’ over k and to the embedding of & 
into End(E) given by the regular representation p. 

Of course all that has been said about the endomorphisms x -+ux of 
an algebra LX!’ applies equally well to the endomorphisms x +xa; the 
determinant N’(u) of the latter, sometimes called the “coregular norm” 
on d, is again a polynomial function, of degree equal to the dimension 
of d over k, and the module of the automorphism x+xu of &,, for 
a~&;, is equal to I N’(u)l,,. Obviously N’= Ndik when G! is commutative; 
the same is known to be true for all semisimple algebras and will be 
proved in Chap. IX for simple algebras and in particular for division 
algebras; this will not be needed here. 

THEOREM 4. Let D be a division algebra qf ,$nire dimension oz)er k. 
For every real number ,u> 1, cull D, the set of the elements d of 0: such 
that the modules qf the uutomorphisms x +dx and x -+xd of’ D, ure 
respectively <n and 2 n- ‘. Then D, is a closed subset of’ 0: whose image 
in D;lD” is compact. 

Write N for the regular norm NDlk, and N’ for the “coregular norm” 
as defined above; by the corollary of prop. 3, d-tlN(d)l, is continuous 
on Di, and the same is true of d+ ) N’(d)], for similar reasons ; in view 
of that same corollary, this implies that D, is closed. By th. 2 of Lj 2, D is 
discrete in D,, and DA/D is compact; therefore there is a Haar measure 
CI on D, such that cc(D,/D)= 1, this being defined in the manner explained 
in Chap. 11-4. As D, is not compact, we can choose a compact subset C 
of D, such that m(C)>p. Call C’ the image of C x C under the mapping 
(x, y) -+x - y of D, x D, into D,, and C” the image of C’ x C’ under the 
mapping (x, y) --f xy of D, x D, into D,; as these mappings are continuous, 
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C’ and C” are compact. Take any dcD,; as the module of x+xd is 
> p ‘, it maps C onto a set Cd whose measure is > 1; therefore, by lemma 1 
of Chap. 11-4, there are two elements x, y of C such that xd - yd is in D 
and is not 0, i.e. such that it is in Dx . Writec,=x-yandd,=c,d;then 
c,~C’andGi~D~. Similarly,x+dP1x,beingtheinverseofx+dx,hasa 
module 2 p- ‘, so that it maps C onto a set d-‘C of measure > 1; as 
before, we conclude that there is c2 E C’ such that 6, = d- ’ c2 is in D ‘. 
Then 6 1 6, = c 1 c2, so that 6 r 6, is in D ’ n C”, which is a finite set since D is 
discrete and C” compact in D,. Call y1 , . . . , yN all the distinct elements of 
D” nC”; c, c2 is equal to one of these, say yi, so that y; rcr c2 = 1. This 
shows that c2 is invertible in D, and has the inverse c; ’ = y; ‘cr. As 
dcS,=c,, we see that d6, belongs to the set X of the elements x of 0: 
whose image under the mapping x+(x,x - ‘) is in the union of the sets 
C’ x (yi ’ C’) for 1 < i < N. In view of def. 2, X is a compact subset of 0; ; 
as D,cX.Dx, the image of D, in Di/D” is contained in that of X, 
which proves our theorem. 

6 4. Ideles of A-fields. We will now consider more in detail the case 
d=k. 

THEOREM 5. Let k be any A-field; then the morphism z+IzI* of k; 
into R; induces the constant 1 on kx . 

If <EkX, x-+5x is an automorphism of k, which maps k onto itself. 
By th. 2 of 9 2, k is discrete in k,, and k,/k is compact. Therefore the 
module of x-+4x, which is lclA by prop. 3 of # 3 (if one takes E= k in 
that proposition), is equal to 1, e.g. by lemma 2 of Chap. I-2. 

Theorem 5 is known as “Artin’s product formula”. From now on, we 
will write ki for the kernel of the morphism z --, lzIA, i.e. for the suheroup 
of k; given by Iz[~= 1; by theorem 5, this contains k”. 

COROLLARY 1. If k is of characteristic p> 1, k: is the direct product 
of ki and qf a discrete subgroup isomorphic to Z. 

For every place u of k, k,. is of characteristic p, so that 1x1,,, for every 
xek,", is in the subgroup of RT generated by p; therefore the same is 
true of lzlA for every zEk1. This is the same as to say that the image of 
k; under the morphism z+ lzlA is a subgroup of the group in question ; 
as it is clearly not reduced to {l}, it is generated by some integer Q =$“, 
where N is an integer 21. Take z,~ki such that lz,la=Q; then ki 
is the direct product of k: and of the subgroup generated by zl, which is 
clearly discrete and isomorphic to Z. 

COROLLARY 2. Assume that k is of characteristic 0; jbr each INERT, 
call z(n) the idele (z,) such that z, = 1 for every finite place v and z, = 2 
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for every infinite place w of k. Then l+z(l) is an isomorphism of R: 
onto a closed subgroup M of k;, and ki is the direct product of ki and of M. 

With the notation of the corollary of prop. 2, 3 3, it is clear that 
L+z(L) is an isomorphism of R; onto a subgroup M of k,,(P,)” . The 
definition of lzJ*, together with corollary 2 of th. 4, Chap. 111-4, shows 
that lz(L)la= 2, n being the degree of k over Q. The last assertion is now 
obvious. 

THEOREM 6. Let ki be the subgroup of k; defined by IzIA= 1. Then 
k ” is a discrete subgroup qf ki; the factor-group kilk” is compact; and 
kilk x is the direct product of that compact group and of a group isomorphic 
to R: or to Z according as k is of characteristic 0 or not. 

The first assertion is contained in th. 5; the second one is the special 
case D = k, ,U = 1 of th. 4 of § 3 ; the others follow at once from the corollaries 
of th. 5. 

We will now investigate more closely the structure of various sub- 
groups of ki and of k” and of some of their factor-groups. It will be 
convenient to write L?(P) for the group denoted by k,(P)’ in the corollary 
of prop. 2,§ 3. In other words, we will write, from now on: 

(5) W’) = “VP k,” x n r,” . 4P 
As always, P is assumed to be a finite set of places of k, containing the 
set P, of the infinite places; it may be empty, but only if k is not of 
characteristic 0. We recall that Q(P) is always an open subgroup of 
ki; clearly it is compact if and only if P is empty. We will also write: 

Q,(P)=Q(P)nk:; 

here we may take P = (a if k is of characteristic p > 1, and then we have 
Q,@) = Q(O). 

THEOREM 7. If P is not empty, the group kifk” Q(P) is finite. When k 
is of characteristic p> 1, k;Jk” 0(p)) is finite, and ki/k” G?(g) is the direct 
product of that group and of a group isomorphic to Z. 

In all cases, kak x Q,(P) is isomorphic to the quotient of k:/k’ by 
the image of Q,(P) in ki/k”. As Q,(P) is open in k:, that image is open; 
as k2k” is compact by th. 6, the quotient in question is finite. If k is of 
characteristic 0, C?(P) contains the group M defined in corollary 2 of 
th. 5; that corollary shows then that 52(P) is the direct product of Q,(P) 
and of M, so that ki/k” Q(P) may be identified with k:/k” Q,(P). 
Assume now that k is of characteristic p > 1. As a(g) = Q, (@), corollary 1 
of th. 5 shows that k;/k” G?(p) is the direct product of the finite group 
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g = k:/k ’ 52(g) and of a group y isomorphic to Z. If P # 0, Q(P) contains 
Q(p) and is not contained in ki; therfore ki/k” Q(P) is the quotient 
of k;/k” 52(g), i. e. of g x y, by the image of k” L?(P) in that group, and that 
image is not contained in the image g of k:; it is then obvious that this 
quotient is a finite group. 

COROLLARY. Notations being as in theorem 7, one can choose P so 
that ki = k” Q(P). 

Take any non-empty P’, and take a full set of representatives z, , . , z,,, 
for the classes in k; modulo k” sZ(P’). As k; is the union of all the 
groups Q(P), one can choose PIP’ so that all thezi are in Q(P). Then P 
has the required property. 

In the case when k is an algebraic number-field, and P = P,, theorem 7, 
as will be seen in the next Chapter, is in substance the classical theorem of 
the finiteness of the number of ideal-classes in k. 

THEOREM 8. Let F be the set of the elements 5 qf k such that 15/,< 1 
for all places v of k, and put E = F - (0). Then E is a finite cyclic group 
consisting of all the roots of 1 in k. 

The set F is the intersection of k and of the set of the elements (x,) 
of k, such that lx,/,< 1 for all v; clearly the latter set is compact, and, by 
th. 2 of Lj 2, k is discrete in k,; therefore F is finite. If GEE, th. 5 shows 
that we must have IQ,= 1 for all v; therefore E is a subgroup of k” of 
finite order, hence cyclic by lemma 1 of Chap. I-l. Conversely, it is obvious 
that every root of 1 in k must be in E. 

COROLLARY. If k is of characteristic p > 1, the set F defined in theorem 8 
is a finite field, the algebraic closure of the prime field in k. 

Here the definition of F can be written as F = kn(nr,), where the 
product is taken over all the places v of k; this shows that F is a ring; 
as E = F - (0) is a group, F is a field. By th. 2 of Chap. I-l, if an element 
of k, other than 0, is algebraic over the prime field, it is a root of 1, so that, 
by th. 8, it is in E. 

When k is of characteristic p> 1, the finite field F defined in the 
corollary of th. 8 is called the field of constants of k. 

Now, the set P being as before, we define a subgroup E(P) of k” by 
putting 

E(P)=k”nf2(P)=kXn(nkz x nr:), 
VSP l+P 

This consists of the elements 5 of k” such that 151,= 1 for all v not in P. 
Obviously E(P) contains the group E defined in theorem 8. As k” is 
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discrete in k;, E(P) is a discrete subgroup of Q(P), and also, in view of 
th. 5, of SL, (P). One may also describe E(P) as the group k(P) ’ of invertible 
elements (or, as one says traditionally, of “units”) of the subring k(P) 
of k given by 

and consisting of the elements 5 of k such that /cl, < 1 for all u not in P. 
In order to determine the structure of E(P), we need an elementary 
lemma : 

LEMMA 5. Let G be a group, isomorphic to R’ x Zs+lmr, with sar30. 
If r>O, let A be a morphism of G into R, non-trivial on R*; otherwise 
let 1 be a non-trivial morphism of G into Z. Let G, be the kernel of A, 
and let P be a discrete subgroup of G,, such that G,/P is compact. Then 
P is isomorphic to Z”. 

We may assume that G =R” x Zs+l-‘; then every element x of G 
can be written as (x,, . . , x,), with xieR for O<i<r and x,eZ for i>r, 
and I can be written as 

x=(x,, . ..) X,)-+2(x)= i aixi 
i=O 

with a,eR for all i, if r > 0, and aiE Z for all i, if r = 0; in both cases, in 
view of our assumptions about A, we may assume that a, # 0, and in the 
former case we may assume that ao= 1. Consider G as embedded in the 
obvious manner in the vector-space V=RSfl over R; then the above 
formula defines /z as a linear form on V; let V, be the subspace of I/ defined 
by L(x) =O, so that G, = Gn Vi. For 1 <j<s, call ej the point (xi) in I/ 
given by x0= -aj, xj=ao, and xi=0 for i#O and i#j. As {e,, . . . . e,} 
is a basis for Vi, it generates an R-lattice H in Vi, so that T/,/H is compact; 
as H c G,, and G, is closed in Vi, this implies that I/,/G, is compact. 
Consequently, if P is as in the lemma, Vi/r is compact, so that r is an 
R-lattice in V,, hence isomorphic to Z” by prop. 11 of Chap. H-4. 

THEOREM 9. Let P be any finite set of places of k, containing P, ; 
let E(P) be the subgroup of k” consisting of the elements 5 of kx such 
that ItI,= 1 for all u not in P. Then E(P) is the direct product of the group E 
of all roots of 1 in k, and of a group isomorphic to Z”, with s =0 if P is 
empty, and s = card(P) - 1 otherwise. 

If P is empty, this is contained in th. 8; therefore we may assume 
P#0. Call v the morphism of sZ(P) into R; induced by z~ 1~1~; its kernel 
is Q,(P) and is open in ki. The canonical morphism of ki onto kk/k’ 
induces on Q,(P) a morphism of Q,(P) onto its image in ki/k’, with the 
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kernel E(P) since k ‘n Sz 1 (P) is the same as k xn Q(P). Therefore Q, @‘)/E(P) 
is isomorphic to an open subgroup of kilk”, hence compact by th. 6. 
On the other hand, for each place u of k, call U,, the compact subgroup 
of k,” defined by 1x1 v = 1, this being the same as r,? when u is a finite 
place; put U = n U,, the product being taken over all the places of k; 
this is a compact subgroup of Q(P) and of fi, (P). Put G = Q(P)/U; clearly 
this is isomorphic to the product of the groups k,” /U, for VEP ; as k,” /U, 
is isomorphic to R;, or, what amounts to the same, to R, when v is an 
infinite place, and to Z otherwise, G is isomorphic to Rr x Z”+ r -I, where Y 
is the number of infinite places of k, and s is as defined in our theorem. 
As U is contained in the kernel Q,(P) of v in L?(P), v determines on G a 
morphism of G into R;, or, what amounts to the same, a morphism II 
of G into R, which is clearly non-trivial on each one of the factors k,“/U, 
of G, and in particular on those which are isomorphic to R if there are 
such factors, i.e. if I > 0. On the other hand, if y = 0, we know, by corollary 1 
of th. 5, that 1~1~ takes its values in a group isomorphic to Z, so that, up 
to an isomorphism, A maps G into Z. Therefore G and 1 satisfy the 
assumptions in lemma 5; the kernel G, of J is here the image of Q,(P) 
in G, i.e. Q,(P)/U. Call now r the image of E(P) in G. If W is any compact 
neighborhood of 1 in O(P), WU is compact and has therefore a finite 
intersection with E(P). As the image of that intersection in G is the inter- 
section of r with the image of WU in G, and as the latter is a neighborhood 
of 1 in G, this shows that r is discrete in G. The factor-group G,/T is 
isomorphic to !S,(P)/E(P)U, hence to a factor-group of the compact 
group Q, (P)/E(P), and is therefore compact. We can now apply lemma 5 
to G, I and r; it shows that r is isomorphic to Z”. As E(P)n U = E, the 
morphism of E(P) onto r, induced by the canonical morphism of Q(P) 
onto G, has the kernel E. Let now e,, . . ., e, be representatives in E(P) 
of a set of s free generators of r; obviously they generate a subgroup of 
E(P), isomorphic to Z”, and E(P) is the direct product of E and of that 
group. This proves our theorem; we have also proved the following: 

COROLLARY. Assume that P is not empty; let E(P) be as in theorem 9; 
put Q,(P)=S2(P)nk: and G, = Q, (P)/U, where U is the group of’ the 
elements (z,) of k; such that Iz,I, = 1 for all v. Then the image r of E(P) 
in G, is discrete in G,, and G,/T is compact. 

In the case when k is an algebraic number-field, and P = P,, theorem 9, 
as will be seen in the next Chapter, is Dirichlet’s famous “theorem of the 
units”. 



Chapter V 

Algebraic number-fields 

0 1. Orders in algebras over Q. We shall need some elementary results 
about vector-spaces over Q, involving the following concept: 

DEFINITION 1. Let E be a vector-space of finite diwension over Q. 
By a Q-lattice in E, we understand a finitely generated subgroup of E 
which contains a basis of E over Q. 

PROPOSITION 1. Let E be a vector-space of finite dimension over Q; 
let L, L be two Q-lattices in E. Then there is an integer m>O such 
that mLcL. 

Let {e,, . . . . e,} and {e;, . . . . e:} be finite sets of generators for L and 
for L’, respectively. As the latter must contain a basis for E over Q, we 
can write (perhaps not uniquely) ei= xaijei for 1 ,< i< r, with coeffi- 
cients aijEQ. Take for m an integer >0 such that maijEZ for all i,j. 
Then mLcL’. 

COROLLARY 1. Let E be as in proposition 1. Then every Q-lattice L 
in E has a set of generators which is a basis of E over Q. 

Let /I be a basis of E over Q, contained in L; let L’be the Q-lattice 
generated by /I; by proposition 1, there is an integer m>O such that 
m L CL’. Consider E as embedded in ER =E &R. By prop. 11 of 
Chap. 11-4, L’ is an R-lattice in ER; as L is contained in m- ’ L’, the same 
proposition shows, firstly, that L is also an R-lattice in ER, and secondly 
that it is generated by a basis of ER over R; as this basis is contained 
in E, it is clearly a basis of E over Q. 

COROLLARY 2. Let E and L be as in corollary 1. Then every subgroup 
L’ of L which contains a basis of E over Q is a Q-lattice in E. 

Let 8’ be a basis of E over Q, contained in L’; let L” be the Q-lattice 
generated by p’. By proposition 1, there is an integer m>O such that 
mLcL”. Then m- r L”I L XL’X L”. Clearly, if n is the dimension of E 
over Q, L” has the index m” in m - ’ L”. Therefore L” is of finite index 
in L’; as L’ is generated by p’ and any full set of representatives of the 
classes module L” in L’, this proves our corollary. 
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DEFINITION 2. Let d be an algebra of finite dimension over Q. A sub- 
ring of SCZ will be called an order of SI? if it is a Q-lattice in J-& when ~4 is 
viewed as a vector-space over Q. 

Here, as always, a subring of &’ is understood to contain the unit 
of d. 

PROPOSITION 2. Every algebra d of finite dimension over Q con- 
tains at least one order. 

Let {a,,..., an} be a finite subset of &, containing a basis of s$ 
over Q; then we can write aiuj= xcij,,a,, for all i, j, with coefficients cijh 
in Q. Let m be an integer >O, such that mcij,EZ for all i, j, h. Then the 
Q-lattice generated by l,ma,,...,ma, is an order. 

Take for instance d=Q. By corollary 1 of prop. 1, every Q-lattice 
in Q is of the form aZ, with aEQX. If this is an order, we must have 
a2EaZ, hence aeZ, and lEaZ, hence a-leZ; this gives a= * 1, which 
shows that Z is the only order in Q. 

PROPOSITION 3. Let a be any element of an order in an algebra ~2 
of finite dimension over Q. Then a is integral over Z, and Tr,,,(a) and 
N,,(a) are in Z. 

Let R be an order containing a, and let {a,, . . .,an} be a finite set 
of generators for R. Then we can write a. a, = xcijaj for 1 < i Q N, with 
coefficients cij~Z; this can be written as C(dija-Cc,j)aj=O, where (Sij) 
is the unit matrix 1,. Write D(T) for the determinant of the matrix 
(Sij T -cij), where T is an indeterminate, and Dij(T) for its minors for 
1~ i, j < N; these are polynomials in Z [ T], and we have 

CDih(T). (6ijT-Cij)=~hjD(T) 

for 1 <h, j< N. Substitute a for T, multiply to the right with aj, and 
sum over j for 1 <j < N; we get D(a) a,, = 0 for all h, hence D(a) x = 0 for 
all x; for x = 1, this gives D(a) = 0, which proves our first assertion since 
D(T) is manic. By corollary 1 of prop. 1, we may assume that we have 
taken for {a,,..., a,} a basis of J&’ over Q; then Tr,,,(a) and N,,(a) are 
the trace and the determinant of the matrix (cij), so that they are integers. 

9 2. Lattices over algebraic number-fields. From now on, until the end 
of this Chapter, k will denote an algebraic number-field. We keep the 
notations explained in Chapter IV. In particular, if v is any place of k, 
k, is the completion of k at v; if v is a finite place, rv is the maximal 
compact subring of k,, and pv the maximal ideal of r,. We write kA for the 
adele ring of k, and q for the canonical injection of k into kA. We will write 
qE for the canonical injection of any finite-dimensional vector-space E 
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over k into its adele space EA, this being defined by e-+e@cp(l) as 
explained in Chap. IV-l. 

Consider now the algebra k @oR over R; this is the same as (k/Q), 
in the notation of th. 1, Chap. IV-l, and it has an isomorphism Ga, onto 
the direct product n k, of the completions of k at its infinite places w, 
this being fully characterized by the properties stated in th. 4 of 
Chap. 1114. We will simplify notations by identifying (k/Q), with that 
product by means of @,, and by writing k, for both. Similarly, if E is 
any finite-dimensional vector-space over k, we will write E, for E @oR, 
which is the same as (E/Q), in the notation of corollary 2 of th. 1, 
Chap. IV-l; as this is also the same as E@,k,, we identify it with the 
product nEw taken over the infinite places w of k. 

With this notation, the open subgroup k,(P,) of kA, given by for- 
mula (1) of Chap. IV-l, can be written as k, x (nr”), where the latter 
product is taken over all the finite places u of k and is compact. Here, 
and in similar situations, the following group-theoretic lemma will be 
found useful : 

LEMMA 1. Let G be a locally compact group with an open subgroup 
G, of the form G, = G’ x G”, where G’ is locally compact and G” is com- 
pact. Let r be a discrete subgroup of G such that G/T is compact, and 
call r’ the projection of TnG, onto G’. Then r’ is discrete in G’, and 
G’fT’ is compact. 

Let W be a compact neighborhood of the neutral element in G’ (we 
need not assume that G, G’, G” are commutative, although only this case 
will be used). As W x G” is compact, its intersection with r is finite; 
as the projection of that intersection onto G’ is Wnr’, this shows that r 
is discrete. As G, is open in G, G, r and G-G, r are open, since they 
are unions of left cosets for G, ; therefore the image of G, in G/T is open 
and closed there, hence compact. As it is isomorphic to G,/T, with 
r, =Tn G,, this implies that there is a compact subset C of G, such 
that G, = C . r,. Then, if C’ is the projection of C onto G’, G’ = C’ . r’, 
which shows that G’/T’ is compact. 

THEOREM 1. Let k be an algebraic number-field; put r= [I (knr,), 

where v runs through all the finite places of k. Then r is an order of k; 
it is the unique maximal order of k, and it is the integral closure of Z in k. 

As explained above, write k,(P,) as k, x (UrJ. Clearly an element 5 
of k is in r if and only if (p(t) is in that product; when that is so, write 
q,(c) and (/I (5) for the projections of (p(5) onto k, and onto n rv, respec- 
tively. Obviously r is a subring of k. Now apply lemma 1 to G= k,, 
G,=k,(P,), G’=k,, G”=nr,, T=cp(k); then, with the notations of 



§ 2. Lattices over algebraic number-fields 83 

that lemma, r’ is q,(r), and the lemma shows that this is an R-lattice in k,. 
As (pa, is also the same as the injection induced on r by the natural 
injection of k into k, = k&R, this implies that r is a Q-lattice in k, 
hence an order. Let r’ be any subring of k whose additive group is finitely 
generated; clearly the r,-module generated by r’ in k, is a compact sub- 
ring of k,; it contains Y”, since r’ contains 1; therefore it is Y”, so that 
r’ cr,. As this is true for all v, we get r’c r. By prop. 3 of 5 1, r is con- 
tained in the algebraic closure of Z in k. Conversely, if an element of k 
is integral over Z, prop. 6 of Chap. I-4 shows that it is in rV for all u, 
hence in r. 

The mapping $ of r into nr,, defined in the proof of theorem 1, 
will be called the canonical injection of r into nr,; it maps every (Er 
onto the element (x,) of that product given by x, = 4 for all v. It is a ring- 
isomorphism of r onto $(r), addition and multiplication in fir, being 
defined coordinatewise. With this notation, we have: 

COROLLARY 1. Let k, r and ti be as above defined. Then $ (r) is dense 
in nr,,, and its projection onto every partial product of that product 
is dense there. In particular, r, is the closure of r in k,. 

Let G, G,, G’, G”, I’ be as in the proof of theorem 1. By corollary 2 
of th. 3, Chap. IV-2, k, + q(k), which is the same as G’T in that notation, 
is dense in G= k,, so that its intersection with G, must be dense in G,; 
as that intersection is k, +cp(r), this implies that its projection onto 
G”=nr,, which is the same as the projection $ (r) of q(r) onto G”, is 
dense there. The other statements in our corollary follow trivially from this. 

COROLLARY 2. Zf k’ is a finite algebraic extension of k, the maximal 
order of k’ is the integral closure of r in k’. 

This follows again from prop. 6 of Chap. I-4, just as in the proof of 
theorem 1. 

DEFINITION 3. Let k be an algebraic number-field, r its maximal order, 
and E a vector-space of finite dimension over k. An r-module in E will 
be called a k-lattice in E if it is finitely generated and contains a basis 
of E over k. 

If k’ is a finite algebraic extension of k, r’ its maximal order, and E 
a vector-space of finite dimension over k’, it is clear that an r’-module 
in E is a k’-lattice if and only if it is a k-lattice when E is viewed as a 
vector-space over k. 

Let E be a vector-space of finite dimension over k. Let L be a k-lattice 
in E; let E be a finite subset of E s?h that L is the r-module generated 
by E in E. Then, for every finite place u of k, the r,-module E, generated 
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by F is the same as the r,.-module L,, generated by L, and prop. 1 of 
Chap. IV-l shows that E,(P,,s) is the same as E, x nLV and is an open 
subgroup of Ek For every eEL, we can define an element (e,) of nLv 
by putting e, = e for all v; if we call this element tiL(e), k will be called 
the canonical injection of L into n L,. Then: 

PROPOSITION 4. Let E be a vector-space of finite dimension over k. 
Let L be a k-lattice in E; for every finite place v of k, let L, be the rV- 
module generated by L in E,; and let tiL be the canonical injection of 
L into n L,. Then $L(L) is dense in n L,; its projection onto every partial 
product of fl L, is dense there; in particular, for every v, L, is the closure 
of Lin E,. 

Let s={e,,... ,e,} be a finite subset of L such that L is the r-module 
generated by E. Take any element (e,) of nL,; then, for every v, we can 
write e,=~x~)e, with coefficients x c) in rV. Put xi = (xa) for 1~ i < N; 
the xi are elements of nrV. By corollary 1 of th. 1, we can find elements ci 
of r such that, for every i, II/ (gi) is arbitrarily close to Xi; clearly, then, 
$,(xtiei) can be made to be arbitrarily close to (e,). 

THEOREM 2. Let k be an algebraic number-field, E a vector-space 
of finite dimension over k, and L a k-lattice in E. For each finite place v 
of k, let L,, be the closure of L in E, and M, any k,-lattice in E,. Then 
there is a k-lattice M in E whose closure in E, is M, for every v if and 
only if M,= L, for almost all v; when that is so, there is only one such 
k-lattice, and it is given by M= n (EnM,). 

” 

Assume that there is such a k-lattice M; in view of prop. 4, the fact 
that then M,= L, for almost all v is merely a restatement of corollary 1 
of th. 3, Chap. III-l. Now assume that M, = L, for almost all v; in view 
of prop. 1 of Chap. IV-l, this implies that E, x flMv is open in EA. We 
can therefore apply lemma 1 to G = E,, G’ = E,, G” = n M, and r= q,(E), 
where qE is the canonical injection of E into EA. Clearly, if we put 
M= (I (EnM,), cp,(M) is the same as cp,(E)nG, with G, =G’x G”; 
lemma 1 shows now that M is an R-lattice in E,, hence a Q-lattice 
in E; as it is obviously an r-module, it is a k-lattice. By corollary 2 of 
th. 3, Chap. IV-2, E, +qE(E) is dense in E,; therefore its intersection 
E, + q,(M) with G, is dense in G,. This is the same as to say that the 
projection of q,(M) onto G”=nM, is dense there, and implies that M 
is dense in M, for every v. As above, call eM the canonical injection 
of M into nMv. Assume now that there is another k-lattice M’ in E 
with the closure M, in E, for every u; clearly M’ is contained in M; 
moreover, by prop. 4, $M(M’) is dense inflM,, hence also in &,JM). 
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By prop. 1, there is an integer m>O such that M’1mM. Call G, the 
image of G, under the automorphism e-+cp(m)z of E,; this can be written 
as G,= G’ x GL with Gk = n(m M,); clearly m M,= M, for almost all v 
(viz. for all the finite places of k which do not lie above some prime 
divisor of m in Z), and Gk is an open subgroup of G”. Then cp,(mM) is 
the same as qE(E)nG,, hence also the same as cp,(M)nG,, and is con- 
tained in cp,(M’); this is the same as to say that II/,(M)nGl is contained 
in $,,,JM’). Now take any ueM; as JIM(M’) is dense in $M(M), there 
is ,~‘EM’ such that ijM(p -$) is in Gk; then it must be in IC/M(M’), so 
that p - ,tt’~M’ and PE M’. This shows that M = M’, which completes 
the proof. 

COROLLARY. Let L, L’ be two k-lattices in E. Then L+ L’ and LnL’ 
are k-lattices in E, and, for every finite place v of k, their closures in E, 
are given in terms of the closures L,, LL of L, L’by 

(L+L),=L”+L:, (LnL),= L,nL”. 

The assertions about L+L’follow at once from prop. 4. As to LnL’, 
put M,= L,nL” for every v; for every v, this is a k,-lattice in E,, and it is 
the same as L, for almost all v. Therefore there is a k-lattice M in E 
with the closure M, in E, for every v, and it is given by M= n (EnM,); 
in view of th. 2, this is the same as LnL’. 

0 3. Ideals. In this 5, k will denote an algebraic number-field and 
r its maximal order; the results of 0 2 will be applied to the case E = k. 
Clearly an r-module other than (0) in k is a k-lattice if and only if it is 
finitely generated. By prop. 1 of 5 1, if a is a k-lattice in k, there is an 
integer m >O such that ma is contained in r; then, clearly, ma is an ideal 
in the ring r. Conversely, by corollary 2 of prop. 1, 4 1, every ideal in r, 
other than {0}, is a k-lattice. This shows that a subset of k is a k-lattice 
if and only if it is of the form ca, where a is an ideal in r, other than (O}, 
and SEkX. 

DEFINITIONS. Any k-lattice in k will be called a fractional ideal in k; 
a fractional ideal in k is said to be integral tf it is contained in r. 

Accordingly, (0) is not a fractional ideal. 
Let a be a fractional ideal in k, and let L be a k-lattice in a vector- 

space E of finite dimension,over k. By aL, one understands the sub- 
group of E generated by the elements cle with aEa, eGL; this is clearly 
a k-lattice in E. Let v be any finite place of k; as before, write a, for the 
closure of a in k,, and L,, (aL), for those of L, aL in E,; by prop. 4 of 
0 2, these are the same as the r-,-modules generated respectively by a, L 
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and aL; this makes it clear that (aL), is the same as the subgroup a, L, 
of E, generated by the elements ae with aEa,, eEL,. 

In particular, if a, b are two fractional ideals in k, ab is the subgroup 
of the additive group of k generated by the elements a/I with aEa, /IEb; 
it is a fractional ideal, and, for every finite place u of k, we have (a b),] = a,,b,.. 
If p0 is the maximal ideal in r,, every k,-lattice in k, is of the form p: 
with nE Z ; in particular, we can write a, = p$ 6, = pe with aE Z, bG Z, 
and then it is obvious that a,b,= pz+b. 

THEOREM 3. Let k be an algebraic number-field and r its maximal 
order. For every finite place v of k, put p, = rnp”. Then v+p, is a bijection 
of the set of finite places of k onto the set of the prime ideals in r, other 
than (0). For the law (a,b)+ab, the set of the fractional ideals in k is a 
group with the neutral element r; it is the free abelian group generated 
by the prime ideals in r; the ideals in r, other than (01, make up the monoid 
generated by these prime ideals. 

For every fractional ideal a in k, we can define a mapping v+a(u) 
of the set of finite places of k into Z by writing a,=p:‘“‘. For a=r, all 
the a(v) are 0. Theorem 2 of 0 2 shows now that a given mapping v-+a(v) 
belongs to a fractional ideal a if and only if a(v)=0 for almost all v, and 
that it determines a uniquely when that is so, a being then given by 
a= n (knp$“‘). If b corresponds similarly to v-b(v), we have seen 
above that ab corresponds to u+a(v)+ b(v); it is also clear that ac b if 
and only if a(v)2 b(v) for all v; in particular, a is integral if and only if 
a(v) 20 for all u. For any given u, put a(u)= 1 and a(v’)=O for all v’# v; 
if we call pV the corresponding ideal, we have pO=rnpv, and it is clear 
that the fractional ideals make up the free abelian group generated by 
the p,. As p, is prime in r”, pV is prime in r. As to the converse, take any a 
in r, so that a(v)>0 for all u; if it is neither r nor any one of the p,, we 
can write it as a’,“, where a’,,” are ideals in r, other than r. Then a’ 
contains a and is not a, so that al--a is not empty; the same is true 
of a”- a. Take a’Ea’- a and a”Ea”- a. Then a’c2’ is in a, while neither 
a’ nor a” is in a, so that a is not prime. This completes the proof. 

\ 
COROLLARY 1. Let a, b be two fractional ideals in k; .for each v, call 

a(v) and b(u) the exponents of p, in a and in b when these are expressed 
as products of powers of prime ideals of r. Then a + b and anb are fractional 
ideals in k, and when they are similarly expressed, the exponents of p, in 
them are min(a(v), b(v)) and max(a(u), b(v)), respectively. 

This follows at once from th. 3 and the corollary of th. 2, 0 2. 
As usual, two ideals a, b in r are called mutually prime if a+ b=r. 
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COROLLARY 2. Every fractional ideal a in k can be written in one 
and only one way in the form b c-l, where b and c are mutually prime 
ideals in r. 

This follows at once from th. 3 and corollary 1. By analogy with the 
case of Q, the ideals 6, c in corollary 2 are called the numerator and the 
denominator of a, respectively. 

We will denote by I(k) the group of fractional ideals of k. If a = (a,) 
is any element of kt, then, by the corollary of prop. 2, Chap. IV-3, we 
have laVIV= 1, hence a,r,=r,, for almost all finite places v of k; therefore, 
by th. 3, there is one and only one fractional ideal a of k such that a, = avro 
for all finite places u; we will write a=id(a) for this ideal. Clearly the 
mapping a-id(a) of ki into I(k) is surjective; we will write Q, for its 
kernel, which is obviously ki x (flrz), i.e. k,(P,)” in the notation of 
the corollary of prop. 2, Chap. IV-3, and s2(P,) in the notation of for- 
mula (5), Chap. IV-4; as this is an open subgroup of k;, a-+id(a) is a 
morphism of ki onto I(k) if I(k) is provided with the discrete topology. 
We may then identify Z(k) with k: /G&. 

In particular, for every 5 E k ‘, we have id(t) = rr; this is the r-module 
generated by 5 in k, and is frequently denoted by (5); its numerator and 
denominator, as defined above, are called the numerator and the denomi- 
nator of 5. A fractional ideal is called principal if it is of the form <r with 
tEkX ; such ideals make up a subgroup P(k) of Z(k), which is the image 
of k” under the morphism induced by a-+id(a). Identifying Z(k) with 
k,“/Q,,, we see that P(k) is the image of k” in the latter group; therefore 
we may identify I(k)/P(k) with k,“lk’ a,, which is a finite group by 
th. 7 of Chap. IV-4. The elements of Z(k)/P(k), or in other words the classes 
modulo P(k) in I(k), are known as the ideal-classes of k. The number of 
such classes, i.e. the index of P(k) in Z(k), will be denoted by h. 

THEOREM 4. Let k be an algebraic number-field, E a vector-space of 
finite dimension over k, and L, M two k-lattices in E such that Lx M. 
For every finite place v of k, call L,, M, the closures of L, M in E,, and 
call 1, the natural homomorphbm of L/M into LO/M,. Then x+(&(x)), 
where v runs through all finite places of k, is an isomorphism of L/M onto 
n(L,/M,) for their structures as r-modules, r being the maximal order of k. 

Call 2 that mapping; it is obviously a homomorphism of r-modules. 
Let x be any element of L/M, and e a representative of x in L. If n(x) = 0, 
e must be in M, for all v; by th. 2 of Q 2, this implies that eEM and x=0. 
Therefore 1 is injective. Now take any element y =(yJ of n(L,/M,); 
for every v, take a representative e, of y, in L,, and put e=(e,). As 
M,= L, for almost all v, nMv is open in n L,; therefore prop. 4 of 
5 2 shows that there is an element e, of L such that tiL(e,,)-e is in 
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flM,, tiL being the canonical injection of L into n L,. This is the same 
as to say that 2(x0)= y if x0 is the image of e, in L/M, which proves 
that A is surjective. 

COROLLARY 1. Assumptions and notations being as in theorem 4, 
we have [L:M]=n[L+M,]. 

This is obvious. One should observe that L,= M, for almost all u, 
and that, for all v, M, is an open subgroup of the compact group L,, 
so that [L,:M,] is always finite and almost always 1. The fact that 
[L: M] is finite is implicit in prop. 1 of5 1, or also in lemma 2 of Chap. 11-4. 

COROLLARY 2. Let v be a finite place of k; let pv=rnpv be the prime 
ideal in the maximal order r of k, corresponding to v. Then the natural 
homomorphism of r/p, into r-,/p, is an isomorphism of r/p, onto the residual 
.Wd r,Ip, of r,,. 

COROLLARY 3. Let a, b be two fractional ideals in k, such that a~ b. 
Let a-lb= np, ‘(“) be the expression of a- lb as a product of prime 
ideals of r. Then [a: b] = n [r: p,]“(“). 

By corollary 1, [a:b] is the product of the indices [a,:b,] for all v. 
For a given v, we can write a, =pz, 6, =pi, and then we have b-a = n(u). 
Corollary 2 of th. 6, Chap. I-4, shows that [pz:p%] = qb-” with 4 = [r”: pJ. 
Our conclusion follows at once from this and corollary 2. 

DEFINITION 5. Let k be an algebraic number-field and r its maximal 
order. Let a + ‘S(a) be the homomorphism of the group of fractional ideals 
of k into Q x which is such that S(p)= [r:P] for every prime ideal p in r. 
Then ‘%(a) is called the norm of the fractional ideal a in k. 

Corollary 3 of theorem 5 can now.& expressed by saying that, if a 
and b are fractional ideals in k, and a z) b, then [a: b] is equal to %(b)/%(a). 
In particular, if a is integral, [r : a] = %(a). 

PROPOSITION 5. Let a=(a,) be any element of ki . Then %(id(a)) 
is equal to the product nlaJ; I, taken over all the finite places v of k. 

In view of def. 5, it is enough to verify this for the case when id (a) is a 
prime ideal of r; this is so if and only if, for some finite place v of k, 
a, is a prime element of k,, and JaJ.. = 1 for all finite places u’ # u. Then 
it is obvious. 

COROLLARY 1. For each <EkX, we have N&S)=( - l)“%(id(~)), 
p being the number of the real places w  of k such that the image of c in 
k, is ~0. 
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Combining proposition 5 with th. 5 of Chap. IV-4, we see at once that 
%(id(t)) is equal to the product nit,,,/,,,, taken over the infinite places 
w  ofk. For e&h real place w  ofk, and each x~kz, we havex=(sgnx).lxj,; 
for each imaginary place w  of k, and each XE k$ we have NkWIR(x) = x Z = 
=1x1,. Our conclusion follows now at once from corollary 3 of th. 4, 
Chap. 111-4, applied to k, Q and the place co of Q. 

COROLLARY 2. An element 5 of the maximal order r of k is invertible 
in r if and only if NkIQ(<) = f 1. 

Clearly, it is invertible in r if and only if cr =r; as cr is the same as 
id(l), our conclusion follows now at once from corollary 1, combined 
with the fact that [r : a] =%(a) for every ideal a in the ring r. 

Traditionally, the elements of r x, i.e. the invertible elements of r, 
are known as “the units” of k. In the notation of Chap. IV-4, rx is the 
same as the group E(P,), as defined in theorem 9 of Chap. IV-4; its 
structure is given by that theorem; if r+ 1 is the number of the infinite 
places of k, it is isomorphic to the direct product of the cyclic group E 
of the roots of 1 in k, and of a group isomorphic to Z’. This is Dirichlet’s 
“unit-theorem”. 

9 4. Fundamental sets. Let r be a discrete subgroup of a locally 
compact group G; by a “fundamental set” of G modulo r, one under- 
stands traditionally a full set X of representatives of the cosets modulo r 
in G, which at the same time is measurable, and which is usually expected 
to have some additional properties, e.g. to be a Bore1 set, etc. Then 
formula (6) of Chap. 11-4, applied to G, r, to a Haar measure c1 on G, 
and to the characteristic function of X, shows that m(X)=a(G/T); thus 
the calculation of a(G/T) may sometimes be effected by constructing a 
convenient fundamental set. More generally, let us say that a measurable 
subset X of G is fundamental of order v modulo r if it has exactly v 
points in common with every coset modulo r; then the same formula 
gives a(X) = v a(G/T). This will now be applied to k, and to k;. 

Let k and r be as before; call n the degree of k over Q. As r is a Q- 
lattice in k when k is viewed as a vector-space over Q, prop. 11 of Chap. II-4 
shows that it has a set of generators {c,, . . ., t;,} which is a basis of k 
over Q. Then this is also a basis of k, = kOoR over R; therefore, if we 
write, for u=(ui, . . . . u,) in R”, e(u) = cuiti, this defines an isomorphism 
8 of R” onto k,. 

PROPOSITION 6. Let k, r and 0 be as above; call I the interval 0 Q t < 1 
of R. Then e(P) x nro, where the product is taken over all the finite 

places v of k, is a funvdamental set modulo k in kA, 
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Call that set X; it is obviously measurable; we have to show that 
every element x of k, can be written in one and only one way as x0 + 5 
with x,,EX and 5~ k. By corollary 2 of th. 3, Chap. IV-2, k, + k is dense 
in k,; as k, x nr, is open, this shows that, for a given XE k,, there is 
qEk such that x-q is in k, x nr,, and the definition of r shows that an 
element q’ of k has the same property if and only if q’ - q E r. Write y = x - v], 
and call y, the projection of y onto k, in the product k, x nr,; then we 
can write y ,=0(u) with u=(u,, . . . . u,) in R”. For each i, take Ui~Z such 
that a,dz+<a,+l, i.e. ui-a,eZ; put <=q-xaili and x,=x-{. As 

t: - q is in r, x,, is in k, x n r,; moreover, the projection of x,, onto k, is 

Y~-~“i5i=~(ui-ai)5i 
I 1 

and is therefore in @(I”). It is also clear that the latter condition could not 
have been fulfilled by any other choice of the integers a,. This proves our 
assertion. 

This will now be applied to the calculation of a(kJk) for an explicitly 
given Haar measure CI on k,. Such measures can be constructed as follows. 
For each place u of k, choose a Haar measure ~1, on k,; if q(r,)= 1 for 
almost all v, the product measure nclv is well defined and is a Haar 
measure on each one of the open subgroups k,(P) of k, given by for- 
mula (1) of Chap. IV-l ; clearly there is one and only one Haar measure 
on k, which coincides with these measures wherever they are defined; 
this will be denoted by n ~1,. In particular, we will write /I = n /I, for the 
Haar measure obtained by taking PJr,) = 1 for all finite places 21 of k, 
and proceeding as follows at the infinite places. If w  is a real place, we 
have k, = R and we take d&,(x) = d x, so that /I, is the Lebesgue measure 
on R. If w  is an imaginary place, we have k,=C, and we take d/3,(x)= 
=ldxr\d?l; by this we mean that, if we put x=u+iv with U, u in R, so 
that dx A dX = -2i(du A d u), Z?, is the measure corresponding to the 
differential form 2du A dv; in other words, /I,/2 is the Lebesgue measure 
in the (u, v)-plane. 

In order to calculate P(k,/k), we need another definition. Notations 
being as above, consider the matrix 

(1) M=(Tr,,,(5i5j))lai,j~., 

and call D its determinant. By prop. 5 of Chap. 111-3, D+O; by prop. 3 
of 0 1, M is in M,(Z), so that DEZ. If k = Q, we have r = Z, so that we have 
to take t1 = + 1, hence D= 1. If {vi, . . . . q,} is another set of generators 
for r, and N the matrix obtained by substituting the yli for the ti in (l), 
we can write qi = xaijlj with Uij~Z for all i, j; then we have N = A M ‘A, 
where A is the matrix (Uij). Similarly we can write ci =xbijqj with 
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bijeZ for all i, j; calling B the matrix (bij), we have AB= l,, hence 
det(A)det(B)= 1; as det(A) and det(B) are in Z, this gives det(A)= If: 1, 
hence det(N)=det(M). In other words, the determinant D of M does not 
depend upon the choice of the basis (ti). This justifies the following: 

DEFINITION 6. Let k and {tl, . . . , &,} be as above. Then the deter- 
minant D of the matrix M given by (1) is called the discriminant of k. 

PROPOSITION 7. Let B= n/?” be the Haar measure on k, obtained 
by taking /3Jr,) = 1 for all finite places v, d B,,,(x) = d x for all real places w, 
and dJ?,(x)= Idx A djZl for all imaginary places w of k. Then P(k,/k)= IDI l”, 
where D is the discriminant of k. 

Call /?, the measure n& on k, = n k,, the products being taken 
over the infinite places of k. By prop. 6, j?(kJk) is the same as B,(0(Z’)); 
therefore our proposition will be proved if we show that 

d&,(g(u))=IDI”2duI . ..du.. 

Call rl, r2 the numbers of real and of imaginary places of k, respectively; 
put r=rl + r2 - 1; let w,,, . . . . w, be the infinite places of k, ordered so 
that wi is real for i<r, and imaginary for i>r,. For each i, write ki for 
the completion of k at wi, Ai for the natural injection of k into k,, and pi 
for the R-linear extension of Ai to k,; if we identify k, with n ki as above, 
th. 4 of Chap. III-4 shows that ,LL~ is the projection from k, onto ki. 
By corollary 1 of prop. 3, Chap. 111-2, every isomorphic embedding 1’ 
of k into C is of the form oo&, where 0 is an R-linear isomorphism of ki 
into C; obviously 0 is the natural injection of ki into C if k, =R, i.e. if 
i < rl, and it is one of the two mappings x +x, x + Z of C onto C if ki = C, 
i.e. i>r,. Therefore, if we put A:.=& for O< i<r. and &Z+i=Li for 
r1 d i br, the & for 06 h < n - 1 are all the distinct isomorphisms 
of k into C. Writing now pcl;, for the R-linear extension of & to k,, we have, 
for u=(ui, . . . . uJER” and O<h<n-1: 

P~I(~(~))= C A6(5i)“i. 

i=l 

Call N = (&,(<i)) the matrix of the coefficients in the right-hand sides. By 
corollary 3 of prop. 4, Chap. 111-3, we have, for all [Ek, Tr,&t)= ~&,(IAJ, 
and therefore, since the &, are isomorphisms: 

M=(C~;,(5i)ng(5j))=‘N.N, 
h 

hence D = det(N)‘. At the same time, we have, in the exterior algebra of 
differential forms on R”: 
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t2) ndP~(e(u))= * n dPi(e(u)) A n (dPj(e(u)) A dPj(8(u))) 
h Odi-erl rl6jdr 

= fdet(N)du, A...Adu,. 

In view of the definition of the measures /I,,,, this completes the proof. 
At the same time, one may note that one gets a real differential form on 
R” by multiplying (2) with i”; therefore irZdet(N) is real, which is the 
same as to say that (- 1)12 D > 0. 

COROLLARY~.Z~ k#Q,lDl> 1. 

Notations being as above, choose c,ER: for O< i< Y, and call Y(c) 
the set of the elements y = (y,) of k, such that lyvl D Q 1 for all finite places v 
of k, and l~,,,l,,,~ d cJ2 for 0~ i< Y. For each infinite place w, and each 
CER;, the subset of k, given by Ix 1 w d c/2 is an interval of length c if 
w is real, and a circle of pW-measure rcc if w is imaginary. In view of the 
definition of p, this gives /?( Y(c)) = rcr2 n ci. If this is > IDI ‘I’, lemma 1 of 
Chap. 11-4, combined with proposition 7, shows that there are y, y’ in 
Y(c) such that r] = y’ - y is in k x. Then we have lq10 < 1 for all finite places 
u of k, lql,,+ < ci if wi is a real place, and, as one sees at once, lqlwi < 2ci if 
wi is imaginary; in view of th. 5 of Chap. IV-4, this implies 2”nci3 1. 
Therefore, if r2 >O, we get a contradiction if we assume that IDI = 1 and 
choose the ci so that nci is >x-‘* and < 2-“. Now assume that r2 = 0, 
hence rl =n, and IDI = 1. Then, for every choice of the ci such that flci > 1, 
there is u E k ’ with the properties stated above. Clearly the set of elements 
x=(x,) of k, which satisfy Ix,l, G 1 for all finite places 0, and Ix,& < 2 for 
all infinite places w, is compact and therefore contains only finitely many 
elements v],, . . . . qN of k; therefore we can choose c’> 1 such that none of 
these satisfies 1 < lqylwO <c’. Choose now the ci so that nci > 1,1 <co <c’, 
co<2,andci<1 for l<idn-1; thenthereisqEkX suchthat lql,<l for 
all finite places, and lqlwi <q for O< i <n - 1. In view of the definition 
of c’ and of our assumptions about the ci, this implies lql,, < 1 for i>O, 
and Iql,,,, < 1. This contradicts th. 5 of Chap. IV-4, unless n = 1. 

COROLLARY 2. There are only finitely many algebraic number-fields 
k of given degree n over Q and given discriminant D. 

As this will not be of any further use to us, we merely sketch the proof. 
Proceeding just as above, one sees that there is qEk x such that Jq(,b 1 
for all finite places v of k, /VI,< 1 for all infinite places w except one such 
place wo, and the image J.,(q) of q in k,, is in the interval 1x1 621D11’2 if 
w. is real, and in the rectangle given by x=u+iv, 1~161, I~l<lDl’~~ if 
w. is imaginary. As then we must have lql,O> 1, the latter condition 
implies that n,(q) is not real if w. is imaginary. This implies that k = Q(q); 
for, if not, call u the place of Q(q) lying below w,; then 1~1~ > 1 for all the 
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places w of k above U, if there is more than one such place, and n,(q) 
must be real if u is real and w0 imaginary; as this is not so, corollary 1 of 
th. 4, Chap. 111-4, shows that the degree of k over Q(r) cannot be > 1. 
This implies that the n;(q), for 0 <h dn - 1, are all distinct, so that 
n(X-&(y))is th . d bl e irre uci e manic polynomial in Q[X] with the root 
q; its coefticients are obviously bounded in terms of lD1; they are all in Z 
since lqjv < 1 for all finite places u of k, which is the same as to say that v] is 
in r, i.e. integral over Z. Therefore the polynomial in question, hence 
also q, can take only finitely many values when D is given. 

Now we will treat the corresponding problems for ki/k” . As above, 
we write Sz, for the kernel of a+id(a) in k,, this being the group 
kz x nri, i.e. the same as Q(P,) in the notation of Chap. IV-4. We will 
write 52,) instead of 52,(P,), for Q,nk:. As in Chap. IV-4, we write U 
for the group of the elements (zJ of k; such that lzl,= 1 for all u, finite or 
not; this is a compact subgroup of Sz,. As we have observed in 9 3, r ’ is 
the same as the group denoted by E(P,) in the notation of Chap. IV-4. 
We again write E for the cyclic group of the roots of 1 in k. Call again 
wO, . . ., w, the infinite places of k, in any ordering. For each z= (z,) in 
Q,, Put 

The mapping 1 of 52, into Rrf ‘, defined by (3), is obviously a morphism 
of the (multiplicatively written) group Qm onto the (additively written) 
group R’+ ‘, with the kernel U. Let ,? be the linear form on R’+ ’ given by 
J(x)=cx, for x=(x,, . . . . x,). Then, for ZEN,, we have log(lzlJ=l(l(z)); 
therefore, if H is the hyperplane defined by n(x)=0 in R’+ r, the set 
l-‘(H), which is the kernel of 101, is the same as 52,, and 1 induces on it 
a morphism of Sz, onto H with the kernel U, which we can use to identify 
the group G, =!ZJU with the vector-space H. Put r=Z(r”); by the 
corollary of th. 9, Chap. IV-4, this is a discrete subgroup of H, and H/T is 
compact; in other words, it is an R-lattice in H. It is then obvious (just 
as in the proof of th. 9, Chap. IV-4) that, if we take r elements .si, . . . , E, 
of r ‘, these will be free generators of a subgroup of r ’ if and only if their 
images l(si) in R’+ i make up a basis for H, and that r x will then be the 
direct product of E and of that subgroup if and only if these images 
generate r; when that is so, we will say that the .si make up a set of free 
generators for r ’ modulo E. Assume now that they have been so chosen. 
For 0 < i < r, call bi the degree of k,i over R; this is 1 or 2, according as 
wi is real or imaginary, and, by corollary 2 of th. 4, Chap. 1114, we have 
Edi = n, i.e. n(6) = n if we write 6 for the vector (a,, . . ., 6,) in R’+ ‘. This 
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implies that 6, together with the vectors l(q) for 1~ idr, makes up a 
basis for R’+ I, so that we can define an automorphism F of R”+l by: 

(4) t=(t,, . . . . t,)-+F(t)=n-‘t,6+ i: til(Ei). 
i=l 

We have then A(F(t))=t,, and also, for GEE and (n,, . . . . n,) in Z’: 

(5) l(Yfn&;q=F(O,n,, . ..) n,). 

PROPOSITION 8. Put 52, = kg x nr$ and let 1 be the morphism of 
f2, onto Rrfl given by (3); let {a,, . . . . a,,} be a full set of representatives 
for the cosets modulo k” 0, in k:. Let E be the group of the roots of 1 
in k; call e its order, {sl, . . ., E,} a set of free generators for r x modulo E, 
and F the automorphism of R'+ r given by (4). Then, if I is the interval 
0 6 t < 1 in R, the union of the sets a, l- ’ (F(R x /I)) for 1 < i < h is a fun- 
damental set of order e modulo k ’ in k;. 

Take any z = (z”) in k; ; there is one and only one i such that a; ’ z is 
in k ’ Q, , and then we can write z = ai 5 z’ with <E k ‘, Z’E 52,; moreover, 
z’ is uniquely determined modulo k ’ nS2,, i.e. modulo r ‘. Put F- ’ (l(z’)) = 
=(t 0, . . . . t,); for 1 <idr, take n,EZ such that ni<ti<ni+l; put E=~E~‘, 
z” = E- ’ z’ and <’ = ts. Then we have z = <‘aiz”, and, in view of (4) and (5), 
Qz”)EF(R x Ir). Moreover, it is clear that z” is uniquely determined 
modulo E by these conditions. This proves our proposition. 

As we have seen in 5 3, the morphism z-id(z) of k; onto Z(k) deter- 
mines an isomorphism of k;/k”Q, onto the group Z(k)/P(k) of ideal- 
classes of k; therefore the number h, occurring in proposition 8, is the 
order of that group, and the ideles ai in that proposition may also be 
characterized by saying that the fractional ideals id(ai) are representatives 
of the ideal-classes of k. 

Now we define a Haar measure y on k;. Just as in the case of k,, 
this may be done by choosing, for each II, a Haar measure yV on k,“, in 
such a way that y,(rC) = 1 for almost all u ; then we define y by prescribing 
that it should coincide with nyv on every one of the groups k,(P)“, and 
we write y = n yv for this. As in the case of k,, we need a definition : 

DEFINITION 7. Notations being as above, call L the matrix whose 
rows are the vectors n-l 6, l(.sl), . . . . 1(&r). Then R=ldet(L)( is called the 
regulator of k. 

As L is the matrix of the automorphism F of Rrfl given by (4), F has 
then the determinant Ifr R. Our definition would have to be justified by 
showing that R is independent of the choice of the ai; this could be done 
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easily by applying the same argument which we used for the discriminant. 
As the same fact will emerge presently as a consequence of proposition 9, 
we leave it aside for the moment. 

PROPOSITION 9. Let y= ny, be the Haar measure on ki obtained 
by taking y,(r,“)= 1 for all finite places u of k, dy,(x)= 1x1-l dx for each 
real place w, and dy,(x)=(xjl)-‘Idx ~d,l for each imaginary place w. 
For each m> 1 in R, call C(m) the image in k:fk” of the subset of ki 
defined by 1 d(zl,<m. Then we have y(C(m))=c,log(m), with ck given by 

Here, as before, rl and r2 are the numbers of real and of imaginary 
places of k, respectively; h is the number of ideal-classes; R is the regulator, 
as defined above, and e is the order of the group E of roots of 1 in k, this 
being always an even integer since f 1 are in k. Clearly e = 2 if rI > 0, since 
R contains no root of 1 except f 1. 

We begin by modifying the representatives a, of the cosets modulo 
k” !Z2, in ki, introduced in prop. 8, by replacing, for each i, ai by a,b, ’ 
with b,eQ, and Ibila=laila; once this is done, we have [ailA= 1 for 
1 <i< h, and prop. 8 shows that ey(C(m))= by(X), where X is the inter- 
section of l- ‘(F(R x II)) with the set 16 Izl,<m in ki. As we have seen 
above, if ZEQ, and F-‘(l(z))=(t,, . . . . t,), we have 

log(lzlJ=;1(l(z))=A(F(t))= t,. 

Therefore the set X can be written as l- ‘(F(J x I’)), where J is the interval 
0 < t d log(m) of R. Now 1 is a morphism of QR, onto R’+ ’ with the com- 
pact kernel U; therefore, if Y is any compact subset of R’+ ‘, l- l(Y) is a 
compact subset of 52,, and Y+ y(l-‘(Y)) is a Haar measure on R’+ ‘, 
hence a multiple cc(( Y) of the Lebesgue measure o! on R’+ ‘, with some 
constant c>O. This gives y(X)=ccr(F(J x I’)). By the definition of the 
regulator R, it is the module of the automorphism F of R’+l; therefore 
we get: 

It only remains for us to determine c. Take Y=J’+ ‘, so that a(Y)= 
=(logm)‘+ ‘. Then lP1( Y) is the set of the elements (z,) of s2, such that 
1 < 1~1, < m for all infinite places w of k. In view of the definition of y, we 
have then y(l- ‘( Y))=ar’ b”, with a, b given by 

m 
a=2 j x-‘dx=2log(m), 

1 

b= fj (xZ)-lIdxAd% =2rclog(m). 
1 <xP<m 

This gives c = 2” (2 rry2, which completes the proof. Our conclusion shows 
that R is independent of the choice of the si, as had been stated above. 



Chapter VI 

The theorem of Riemann-Roth 

The classical theory of algebraic number-fields, as described above 
in Chapter V, rests upon the fact that such fields have a non-empty set 
of places, the infinite ones, singled out by intrinsic properties. It would 
be possible to develop an analogous theory for A-fields of characteristic 
p> 1 by arbitrarily setting apart a finite number of places; this was the 
point of view adopted by Dedekind and Weber in the early stages of 
the theory. Whichever method is followed, the study of such fields leads 
very soon to results which cannot be properly understood without the 
use of concepts belonging to algebraic geometry; this lies outside the 
scope of this book. The results to be given here should be regarded 
chiefly as an illustration for the methods developed above and as an 
introduction to a more general theory. 

From now on, in this Chapter, k will be an A-field of characteristic 
p> 1. In the corollary of th. 8, Chap. IV-4, we have defined a finite 
field F, which we have called the field of constants of k; this is the algebraic 
closure of the prime field in k, and may consequently also be described 
as the maximal finite field contained in k; from now on, the number of 
its elements will be denoted by 4, and F will be identified with F,. Then, 
for every place u of k, the completion k, of k at u contains F4; in view of 
corollary 1 of th. 7, Chap. I-4, and of corollary 2 of th. 2, Chap. I-l, this 
implies that the module 4” of k, is of the form qd, where d is an integer > 1 
which is called the degree of v and is denoted by deg(v). 

By the divisors of k, one understands the elements of the free abelian 
group D(k) generated by the places of k; this being written additively, 
it consists of the formal sums xa(u) . v, where a(v)EZ for every place u 

” 
of k, and a(v) =0 for almost all v. If a = xa(v) . u is such a divisor, we 
will write a>0 when a(u)20 for all v; if a,b are two divisors, we write 
a>b for a-b>O. For every divisor a= ca(v).v, we write deg(a)= 
=ca(u) deg(u), and call this the degree of a. Clearly a+deg(a) is a non- 
trivial morphism of D(k) into Z; in Chap. VII-5, it will be shown that 
it is surjective; its kernel, i.e. the group of the divisors of k of degree 0, 
will be denoted by D,(k). Obviously a > 0 implies deg(a)30, and even 
deg(a)>O unless a=O, anda>b implies deg(a)adeg(b). 
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Let a=(q) be any element of ki ; for each u, we can write a,r,=p$“) 
with a(v)= ord,(a,); for almost all v, we have lavlU= 1, hence a(u)=O, so 
that Ca(u). u is a divisor of k; this divisor will be denoted by div(a). 
Clearly a-+div(a) is a surjective morphism of k; onto D(k), whose kernel 
is nrc and is the same as the group denoted by Q(g) in Chap. IV-4; 

we “may therefore use this morphism to identify D(k) with k; /Q(p). The 
definition of lalA shows at once that, if UE k; and a=div(a), then 
l~l,=q-~“g”‘); therefore D,(k) is the image of ki in D(k) under the mor- 
phism a+div(a) ; in particular, the image P(k) of k” in D(k) under that 
morphism is contained in D,(k). The group P(k) is known as the group 
of the principal divisors. Clearly the morphism a-+div(a) determines iso- 
morphisms of the groups ki/Q(@, k:/k’ Q(g) and k;/k’ O(e)) onto D,(k), 
D,(k)/P(k) and D(k)/P(k), respectively; D(k)/P(k) is known as the group 
of the divisor-classes of k, and D,(k)/P(k) as the group of the divisor- 
classes of degree 0; th. 7 of Chap. IV-4 shows that the latter is finite, and 
that the former is the direct product of the latter and of a group iso- 
morphic to Z. 

Now we consider vector-spaces over k; we have the following result, 
a special case of which occurred already in Chapter IV: 

PROPOSITION 1. Let E be a vector-space of finite dimension over k. 
Let E be a basis of E over k; for each place v of k, let E, be the r,-module 
generated by E in E,, and let L, be any k,-lattice in E,. Then nLV is an 
open and compact subgroup of EA if and only if LO=&” for almost all v. 

If P is a finite set of places such that L,cE, for all v not in P, nLV is 
a compact subgroup of E,(P,s), hence of E, ; the converse follows at 
once from corollary 1 of prop. 1, Chap. IV-l. Now assume that this is so. 
Then flLv is a subgroup of E, ; it is open if and only if it contains a 
neighborhood of 0; prop. 1 of Chap. IV-1 shows that this is so if and only 
if L,xE, for almost all v, which completes the proof. 

With the notations of proposition 1, put L = (L,); this will be called a 
coherent system of k,-lattices, or more briefly a coherent system, belonging 
to E, if L, = E, for almost all v. When that is so, we will write U(L) = n L, 
and A(L)= EnU(L). By prop. 1, U(L) is open and compact; it is also a 
module over the open and compact subring nr, of k,. As to A(L), it is a 
finite subgroup of E, since E is discrete and U(L) compact in E,; it is 
also a module over the ring kn(nr,); as this ring, by th. 8 of Chap. IV-4 
and its corollary, is the field of constants F, of k, this shows that A(L) 
is a vector-space over F,, whose dimension will be denoted by /z(L). 
Then A(L) has qAtL’ elements. 
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PROPOSITION 2. Put d =End(E), and let L=(L,), M=(M,) be two 
coherent systems beloning to E. Then there is a= (a,) in ~2: such that 
M, = a, L, for all v; moreover, the divisor div(det(a)) is uniquely determined 
by L and M. 

For each v, by th. 1 of Chap. 11-2, there are bases cl”, p, of E, over k, 
such that L,, M, are the r,-modules respectively generated by CY, and by 
p,. Call a, the automorphism of E, which maps a, onto PO; then M,= a,L,. 
Put d,=det(a,); if pU is any Haar measure on E,, we have 
ld,l,=p,,(M,)/,uU(L,), by corollary 3 of th. 3, Chap. I-2, so that Id,l, is 
independent of the choice of the bases CI,, 8,. Moreover, we have L, = M,, 
hence [d,(,= 1, for almost all v. By prop. 3 of Chap. IV-3, this shows that 
a = (a,) is in ~2; and d = (d,) = det(a) in ki. As Id,], depends only upon L, 
and M,, we see that div(d) depends only upon L and M. 

We will write M = a L when L, M and a are as in proposition 2. 

COROLLARY 1. Let E be a basis of E over k; put L, = (E,), and let L be 
any coherent system belonging to E. Then there is ae&i such that 
L=a LO; the divisor b =div(det(a)) depends only upon L and E, and its 
class and degree depend only upon L. 

Only the last assertion needs a proof. Replace E by another basis 
E’; put Z0 = (.$,), and call a the automorphism of E over k which maps E’ 
onto E. Then L, = a&, hence L=auL& so that b has to be replaced by 
b + div(det(cr)); the second term in the latter sum is a principal divisor, so 
that its degree is 0. 

COROLLARY 2. There is a Haar measure ,u on E, such that p(fls,)= 1 
for every basis E of E over k; for this measure, if L and b are as in corollary 1, 
we have p( U(L)) = q-‘@’ with U(L) = n L, and 6(L) =deg(b). 

Choose one basis E, and take p such that p(n~J= 1. If a is as in 
corollary 1, U(L) is the image of U(L,) = nsv under e+ ae. Therefore 
p(U(L)) is equal to the module of that automorphism, which is Idet(a)j, 
by prop. 3 of Chap. IV-3; in view of our definitions, this is qmdCL), as 
stated in our corollary. By corollary 1, this does not depend upon E; 
therefore, replacing E by another basis E’, we get a measure ,u’ such that 
p’( U(L)) is the same as ,u( U(L)); this gives p’ = p, so that p(n EL) = 1. 

As in Chap. IV-2, choose now a non-trivial character x of k,, trivial 
on k, and call x0 the character induced by x on k,, which is non-trivial 
for every v, by corollary 1 of th. 3, Chap. IV-2. Let E be as above, and 
call E’ its algebraic dual. As explained in Chap. IV-2, we use x to identify 
Ei with the topological dual of E, by means of the isomorphism described 
in th. 3 of Chap. IV-2, and, for each U, we use x,) to identify E:, with the 
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topological dual of E, by means of the isomorphism described in th. 3 of 
Chap. 11-5. Let L=(L,) be a coherent system belonging to E; for every K 
call UO the dual lattice to L,. In view of the identifications which have just 
been made, L: is a k,-lattice in EL, and n L;. is the subgroup ofE; associated 
by duality with the subgroup U(L)=n L, of E,. As U(L) is compact, 
nEO is open; as U(L) is open, n E” is compact; by prop. 1, this shows 
that L’ = (E’J is a coherent system belonging to E’ (a fact which is also 
implied by corollary 3 of th. 3, Chap. IV-2); we call it the dual system to L. 

THEOREM 1. To every A-field k of characteristic p> 1, there is an 
integer g20 with the following property. Let E be any vector-space of 
jinite dimension n over k; let L be any coherent system belonging to E, 
and let L’ be the dual system to L. Then: 

i(L)=A(L’)-6(L)-n(g-1). 

Put U = U(L), U’= U(E); as we have just seen, U’ is the subgroup 
of E:, associated by duality with the subgroup U of E,. By definition, 
I(L) and 1(U) are the dimensions of the vector-spaces n = E n U and 
A’=E’nU’, respectively, over the field of constants F, of k. By th. 3 of 
Chap. IV-2, the subgroup of Ei associated by duality with the subgroup 
E of E, is E’. Therefore the subgroup of Ea associated by duality with 
E+ U is A’, so that E,/(E+ U) is the dual group to A’ and has the same 
number of elements &CL’) as A’. Clearly E,/(E+ U) is isomorphic to 
(EJE)/(E+ U/E). Take the Haar measure p on E, defined by corollary 
2 of prop. 2, and write again p for its image in E,/E, as explained in 
Chap. 11-4. As q”@’ ) ’ is the index of (E + U)/E in E,IE, we have 

p(E,/E) = qACL”p(E + U/E). 

The canonical morphism of E, onto E,/E maps U onto (E + U)/E, with 
the finite kernel n =En U; as /1 has qncL) elements, this gives, e.g. by 
lemma 2 of Chap. 11-4: 

p(U) = qACL’p(E + U/E). 

Combining these formulas with corollary 2 of prop. 2, which gives 
p(U) = qeaCL), we get: 

p(EA/E) = qn(L’) -i(L)- a(L). 

This shows that ,u(E,/E) is of the form q” with reZ. In particular, if we 
apply corollary 2 of prop. 2 to E= k and to the basis E= { 11, we get a 
Haar measure pL1 on k,, such that pI(nrv) = 1, and we see that we can 
write ,uI(kA/k) = qy with FEZ. Now identify our space E with k” by means 
of a basis E of E over k; it is clear that the measure p in E,, defined by 
corollary 2 of prop. 2, is the product (pr)n of the measures p1 for the n 
factors of the product EA=(kA)“, and then that qr =(qy)“, i.e. r = yn. This 
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proves the formula in our theorem, with g = y + 1; it only remains for us 
to show that g 2 0. As to this, apply that formula to the case E = k, L, = rv 
for all u. Then n = F,, A(L) = 1, and clearly 6(L) = 0; this gives g = ii(L), 
which is 2 0 by definition. 

COROLLARY 1. Let p be the Haar measure in E, defined by corollary 2 
of proposition 2; then p(E,/E)=q”‘g-“. In particular, if p1 is the Haar 
measure in k, for which pl(nrv)= 1, we have ,ul(k,/k)=qg-‘. 

This was proved above. 

COROLLARY 2. Notations being as in theorem 1, we have EA = E + U 
if and only if l(C) = 0. 

This is a special case of what has been proved above. 

DEFINITION 1. The integer g dejined by theorem 1 is called the genus of k. 

The results obtained above will now be made more explicit in the 
case E = k. Then a coherent system L=(L,) is given by taking L,=p;“‘“’ 
for all u, with a(u)=0 for almost all v; such systems are therefore in a 
one-to-one correspondence with the divisors of k. Accordingly, if 
a = Ia . u is such a divisor, we will write L(a) for the coherent system 
(p;““‘); L(0) being th en the coherent system (r,), we see that L(a) is the 
coherent system a- ’ L(0) when aEk,” and a =div(a). For L= L(a), we 
will also write u(a), /i(a), n(a), 6(a) instead of U(L), A(L), l(L), 6(L); 
obviously we have 6(a)= -deg(a). The definition of A(a) shows that it 
can be written as n Wv, -a(“)); in other words, it consists of 0 and of 

the elements 5 of k ‘“such that ord,(t) 2 -a(u) for all u, or, what amounts 
to the same, such that div(t)>-a. As the degree of div(?j is 0 for all 
5Ekx, this shows that /i(a)= {0), h ence n(a) = 0, whenever deg(a) < 0. 

Now let the “basic” character x of k, be chosen as above; for each 
place v of k, call v(v) the order of the character xv induced by x on k,, 
this being as defined in def. 4 of Chap. 11-5. By corollary 1 of th. 3, 
Chap. IV-2, we have v(v)=0 for almost all u, so that c=Cv(u) . v is a 
divisor of k; we call this the divisor of x, and denote it by div(X). If x1 is 
another such character, then, by th. 3 of Chap. IV-2, it can be written 
as x-+x(5x) with 5~ k ‘, and one sees at once that div(X,) = div(X) + div(5). 
Thus, when one takes for x all the non-trivial characters of kA, trivial 
on k, the divisors div(X) make up a class of divisors modulo the group 
P(k) of principal divisors of k. This is known as the canonical class, and 
its elements as the canonical divisors. 

As before, identify kA with its topological dual by means of x, and 
put c = div(X). Using prop. 12 of Chap. 11-5, one sees at once that the dual 
system to L(a) is L(c - a). Theorem 1 gives now: 
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THEOREM 2. Let c be a canonical divisor of k. Then, jbr every divisor a 
of k, we have: 

i,(a)=;l(c-a)+deg(a)-g+l. 

COROLLARY 1. If  c is as above, deg(c) = 2g - 2 and A(c) = g. 

We get the first relation by replacing (1 by c - n in theorem 2, and 
the second one by taking n=O. 

COROLLARY 2. lj a is u divisor of degree > 2g - 2, A(a) = deg(a) - g + 1. 

In fact, we have then deg(c ~ a) ~0, and, as we have observed above, 
this implies i(c - a) = 0, hence our conclusion, by theorem 2. 

COROLLARY 3. Let a = ca(v) . v  be a divisor of degree > 2g - 2. Then 
k,=k+(np17(“)). 

This ii the special case E=k, L=L(a) of corollary 2 of th. 1, since 
in this case, as shown above, we have L’= L(c- a) and A(L’)=O. 

Theorem 2 is the “theorem of Riemann-Roth” for a “function-field” 
k when the field of constants is finite. A proof for the general case can be 
obtained on quite similar lines; for the concept of compacity, one has 
to substitute the concept of “linear compacity” for vector-spaces over 
an arbitrary field K, K itself being discretely topologized; instead of a 
Haar measure, one has to use a “relative dimension” for compact and 
open subspaces of locally linearly compact vector-spaces over K. This 
will not be considered here. 

Another point of some importance will merely be mentioned. Instead 
of identifying the topological dual G of k, with k, by means of a “basic” 
character, consider it as a k,-module by writing, for every X*EG and 
every aEk,, (x,ax*)=(ax,x*) for all xEk,. Call r the subgroup of G 
associated by duality with k. Then th. 3 of Chap. IV-2 can be expressed 
as follows: if y is any element of r, other than 0, x +xy is an isomorphism 
of k, onto G which maps k onto r. In particular, r has an “intrinsic” 
structure of vector-space of dimension 1 over k. It is now possible to 
define “canonically” a differentiation of k into r, i.e. a mapping x+dx 
of k into r such that d(xy)=x.dy+ y.dx for all x, y in k, and that r may 
thus be identified with the k-module of all formal sums xyidxi, where 
the xi, yi are in k. This remains true for every separably algebraic extension 
of finite degree of any field K(T), where T is an indeterminate over the 
groundfield K. Even for the case studied here, that of a finite field of con- 
stants, this topic can hardly be dealt with properly except by enlarging 
the groundfield to its algebraic closure, and we will not pursue it any 
further. 

n 



Chapter VII 

Zeta-functions of A-fields 

$1. Convergence of Euler products. From now on, k will be an A-field 
of any characteristic, either 0 or p> 1. Notations will be as before; if u 
is a place of k, k, is the completion of k at v; if u is a finite place, Y, is the 
maximal compact subring of k,, and p, the maximal ideal in I,. Moreover, 
in the latter case, we will agree once for all to denote by qv the module 
of the field k, and by n, a prime element of k,, so that, by th. 6 of Chap. I-4, 
rv/pv is a field with q, elements, and (n,(,=q; r. If k is of characteristic 
p> 1, we will denote by q the number of elements of the held of con- 
stants of k and identify that field with Fq; then, according to the delini- 
tions in Chap. VI, we have ql, = qdeg(“) for every place a. 

By an Euler product belonging to k, we will understand any product 
of the form 

l--Hl-~,4;T1 

where SEC, B,EC and 10,1< 1 for all U, the product being taken over all 
or almost all the finite places of k. The same name is in use for more 
general types of products, but these will not occur here. The basic result 
on the convergence of such products is the following: 

PROPOSITION 1. Let k be any A-field. Then the product 

MJ)=~<hLYT1, 

where aE R and u runs through all the finite places of k, is convergent for 
a > 1, and tends to the limit 1 for a tending to + co. 

Assume first that k is of characteristic 0, and call n its degree over Q. 
By corollary 1 of th. 4, Chap. 111-4, there are at most n places v of k above 
any given place p of Q; for each of these, k, is a p-field, so that q, is of 
the form py with v 2 1 and is therefore >p. This gives, for a>O: 

1 <&(a) d n(l -P-“)-” 

where the product is taken over all rational primes p. Now write: 

[(a)= n(l-pPO)-l= n(l+p-“+p-2”+ ...). 
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Expanding the last product, we get 

since every integer v> 1 can be uniquely expressed as a product of 
powers of rational primes. Furthermore, we have, for 0 > 1: 

Y + *a 

l<i(o)<l+ ic” 
s 

t-“dt= lt 
v=2 s 

t-“dt= 1 +(a- 1)-l, 

v-1 1 

which shows that [(a) is convergent for G > 1 and tends to 1 for 0 + + CD. 
This proves our proposition when k is a number-field. 

Now assume that k is of characteristic p> 1; then, by lemma 1 of 
Chap. 111-2, we may write it as a separably algebraic extension of F,(T) 
of finite degree n. By th. 2 of Chap. III-l, F,(T) has one place cc cor- 
responding to the prime element T-‘, while its other places are in a 
one-to-one correspondence with the prime polynomials 7~ in F,[T]. It 
will clearly be enough if we prove the assertion in our proposition, not 
for the product [,Ja), but for the similar product q(o) taken over the 
places u of k which do not lie above the place cc of F,(T). Then, just as 
in the case of characteristic 0, we see that 1 <~(a)d[J~)n, where C,(G) 
denotes the product 

i,(o)= nc1 -P- deg(n)a)- 1 = n (1 + p -dey(nb + p- 2dednb + .) 

taken over all the prime polynomials n in F,[T]. As every manic poly- 
nomial in F,[T] can be uniquely written as a product of powers of prime 
polynomials, this gives 

where the sum is taken over all the manic polynomials p in F,[T]. As 
there are p’ manic polynomials of degree 6 for every 6 20, we get 

which completes the proof in the present case. 

COROLLARY 1. Let P be a finite set of places of k, containing P,; for 
every u not in P, take Q,EC such that IO,1 < 1. For SEC, put: 

E(s)= n(l -e”&s)-i. 
u+P 

Then E(s) is absolutely convergent, holomorphic in s, and i 0, for Re(s)> 1, 
and it tends to 1, uniformly with respect to Im(s), for Re(s) tending to + 00. 
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In fact, for o=Re(s), the series logE(s) is majorized by the series 
log{,(a). Our conclusion follows now at once from proposition 1 and 
the well known elementary theorems on uniformly convergent series of 
holomorphic functions. 

COROLLARY 2. Let k, be an A-field contained in k; let M be a set of 
finite places of k such that, for almost all VE M, the modular degree f(u) 
of k, over the closure of k, in k, is > 1. Then the product 

is absolutely convergent for IS > l/2. 

If k is of characteristic 0, both k and k, are of finite degree over Q; 
if it is of characteristic p> 1, and T is any element of k,, not algebraic 
over the prime field F,,, k and k, are of finite degree over F,(T); in both 
cases, k has a finite degree n over k,. Let v be a finite place of k, and u the 
place of k, lying below v; then the closure of k, in k, is (k,),, and k, is 
generated over it by k; therefore the degree of k, over (k,), is <n, so that 
1 <f(v)< n. This shows that M is the union of the sets M,, . . ., M,, 
consisting respectively of the places UEM for which f (v)=f, with 
1 <f 6n. Our assumption about M means that M, is finite, so that it 
is enough to prove our assertion for each one of the sets M, with fz2. 
By corollary 1 of th. 4, Chap. 111-4, there are at most n/f places UE Mf over 
each finite place u of k,. Therefore the product p(Ms,a) is majorized by 
t&(fa)"'"; by proposition 1, this is absolutely convergent for 0 > l/J 

COROLLARY 3. Let M be as in corollary 2; for every VEM, take 
@“EC such that )8,) Q 1; then the product 

“Et1 -~vq;?-l 

is absolutely convergent, holomorphic in s, and # 0, for Re(s)> l/2. 

In view of corollary 2, the proof is similar to that of corollary 1. 

$2. Fourier transforms and standard functions. The theory of zeta- 
functions depends essentially on the concept of Fourier transforms, ap- 
plied to the groups k,, kA attached to an A-field k. We begin by recalling 
the results to be used here. 

As in Chap. 11-5, let G be a commutative locally compact group, G* 
its dual, and let (g,g*) be as defined there. Let @ be a continuous function 
on G, integrable for a Haar measure CI given on G. Then the function @* 
defined on G* by 

@*(g*)= J @(d(g,g*)d&d 
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is called the Fourier transform of @ with respect to a; one verifies at once 
that it is continuous on G*. Clearly, if one replaces CI by CCI, with CER; , 
this replaces @* by c @*. 

LEMMA 1. Let g-+lg be an automorphism of G, with the module 
mod,(A). Let g*+g*;1* be the automorphism of G* such that (Ag,g*) = 
= (g,g* A*) for all gE G, g*E G*. Then, if CD* is the Fourier transform of Qi, 
that of g+@(A-‘g) is g*--+mod,(A)@*(g*A*). 

In the integral which defines the Fourier transform of @(A- ’ g), 
substitute ;Ig for g; the conclusion follows at once. 

By the theory of Fourier transforms, there is a Haar measure CI* on 
G*, such that, whenever the function @* defined as above is integrable 
on G*, @ is given by “Fourier’s inversion formula” 

@(d= j ~*(s*)(-s,s*>da*(s*). 1 

Then we say that @ is the inverse Fourier transform of @*. The measure 
c(* is called the dual measure to CI. Clearly, for CER~, the dual measure 
tocaisc- . i CI* In particular, assume that G* has been identified with G 
by means of some isomorphism of G onto G*; then a* = ma with some 
rneR:, and, as the dual of c c1 is c- ’ ma, there is one and only one Haar 
measure on G, viz., ml” CY, which coincides with its own dual for the given 
identification of G and G*; this is then called the self-dual Haar measure 
on G. 

If G is compact, G* is discrete. Then, by taking @= 1, one sees at 
once that the dual of the Haar measure c1 given by a(G)= 1 on G is the 
one given by a*({O})= 1 on G*. 

A function @ on G will be called admissible for G if it is continuous, 
integrable, and if its Fourier transform @* is integrable on G*. Now let 
r be a discrete subgroup of G, such that G/T is compact. Let r, be the 
subgroup of G* associated by duality with r; as G/T is compact, r, is 
discrete; as r is discrete, G*/T, is compact. Take for 01 the Haar measure 
on G determined by a(G/T)= 1. The function @ on G will be called 
admissible for (G,T) if it is admissible for G and if the two series 

,y(Y + YL 1 @*(g* + Y*) 
Y*Er* 

are absolutely convergent, uniformly on each compact subset with 
respect to the parameters g, g*. The first one of these series defines then a 
continuous function F on G, constant on cosets modulo r; this may be 
regarded in an obvious manner as a function on G/T. As r, is the dual 
group to G/T, F has then the Fourier transform 
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Y*+ I jC~(g+y))(g,y*)da(S), 
G/r ysl- 

VII 

where, as usual, 4 is the image of g in G/T under the canonical homo- 
morphism of G onto G/T, and the integrand, which is written as a func- 
tion of g but is constant on cosets modulo r, is regarded as a function 
of 4. According to formula (6) of Chap. 11-4, this integral has then the 
value @*(y*), so that the Fourier transform of F, when F is regarded as 
a function on G/T, is the function induced by @* on r,. Since Q, has been 
assumed to be admissible for (G,r), this is integrable on r’, so that we 
get, by Fourier’s inversion formula for G/T and r,: 

W=y;r@(g+Y)=y~;r @*b*)(-SY*). 
t 

For g = 0, this gives : 

(1) $w= & @*(Y*). 
* 

This is known as Poisson’s summation formula, which is thus shown to 
be valid whenever @ is admissible for (G,r), and c( is such that cl(G/T)= 1. 

Assume that there are admissible functions @ for (G,T) for which both 
sides of (1) are not 0; this assumption (an easy consequence of the general 
theory of Fourier transforms) will be verified by an explicit construction 
in the only case in which we are interested, viz., the case G = E,, r= E 
when E is a vector-space of finite dimension over an A-field. Call then CI* 
the dual measure to c(; put a*(G*/T,)=c, and interchange the roles of G, 
G* in the above calculation, starting with @* and taking its inverse 
Fourier transform by means of the Haar measure c-l a* on G*; as this 
is c- i @, we find as end-result the same formula as (l), except that @ has 
been replaced by c-i @. A comparison with (1) gives now c = 1. This 
shows that the Haar measures ~1, c1* given on G, G* by a(G/T)= 1, 
a*(G*/T,) = 1 are dual to each other. In particular, if there is an isomor- 
phism of G onto G* which maps r onto r,, and this is used to identify G 
and G*, the self-dual measure on G is the one given by a(G/T) = 1. 

Now we construct special types of admissible functions for the groups 
in which we are interested; these will be called “standard functions”. 
On any space, a function is called locally constant if every point has a 
neighborhood where the function is constant. If f is such, f - ‘({a}) is 
open for every a; it is also closed, since its complement is the union of 
the open sets f-‘({b}) for bfa. I n a connected space, e.g. any vector- 
space over R, only the constant functions are locally constant. 

DEFINITION 1. Let E be a vector-space of finite dimension over a 
p-field K. By a standard function on E, we understand a complex-valued 
locally constant function with compact support on E. 
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It will be enough to consider the case when K is commutative. Let E* 
be the “topological dual” of E, i.e. the dual of E when E is regarded as a 
locally compact group. On E*, we put a structure of vector-space over K 
in the manner described in Chap. 11-5; as we proved there, E* has the 
same dimension as E over K. With these notations, we have: 

PROPOSITION 2. A function @ on E is standard if and only if there are 
K-lattices L, M in E such that LI M and that @ is 0 outside L and constant 
on cosets modulo M in L. Then, if L, and M, are the dual K-lattices to 
L and M, we have M, IL,, and the Fourier transform @* of Qi is 0 outside 
M, and constant on cosets modulo L, in M,. 

If @, L, M have the properties stated in our proposition, it is clear 
that @ is standard. Conversely, assume that it is such. Take a K-norm N 
on E, and call p an upper bound for N on the support of @; then, as we 
have seen in Chap. 11-2, the set L defined by N(e) < p is a K-lattice, and it 
contains the support of @. As the sets Qi- ‘({a>), for aEC, are open, and 
L is compact, L is contained in the union of finitely many such sets; in 
other words, @ takes only finitely many distinct values a,, . . . . a,, on L. 
Take E > 0 such that lai - ajl > E whenever i #j. As @is uniformly continuous 
on L, there is 6 > 0 such that N(e - e’) < 6, for e and e’ in L, implies 
l@(e) - @(e’)l GE. Then the set M defined by N(e) < 6 is a K-lattice, con- 
tained in L if we have taken 6 <p, and Qi is constant on cosets modulo 
M in L. Now consider the Fourier transform 

@*(e*)= j @(e)(e,e*)dcl(e), 
E 

where M. is any Haar measure on E. As @J is 0 outside L, this integral is 
not changed by taking it over L. Replace e* by e* + eT with e: E L, ; by 
definition, the latter assumption means that (e,e:) = 1 for all eEL, so 
that the integral is not changed; therefore @* is constant on cosets 
modulo L, in E*. On the other hand, as M is an open subgroup of the 
compact group L, L is the union of finitely many cosets e, + M. As @ is 
constant on each one of these, we have 

(2) @*(e*)=C@(ei) j (ei+ e,e*)da(e)=C@(ei)(e,,e*)j (e,e*)da(e). 
I M 1 M 

As the last integral is clearly 0 unless the character e+ (e,e*) is trivial 
on M, i.e. unless e*E M,, we see that @* is 0 outside M,. 

COROLLARY 1. If @ is the characteristic function of the K-lattice L in 
E, c~$L)-l@* is the characteristic function of the K-lattice L, dual to 
L in E*, and cr*(L,)=ol(L)-’ if CI* is the dual measure to u. 
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The first assertion follows at once from (2) for L= M, Q(O)= 1. It 
implies that the inverse Fourier transform of @* is a*(L,)a(L)@; as this 
must be @, we get the last assertion. 

COROLLARY 2. Every standard function on E is admissible for E. 

This is an obvious consequence of proposition 2 and the definitions. 
In the next corollary, we identify K with its topological dual by means 

of a character x of K in the manner explained in Chap. 11-5, i.e. by 
writing (x,y) =x(xy) for x, y in K; for this identification, we may then 
speak of a self-dual measure on K. 

COROLLARY 3. Let R be the maximal compact subring of K, and cp the 
characteristic function of R. Let x be a non-trivial character of K, of order 
v, and let c1 be the self-dual Haar measure on K for the identification of K 
with its dual, based on x. Let aEKX be such that ord,(a)= v. Then 
a(R) =mod,(a)“*, and the Fourier transform of cp is y-+ mod,(a)“* cp(ay). 

Apply corollary 1 to E =K, L= R; then, by prop. 12 of Chap. 11-5, 
L*=P-‘, i.e. L,=a -i R if a is as defined above; then the characteristic 
function of L, is cp(a y), and we have a(L,)=mod,(a)- ‘cc(R). Our 
assertions follow now at once from corollary 1. 

DEFINITION 2. Let E be a vector-space of finite dimension over R. 
By a standard function on E, we understand any function of the form 
e+p(e)exp( -q(e)), where p is a complex-valued polynomial function on 
E and q a real-valued positive-definite quadratic form on E. 

PROPOSITION 3. Let E be as in definition 2; then every standard function 
on E has a Fourier transform which is a standard function, and is admissible 
for (E, L) if L is any R-lattice in E. 

Choose a basis for E over R, such that, when E is identified with R” 
by means of that basis, the quadratic form q is given by q(x)=nnx,2. 
It is clearly enough to prove our first assertion for a function 
M(x)exp( -q(x)), where M(x) is a monomial in the x,. By th. 3 of Chap. 11-5, 
we may identify R” with its dual by putting (x,y)=e(Cx,y,); then we 
see that it is enough to deal with the case n= 1, i.e. to show that the 
Fourier transform of x”exp( - rcx*) is standard on R for every integer 
m >, 0. The Fourier transform of exp (- rc x2) is exp ( - rc y’), as shown by 
the well-known formula 

exp(-zy2)=Jexp(-rcx*+2rrixy)dx. 

Differentiating both sides m times with respect to y, one sees at once, 
by induction on m, that the left-hand side is of the form p,(y) exp ( - rc y*), 
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where p, is a polynomial of degree m, and that the differentiation may 
be carried out inside the integral in the right-hand side. This gives 

Pmb)exp(-~yZ)=~(2 zix)“exp(-zx2+2nixy)dx, 

which proves our first assertion. Now let L be an R-lattice in E. By 
prop. 11 of Chap. 11-4, there is a basis of E over R which generates the 
group L; in other words, identifying E with R” by means of that basis, 
we may assume that E =R” and L=Z”. In order to prove that standard 
functions in R” are admissible for (R”, Z”), it is now enough to show that, 
if @ is such a function, 11 @(x + v)l, taken over all VEZ”, is uniformly 
convergent on every compact subset C of R”. Put Q(x) = p(x)exp( - q(x)) 
and r(x) = xx: ; take 6 > 0 such that the quadratic form 4 - 6 r is positive- 
definite; this will be so provided 6 <p, if we call p the lower bound of q 
on the sphere Y= 1. Then the function y-@(y) exp@v(y-x)) tends to 0, 
uniformly in x for XEC, when r(y) tends to + co. This implies that this 
function is bounded for XEC and all PER”, and therefore, replacing y 
by x + U, that, for a suitable A > 0, we have 

IQi(x+u)l~Aexp(-6r(u)) 

for all x E C. This gives 

~/9(x+v)J~ACexp(-G~vz)=A ( y 
Y “=-CC 

exp(-6v2))‘, 

which completes our proof. 

We will also need a more explicit statement for some special cases 
of prop. 3, corresponding to E = R or C; in each case we choose a “basic” 
character ii, and identify R (resp. C) with its topological dual by means 
of that character, just as we have done above for p-fields, according to 
Chap. 11-5. The self-dual measures to be considered now are taken with 
reference to that identification. 

PROPOSITION 4. On R, the self-dual Haar measure, with reference to 
the basic character X(x)=e(-ax) with aERX, is da(x)=lal’12dx. Zf 
(~~(x)=x*exp(-nx2) with A=0 or 1, the Fourier transform of (pA is 
~~(y)=i-A~a~“2~A(ay). 

Put da(x)= c. dx with CE R; ; then qb is given by 

ddyl=c~exp(- 71x2--2niaxy)dx. 

As recalled above, this is equal to ccp,(a y). Applying now Fourier’s 
inversion formula and lemma 1, we get ~=lal’~‘. Differentiating both 
sides of the above formula for &(y) with respect to y, we get the Fourier 
transform of cpl. 
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PROPOSITION 5. On C, the self-dual Haar measure, with reference 
to the basic character X(x)=e(-ax-5x), with aECX, is da(x)= 
=(aZ)“21dx~djll. Zf (pA(x)= xAexp(-2nxZ), A being any integer 20, 
the Fourier transform of qA is i-*(aZ)li2 cp,(ay), and that of (PA is 
ipA(a cp,(ay). 

The proof of the assertions about u and about the Fourier transform 
of ‘pO is quite similar to that in prop. 4. Differentiating A times, with 
respect to y, the formula for the Fourier transform of cpe, we get that 
of (pA; that of (PA follows from this at once. 

DEFINITION 3. Let E be a vector-space of finite dimension over an 
A-field k. Let E be a basis of E over k; for each finite place v of k, let E, 
be the r,-module generated by E in E,. By a standard function on EA, we 
understand any function of the form 

e = (e,)+@(e) = n @,(e,) 
” 

where @J” is, for every place v of k, a standard function on E,, and, for 
almost every v, the characteristic function of E,. 

Corollary 1 of th. 3, Chap. III-l, shows that the latter condition is 
independent of the choice of E. The formula which defines @, for which 
we will write more briefly @= n@“, is justified by prop. 1 of Chap. IV-l, 
which shows that almost all the factors in the right-hand side are equal 
to 1 whenever e is in EA; the same proposition shows also that @ is 0 
outside E,(P,e) for a suitable P, and that it is continuous. 

Just as in the case of kA in Chap. V-4, a Haar measure on EA can 
be defined by choosing a Haar measure CI, on E, for each v, so that 
CI~(EJ= 1 for almost all v; when the ~1, satisfy the latter condition, we 
will say that they are coherent. Then there is a unique measure CI on EA 
which coincides with the product measure nclv on every one of the 
open subgroups E*(P,E) of E,; this will be written as c1= na,. Clearly, 
if a Haar measure c1 is given on EA, one can find coherent measures ~1, 
such that c( = nclv by choosing any set of coherent measures on the 
spaces E, and suitably modifying one of them. 

From now on, we also choose, once for all, a “basic” character x 
of kA, i.e. a non-trivial character of kA, trivial on k; we denote by xv 
the character induced by 2 on k,, which is non-trivial by corollary 1 of 
th. 3, Chap. IV-2. If E is any vector-space of finite dimension over k, 
we call E’ its algebraic dual, and we use x and x0 for identifying the 
topological dual of EA with Ei, and that of E, with E; for each v, in the 
manner described in Chap. IV-2, i.e. by applying th. 3 of Chap. IV-2 to 
the former space and th. 3 of Chap. II-5 to the latter. 
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THEOREM 1. Let E be a vector-space of finite dimension over the 
A-field k. Let the a, be coherent Haar measures on the spaces E,, and 
let @ = n Qv be a standard function on EA. Then the Fourier transform 
of @, with respect to the measure CZ= na, on EA, is a standard function 
on Ei, given by @‘= n @:, where @k, for every v, is the Fourier transform 
of CD, with respect to c(,. Moreover, Cp is admissible for (E,,E). 

Let E,E’ be bases for E and for E’ over k; for each finite place v, let 
E, be as before, and let E: be similarly defined for EL. By corollary 3 of 
th. 3, Chap. IV-2, there is a finite set P of places of k, containing P,, 
such that EL is the dual k,-lattice to E, when v is not in P; in view of our 
assumption on the a,, we may also assume that P has been so chosen 
that CI,(E,)= 1 for v not in P. Then, by corollary 1 of prop. 2, the Fourier 
transform of the characteristic function of E, is the characteristic function 
of EL, and the dual measure a: to a, is given by o$,(.$,)= 1, for all v not 
in P. Now let @=n@” be a standard function on EA; for each v, call @L 
the Fourier transform of QO with respect to a,. From what has just been 
said, and from propositions 2 and 3, it follows that @‘= fl@” is a 
standard function on Ei; we will show that it is the Fourier transform 
of @. Replacing P if necessary by some larger set, we may assume that QU 
is the characteristic function of E, for v not in P; in particular, the support 
of @ is contained in EA(P,&), so that the Fourier transform @” of @ is 
given by the integral 

@“(e’)=J@(e)x([e,e’])da(e) 

taken on E,(P,.z). In view of our definitions, the integrand here, for 
e=(e,), e’ =(eL), is given by 

~(e)X([e,e’l)=n(~,,(e,)x”(IIe”,e:l)); ” 
moreover, when e’ is given, the factor in the right-hand side corresponding 
to v has, for almost all v, the constant value 1 on E,. In view of the delini- 
tion of E,(P,&) in prop. 1 of Chap. IV-l, this implies that @“(e’) is the 
same as @‘(e’). 

Now, in order to prove that @ is admissible for (EA,E), it is enough 
to show that, for each compact subset C of EA, the series 

(3) ~~l~(e+rl)l=~~I~~“(e”+?)l 

is uniformly convergent for eEC. By corollary 1 of prop. 1, Chap. IV-l, 
C is contained in some set E*(P,.z); take P such that this is so and that 
E,(P,&) also contains the support of @. For each place v in P, call C, 
the projection of C onto E,; for each finite place veP, call Cl the support 
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of @,; for v not in P, put C, = Ck = E,. As n C, is compact and contains C, 
it will be enough if we prove our assertion for C=nC,. Assume first 
that k is of characteristic p> 1. Then @ is 0 outside the compact set 
C’ = n CL, so that all the terms of (3) are 0 for eE C except those corres- 
ponding to ~EE~C”, where c” is the image of C x C’ under the mapping 
(e,e’)+e’- e; as C” is compact, EnC” is finite, and the assertion becomes 
obvious. Now let k be of characteristic 0. For each finite UEP, take a 
k,-norm N, on E,, and call L,, the k,-lattice given by N,,(e,),<p, where p 
is an upper bound for the values of N, on the compact set C,uC:. For u 
not in P, put L,=E,. Put L= n (EnL,), where v runs through all the 
finite places of k; by th. 2 of Chap. V-2, this is the k-lattice in E with the 
closure L, in E, for all finite v. Clearly, for e= (e,) in C, @Je,+ q) is 0 
unless q is in EnL,, so that @(e+q) is 0 unless n is in L. Furthermore, 
if A, is the upper bound of 1 @“I for each finite place u of k, we have A, = 1 
for almost all v; putting A =nA,, we see now that (3), for eEC, is 
majorized by the series 

where the product is taken over the infinite places w of k. As explained 
in Chap. V-2, put E, = E @oR, and identify this with the product n E, 
taken over the infinite places of k. It is then obvious that the function @Co 
on E,, defined for e, = (e,) by 

@‘,(e,) = n @wkJ, 
w 

is standard. As L is a k-lattice in E, it is a Q-lattice in E regarded as a 
vector-space over Q, hence an R-lattice in E,. Our assertion is now 
contained in prop. 3. 

COROLLARY 1. If the c(, are coherent measures on the spaces E,, 
their duals a: are coherent; the dual of a=nq is cr’=nai,; $ a(E,,/E)= 
= 1, then cc’(EaE’) = 1. 

The first assertion has been proved above; the second one follows 
at once from theorem 1 and the definitions. As to the last one, we know, 
by th. 3 of Chap. IV-2, that E’ is the subgroup of Ei associated by duality 
with the subgroup E of E,; therefore, as we have seen, our assertion 
follows from Poisson’s formula provided we can exhibit a function @, 
admissible for (EA,E), for which the left-hand side of (1) is not 0; by 
theorem 1, any standard function @a0 such that @(O)>O has these 
properties. 

An important special case is that in which E =E’= k, [x,y]=xy; 
then we identify kA and k, with their topological duals by means of x,x”, 
as explained before, and we have: 
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COROLLARY 2. Let C(,CI~ be the self-dual measures on kA, k,. Then the 
~1, are coherent, CL = n cz,, and a(k,/k) = 1. 

Take any coherent measures /I, on the groups k,; by corollary 1, 
their duals /?I are coherent, which implies that b,=& for almost all u; 
in other words, /-I, coincides with the self-dual measure a, for almost 
all v; this implies that the a, are coherent. Our other assertions follow 
now at once from corollary 1. 

Notations being as in corollary 1, the measure c( on EA for which 
a(E,/E)= 1 is known as the Tamagawa measure on EA; corollary 1 shows 
that its dual is the Tamagawa measure on Ei. In particular, on kA, the 
Tamagawa measure and the self-dual measure are the same. 

Now, for each finite place v of k, call v(v) the order of x,,, which is 0 
for almost all u by corollary 1 of th. 3, Chap. IV-2, and choose a,Ek,” 
such that ord,(a,) = v(v). On the other hand, for each real place v of k, 
apply to x+e(-x) the corollary of th. 3, Chap. 11-5; it shows that there 
is one and only one a,ek,” such that x,(x)= e( - a,x) for all xEk,. 
Similarly, for each imaginary place u, there is one and only one a,Ek,” 
such that ~,,(x)=e(-aa,x-@) for all xEk,. As v(v)=0 for almost all o, 
(a,) is in k;. 

DEFINITION 4. Let x be a non-trivial character of kA, trivial on k, 
inducing xv on k, for every v. An idele a = (a,) of k will be called a differental 
idele attached to x if ord,(a,) is equal to the order v(v) qf x,, ,for every 
finite place u of k, x,,(x) =e( - a,x) for every real place u, and x,(x) = 
=e( -a,,x -G,-il) fbr every imaginary place v of’ k. 

Clearly, when x is given, the differental idele a is uniquely determined 
modulo n rt, the latter product being taken over all the finite places v 
of k. If x1 is another character such as x, then, by th. 3 of Chap. IV-2, 
it can be written as x1(x)= x(5x) with [EkX ; if a is as above, <a is then 
a differental idele attached to x1. Consequently, the set of all differental 
ideles is a coset modulo k” nrz in kt. If k is of characteristic p > 1, 
a is a differental idele attached to x if and only if div(a) =div(x), in the 
sense explained in Chap. VI; this implies that div(a) belongs to the 
canonical class. 

PROPOSITION 6. Let a be a differental idele. Then, if k is of charac- 
teristic 0, /alA = IDJ - I, where D is the discriminant of k; if k is of charac- 
teristic p > 1, and if F, is its field of constants and g its genus, IalA = q2 - 2g. 

The latter statement is equivalent to deg(div(a))=2g-2; as div(a) 
is a canonical divisor, this is corollary 1 of th. 2, Chap. VI. In the case 
of characteristic 0, let LX, CI, be the self-dual measures in k,, k,, so that 
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a = n a, by corollary 2 of th. 1; let p = n fi, be as in prop. 7 of Chap. V-4. 
Applying corollary 3 of prop. 2, and propositions 4 and 5, we get 
~=Iul:‘“/?. As cr(k,/k)= 1 by corollary 2 of th. 1, and P&,/k)= IDI’/’ by 
prop. 7 of Chap. V-4, we get lalA = jD1-l. 

$3. Quasicharacters. We first insert here some auxiliary results. As 
before, if ZEC, we denote by Re(z), Im(z) its real and imaginary parts, 
and we put IzI =(zZ))“‘, (zj, =mod,(z)=z?. 

LEMMA 2. A character co of a group G is trivial if Re(o(g))>O for 
all geG. 

If ZEC, (zI= 1, z#l and Re(z)>O, we can write z=e(t) with teR, 
O<jtl<1/4. Call n the smallest integer such that nlt1>1/4; then 
(n- l)ltl <l/4, hence 1/4<nltl <l/2 and Re(z”)<O. Therefore the subset 
ofcdetermined by IzI = l,Re(z)> Ocontainsno subgroupofC’ except { 1). 

LEMMA 3. Every homomorphism o of a compact group G into C” is a 
character of G. 

In fact, g-lw(g)l must map G onto a compact subgroup of R;, and 
there is none except { 1). 

A group G is called totally disconnected if there is a fundamental 
system of neighborhoods of the neutral element in G, consisting of sub- 
groups of G. For instance, if K is a p-field, with the maximal compact 
subring R, and the maximal ideal P in R, the groups K and K” are 
totally disconnected, since the subgroups P” in K, and the subgroups 
1 + P” in K ‘, for n > 1, make up such fundamental systems. 

LEMMA 4. Let the group G be locally compact and totally disconnected; 
then every representation of G into Cx is locally constant. If G is compact, 
every such representation is a character of G of jinite order, Conversely, 
if G is a compact commutative group, and if every character of G is of 
finite order, G is totally disconnected. 

If G is locally compact and totally disconnected, lemmas 2 and 3 
show that every representation of G into C” is trivial on some open 
subgroup of G, hence locally constant. If G is compact, any open sub- 
group of G is of finite index, hence the second assertion. If G is commuta- 
tive and compact, its dual G* is discrete. As G,may be identified with the 
dual of G*, there is then a fundamental system of neighborhoods of 0 
in G, consisting of sets defined by conditions of the form lo,(g) - 11 <‘E 
(1 Q i <N), where the wi are characters of G. If all the wi are of finite 
order, we can take E such that these inequalities imply w,(g)= 1 for 
1 < i < N; then the neighborhood which is so defined is a subgroup of G. 
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From now on, we shall be chiefly concerned with representations 
into C ’ of groups of the form K ‘, where K is a local field, and k;/k’ , 
where k is an A-field. All these groups have the property stated in the 
following definition : 

DEFINITION 5. A group G will be called quasicompact if it is the direct 
product of a compact commutative group G1 and of a group isomorphic 
to R or to Z; a representation of G into C” will then be called a quasi- 
character of G. 

It would be easy to show that a group G is quasicompact if and only 
if it is commutative and locally compact, and its dual G” is locally 
isomorphic to R, i.e. if it has an open subgroup isomorphic to R or to 
R/Z; the latter condition may even be replaced by the weaker requirement 
that G* should have a neighborhood of 0, homeomorphic to R. From 
this, one concludes easily that G is quasicompact if and only if it has a 
compact subgroup G, such that G/G, is isomorphic to R or Z. These 
facts will not be needed in the sequel. It is clear that, if G has the property 
described in definition 5, G, is its unique maximal compact subgroup. 

DEFINITION 6. Zf G is a quasicompact group, a quasicharacter of G 
will be called principal if it is trivial on the maximal compact subgroup 
G, of G. 

The quasicharacters of a quasicompact group G make up a group 
in an obvious manner; this will be denoted by Q(G) and written multi- 
plicatively. In other words, if w, o’ are in Q(G), we write oo’ for the 
quasicharacter g -+ o(g)w’(g) of G. Clearly the principal quasicharacters 
of G make up a subgroup Q1 of Q(G). 

PROPOSITION 7. Let G be a quasicompact group and G, its maximal 
compact subgroup. Then G has non-trivial representations into RQ; if co1 
is such a representation, its kernel is G,, and every representation of G 
into R; can be written in one and only one way in the form g-+wl(g) 
with oeR. 

Put G = G, x N, with N isomorphic to R or Z. By lemma 3, every 
representation o of G into R: must be trivial on G, ; writing elements 
of G as (gI,n) with glEG,, nEN, we see that w must then be of the form 
(g 1, n) + cp(n), where cp is a representation of N into R: . Identify N with 
R or with Z, as the case may be. In the former case, the condition for cp 
amounts to saying that n+logcp(n) is an endomorphism of R, hence of 
the form n+an with aER, so that q(n)=exp(an). For N=Z, cp is 
obviously of the form cp(n)= b” with beRJ and may still be written as 
cp(n)= exp(an) with a =logb. In both cases, cp is non-trivial if a #O. 
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Therefore, if o1 is as in our proposition, it can be written as w,(g,,n)= 
= exp(a, n) with a, # 0. This has obviously the kernel G, ; moreover, if o, 
40 and a are as above, we have o=(ory with (r= a/a,, and o is uniquely 
determined by this. 

COROLLARY 1. Let G, G, and co1 be as in proposition 7. Then the 
group Q2, of the principal quasicharacters of G is isomorphic to C or to Cx 
according as GIG, is isomorphic to R or to Z; every such quasicharacter is 
of the form 

with SEC; and s--to, is a morphism of C onto Q,, whose kernel is (0) or 
oftheformiaZwithaeR;, according as G/G1 is isomorphic to R or to Z. 

Let o be any quasicharacter of G; with the above notation, proposi- 
tion7,applied tog+(o(g)l,shows that (01 =o,with PER; theno’=o; ‘0 
is a character of G. If o is trivial on G 1, so is 0’; with the same notations 
as in the proof of prop. 7, we may then write o’(g,,n)= e(n), where $ 
is a character of N. As in that proof, identify N with R or with Z, as the 
case may be, o, being given by o,(g,,n)=exp(a, n) in both cases. Every 
character of N can be written as tj(n)=e(zn) with PER ; this is obvious 
for N=Z and is well known (and a special case of th. 3, Chap. 11-5) for 
N= R. That being so, we get o=o,, with s=(r+27ci z/al. Moreover, o 
and $ are uniquely determined by o ; z is uniquely determined by $ if 
N= R, and uniquely determined modulo Z if N = Z. This shows that 
s+w, is an isomorphism of C onto 52, if N =R; if N = Z, we have 
o(gl,lz)=u” with u=exp(a,s), and u --, w is an isomorphism of C x onto 
Q2,. This completes the proof. 

COROLLARY 2. Let G be a quasicompact group, the direct product of 
the compact group G1 and of a group N, isomorphic to R or Z. Then the 
group O(G) of quasicharacters of G is the direct product of the group Q, 
considered in corollary 1, and of the group of the characters of G, trivial 
on N; the latter is isomorphic to the dual of G,. 

We have already noted above that every quasicharacter w of G can 
be uniquely written as w,$, where $ is a character of G, and PER. 
Clearly $J can be uniquely written as +!I~ $J~, with $I i trivial on G, and 
$2 trivial on N ; then w = (0, II/i) $*, and o, $ i is in 52, _ The last assertion 
in our corollary is obvious. 

So far we have refrained from mentioning any topology on Q(G). We 
will put on Q,, not only the topology, but also the complex structure 
determined by the morphism s-co, of C onto Q, defined in corollary 1 
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of proposition 7; we define the topology on Q(G) by prescribing that Q2, 
shall be an open subgroup of Q(G), and we define a complex structure 
on 52(G) by putting, on every coset modulo Q, in L?(G), the complex 
structure deduced from that of Q, by translation. Then Q(G)/Q, is 
discrete, hence isomorphic to the dual of G, also as a topological group 
since that dual is discrete. The connected components of a(G) are the 
cosets modulo Q,; they are all isomorphic to C or to C”, as the case 
may be. 

Clearly the above concepts and results can be applied to G=K” if 
K is any local field, with wi(x)= mod,(x); we can take for N the sub- 
group R; of K ’ if K is R or C, and the group generated by any prime 
element n of K if K is a p-field. In the latter case, this gives: 

PROPOSITION 8. Let K be a p-field and 71 a prime element of K. Then 
the principal quasicharacters of KX are those of the form x -*mod,(x) 
with SEC; the group Q(K “) of quasicharacters of Kx is the direct product 
of the group qf principal quasicharacters and of the group of the characters 
II/ of K” such that $(z)= 1. 

By lemma 4, every quasicharacter of Kx is locally constant. If R 
and P have their usual meaning, the groups R” and l+ P” for n> 1 are 
open in Kx and make up a fundamental system of neighborhoods of 1. 
This justifies the following definition : 

DEFINITION 7. Let K be a p-field, R its maximal compact subring and 
P the maximal ideal of R. Let co be a quasicharacter of K *; let f be the 
smallest integer 2 0 such that o(x) = 1 for XE R ‘, x - 1 E Pf. Then Pf 
is called the conductor of o. 

Obviously o is principal if and only if f = 0, i.e. if and only if its 
conductor is R; when that is so, we will also say that w is unramified. 

For K = R or C, we have the following result: 

PROPOSITION 9. Every quasicharacter of R” can be written in one and 
only one way as x+x-*IxIS with A=0 or 1, and SEC. Every quasicharacter 
of C” can be written in one and only one way as x+x-~X-~(XX)S, where 
A and B are integers, inf(A,B)= 0, and SEC. 

For R” , this is an immediate consequence of prop. 7 and its corollaries, 
since here G, = {k l}. For G=C”, G, is the group determined by 
xl= 1; as this is the dual of Z, its characters are the functions x-+x” 
with nEZ; this can be written as x+(x/lx/)-* with A= -n30 if n<O, 
and as x + (X/\X~)-~ with B = n > 0 if n 2 0. Our assertions follow at once 
from this and prop. 7. 
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9 4. Quasicharacters of A-fields. By th. 6 of Chap. IV-4, if k is an 
A-field, k;l/k” is quasicompact. From now on, we will write G, = kifk” ; 
this group is known as the “idele-class group” of k. We write Q(G,) for 
the group of quasicharacters of G,, provided with its topology and its 
complex structure according to our definitions in 0 3. The quasicharacters 
of G, will be identified in an obvious manner with the representations of 
ki into Cx, trivial on kx . 

As z+I.& is a non-trivial representation of ki into R:, trivial 
on k”, it determines a non-trivial representation of Gk into R:, which 
will be denoted by ol, and to which we can apply prop. 7 of 4 3 and its 
corollaries, writing again cc), =(o,)s for SEC. In particular, the kernel 
G: = ki/k’ of o1 is the maximal compact subgroup of C,; s-w, is a 
morphism of C onto the group Q, of principal quasicharacters of G,; 
if o is any quasicharacter of G,, there is one and only one U’E R such 
that 101= 0,. 

If k is of characteristic 0, corollary 2 of th. 5, Chap. IV-4, shows that 
G, is the direct product of G: and of the image N in G, of the group M 
defined in that corollary. On the other hand, if k is of characteristic 
p> 1, we choose an element z1 of k; among those for which lzlA has its 
smallest value Q> 1; as we have seen in Chap. VI that the values of (zIA 
are all of the form 4” with neZ if F, is the field of constants of k, we have 
Q = 4” with v 3 1; it will be seen later that v = 1, Q = 4 (this is corollary 6 
of th. 2, 0 5). Then we call M the subgroup of ki generated by zl, and 
N its image in Gk. In all cases, we will identify N with its image in R: 
under ol, so that o1 may be regarded as the projection from the product 
Gk= G: x N onto the factor N. Thus N = R: if k is of characteristic 0 ; 
otherwise it is the subgroup of R; generated by Q; this implies that in 
the latter case the morphism s+o, of C onto 52, has the same kernel as 
the morphism s--t@ of C onto C”, i.e. 2~i(logQ)-‘Z. 

Let o be any quasicharacter of G,; regarding it as a representation 
of ki into C”, trivial on k”, we will, for every place z, of k, denote by 
o, the quasicharacter of k,” induced on k,? by o. As the groups k,(P) x 
defined in the corollary of prop. 2, Chap. IV-3, are open in k;, every 
neighborhood of 1 in ki contains a subgroup of the form flvsP~,X; 
therefore, by lemma 2 of # 3, o must be trivial on some such group, which 
is the same as to say that o, is unramified for almost all U. Consequently, 
for all z=(z,) in ki we have w(z)= ~IW”(Z”), the product being taken I 

over all the places v of k; for each z, almost all the factors in that product 
have the value 1. We will write this more briefly as o= no”. 

The chief purpose of this Chapter can now be stated; it is to investigate 
the integrals of the form 

(4) Zb, @I = J @w&)~P(z), 
k: 
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where the notations have the following meaning. For p, we take a Haar 
measure on ki ; for W, we take a quasicharacter of G, = k; jk” , regarded 
as above as a function on ki. For @, we take a standard function on k,. 
By j, we denote the natural bijection of k; onto the set of invertible ele- 
ments of k,, which is a continuous mapping of k; into kA, by prop. 2 of 
Chap. IV-3. By abuse of notation, we will usually write a’(z) instead of 
@(j(z)) in the future. 

As to p, it has already been observed in Chap. V-4, in the case of 
characteristic 0, that such a measure can be defined by choosing, for 
every u, a Haar measure II,, on ki, in such a way that pJr,X)= 1 for 
almost all u. Then we write p= npL, for the measure on ki which 
coincides with the product measure l-I/*” on every one of the subgroups 
k,(P)‘. The construction of the measures /.L” is contained in the following: 

LEMMA 5. Let K be a local field and c1 a Haar measure on K. Then the 
formula dp(x)= mod,(x)- ‘da(x) defines a Haar measure p on K ’ ; 
moreover, if K is a p-field, q its module, and R its maximal compact subring, 
then p(RX)=(l -q-‘)a(R). 

By the definition of modK, x -+ax leaves p invariant for aE K x ; this 
proves the first assertion. The second one follows at once from th. 6 of 
Chap. I-4. 

PROPOSITION 10. Let @ = n a0 be a standard function on k,, co = no0 
a quasicharacter of Gk= k;/k”, and p= npL, a Haar measure on ki. 
Assume that IwI = w, with o > 1. Then the integral Z(o, @) in (4) is absolutely 
convergent, and its value is also given by the absolutely convergent product 

(5) 

For each finite place ZI of k, put Y”= I@,1 ; for each infinite place w 
of k, choose a standard function Y, on k, such that Y,,,~l@,,,l; then, 
clearly, Y = n Y, is a standard function on k,, majorizing I@[, and 
Z(w,@) is majorized by Z(o,, Y). Call Z(P), J(P) the integrals of @wdp 
and of YYo,dp, respectively, on k,(P)‘. Call I,., J,. the integrals of @,.o,.dp,, 
and of YY,(w,ldp,, respectively, on k: , and, for every finite u, call Zi, J: 
the same integrals taken on r,” instead of k,“; I, is the factor correspond- 
ing to u in the right-hand side of (5). For almost all finite places v of k, 
@” is the characteristic function of rv, o, is unramified, and p”(ri) = 1; 
let PO be a finite set of places, containing P,, such that this is so for u 
not in PO. Then, for u not in PO, Zk =.lL= 1. This implies that we have, for 
all P3PO: 

Z(P)= nz”, J(P)= JJJ”. 
VCP VEP 
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Therefore Z(o,, Y) is < + cc provided all the integrals J,, and the infinite 
product nJ,, are convergent; moreover, if we show that this is so, it 
will imply that Z(o,@), the integrals I, and the product nZu are all 
absolutely convergent, and that Z(o,@) is equal to that product, which 
is what we have to prove. For any v, take a Haar measure IX, on k,,; 
then, by lemma 5, dZ~Jx)=m,lxJ;’ da,(x) with some rn,~R:. This gives 

Jv=mv j Y,(x)(x(:-’ da,(x). 
x ku 

In view of our definition of a standard function, one sees at once that 
this is convergent for 0 3 1; it would still be so even for 0 > 0, but this is 
not needed here. On the other hand, for u not in P,, we have, since k,” n I, 
is the disjoint union of the sets u,= zirz for ~20: 

J,= +f jlxl;dpJx)= +fq;‘“=(l-q;“)-‘. 
v=o uv v=o 

Prop. 1 of 0 1 shows now that n.Z, is convergent, which completes the 
proof. 

The method of calculation which we have just given for .Z, can be 
applied to I,; we formulate this as follows: 

PROPOSITION 11. Let K be a p-jeld, q its module, R its maximal 
compact subring, and p the Haar measure on K x such that p(RX)= 1. 
Call cp the characteristic function of R. Then, for Re(s)>O: 

jXq(x)modK(x)“dp(x)=(l -q-“)-I. 

In fact, we can write K” nR as the disjoint union of the sets U, = 
= A” R ’ = P” - P”+ 1 for v 2 0. Then our integral can be written as 

y 1 mod,(x)“dp(x)= yqpvS, 
v=o u, v=o 

which is absolutely convergent for Re(s) >O and has the value stated 
above. 

0 5. The functional equation. We will first choose a Haar measure 
on k;. On the compact group G:, take the Haar measure ,LL~ given by 
,u~(G:)= 1. On the group N, take the measure v given by dv(n)=n-’ dn 
if N=R: and by v((l})= 1 otherwise. On Gk= G: x N, we take the 
measure p =,u, x v. Finally, on k;, as explained in Chap. U-4, we choose 
as pi the measure whose image in G,= kilk” is the one we have just 
defined. 
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LEMMA 6. Let F, be a measurable function on N such that 0 d F, < 1; 
assume also that there is a compact interval [to,tI] in R; such that 
F,(n)=1 for neN, n<t,, and F,(n)=0 for nEN, n>t,. Then the integral 

A(s)= j n”F,(n)dv(n) 
N 

is absolutely convergent for Re(s)>O. The function A(s) can be continued 
analytically in the whole s-plane as a meromorphic function. If we put 
I,(s)=s-’ if N=R;, and &(s)=~(~+Q~~)(~-Q-~)-~ if N={QY},,z, 
then A -1, is an entire function of s. Finally, if F,(n)+ F,(n- ‘)= 1 for 
all nEN, then A(s)+A(-s)=O. 

Take first for F, the function fi given by fi(n)= 1 for n< 1, 
fi (1) = l/2, fi (n) = 0 for n > 1. Then il becomes, for N = R: , the integral 

in”-‘dn, and, for N={Q”}, the series 3+ +fQevS; in both cases it 
0 1 

is absolutely convergent for Re(s) > 0, and equal to n,(s). This gives, for 
any F, : 

4s)-Jo(s)= s n”(F,(n)-f,(n))dv(n). 
N 

As F, - fl is a bounded measurable function with compact support on N, 
the last integral is absolutely convergent for all s, uniformly on every 
compact subset of the s-plane; this implies that it is an entire function 
of s. Assume now that F,(n)+ F,(n- ‘)= 1; as fl has the same property, 
the function F2= F, -fi satisfies F,(n-‘)= -F2(n). Replacing n by n-l 
in the last integral, and observing that A,( - s)= -n,(s), we get 
A( - s) = - A(s). 

Lemma 6 implies that il has at s = 0 a residue equal to 1 if N = R; 
and to (logQ)-1 if N={Q’}. H ere, and also in the next results, it is 
understood that residues are taken with respect to the variable s; in other 
words, if a function f(s) of s has a simple pole at s = so, its residue there 
is the limit of (s-so) f (s) for s+so. 

THEOREM 2. Let @ be a standard function on k,. Then the function 
o + Z(o, @) defined by formula (4) of 9 4 when the integral in (4) is absolutely 
convergent can be continued analytically as a meromorphic function on 
the whole of the complex manifold Q(G,). It satisfies the equation 

where @’ is the Fourier transform of Qi with respect to the Tamagawa 
measure on k,. Moreover, Z(w,@) is holomorphic everywhere on SZ(G,) 
except for simple poles at coo and ol, with the residues - p@(O) at w. and 
p@‘(O)ato,, wherep=l ifN=R; andp=(logQ)-‘ifN={Q’}. 
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On R:, choose two continuous functions F,, F, with the following 
properties: (i) F,, > 0, F, > 0, FO+ F, = 1; (ii) there is a compact interval 
[t,,,tJ in Rz such that F,(t)=0 for O<t<t,, and F,(t)=0 for t>t,. 
Take any B> 1. Then, for cr~R, o<B, PER;, we have t°Fo(t)~t~-‘tB. 
Write now, for i = 0,l: 

As before, put lwl =wb with a~ R; by prop. 10 of 9 4, Z, and Z, are 
absolutely convergent for r~ > 1. On the other hand, if CT < B, Z, is major- 
ized by the integral 

which is convergent by prop. 10 of 4 4. In particular, Z,(w,w,@) is ab- 
solutely convergent for all SEC, and one verities easily that this is so 
uniformly with respect to s on every compact subset of C. As the quasi- 
characters oSo, for SEC, make up the connected component of o in 
Q(G,), with the complex structure determined by the variable s, this 
shows that w+Z,(o,@) is holomorphic on the whole of Q(G,). 

Now apply formula (6) of Chap. II-4 to the group k;, the discrete 
subgroup k” and the integrals Z,, Z,. This gives: 

zi= I( 2 @(25)) ‘“(z)Fi(lzlA)dP(i), 
tik ;tk’ 

where i is the image of z in Gk = k;/k’ , and the integrand is to be under- 
stood as a function of i. Here the integrals for Z,, Z, are absolutely 
convergent whenever the original integrals for Z,, Z, are so, i.e. for 
rs > 1 in the case of Z, and for all r~ in the case of Z,. 

For each ZE k; , we may apply lemma 1 of 9 2 to the automorphism 
x-+z- l x of kA; applying then Poisson’s formula, i.e. (1) of 9 2, to the 
function x-+@(zx), we get: 

and therefore: 

z1= j (<Z ~‘(~~-‘)+~‘(o)-lzl*~(o)) l~lA1~~~~~l~l~l*~~~cl(~~. 
Gk ’ 

On the other hand, what we have proved above for Z, remains valid if 
we replace o by wlcY1, @ by @’ and F, by the function t-+Fi(t-‘). 
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Calling Z0 the result of this substitution, we get: 

G= ~~‘(z)lzl.~(z)-l~l(Izl,‘)~~(z); 
‘6 

therefore this is always absolutely convergent, and holomorphic on the 
whole of Q(G,). In this integral, replace z by z- l; this changes the Haar 
measure ,U into a Haar measure cp, where cz = 1 since it is a homeo- 
morphism of order 2 of k; onto itself, hence c = 1. After this change of 
variable, apply again formula (6) of Chap. II-4 to ki and k x. This gives: 

this again being always absolutely convergent. As 5-t-l is a bijection 
of k ’ onto itself, we get now: 

this being absolutely convergent for c> 1, since 2, and Z0 are so. By 
corollary 2 of prop. 7,§ 3, we can write w = oS$, where tj is a character 
of Gk, trivial on N. In view of our definition of p as the measure pL1 x v 
on Gk = Gi x N, our last formula can now be written : 

2,-z;= 1 IC/dp (,* 
t 

1) . (~(~‘(O)-n~(o))n~-l~l(n)dv(n)) . 

The first factor in the right-hand side is 1 or 0 according as + is trivial 
or not, i.e. according as o is principal or not; write 6, for this factor. 
The second one can be evaluated at once by lemma 6. If n(s) is as defined 
in that lemma, this gives: 

As Z(w, @) =Z, + Z,, this proves that Z(o, @) can be continued every- 
where on Q(G,) outside the connected component 0, of o,, = 1 as a 
holomorphic function, and on that component as a meromorphic func- 
tion having at most the same poles as L(s- 1) and L(s); as to the latter 
poles and their residues, they are given by lemma 6 and are as stated 
in our theorem. Finally, assume that we have chosen F,, F, so that 
F,(t) = F, (t- ‘) for all t; this can be done by taking for F, a continuous 
function for tal, such that OdF,(t)dl for all t>l, F,(1)=1/2, and 
F,(t)=0 for tat,, and then putting F,(t)=l-F,(t-‘) for O<t<l, and 
F, = 1 -F, . That being so, we have Z& = Z,(w, w- ‘, @‘), and therefore 

In this formula, replace o by q w- 1 and @ by a’. In view of Fourier’s 
inversion formula, this replaces @’ by the function @” given by 
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W’(x)= @( -x). As o is trivial on kx, we have o( - 1) = 1, hence 
w( -z)= o(z) for all z, so that Z,(@,, W) is the same as Z,(o, @); there- 
fore this substitution merely interchanges the first two terms in the right- 
hand side of our formula; as it changes s into 1 -s, lemma 6 shows that 
it does not change the last term. This completes the proof of the “func- 
tional equation” in theorem 2. 

COROLLARY 1. Let P be a finite set of places of k, containing P, ; 
then the product 

is absolutely convergent for Re(s) > 1, and (s - l)p(k, P,s) tends to a finite 
limit >0 when s tends to 1. 

The first assertion is contained in corollary 1 of prop. 1, $1. Now 
take Haar measures c(, on k,, CL, on k,” , as explained above; by lemma 5 
of 5 4, we have, for every u, d&)= m,Jxl; ’ da,(x), with some m,>O. 
Take the standard function @ so that lp, is the characteristic function 
of I, for all v not in P, and that ~0~3 0 and @JO) >O for all ZI. Apply 
prop. 10 of 0 4 to Z(w,, @) for Re(s) > 1; the factor I, corresponding to u, 
in the right-hand side of the formula in that proposition, can now be 
written as 

I,=m, 1 @,(x)IxIS,-lda,(x). 
k: 

For u not in P, by prop. 11 of 9 4, this differs from (1-q;“))’ only by 
the scalar factor P&Y:), which is always >O, and which is 1 for almost 
all v. For UE P, one can verify at once that I, is continuous for Re(s) Z 1 
(one could easily show, in fact, that it is holomorphic for Re(s)>O, and, 
in the next 0, one will obtain a much more precise result for a specific 
choice of @, but this is not needed now); for s tending to 1, it tends 
to m,l@,da,, which is >O. This shows that Z(o,,@) differs from the 
product p(k, P,s) in our corollary by a factor which tends to a finite 
limit >O when s tends to 1. On the other hand, theorem 2 shows that 
Z(o,, @) has a simple pole at s = 1, with the residue p@‘(O), and p >O; 
as Q’(O)= J @da, and as this is obviously >O, this completes the proof. 

COROLLARY 2. Let P be as above; let o be a non-trivial character 
of k;, trivial on k”, such that co, is unramified for all v not in P; for v 
not in P, put A(u)=w,(z,), where n, is a prime element of k,. Then the 
product 

p(k,P,w,s)=,~~(l-i,(o)q,;“)-’ 

is absolutely convergent for Re(s)> 1 and tends to a finite limit when s 
tends to 1; if co2 is not trivial, this limit is not 0. 
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As o is a character, we have IA(v)l = 1 for all u not in P, so that the 
first assertion is again contained in corollary 1 of prop. 1, 9 1. Take 
c(,, pV as before, and take Cp so that, for v not in P, QU is the characteristic 
function of rt,. Apply prop. 10 of 5 4 to Z(o,w,@) for Re(s)> 1; the fac- 
tor I,. is now 

(.=m,j @,(x)o,(x)lxl;,-’ dcr,(x). 
r: 

For zj not in P, 0,. is unramified and may be written as w,(x)=IxI~:, 
where s,. can be determined by A(v) = qLFSV; then prop. 11 of 5 4 shows 
that I,. differs from (1 - 3,(v)qt~“)- ’ only by the scalar factor p&r,?), which 
is 1 for almost all C. For VEP, we observe, as before, that I, is continuous 
for Re(s) 2 1; taking prop. 9 into account when u is an infinite place, one 
sees easily that, for each UEP, @,, may be so chosen that I, is not 0 for 
s=‘l, and we will assume that it has been so chosen (for specific choices 
of @,, I,. will be computed explicitly in 3 7). We see now that Z(o,o,@) 
differs from the product p(k,eo,s) in our corollary by a factor which 
tends to a finite limit, other than 0, when s tends to 1. In view of theorem 2, 
this proves the second assertion in our corollary. As to the last one, 
we need a lemma: 

LEMMA 7. For [EC, %EC, put q(L,t)=(l -t)3(1 -Lt)“(l -1,‘t). Then 
Icp(A,t)l<l for PER, O<t<l, Ax=l. 

In fact, we have then 

= -,,$, f  (6+42+4;i”+i12”+t2n) 

=-“E’ f (2 +i”+zy2<o. 

If now q&t) is defined as in the lemma, we have 

By the lemma, this has an absolute value > 1 for SER, s> 1, so that it 
cannot tend to 0 for s tending to 1. For s tending to 1, as shown above, 
p(k,P,02,s) tends to a finite limit if w2 is not trivial, and p(k,P,o,s) is 
the product of a factor, tending to a finite limit other than 0, and of 
Z(w,o, @), which is holomorphic in a neighborhood of s = 1; therefore, 
if p(k,w, P, s) tends to 0, it must be of the form F(s)(s - l), with F bounded. 
In view of corollary 1, this implies that the left-hand side of the last 
formula tends to 0 for s tending to 1. This completes our proof. It is 
an important fact that the conclusion of our corollary remains true 

* 
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* even if w2 = 1; the proof for this, which requires quite different methods, 
wili be given in Chap. X111-12. 

COROLLARY 3. Let k, be an A-field contained in k; let V be a set of 
finite places of k, such that, for almost all the finite places v sf k, not 
in V, the modular degree of k, over the closure of k, in k, is > 1. Then 
the product 

dk V,s)= n (1 -qos)-l 
VGV 

is absolutely convergent for Re(s)> 1, and (s- l)q(k, V,s) tends to a finite 
limit > 0 when s tends to 1. 

In fact, with the notation of corollary 1, p(k,P,,s) is the product of 
q(k, V,s) and of the similar product, taken over the set M of all the finite 
places of k, not in V; applying corollary 3 of prop. 1, 0 1, to the latter 
product, and corollary 1 to p(k,P,,s), we get our conclusion at once. 
Of course our corollary implies that V cannot be a finite set, or in other 
words that there are infinitely many places v of k for which the modular 
degree in question is 1. 

COROLLARV 4. Let k, and V be as in corollary 3; let k’ be a separably 
algebraic extension of k of finite degree n, and assume that there are n 
distinct places of k’ above every place VE V. Then k’ = k. 

Call V’ the set of the places of k’ lying above those of V. By corollary 1 
of th. 4, Chap. 1114, if VE V, and w lies above v, we have kk= k,, hence 
qk=q,. For any place v of k, and any place w of k’ above v, the modular 
degree of k; over the closure of k, in k, is at least equal to that of k, 
over that closure; therefore, for almost all v, not in V, or, what amounts 
to the same, for almost all w, not in V’, that degree is > 1. We can now 
apply corollary 3 to the products q(k, V,s) and q(k’, V’,s); as the latter is 
equal to q(k, V,s)n, this gives n= 1. 

COROLLARY 5. Let k be an A-field of characteristic p > 1, and let P 
be a finite set of places of k. Then there is a divisor m = Cm(v) . v of k 
of degree 1 such that m(v)=0 for all VEP. 

Call v the g.c.d. of the degrees of all the places v, not in P; we have 
to show that v= 1. Let F=F, be the field of constants of k; by th. 2 of 
Chap. I-l, there is, in an algebraic closure of k, a field F’ with q” elements, 
and it is separable over F. Call k’ the compositum of k and F’, and n 
its degree over k; k’ is separable over k. Let v be any place of k, not 
in P; let w be a place of k’ above v; by prop. 1 of Chap. III-l, k; is 
generated over k, by k’, hence by F’. By the definition of v, the module 
of k, is of the form qvr, where r is an integer; therefore, by corollary 1 
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of th. 7, Chap. 1-4, combined with corollary 2 of th. 2,Chap. I-l, k, con- 
tains a subfield with q” elements. By th. 2 of Chap. I-l, k; cannot contain 
more than one field with q” elements; therefore F’c k,, hence kL= k,. 
Corollary 1 of th. 4, Chap. 111-4, shows now that there are IZ distinct 
places of k’ above each place zi of k, not in P. Taking k, = k in corollary 4, 
and taking for I’ the complement of P, we get k’ = k, hence F’ c F, 
i.e. v= 1. 

COROLLARY 6. Let k be as in corollary 5, and let F, be its field of 
constants. Then the value-group N of 1~1~ on k; is generated by q. 

As we have seen in 9 4, N is generated by the value-groups of 1x1, 
on k z for all u, hence by the modules qo=qdeg(“), so that it has the 
generator Q =qy, where v is the g.c.d. of all the degrees deg(v). By 
corollary 5, v = 1. 

Taking corollary 6 into account, we can reformulate the last asser- 
tion of theorem 2, in the case of characteristic p> 1, as follows: 

COROLLARY 7. Let k and F, be as in corollary 6; let notations be as 
in theorem 2. Then Z(o,, @) + @(O)( 1 - q-“)- ’ is holomorphic at s = 0. 

This follows at once from the results we have just mentioned and 
from the fact that (1 -q-“)- ’ has the residue (logq)- ’ at s=O. 

0 6. The Dedekind zeta-function. Special choices of @ in Z(o,@) 
lead to the definition of important functions on the connected compo- 
nents of s2(G,); these will now be investigated more in detail. We begin 
with the consideration of the connected component Sz, of o,= 1 in 
s2(G,), i.e. of the group of the principal quasicharacters of Gk, choosing @ 
as follows. Whenever v is a finite place of k, we take for @” the characteristic 
function of r,. When u is real, i.e. k,=R, we take G”(x) =exp( - rcx’). 
When u is imaginary, i.e. k, = C, we take G”(x) = exp( - 2 rc x2). We have 
now to calculate the factors in the product (5) for Z(o, @), for this choice 
of @ and for w=m,; when u is a finite place, these are given by prop. 11 
of 0 4, up to a scalar factor depending on p. For the infinite places, they 
are as follows: 

LEMMA 8. Let G,, G, be defined, for all SEC, by the formulas 

G,(~)=n-~‘~r(s/2), G,(s)=(2n)‘-“T(s). 

Then we have, for Re(s)>O: 

~exp(--n~~)/x~~~~dx=G~(s), 

Jexp(-2nx?)(xz)“-‘IdxAdxl=G,(s). 
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This can be verified at once by obvious changes of variables, viz., 
1x1 = t”2 in the first integral and x = t”‘e(u) in the second one, with 
tER;, PER, O<u<l; in the latter case, IdxAdjll=27cdtdu. 

Now consider the measure y = n y, on ki, given by taking y&r,” ) = 1 
for every finite place u, d?,(x)= [xl- ’ dx when o is real, and 
dy,(x)=(xZ)-‘Idx A djll when zi is imaginary; when k is of characteristic 
0, this is the measure occurring in prop. 9 of Chap. V-4. The relation 
between y and the measure p introduced at the beginning of 9 5 is as 
follows : 

PROPOSITION 12. Let p be as in 9 5, and y as above. If k is of characteri- 
stic 0, we have y=c,,, where ck is as defined in proposition 9 of Chapter 
V-4. If k is of characteristic p> 1, with the field of constants F,, and if h 
is the number of divisor-classes of degree 0 of k, then y=ckp with 
ck = h/(q - 1). 

In view of our definition of p, the first assertion is merely a restatement 
of prop. 9, Chap. V-4. Now let k be of characteristic p> 1, and put 
U=nrz; this is the same as 52(O) in the notation of Chap. IV-4, and it 
is an open subgroup of kl ; by definition, we have y(U) = 1. As explained 
In Chap. 11-4, we will also write y for the image of the measure y in 
G,= kilk” .; G: being, as before, the image of ki in G,, ,u is defined by 
p(G:)= 1, so that we have y=ckp with +=y(G:). Call U’ the image of U 
in G,; by th. 8 of Chap. IV-4 and its corollary, the kernel of the morphism 
of U onto U’, induced by the canonical morphism of ki onto G,, is 
F: , so that we can compute y( U’) by taking G = U, r1 = F: , r = { 1 > in 
lemma 2 of Chap. 11-4; this gives y(U’)=(q- I)- ‘. Clearly the index of 
U’ in Gi is equal to that of k” U in k: ; as we have seen in Chap. VI that 
ki/k” U may be identified with the group D,(k)/P(k) of the divisor- 
classes of degree 0 of k, that index is h. Therefore y(G:) = h/(q - 1). 

Now, for each infinite place w of k, put G, = G, or G, = G, according 
as w is real or imaginary. Combining prop. 10 of 9 4, prop. 11 of 0 4, 
lemma 8, and prop. 12, we get for Re(s)> 1, @ being chosen as explained 
above : 

(6) zh,@i)= c, ’ n G,(s) n (1 -q;“)- ‘, 
WSP, .BPS, 

with ck as in prop. 12. By th. 2 of 5 5, the left-hand side can be continued 
analytically as a meromorphic function over the whole s-plane; as the 
same is true of the factors G,, it is also true of the last product in the 
right-hand side. This justifies the following definition: 
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DEFINITION 8. The meromorphic function ik in the s-plane, given for 
Re(s) > 1 by the product 

ilk(S)= nc1 -KS)-’ 

taken over all the finite places v of k, is called the Dedekind zeta-function 
ofk. 

When @ is as above, its Fourier transform @’ is immediately given 
by th. 1 of § 2 and its corollary 2, combined with corollary 3 of prop. 2, 
9 2, and propositions 4 and 5 of 0 2. This gives 

@‘b)=14Y2@(ay) 

where a is a differental idele attached to the basic character x. In view of 
the definition of Z(w, CD) by formula (4) of 5 4, we have now: 

Z(0, @‘) = [aI:‘” o(a)- ’ Z(0, @), 

hence in particular, for o = wS, i.e. w(x) = 1x1:: 

(7) Z(Os,~‘)=lalY2-sZ(o,,~); 

moreover, the value of IalA is that given in prop. 6 of 0 2. 
We are now ready to formulate our final results on the zeta-function. 

THEOREM 3. Let k be an algebraic number-field with rl real places and 
rz imaginary places. Call & its zeta-function, and write 

Z,(s) = G, W GM2 lib). 

Then Z, is a meromorphic function in the s-plane, holomorphic except for 
simple poles at s =0 and s= 1, and satisfies the functional equation 

Z,(s)=IDI +-“Z,(l-s) 

where D is the discriminant of k. Its residues at s = 0 and s = 1 are respec- 
tively - ck and ID I - 1/2 ck, with ck given by 

ck = 2” (2 ~n)‘~ h R/e, 

where h is the number of ideal-classes of k, R its regulator, and e the 
number of roots of 1 in k. 

This follows immediately from (6), (7), prop. 12, prop. 6 of 5 2, and 
from th. 2 of 5 5. 

COROLLARY. The Dedekind zeta-function ck(s) has the residue I DI - ‘I2 ck 
ats-1. 

This follows from th. 3 and the well-known fact that G,(l)= G,(l)= 1. 
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THEOREM 4. Let k be an A-field of characteristic p > 1; let F, be its 
field of constants and g its genus. Then its zeta-function can be written in 
the form 

L(S) = 
PK”) 

(1 -q-“)(l-ql-“) 

where P is a polynomial of degree 29 with coefficients in Z, such that 

(8) P(U)=qgu2gP(l/qu). 

Moreover, P(O)= 1, and P(1) is equal to the number h of divisor-classes of 
degree 0 of k. 

In fact, corollary 6 of th. 2, 5 5, shows at once that s+o, has the 
same kernel as s + q-“, so that c,(s) may be written as R(q-“), where R 
is a meromorphic function in C”, with simple poles at 1 and at q- ‘. 
Moreover, corollary 1 of prop. 1, $1, shows that R(u) tends to 1 for u 
tending to 0, so that R is holomorphic there, and that R(0) = 1. We may 
therefore write R(u) = P(u)/( 1 - u)( 1 - q u), where P is an entire function in 
the u-plane, with P(O)= 1. Now (7), combined with (6) and with prop. 6 
of 5 2, gives formula (8) of our theorem; clearly this implies that P is a 
polynomial of degree 29. Finally, corollary 7 of th. 2, $5, combined 
with prop. 12, gives P(1) = h. 

tj 7. L-functions. We will now extend the above results to arbitrary 
quasicharacters of G,; in order to do this, we adopt the following nota- I 

/ 
tions. Let w  be any quasicharacter of G,; as we have seen in 90 34, we 
may write (o(=w,, with OER. For every v, we write w, for the quasi- 
character of k,” induced on k,” by o. For every finite place U, we write 
pC(“) for the conductor of 0,; f(v) is 0 if and only if o, is unramified, hence, 
as we have seen in 9 4, at almost all finite places of k; when that is so, we 
write o,(x)=~x[;~ with s,EC; clearly we have then Re(s,)=a. At the 
infinite places of k, we can apply prop. 9 of Q 3; this shows that o, may be 
written as ~~(x)=x-~Ixl~~ if v is real, with A=0 or 1 and s,EC, and as 
0,(x)=x -Ajl-B(~X)SV if v is imaginary, with inf(A,B)=O and s,EC; in 
the former case we put N, = A, and we have Re(s,) = N,>+ c, and in the 
latter case we put N, = sup(A, B), and we have Re(s,) = (N$2) + cr. As the 
connected component of o, in the group Q(G,) of the quasicharacters 
of G,, consists of the quasicharacters w,o for SEC, the integers f(v), 
N, have the same values for all the quasicharacters in that component. 
They are all 0 if w  is principal, or, more generally, if o is trivial on the 
group U of the ideles (z,) such that lzvJv= 1 for all places u of k; the struc- 
ture of the group of the quasicharacters with that property can easily 
be determined by the method used in the proof of th. 9, Chap. IV-4. 
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Furthermore, with the same notations as above, we attach to w  a 
standard function @,= n @” on k,, as follows. For each finite place u 
where f(v)=O, i.e. where o, is unramified, we take for GV, as before, the 
characteristic function of rv. For each finite place u where f(u)> 1, we 
take @” equal to o; 1 on r,” and to 0 outside r,” . At each infinite place v, 
we take @,(x)=xAexp(-XX’) if zi is real, and @,(x)=~~X~exp(-2zxX) 
if u is imaginary, the integers A, B being as explained above. Then @, 
will be called the standard function attached to w; it is clear that it does 
not change if o is replaced by wSo, with any SEC, and also that the 
function attached in this manner to 0, or to o-~=o-~~O, or to 
o.i=c~~w-~, is SQ. 

We need to know the Fourier transform of @,, or, what amounts to 
the same in view of th. 1 of § 2, those of the functions @” defined above. 
The latter are given by our earlier results except when u is a finite place 
where o, is ramified. For that case, we have: 

PROPOSITION 13. Let K be a p-field; let R be its maximal compact 
subring, P the maximal ideal of R, and o a quasicharacter of Kx with 
the conductor Ps, where f b 1. Let x be a character of K of order v, a the 
self-dual measure on K with reference to x, and let bE K” be such that 
ord,(b) = v+f. Let cp be the function on K, equal to co- ’ on R ’ and to 0 
outside R X . Then the Fourier transform of rp is 

V’(Y)= k-moWV2 cp@y), 

where IC is such that ICI?= 1 and is given by 

K=mod,(b)-‘i2 Jm(x)-lX(b-lx)du(x). 
RX 

By prop. 12 of Chap. 11-5, the dual of the K-lattice Pf in K is P-spy; 
as cp is constant on classes modulo Pf in K, prop. 2 of 5 2 shows that cp’ 
is 0 outside P- f-v = b- ’ R. The definition of q gives 

(9) ul’(~)=RSxO(~)-~~(xy)du(x). 

Obviously the measure induced by u on R” is a Haar measure on R” 
(this may also be regarded as a consequence of lemma 5, 0 4). Take y 
such that ord,(y) > -f- v + 1; then, by prop. 12 of Chap. 11-5, x-+x(x y) 
is constant on classes modulo P s- ‘. Assume first that f = 1; then x(x y) = 1 
on R, so that (9) is the integral of w-l d u on R ‘, which is 0 since o is a 
non-trivial character of the compact group R ‘. Assume now f > 1; then 
(9) is the sum of the similar integrals taken over the classes modulo 
Pf - 1 contained in R ‘, which are the same as the cosets of the subgroup 
1 + Pl- ’ in R ’ ; since the definition of the conductor implies that w  is 
non-trivial on 1 + Pf- ‘, the same argument as before gives again 
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q’(y) = 0 in this case. Now take y = b- ’ u in (9), with UE R x ; substituting 
- ’ x for x we get cp’(b- r u) = m(u)cp’(b- ‘). This proves that cp’ is of the 

;orm c cp(by) with ceCX. Applying to this Fourier’s inversion formula 
and lemma 1 of 9 2, we get c C = mod,(b). As c = cp’(b- ‘), we get for rc 
the formula in our proposition. It would be easy to verify directly that 
lclc = 1 when K is defined by that formula; moreover, as the integrand 
there is constant on classes modulo Ps in R, we can rewrite the integral 
as a sum over R/Pf; sums of that type are known as “Gaussian sums”. 

PROPOSITION 14. Let 6.1 be a quasicharacter of G,, and @jW the standard 
function attached to co. Then the Fourier transform of c@~, with reference 
to the basic character x of k,, is given by 

where K= n IC”, K,EC and ICIER= 1 for all v, b=(b,)E ki, and K,,, b, are 
as fbllows. Let a=(a,) be a differental idele attached to x; then bv=av at 
each infinite place v, and, for each finite place v of k, ord,(b,a; ‘)=f (v). 
At every infinite place v of k, Tu=iCNu; at every jinite place v where 
f(v) = 0, IC, = 1; at all other places: 

K, = lbvl;“2 J u,(~)-~xo(b;‘x)da,(x), 
x ‘” 

where c(, is the self-dual Haar measure on k, with reference to xv. 

This follows at once from prop. 13, propositions 4 and 5 of 0 2, and 
corollary 3 of prop. 2,s 2. 

COROLLARY. Let w be as in proposition 14, and put CD’ =ol o-l. Then 
Z(o,@,)= rclb/A “‘o(b)Z(w’,@,,). 

For all o, by th. 2 of 0 5, Z(o, @,) is equal to .Z(o’,@‘), where @’ is 
as in prop. 14. Express Z(w’, aj’) by the integral in (4), $4, under the 
assumption that it is convergent, which, as one sees at once, amounts to 
CJ < 0. Expressing @’ by proposition 14, and making the change of variable 
z-+b-l z in that integral, one gets the right-hand side of the formula in 
our corollary. By th. 2 of 0 5, both sides can then be continued analytically 
over the whole of the connected component of o in Q(G,), so that the 
result is always true. 

Now apply prop. 10 of 4 4 to Z(w, @J; for c > 1, this gives an infinite 
product whose factors are all known to us except those corresponding to 
the finite places v of k where f (v) > 0; as to these, our choice of @,, makes it 
obvious that they are respectively equal to p”(rC). As in 9 6, put G, = G, 
when w  is a real place, and G, = G, when it is an imaginary place. Taking 
into account prop. 11 of 5 4, lemma 8 of 5 6, and prop. 12 of Q 6, we get, 
for o>l: 
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(10) Ww @,I = c; ’ n ‘Z,b,) n (I- q;‘“)- ‘, 
WEP, =+P 

where P is the set consisting of the infinite places and of the finite places 
where f(u) > 0. 

For every place v of k, not in the set P which we have just defined, put 
l(u) = 4;““; these are the finite places where o, is unramified, and the 
definition of s,, for such places shows that we can also write this as 
L(v)=o,(n,), where rrn, is a prime element of k,, or even as 1(v) = ~(71,) 
if k,” is considered as embedded as a quasifactor in ki. Clearly we have 
WI = 41Y”. 

In (lo), replace now w  by o,o, with SEC; as observed above, this 
does not change @,; it replaces the right-hand side of (10) by a product 
which is absolutely convergent for Re(s)> 1 - 6. As th. 2 of 0 5 shows 
that this can be continued analytically over the whole s-plane (as a 
holomorphic function if o is not principal), and as the same is true of 
the factors G, when they occur, we may now introduce a meromorphic 
function L(s, w), given, for Re(s) > 1 - (r, by the product 

(11) L(s,o)= n(l-n(U)q;s)-- 
” 

taken over all the finite places u where o, is unramitied. 
In order to formulate our final result in the case of characteristic 0, 

we introduce the ideal in r given by f = fl$“), which is called the con- 
ductor of o. 

THEOREM 5. Let k be an algebraic number-field, and co a non-principal 
quasicharacter of G, = k;/k” , with the conductor f. Then 

A(s,o)= fl G,(s+s,).L(s,o) 
WCP, 

is an entire function of s, and satisfies the functional equation 

A(s,~)=/cco(b)(}Dj%(f)) 3 -‘/I(l-s,w-l), 

where K and b are as in proposition 14. 

This is an immediate consequence of the corollary of prop. 14, when 
one replaces o in it by oSo, taking into account the definitions of a, b 
and f and the fact that jalA=lDl-‘. As it is well-known that T(s)-’ is an 
entire function, the same is true of the functions G,(s + s,)) ‘; therefore 
theorem 5 implies that L(s,w) is an entire function of s. 

According to their definition, the above functions do not depend 
essentially upon the choice of o in a given connected component of 
Q(G,); more precisely, they are independent of that choice, up to a trans- 
lation in the s-plane, since, for every teC, L(s,o,o) is the same as 
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L(s + t, o), this being also true for n(s, w). In view of corollary 2 of prop. 7, 
9 3, one may therefore always assume, after replacing o by w  - , (0 with a 
suitable teC if necessary, that o is a character of k;, trivial on k ’ and 
also on the group M defined in corollary 2 of th. 5, Chap. IV-4. The 
latter assumption can be written as 1(6,s,- NJ =O, where the sum is 
taken over the infinite places of k, s, and N, are as above, and 6,= 1 or 2 
according as k, is R or C. Since this implies that w  is a character, we have 
then cr = 0. 

On the other hand, if k is of characteristic p> 1, we introduce the 
divisor f = cJ( ) u . u, and call this the conductor of w. Then : 

THEOREM 6. Let k be an A-field of characteristic p > 1; let F, be its 
field of constants, g its genus, and o a non-principal quasicharacter of 
G,= k;/k” with the conductor f. Then one can write L(s,o)= P(q-“,o), 
where P(u,o) is a polynomial of degree 2g - 2-t deg(f) in u; and we have 

where K and b are as in proposition 14. 

The fact that we can write L(s,w)= P(q-‘,w), where P(u,w) is holo- 
morphic in the whole u-plane, is proved just as the corresponding fact in 
theorem 4. The last formula in our theorem is then an immediate conse- 
quence of the corollary of prop. 14 when one replaces o by o,w there, 
provided one takes into account the definitions of a, b and f and the fact 
that jal,=q2-2g. Then that formula shows that P(u,o) is a polynomial 
whose degree is as stated. 

Here again one will observe that, for teC, P(u,o,o) is the same as 
P(q-‘u,o). In this case, we have written k; = ki x M, where (if one takes 
corollary 6 of th. 2, Q 5, into account) M is the subgroup of ki generated 
by an element z1 such that IzlIA=q, i.e. such that div(z,) has the degree 
- 1. Then corollary 2 of prop. 7, 4 3, shows that, after replacing co by 
o-,o with a suitable t EC, if necessary, one may assume that o(zJ = 1; 
the corollary in question shows also that o is then a character of ki, i. e. 
that 0 = 0; furthermore, if one combines it with lemma 4 of 0 3, and with 
the obvious fact that in the present case the group k;, hence also the 
groups k:, Gk, G: are totally disconnected, it shows that o is then a 
character of finite order of k; . 

0 8. The coefficients of the L-series. When an Euler product such as 
the right-hand side of (11) is given, the question arises whether it can be 
derived from a quasicharacter w  of ki/k”. The answer to this, and to 
a somewhat more general problem which will be stated presently, depends 
on the following result: 
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PROPOSITION 15. Let P be a Jinite set of places of k, containing P,; 
let G, be the subgroup of k;, consisting of the ideles (z,) such that zV= 1 
for all VE P. Then k” G, is dense in k;. 

Put k,= nk,, the product being taken over the places VEP; write 
A, for the subgroup of k, consisting of the adeles (x,) such that x,.=0 
for all VEP; then k,= k, x A, and ki = k; x G,, and our assertion 
amounts to saying that the projection from k; onto ki maps k” onto 
a dense subgroup of k;. In fact, ki is an open subset of kp, and its 
topology is the one induced by that of k,; our assertion follows now at 
once from corollary 2 of th. 3, Chap. IV-2, which shows that the pro- 
jection from k, onto k, maps k onto a dense subset of k,. 

From prop. 15, it follows at once that a continuous representation UJ 
of k; into any group r, trivial on k”, is uniquely determined when its 
values on the groups k,” are known for almost all v. In particular, if 
r = C” , or more generally if r is such that every morphism of k; into 
r is trivial on r,” for almost all v, o is uniquely determined when the 
o(n,) are given for almost all v. Clearly every finite group r has that 
property, since the kernel of every morphism of k; into a finite group 
is open in k; and therefore contains nri for some P; the same is true 

of every group f without arbitrarily small subgroups, for the same 
reason for which it is true for r = C x. Another case of interest is given by 
the following: 

PROPOSITION 16. Let K be a p-field, and assume that k is not of charac- 
teristic p. Then every morphism co of k; into K” is trivial on r-z for almost 
all v, and is locally constant on k,” whenever k, is not a p-field. 

As k is not of characteristic p, we have IpI,= 1 for almost all v, and 
then k, is not a p-field. As every morphism of a connected group into a 
totally disconnected one must obviously be trivial, o is trivial on kc 
when k,= C, and on R; when k,=R. Call R the maximal compact 
subring of K, and P its maximal ideal. Let v be any finite place of k such 
that k, is not a p-field; let m>, 1 be such that o maps 1+ py into 1+ P. For 
every n 20, by prop. 8 of Chap. 11-3, every ZE l+ pr can be written as 
zfp” with Z’E 1 + p;; therefore o(z) is in (1 + P)““, hence in 1 + P”+ 1 by 
lemma 5 of Chap. I-4; as n is arbitrary, this shows that o is trivial on 
1 +p;, hence locally constant on kz. By th. 7 of Chap. I-4 if K is of 
characteristic p, and by that theorem and prop. 9 of Chap. II-3 if it is of 
characteristic 0, there are only finitely many roots of 1 in K, and we can 
choose v > 0 so that there is no root of 1, other than 1, in l+ P’. Take a 
neighborhood of 1 in k; which is mapped into 1 +P’ by w  ; as this con- 
tains r,” for almost all v, we see now that, for almost all v, o is trivial on 
1 + pV and also on the group of all roots of 1 in k,, and therefore on r “, . 
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For every finite set P of places of k, containing P,, we will write 
Gb= flrz; this is an open subgroup of the group G, defined in prop. 15 ; 

UP 
it consists of the ideles (z,) such that z”= 1 for u EP, and z, E rz, i. e. 
lzvlV= 1, for u not in P; if r is any group with the property described 
above, and o is any morphism of ki into r, there is a set P such that o 
is trivial on G’p and therefore determines a morphism 40 of G,/Gb into r; 
if at the same time o is trivial on k”, prop. 15 shows that o is uniquely 
determined by cp. We will discuss now the conditions on cp for such a 
morphism o to exist. 

If k is an algebraic number-field, and P is as above, we will say that a 
fractional ideal of k is prime to P if no prime ideal p,, corresponding to 
a place UEP, occurs in it with an exponent # 0. Similarly, if k is of charac- 
teristic p > 1, we say that a divisor is prime to P if no place VEP occurs 
in it with a coefficient # 0. We will write Z(P) (resp. D(P)) for the group 
of the fractional ideals of k (resp. of the divisors of k) prime to P. Clearly 
the morphism z+id(z) of ki onto Z(k) (resp. the morphism z+div(z) 
of ki onto D(k)) determines an isomorphism of Gp/Glp onto Z(P) (resp. 
D(P)), which may be used to identify these groups with each other, or, 
what amounts to the same, with the free abelian group generated by 
the places of k, not in P. In particular, every mapping u-+,?(v) of the set 
of these places into a commutative group f can be uniquely extended to a 
morphism cp of Z(P) (resp. D(P)) into r; then qo(id) (resp. qo(div)) is a 
morphism of G, into r, trivial on Gb. 

PROPOSITION 17. Let cp be a morphism of Z(P) (resp. D(P)) into a 
commutative group Z; for each VEP, let g, be an open subgroup of k,“, 
contained in r,” whenever v is finite. Then the morphism qo(id) (resp. 
cpo(div)) of G, into Z can be extended to a morphism w of ki into Z, 
trivial on k X, if and only if one can j?nd, for every VEP, a morphism I/J, 
of gv into Z, so that cp(id(t)) (resp. qP(div(<))) is equal to n $,(<) for all 
5~ n (k”ng,). When that is so, CO is unique and induces I,!J,’ on gV for 
every v EP. 

Put g = n g,; this being considered as a subgroup of ki in the ob- 
VSP 

vious manner, g. G, is an open subgroup of k; and is the direct product 
of g and Gp. Then k” g.G, is an open subgroup of k;, so that, in view 
of prop. 15, it is ki. It is now obvious that a morphism of (7. G, into r 
can be extended to one of k; = kx g . Gp, trivial on k”, if and only if 
it is trivial on the group y = kx n(g . Gp), and that the extension is then 
unique. Clearly y is the same as the group n (k’ ng,,) in our proposition. 
As z-id(z) (resp. z+div(z)) is trivial on g, it maps g.G,=g x G, onto 
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I(P) (resp. D(P)); therefore if we write cpr for the morphism qo(id) (resp. 
cpo(div)) of G, into r, its extensions to g.G, are the morphisms of the 
form I+- ’ cpr, where II/ is any morphism of g into r. Writing I++, for the 
morphism induced by II/ on g,, we get our conclusion. 

Obviously, if the condition in proposition 17 is satisfied for some 
choice of the groups gv and of the morphisms (1/,, it remains so when 
one substitutes, for each go, any open subgroup g: of go, and then for 
$, the morphism induced by $, on g$ For instance, one may always 
take g,= R; when k,=R, and take for gV one of the groups 1+ p,” with 
m 3 1 when v is a finite place. The same idea gives the following: 

COROLLARY. In proposition 17, assume that P is (a) discrete, or (b) 
the group C ‘, or (c) the group K ‘, where K is a local p-field. Then the 
extension co exists if and only if groups go and morphisms II/, can be found 
with the properties stated in proposition 17 and the following additional 
one: in case (a), $,= 1 for all VE P; in case (b), $,= 1 for all the finite 
places v E P; in case (c), $, = 1 for all the places v E P for which k, is not 
a p-Jield. 

In fact, assume that the conditions in proposition 17 are fulfilled for 
some choice of the groups g, and of the morphisms $,. Then, in case (a), 
we can replace gV by the kernel g: of II/, for each VEP, since this is an 
open subgroup of gv, and then $a by 1. In case (b), we can do this for 
every finite place VE P, by lemma 4 of 9 3; this can also be done, for 
similar reasons, whenever r is a group without arbitrarily small sub- 
groups.Case (c) can be treated similarly, with the help of prop. 16. 

Instead of verifying the condition in proposition 17 for all 5 in the 
group y = n (k ’ n gJ, it is clearly enough to verify it for a set of gener- 
ators of y; in this connection, the following result is occasionally useful: 

PROPOSITION 18. Notations being as in proposition 17, assume that k 
is an algebraic number-field, and call r its maximal order. Then the group 
y = n (k’ ng,) is generated by ynr. 

Take any 5 E y, and write 5 r = b a- I, where a, b are two ideals in r, 
prime to each other. For every finite place VEP, r is in r”, , so that p, is 
not a prime factor of a or of 6. Apply corollary 1 of th. 1, Chap. V-2, 
to the projection of k onto the product nrv taken over the finite places 
v of k which either belong to P or correspond to the prime ideals divid- 
ing a; it shows that there is REr such that Meg,) for every finite VEP, 
a E a, and a # 0 ; then u2 satisfies the same conditions and is in gv for every 
infinite place v, so that it is in y, hence in ynr. That being so, also [a2 
is in ynr; this proves our proposition. 
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In particular, assume that go = 1 + p;(“), with m(u) 2 1, for every finite 
place UEP; put m = n p,“‘“‘; let ul,. . . , up be all the real places of k for 
which go= R:. Then one sees at once that the set ~nr, in prop. 17, 
consists of the elements of r which are E 1 (m) and whose image in 
k,, is > 0 for 1 G i <p. 



Chapter VIII 

Traces and norms 

5 1. Traces and norms in local fields. In $4 1-3, we will consider 
exclusively local fields (assumed to be commutative). We denote by K a 
local field and by K’ an algebraic extension of K of finite degree n over K. 
If K is an R-field and K’# K, we must have K = R, K’ = C, n = 2 ; then, by 
corollary 3 of prop. 4, Chap. 111-3, Z?,,,(x) =x+ JI and N&x)= xT1; 
Tr,,, maps C onto R, and N,,, maps C” onto R; , which is a subgroup 
of R ’ of index 2. 

From now on, until the end of 9 3, we assume K to be a p-field and 
adopt our usual notations for such fields, denoting by q the module of K, 
by R its maximal compact subring, by P the maximal ideal in R, and by 
x a prime element of K. The field K’ being as stated above, we adopt 
similar notations, viz., q’, R’, P’, rc’, for K’. We write f for the modular 
degree of K’ over K and e for the order of ramification of K’ over K, as 
defined in def. 4 of Chap. I-4 ; then q’ = qJ and n = ef by corollary 6 of th. 6, 
Chap. I-4. As e = ord,(n), the R’-module generated in K’ by P’ = +‘R, for 
any YE Z, is Pfev ; for this, we will write z (P’). 

By corollary 1 of prop. 4, Chap. 111-3, and the remarks following that 
proposition, nKTIK is + 0 if and only if K’ is separable over K ; then, being 
K-linear, it maps K’ onto K. By the definition of the norm, and by corol- 
lary 3 of th. 3, Chap. I-2, we have, for all x’EK’ : 

(1) mod&x’) = mod,(N,,,,(x’)). 

In view of th. 6 of Chap. I-4, this implies that x’ER’ if and only if 
NKfIg(x’)eR, and x’ER’ ’ if and only if N,,,,(x’)ER~. As mod,(rc)=q-’ 
and mod,(7r’)= q-f, (1) may also be written as follows, for x’f 0 : 

(2) ord, (NK,&x’)) =f ord,(x’). 

From now on, we will write Tr, N instead of Tr,,,,, NKpIK, except when 
there are more fields to be considered than K and K’. For every VE Z, we 
will write %(P’“) = Pf” ; by (2), this is the R-module generated in K by the 
image of P” under N. 

PROPOSITION 1. Let K’ be separable over K. Then, if x’ER’, Tr(x’)ER ; 
if x’EP’, Tr(x’)EPandN(l+x’)=l+Tr(x’)+ywithyERn~’~R’. 



140 Traces and norms VIII 

Let i? be an algebraic closure of K’ ; call I,, . . . , A, the distinct K-linear 
isomorphisms of K’ into K; then, by corollary 3 of prop. 4, Chap. 111-3, 
we have 

(3) Tr(x’)=pi(x’), N(l+x’)kn(l+;li(x’)). 
I I 

Call K” the compositum of the fields J.,(K’), which is the smallest Galois 
extension of K in K, containing K’ ; define R”, P” for K” as R, P are 
defined for K. By corollary 5 of th. 6, Chap. I-4, we have Ai c R” and 
n,(P) c P” for all i, so that Tr(x’) is in R” if X’E R’, and in P” if X’E P’ ; as 
the same corollary shows that R = KnR” and P = KnP”, this proves our 
assertions concerning Tr. Now assume X’E R’, x’# 0, and put 

y=N(l+ x’)- 1- Tr(x’); 

by (3), this is a sum of monomials of degree > 2 in the 2,(x’). As one of the 
li is the identity, and as the Ai, by corollary 2 of prop. 3, Chap. 111-2, differ 
from one another only by automorphisms of K” over K, all the 1,(x’) 
have the same order as x’ in K”, so that yx’-’ is in R” if x’ is in R’. As 
R’ = K’n R”, this proves our last assertion. In view of the fact that Tr = 0 
if K’ is inseparable over K, and of the remarks about that case in Chap. 
111-3, our proposition is still valid (but uninteresting) in the inseparable 
case. 

COROLLARY. If x’EP’-~+ ‘, TT(x’)E R. 

By definition, e=ord,(z); therefore our assumption amounts to 
~cx’EP’, which implies Tr(r-cx’)EP by prop. 1, hence Tr(x’)E R since Tr is 
K-linear. 

DEFINITION 1. Let K’ be separable over K; let d be the largest integer 
such that fr(x’)ER for all x’EP’-~. Then Pld is called the different of K’ 
over K, and d its differental exponent. 

For the different, we will write D(K’/K), or simply D. If K’ is insepa- 
rable over K, Tr is 0, so that it maps P’-” into R for all v; in that case we 
put d = + 00, D(K’/K)=O. 

By the corollary of prop. 1, we have d >e- 1. In particular, if d =O, 
e = 1, so that K’ is unramified over K. The converse is also true ; this will 
be a consequence of the following results: 

PROPOSITION 2. Let K’ be unramified over K; call p, p’ the canonical 
homomorphisms of R onto k = R/P, and of R’ onto k’= R’IP’, respectively. 
Then, for x’ E R’, we have 

p(Wx')) = 7+ktik(~'(x')), p(N(x'))= NkrIk(~'(x')). 
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As in th. 7 of Chap. I-4 and its corollaries, call M” the group of 
roots of 1 of order prime to p in K’; by corollary 2 of that theorem, K’ is 
cyclic of degree f over K, and its Galois group is generated by the Fro- 
benius automorphism, which induces on M’ x the permutation p +@. 
In view of corollary 2 of th. 2, Chap. I-l, this amounts to saying that the 
automorphisms of K’ over K determine on k’= R’/P’ the automorphisms 
which make up its Galois group over k. Our conclusion follows at once 
from this, the formulas Tr(x’) = x&(x’), N(x’) = n&(x’) and the similar 
ones for k and k’, i.e. from corollary 3 of prop. 4, Chap. 111-3, applied 
first to K and K’, and then to k and k’. 

PROPOSITION 3. Let K’ be unramijied over K. Then Tr maps P” surjec- 
tively onto P” for every v EZ, and N maps R’ ’ surjectively onto R x. 

Let k, k’ be as in prop. 2. As k’ is separable over k, Trk.,k is not 0; the 
first formula in prop. 2 shows then that the image Z?(R) of R’ under Tr is 
not contained in P; as it is contained in R by prop. 1, aAd as it is an R- 
module since R’ is an R-module and Tr is K-linear, it is R. As K’ is un- 
ramified, a prime element n of K is also a prime element of K’ ; therefore, 
for VE Z, P“ = rc” R’. As Tr is K-linear, we get 

Tr(P’“)=~‘Tr(R’)=~‘R= P’. 

As to the norm, put GO=RX, Gb=R’“, G,=l+P’and G:=l+P’” for 
all v z 1. The last assertion in prop. 1 shows that, for every v > 1, N maps 
G; into G,, and also, in view of what we have just proved about the trace, 
that it determines on Gk/G:+ I a surjective morphism of that group onto 
G,/Gv + 1. On the other hand, call cp the Frobenius automorphism of K’ 
over K, and p a generator of the group M’ ’ of the roots of 1 of order 
prime to p in K’; then p is of order q’ - 1, i.e. d - 1, and its norm is given by 

f-1 f-1 
N@)= LFo @Pi$ ~4i=~1+9+...+qf-‘=CL((lf-l)/(q--1); 

clearly this is a root of 1 of order q - 1, hence a generator of the group M x 
of roots of 1 of order prime to p in K. As M ’ is a full set of representatives 
of cosets modulo G, = 1+ P in G, = R x, this shows that N determines on 
CL/G’, a surjective morphism of that group onto G,/G,. Now, for every 
X&RX, we can determine inductively two sequences (x,), (xi) such that, 
for all VBO, x,EG,,, x:EG:, N(x:)~x,G,+i and x,+i=N(x:)-‘x,. Then, 
for y:=xbx; . ..x\-~. we have N(y:)=x,x;‘. Clearly the sequence 
(y:) tends to a limit y’~ R’“, and N(y’) = x0. 

COROLLARY. Let K’ be any extension of K of finite degree. Then the 
dqferent of K’ over K is R’, i.e. d = 0, if and only if K’ is unramijied over K. 
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Proposition 3 shows that d = 0 if K’ is unramified over K. Conversely, 
if d = 0, K’ is separable over K, and then, as we have already observed 
above, corollary 1 of prop. 1 gives e= 1. 

PROPOSITION 4. Let K’ be separable over K, and let P’d be its dijjferent 
over K. Then, for every VEZ, the image of P’” under Tr is P”, where p is 
such that e~<v+dde(~+l). 

As Tr is K-linear and not 0, it maps every K-lattice in K’, and in parti- 
cular every set P”‘, onto a K-lattice in K, i.e. onto a set of the form P’. 
If ,u is as stated in our proposition, then, since ord&n)=e, P,’ is con- 
tained in x’P’-~ and contains ~~+lP-~-l. In view of the definition of d 
and of the K-linearity of Tr, this implies that Tr(P’“) is contained in 
rep R = Pfl and not in I?‘+ 1 R = Pp+ ‘. This completes the proof. 

COROLLARY 1. For every X’E K’ x, we have: 

ord,,(Tr(x’))= e. ord,(Tr(x’))> ord,.(x’)+d - e + 1. 

In fact, if we put v = ord,.(x’), and if we define p as in proposition 4, 
the left-hand side of the inequality in our corollary is > ep by that propo- 
sition, and the definition of p shows that this is > v + d - e. 

COROLLARY 2. Tr(R’)= R if and only if d =e- 1. 

In fact, by proposition 4, p= v =0 implies d <e. As d 2 e - 1 by the 
corollary of prop. 1, we get d = e - 1. 

If d = e - 1, one says that K’ is tamely ramified over K. 

COROLLARY 3. Let x be a character of K qf order p; then xoTr is a 
character of K’ of order df ep. 

Our assumption means that x is trivial on P- and not on P-“-l. Put 
v=d+ ep;proposition4shows that Tr(P’-“)=P-“and that Tr(P’-“-I)= 
=P-‘-‘. Therefore xo Tr is trivial on PI-’ and not on P’-‘- ‘, which is 
what we had to prove. 

In the next corollary, we introduce an algebraic extension K” of K’ 
of finite degree ; R”, P” will have the same meaning for K” as R, P have 
for K. For every v E 2, we will write z’(P’“) for the R”-module generated in 
K” by P”‘, which is P’re’v ’ tf e’ = ord&z’) is the order of ramification of K” 
over K’. With these notations, we have: 

COROLLARY 4. Let K, K’, K” be as above; let D=Pld, D’= P”“: D” =P”d” 
be the differents of K’ over K, of K” over K’ and of K” over K, respectively. 
Then D” = z’(D). D’ and d” = e’d + d’, where e’ is the order of ramification of 
K” over K’. 
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This is trivially so if K” is inseparable over K, since then D” = 0 and 
either D or D’ must be 0; we may therefore assume that K” is separable 
over K, and, putting 6 = e’d + d’, we have to prove that d”= 6. In fact, by 
proposition 4, Tr,,,,g, maps P”-’ onto p-d and P’-‘-l onto P-d-l, 
and TrKpIK maps P r-d onto R and Plpd- ’ onto P- I. Our assertion follows 
at once from this and from the “transitivity of traces”, i.e. corollary 4 of 
prop. 4, Chap. 111-3. 

COROLLARY 5. Let K and K’ be as above, and let K, be the maximal 
unramijied extension of K, contained in K’. Then K’ has the same d&erent 
over K as over K 1. 

For the definition of K,, cf. corollary 4 of th. 7, Chap. I-4. Our asser- 
tion follows then at once from corollary 4, combined with the corollary 
of prop. 3. 

PROPOSITION 5. Let K, K’ be as in proposition 4; then the norm N 
determines an open morphism of K’ ’ onto an open subgroup of K ‘. 

As before, call P!d the different of K’ over K, and put G, = 1 + P”, 
GL=l+P’” for v>l. Take any p>2d, and put v=ep-d. By prop. 4, 
Tr(P’“) = P’ ; moreover, we have e(p - 1) > 2d, hence 2 v > e@ + l), hence 
P l2V c+“~R’, and therefore KnP’2’cP P+l That being so, the last part . 
ofprop. 1 shows, firstly, that N maps G: into G,, and secondly that it deter- 
mines a surjective morphism of G: onto GJG,, i. Take now any xOeGp; 
we can choose inductively two sequences (xi), (xi), so that, for all i>O, 
x~EG~+~,x~EG~+,~, N(xi)~x~G,+~+, andxi+,=N(x:)-‘xi.Then,putting 
y;=x;x; . . . xi, we have N(y:) =xOxi+, - ‘. Clearly the sequence (y;) 
converges to a limit y’~Gk, and N(y’)= xb. This shows that N maps G: 
onto G,, which proves our proposition, since the groups G,, G:, for 
p > 2 d, v = ep - d, make up fundamental systems of neighborhoods of 1 in 
K”andinK’” , respectively. By using corollary 2 of prop. 4, Chap. I-4, and 
the results of Chap. 111-3, it would be easy to show that the conclusion of 
our proposition remains valid for any extension K’ of K of finite degree, 
separable or not. Obviously it is also valid for R-fields. 

5 2. Calculation of the different. Let assumptions and notations be 
as in 9 1. When K’ is regarded as a vector-space of dimension n over K, 
R’ is a K-lattice, to which we can apply th. 1 of Chap. 11-2. This shows 
that there is a basis {a 1 ,..., a,} of K’ over K, such that R’=xRq. 

Now assume that K’ is separable over K, so that Tr is not 0; then, by 
lemma 3 of Chap. 111-3, we may identify K’, as a vector-space over K, with 
r; $ebraic dual, by putting [x’, y’] = ZI-(x’y’); the dual basis {a,,. . ,p,} 

, . . , cr,} is then the one given by Tr(aiBj) = 6ij for 1 < i,j < n. 
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PROPOSITION 6. Let K’ be separable over K; call D=Pd its dijJferent. 
Let (aI,..., CL,} be a basis of K’ over K such that R’ =c Rai, and let 

{B l,...,/?n} be th e b asis of K’ ouer K given by Tr(ctifij) = hijfor 1 < i,j< n. 
Then D-‘=P’-d=CRfii. 

In fact, take any x’ER’, any ~‘EK’, and write x’=Cxiai and y’=cyipi 
with X,ER and yieK for 1 <i<n. Then Tr(x’y’)=cxiyi; this shows that 
Tr(x’ y’)E R for all X’E R’, i.e. that Tr maps R’ y’ into R, if and only if yiE R 
for all i. By the definition of the different, this means that y’ is in pled if 
and only if it is in c R pi, as was to be proved. 

COROLLARY. Let assumptions be as in proposition 6, and call A the 
determinant of the matrix 

Then ord,(A) =fd, and AR = ‘S(D). 

Write cq=zaijfij, with aijEK for 1 <i,j<n. Multiplying both sides 
with c(~ and taking the trace, we get n(a,~(~)=a,j, hence M=(aij). There- 
fore the automorphism of the vector-space K’ over K which maps 
{P 1, . . . . B,) onto {al, . . . . a,>, hence the K-lattice D- ’ onto R’, is represent- 
ed by the matrix (aij) with respect to the first one of these bases, and its 
module, by corollary 3 of th. 3, Chap. I-2, has the value mod,(A). As the 
mapping x’ -+ r~‘~x’ also maps D- ’ = P-d onto R’, its module mod,,(n’d) 
must be the same as mod,(A). This gives fd = ord,(A), hence S(D) = AR. 
One will note that our corollary remains valid in the inseparable case, 
since then Tr = 0 and D=O. Clearly our result implies that ord,(A) is 
independent of the choice of a,, . . . , u, ; this could easily be verified directly, 
and justifies the following definition : 

DEFINITION 2. Let A be as in the corollary of proposition 6; then the 
ideal A R in R is called the,discriminant of K’ over K. 

Still assuming K’ to be separable of degree n over K, call k an alge- 
braic closure of K’. As in 9 1, let 3L1 ,..., /2, be the n distinct K-linear iso- 
morphisms of K’ into ii; as the identity is one of them, we may assume 
that it is I,. Take any 5~ K’, and put ci = L,(t) for 1~ i < n, hence in parti- 
cular c1 = 5. If v is the degree of K’ over K(t), there are v distinct K(t)- 
linear isomorphisms of K’ into I?, hence v and no more than v distinct 
ones among the iii which map t onto itself. This shows that K(t)= K’ if 
andonlyif~i#~foralli#l. 

Take now an indeterminate X over K. We can, in the manner described 
in Chap. 111-3, extend the K-linear mapping Tr of K’ into K, and the 
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polynomial mapping N of K’ into K, to mappings of K’[X] = K’@,K[X] 
into K[X], which we again denote by D and N. Put then : 

(4) F(X)=N(X-[)= fi (x-&)=x”+ 5 aixn-‘. 
i=l i=l 

This is a manic polynomial in K [X] ; calling F’ its formal derivative, we 
have 

J”(5)= fi (5-(i). 
i=2 

In particular, in view of what has been proved above, we have K(t)= K’ 
if and only if F’(5) # 0. It is well known, and easily verified, that F(X)- ’ 
has in K(X) the “partial fraction decomposition” given by 

L$ l 
F(X) i=l F’(5J (X-5J’ 

Considering the field K(X) as embedded in the obvious manner in the 
field of formal power-series in X- ’ with coefficients in K, we get from this : 

x-y1 +&$- i)-l= i F’(ti)-l y &p-’ 
i=l i=l v=o 

which may also be written as 

Tr(F’(<)-’ S”)X-‘- ‘. 

Equating coefficients on both sides, we get 

(5) P,(a) = Tr(F’(<)- ’ <“) 

for v>O, where P,(a) is, for all v, a polynomial in Z[a,, . . .,a,], with 
P,=0for0~v<n--1,andP,-,=1. 

PROPOSITION 7. Let K’ be separable of degree n over K, and call D 
its different. For any ~EK’, let F be the polynomial defined by (4). Then 
all the coefficients a, of F are in R if 5~ R’, and in P if 5~ P’; moreover, if 
PER’, F’(t)D- ’ is contained in R[c], and it is the largest R’-module con- 
tained in R[t]. 

The assertions about the a, are proved exactly as the assertions about 
the trace in prop. 1. In fact, if the ci=Ai(E) are defined as above, the as- 
sumption 5~ R’ (resp. {EP’) implies that, for every i, ti is in Ai (resp. 
in Ai(P hence in the maximal compact subring R” of the compositum K” 
of the fields ;L,(K’) (resp. in the maximal ideal P” of R”) ; (4) shows then 
that all the aiare in R”, hence in R = KnR” (resp. in pll, hence in P = KnP”). 
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As to the assertions about F’(t), assume first that F’(c)=O; as we have 
seen, this is so if and only if K(c) #K’ ; then K(t), hence also R[c], cannot 
contain any K-module other than {0}, which proves our assertion in this 
case. Assume now that F’(c)#O; then K’=K(t), so that {l,&...,l”-l} 
is a basis of K’ over K. As F is manic and in R[X], and F(?j)=O, a well 

n-l 

known elementary argument shows that R[e] is the R-module 1 Rr’. 
i=O 

n-l 
Take now any x’EK’; write F’(t)x’= c xi<’ with xi~K for O<i<n--1. 

i=O 

Multiplying this with F’(t)- i 5’ and taking the traces of both sides, we get, 
in view of (5) : 

n-1 

(6) Tr(X’5’)= C XiP,+i(U) 
i=O 

for all v > 0, hence in particular, for 0 < v < IZ - 1: 

(7) 
n-l 

x,-,-1 = Tr(x’5”) - C x~P,+~(u). 
i=n-v 

Assume first that X’E D- i; then (7) shows, by induction on v for 0 < v < n - 1, 
that all Xi are in R, i.e. that F’(t)x’ is in R[t], so that F’(QD-‘cR[t]. 
On the other hand, assume that xi~R for 0~ i < n - 1, i.e. that 
F’(c)x’~R[t]; then (6) for v=O, shows that Tr(x’)ER. Replacing x’ by 
X’J+ with O’ER’, we see that, if x’ is such that F’(t)x’R’cR[t], then 
X’E D- ‘. This proves our last assertion. 

COROLLARY 1. Assumptions and notations being as in proposition 7, we 
have D=F’(c)R’ if and only if R’=R[<]. 

This follows at once from the second part of proposition 7. 

COROLLARY 2. Let assumptions and notations be as in proposition 7; 
assume also that K’ is fully ramified over K; put 

F(X)=N(X-n’)=X”+ i aiXnei, 
i=l 

where n’ is any prime element of K’. Then ord,(a,)a 1 for 1 < i<n, 
ordK(a,)= 1, and D=F’(n’)R’. 

Taking t = rc’ in proposition 7, we get the first assertion ; the second 
one is obvious in view of formula (2) of 9 1, since an=N( -rc’); the 
last one follows at once from corollary 1, combined with prop. 4 of 
Chap. I-4. 
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COROLLARY 3. Let assumptions and notations be as in corollary 2; 
then K’ is tamely ramified if and only if n is prime to p. 

As K’ is fully ramified, we have, in our usual notation, f = 1 and 
n = e. By corollary 2, we have d = ord,, (F’(rc’)), and all the terms in F’(rr’) 
except the first one n7tmw1 are of order ae=ord,. (rc) in K’. Therefore 
d = e - 1, i.e. K’ is tamely ramified, if and only if ord,(n) = 0, i.e. if and 
only if n is prime to p. 

A polynomial F satisfying the conditions in corollary 2, i.e. a manic 

polynomial X” + i aiXnmi in K[X] such that ord,(a,)> 1 for all i and 
i=l 

ord,(a,) = 1, is called an Eisenstein polynomial over K. 

PROPOSITION 8. Let F be an Eisenstein polynomial over K. Then F is 
irreducible in K[X], and, if n’ is a root of F in any extension of K, K(n)) 
is a fully ramified extension of K, having n’ as a prime element. 

Assume that F = GH, with G and H in K[X]. Let a, b be the smallest 
integers such that Gi =rcaG and H, =nbH are in R[X], and put F, = 
=z~+~F, so that F, =G, H,. Put k= R/P, and call F,, G,, H, the poly- 
nomials in k[X] obtained by replacing each coefficient in F, , G, , H, , 
respectively, by its image in R/P under the canonical homomorphism of 
R onto R/P. By the definition of a and b, G, and H, are not 0, so that 
F0 # 0; this implies that a+ b =O, F, = F, and F, =X”; consequently 
there is v such that G, = X”, H, = X”-‘. Then the degrees of G,, H, 
are at least v, n-v; as F,=G,H,, they are v, n-v. If v>O, n-v>O, 
call g, h the constant terms in G,, H, ; as G,=X’ and HO=X”-“, 
g and h are both in P; as the constant term of F is now g h, it is in P2, 
which contradicts the definition of an Eisenstein polynomial. Now 
let rc’ be a root of F in an extension of K, which we may assume to be 
algebraically closed; as F is irreducible, the distinct K-linear isomor- 
phisms of K’ = K(z’) into that extension map rc’ onto all the distinct roots 
of F, so that F(X) = N(X - rc’), hence, by the definition of an Eisenstein 
polynomial, ordK(N(rr’))= 1. By formula (2), $j 1, this implies that f = 1 
and that rc’ is a prime element of K’. 

5 3. Ramification theory. In this 9, it will be convenient to write 
isomorphisms and automorphisms of fields exponentially, i.e. as x--+x’, 
etc. Furthermore, K being as before, it is convenient to extend ord, to all 
algebraic extensions of K as follows. Let x’ be any element of such an 
extension; let K’ be any extension of K of finite degree, containing x’; 
rc being as before a prime element of K, put 

ord,(x’) = ord,.(x’)/ord,.(n) ; 
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here, if we replace K’ by any similar field K” containing K’, ord,(x’) 
and ord,,(z) are both multiplied with the order of ramification of K” 
over K’, so that our definition of ord,(x’) is independent of the choice of 
K’; of course one could take K’= K(x’) in that definition. That being so, 
ord, coincides on Kx with the mapping ord, of Kx into Z, as previously 
defined, and determines a mapping of every algebraic extension of K into 
Qu( + co}, with ord,(x’)= + co if and only if x’=O. 

As before, let K' be an extension of K of degree IZ, which we assume to 
be separable; let notations be as in $9 l-2 ; in particular, let D = Pd be the 
different of K’ over K. Call K, the maximal unramilied extension of K 
contained in K’, this being uniquely defined by corollary 4 of th. 7, Chap. 
I-4. Then K’ has the degree e over K 1, and, by corollary 5 of prop. 4, 9 1, 
it has the different D over K I . Put 

by corollary 2 of prop. 7, 0 2, this is an Eisenstein polynomial over K, , 
and D = F’(d) R’. 

Let L be any Galois extension of K of finite degree, containing K’; for 
instance, one may take for L the compositum of the images of K’ under all 
the distinct K-linear isomorphisms of K’ into some algebraic closure of 
K’. For every K-linear isomorphism x’-+x’~ of K’ into L, put 

v(n) = min,,, R, ord,(x’- xfi) = minXTER. ord,(x’ - x”)/ordL(rr’). 

Since ord,(x’ - x’~) is an integer 2 0 or + 00, this is well defined ; it is + co 
if and only if A is the identity ; the identity, i. e. the natural injection of K’ 
into L, will be denoted by E. By th. 7 of Chap. I-4 and its corollaries 3 and 
4, K i is generated over K by the roots of 1 of order prime to p in K’, and 
these, together with 0, make up a full set of representatives for RI/P’ in R’ ; 
therefore, if 1 does not induce the identity on K,, there is such a root [ 
for which [“f [, and then i-i” is in K’ and not in P’, so that, taking 
x’= i, we get v(A) =O. Now assume that i induces the identity on K 1. 
As K’ is fully ramified over K 1, prop. 4 of Chap. I-4 shows that R’ = R,[d], 
R i being the maximal compact subring of K, , so that every X’E R’ can be 
written as G(rc’) with GE R, [Xl. This gives: 

x’ - x’~ =G(d) - G(TL’“) = (n’ - 7~“) H(Tc’, 7~“) 

with HER, [X, Y]. As we have already observed in the proof of prop. 
1, rr’” has the same order as n’ in L; this implies that ord,(n’“)= ord,.(?r’) = 
= 1, so that we have 

ord,(x’ - x’~) > ordK,(z’ - 7~“) 3 I 

and therefore, whenever ib induces the identity on K, : 
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(8) v(A) = ord,.(rc’ - 7~“) 3 1, 

which implies that ordK.(z’ - 7~“) does not depend upon the choice of n’. 
Now, F being as defined above, we have, by formula (4) of 4 2 : 

F(X) = n (X - 7P), 
1 

where the product is taken over all the distinct K,-linear isomorphisms 
il of K’ into L, and therefore 

F’(7c’) = n (n’ -7P) 
J.#E 

where the product is now taken over the same isomorphisms except the 
identity. This gives 

d = ord,,(F’(z’))= C v(A), 
J.#E 

where the sum is taken over those same isomorphisms, and also, since the 
number of such isomorphisms is e - 1: 

d-e+l= C (V(A)--1). 
A#& 

As v(L) = 0 when J. does not induce the identity on K,, it amounts to the 
same to write: 

(9) d= c v(A), d-e+1 = c (v(n)-l)+, 
A+& If8 

where the sums are now taken over all the distinct K-linear isomorphisms 
of K' into L, other than the identity ; moreover, the number of terms > 0 
in the latter sum is <e - 1. 

If K’ is itself a Galois extension of K, we may take L = K’, and the 
isomorphisms 1 are the automorphisms of K’ over K; they make up the 
Galois group g of K’ over K. The definition of v(A) shows that it is now an 
integer or + co ; if A# E, v(A) is the largest of the integers v such that /z 
determines the identity on the ring R'/P'". For every v> 0, the automor- 
phisms i of K' over K for which v(L) > v make up a subgroup gy of g ; we 
have go = g, and the groups g, for v 2 1 are known as “the higher ramifica- 
tion groups” of K' over K. As we have seen above, gr, which is traditio- 
nally known as “the group of inertia” of K', consists of the automorphisms 
of K' which induce the identity on K 1 ; in other words, it is the subgroup 
of g,, = g attached to K, in the sense of Galois theory ; it is of order e, and 
go/g, may be identified with the Galois group of K, over K, which, as we 
know, is cyclic of order f and generated by the Frobenius automorphism 
of K, over K. 
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Still assuming K’ to be a Galois extension of K, call gy the order of the 
group gy for each v > 0. Then gy - 1 is the number of the elements ;1 of g, 
other than E, for which v(A) 2 v. We can therefore rewrite (9) as follows : 

(10) d=+f(g,-l), d-e+l=+f(g,-1). 
v=1 v=2 

PROPOSITION 9. Let K’ be a Galois extension of K with the Galois 
group g = go ; let the gy, for v 3 1, be its higher ramification groups. Put 
Gb = R’” and G: = 1-t P’” for v Z 1. Then, for each v > 1, gy consists of the 
elements d of g1 such that zzflzC1 is in G:- z ; when that is so, the image 
y(A) of 7?“7c- 1 zn the group Py = GL- ,/G: is independent of the choice of 
the prime element rz’ of K’, and ;1+ y(A) is a morphism of gy into Py with the 
kernel gy + 1. 

The first assertion follows at once from (8) and the definitions. Re- 
place n’ by another prime element of K’; this can be written as rc’u with 
ueRfX ; for 1~ g,,, this modifies n” rc- ’ by the factor u’ U- ‘, which, by the 
definition of g,,, is in 1+ P’“, i.e. in Gk; this shows that y(l) is independent 
of the choice of rc’. If 1, p are in g,, put u = rc’” rc- ‘, v = rcfP z’- ‘. Then 
7c ‘““rc-‘=(uflu-‘)uu; as UER’~, u”u-’ is in G:; this shows that l-+y(A) 
is a morphism. It is then obvious that its kernel is gV+ i. 

COROLLARY 1. For every v > 0, g,,/g, + z is commutative; for v = 0, it is 
cyclic of order f; for v= 1, it is cyclic, and its order e, divides q’- 1, 
q’ being the module of K’; f or va 2, it is isomorphic to a subgroup of 
the additive group of R’jP’, and its order divides q’. 

For v =O, this was proved above. Now put k’= RI/P’ ; this is a field 
with q’ elements. The canonical morphism of R’ onto k’ induces on Gb a 
morphism of Gb onto k’ ’ with the kernel G;, so that ri is cyclic of order 
q’ - 1. Similarly, for v > 2, the mapping x’ + 1 + rc”‘- 1 x’ of R’ onto G:- i 
determines an isomorphism of RI/P’ onto r,. Our assertions for v 3 1 are 
immediate consequences of these facts and of proposition 9. 

COROLLARY 2. Assumptions and notations being as in corollary 1, we 
have e= e,pN with N >O and e0 prime to p. 

This is obvious in view of corollary 1, since gi is of order e. 

COROLLARY 3. If v(n) has the same value v for all 1 #E in g, g is com- 
mutative, with an order dividing q - 1 if v = 1 and q if v 2 2. 

In fact, we have then g,= g, gV+ 1 = {a} ; moreover, if v> 1, we have 
e=n, hence f = 1 and q=q’. 
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Finally, the numbers v(n) have important “transitivity properties”. As 
above, let K’ be a separable extension of K of finite degree n, but not 
necessarily a Galois extension ; let K” be a separable extension of K’ of 
finite degree ; take for L a Galois extension of K of finite degree, con- 
taining K”. Notations for K and K’ being as before, let K, be the maximal 
unramified extension of K, contained in K”; call K; the compositum of 
K’ and K,. Call e’ the order of ramification of K” over K’, and f’ its 
modular degree over K’. As K’ has the same module 4’ as K,, and K” and 
K; have the same module as K,, K, is the unramified extension of 
K, of degree f’, and K; is the maximal unramified extension of K’ 
contained in K” and is of degree f' over K’. As K’ is of degree e over K,, 
this implies that K; is of degree ef’ over K,, hence of degree e over K,. 
Each K,-linear isomorphism 0 of K; into L induces on K’ a K,-linear 
isomorphism A of K’ into L; as K; is the compositum of K’ and K,, two 
such isomorphisms 0, 0’ cannot coincide on K’ unless ~=a’; as there 
are e such isomorphisms, and the same number ofK,-linear isomorphisms 
of K’ into L, o + ,I is a bijection of the former onto the latter ; in particular, 
each isomorphism ,I of K’ into L, inducing the identity on K,, can be 
uniquely extended to an isomorphism c of K’, into L, inducing the iden- 
tity on K,. 

Now, calling rc” a prime element of K”, put : 

G(X) = NKuIKj (X-gy’)=x”‘+ c &p-i. 
i=l 

By corollary 2 of prop. 7, 0 2, this is an Eisenstein polynomial over K; ; 
in particular, CI,, is a prime element of K; ; so is rc’, since K; is unramified 
over K’. Let 1 be any isomorphism of K’ into L, other than the identity, 
inducing the identity on K, ; as we have seen above, this can be uniquely 
extended to an isomorphism o of K; into L, inducing the identity on K,. 
Write G” for the polynomial obtained by applying o to each coefficient of 
G ; we have 

e’- 1 

G(X) - G”(X) = a,. - a:, + c (q - a;)X”‘- i. 

i= 1 

As ~1,~ and rc’ are prime elements of K;, and K; is unramified over K’, we 
have, by what we have proved above : 

ordKj(cc,, - a:,) = ordK;(rr’ - 7~‘~) = ordK(rr’ - 7~“) = v(n), 

ord,~(ai-a~)~ord,j(rc’-rc’“)=v(~) (l<i<e’), 

and therefore : 

ordK,(G(rr”) - G”(rc”)) = v(n). 
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We have G(rc”) = 0. On the other hand, G” is the manic polynomial whose 
roots are the images rP of rc” under the distinct isomorphisms r of K” 
into L which coincide with r~ on K;. In other words, we have 

G”(d’) = n (d - d”), 

where the product is taken over all the distinct isomorphisms r of K” 
into L which induce 1 on K’ and the identity on K,. Let now v’(r) be de- 
lined for K, K” and t, just as v(A) has been defined for K, K’ and 1; in 
other words, we put v’(z) =0 if z does not induce the identity on K,, and 
if it does, we put 

V’(T) = ordK-(7t” - n”‘). 

Since ord,.. = e’ . ord,., we get now, by comparing the above formulas: 

(11) e’v(d)=zv’(t), 

where the sum may be taken over all the isomorphisms T of $2 into L 
which coincide with 1 on K’, since those which do not induce the identity 
on K, make no contribution to the right-hand side; for a similar reason, 
(11) remains valid when 1 is an isomorphism of K’ into L which does not 
induce the identity on K,. Combining formulas (9) and (ll), one gets 
another proof for corollary 4 of prop. 4,$1. 

Let now L be a Galois extension of K, not necessarily of finite degree. 
Call 6 its Galois group, topologized in the usual manner, i.e. by taking, 
as a fundamental system of neighborhoods of the identity, all the sub- 
groups of 65 attached to extensions of K of finite degree, contained in 
L. Then 8 is compact, and (11) and (9), together with corollary 4 of 
prop. 4, 5 1, may be interpreted by saying that there is a finitely additive 
function H, on the family of all open and closed subsets of 8, with the 
following property. Let K’ be any extension of K of finite degree, con- 
tained in L; let e be its order of ramification over K, and d its differental 
exponent over K ; call !+j the open and closed subgroup of 6, consisting 
of the elements of 6 which induce the identity on K’. Then H(Sj)=d/e, 
and, for every coset BA of 5 in 6, other than B, we have H($jn) = - v(;l)/e, 
where v(A) is as defined above. From this, we derive a linear formf+H(f), 
i.e. a “distribution”, on the space of all locally constant functions f on 6, 
by putting H(f)=H($I) whenever f is the characteristic function of 
$3 2, where 1 is any element of 6, and 5 is as above ; as all locally constant 
functions on 8 can be written as finite linear combinations of such 
characteristic functions, this determines H uniquely. We will call H the 

* Herbrand distribution on 8. In view of the foregoing results, it is clear 
that its knowledge implies the full knowledge of the ramification pro- 
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perties of K” over K’ whenever K’, K” are of finite degree over K, and 
K c K’ c K” c L. 

0 4. Traces and norms in A-fields. In this 9, we consider an A-tield k 
and a separably algebraic extension k’ of k, of finite degree n over k. 
Notations will be as explained in Chap. IV. 

THEOREM 1. Let k be an A-field and k’ a separable extension of k of 
finite degree. Then, for almost all finite places w of k’, k:, is unramified 
over the closure k, of k in k;. 

Let x be a “basic character” for k, i.e. a non-trivial character of k,, tri- 
vial on k. Put x’ =xo Tr,.,, , . this is a character of k;, trivial on k’. As 
Trkrjk is not 0, and as it is k-linear on k’, there is <Ek’ such that TrEfIL(c) = 1. 
As the extension of TrkPlk to ka is k,-linear, this implies that it maps ki 
surjectively onto k,, so that 1’ is not trivial on ki. Let w  be a finite place 
of k’, and v the place of k lying below w  ; call xv, &, the characters respec- 
tively induced by x on k, and by x’ on kw. By corollary 3 of th. 1, Chap. 
IV-l, we have x,, = xv0 Tr,h,ky. By corollary 1 of th. 3, Chap. IV-2, xU is of 
order 0 for almost all v, and XL is of order 0 for almost all w  ; our conclu- 
sion follows now immediately from this and from corollary 3 of prop. 4, 
0 1. 

COROLLARY. Let assumptions be as in theorem 1; then N,.,, is an open 
morphism of kp onto an open subgroup of ki. 

By corollary 3 of th. 1, Chap. IV-l, Nkflk induces Nkk,k, on kkx for all 
places w  of k’. By prop. 5 of § 1, this is, for all w, including the infinite 
places, an open morphism of kkx onto an open subgroup of k,” ; by 
theorem 1, combined with prop. 3 of 4 1, it maps rLx onto rz for almost all 
w. In view of the corollary of prop. 2, Chap. IV-3, our assertion follows 
immediately from these facts. 

If k, and kb are as above, kk, being generated over k, by k’, is separable 
over k,, so that, if v and hence w  are finite places, its different over k, is 
not 0 and may be written as p$“‘, with d(w) > 0. This justifies the following 
definition : 

DEFINITION 3. Let k, k’ be as in theorem 1; for everyfinite place w of k’, 
let p$@) be the different of kk over the closure k, of k in kb. Then, by the 
different of k’ over k, we understand the ideal np$“‘) of k’ if k, k’ are of 
characteristic 0, and the divisor Cd(w) .w of k’ if they are of characteristic 
p > 1; it will be denoted by bkTlkr or by b if no confusion can arise. 

We will now consider separately the cases of characteristic 0 and of 
characteristic p > 1. 
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PROPOSITION 10. Let k be an algebraic number-field, k’ a finite alge- 
braic extension of k, r and r’ their maximal orders, and b the dgferent of k 
over k. Then b-’ is the set of the elements qEk’ such that Tr(ln) is in r for 
all <ET’. 

Take first any JET’ and any q~b-l; then cq~b-r, which means, by 
definition, that HUE k’ and ~~EPL’(“‘) for all finite places w  of k’. This 
implies that TrkLlk,(tn)Ero for all such places, and therefore, by corollary 
3 of th. 1, Chap. IV-l, that Trk,,,JSn) is in knr, for all u, hence in r. Conver- 
sely, assume q to be such that this is so for all 5 Er’ ; take x’ = (x~)E kh, and 
put z = Trkp,,Jx’ n). Then, by corollary 3 of th. 1, Chap. IV-l, z = (z,) is given 
by 

z, = 1 ~k,,ku(& r). 
WIV 

Take a finite place 2) of k; by corollary 1 of th. 1, Chap. V-2, the projection 
of r’ on the product nrk, taken over the places w  lying above u, is dense 
there. As z, is in rv, by our assumption, whenever x’ is in r’, and depends 
continuously upon x’, it is therefore in rv whenever X:ET~ for all w  above 
u. This implies that TrkL,k, maps q rh into r,, hence, by the definition of the 
different, that q is in &,Ydd(“‘); as this is so for all w, q must be in b- ‘. 

COROLLARY. If a’ is any fractional ideal of k’, the set of the elements 
n of k’such that Trk,,,J<n) is in r for all r~a’ is the fractional ideal a’-‘b-l. 

In fact, in view of proposition 10, this set consists of all the q such that 
ya’cb-‘. 

Now we introduce two morphisms z, % of the groups Z(k), Z(k’) of 
fractional ideals of k and of k’ into each other, as follows. Consider again 
the morphism a-+id(a) of k; onto Z(k), with the kernel Q,= ka(P,)“, 
which was defined in Chap. V-3; as pointed out there, we may use it to 
identify Z(k) with ki/S2,; we recall that 51, is the group kz xnrz 
consisting of the ideles (z”) such that Izvlv= 1 for all finite places u of k. If 
the group Qb, is similarly defined for k’, we may also identify I@‘) with 
kiys2b,. Write now z for the natural embedding of kz into kix ; by corol- 
lary 1 of th. 1, Chap. IV-l, this maps every z=(z,) in k; onto the element 
z(z)= (z:) of ky such that zL= z, whenever w  lies above u; then Izvlv= 1 
implies lzlyl,,, = 1, so that z(z) is in Ol, if and only if ZEST,. This shows that I 
determines an injective morphism of Z(k) into Z(k’), which we will call the 
natural embedding of Z(k) into Z(k’), and which we will also denote by z; 
with this notation, we have (id)o r = lo(id) ; this may be regarded as de- 
lining the injection z of Z(k) into Z(k’). Clearly, if k” is an extension of k’ of 
finite degree, and if the morphisms 1’ of k;” into kix and P of kt into kix 
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are defined just as z was defined for k; and k: , we have z” = z’o z ; therefore 
the corresponding relation holds true for the natural embeddings of Z(k) 
into I(k”), of Z(k’) into I(k”) and of I(k) into I(k’). On the other hand, corol- 
lary 3 ofth. 1, Chap. IV-l, combined with formula (1) of5 1, shows that Nkrlk 
maps fib, into Sz, ; therefore it determines a morphism of I(k’) into Z(k), 
also known as the norm, which we will denote by !Xnk,,k; we have (i d)o NkSlk 
= %Lk,,ko(id), and this may be regarded as defining akSlk. If k” is as above, 
we have %k,glk = %nkf,ko %nk.,kT, as an immediate consequence of the corre- 
sponding relation for ordinary norms. Furthermore, if PZ is the degree of 
k’ over k, we have Nk,&) = x” for all xE k, as an immediate consequence 
of the definition of NkPlk; this implies at once the corresponding relation 
for the extension of Nkrlk to kA. For zEk;, we can write it as Nkjlk(z(z))=z”, 
which implies that we have !&.,,(z(a)) = a” for all aEl(k). 

By th. 3 of Chap. V-3, I(k) and I(k’) are the free groups respectively 
generated by the prime ideals p,, ph of r, r’. We will now describe the 
morphisms z, !RnkPik in terms of these generators. 

PROPOSITION 11. For each finite place v of k, and each place w of k’ 
lying above v, call e(w) the order of ramification and f(w) the modular 
degree of kk over k,. Then we have: 

/(P”) = n P?“‘, %~k(PkJ=PE(W), C e(w)f(w)=n, 

where the product in the first formula, and the sum in the last one, are taken 
over all the places w of k’ lying above v. 

The first formula follows at once from the definitions, and the second 
one from the definitions, corollary 3 of th. 1, Chap. IV-l, and formula (1) 
of 0 1. As to the last formula, since the degree of k; over k, is e(w) f  (w), it 
is nothing else than corollary 1 of th. 4, Chap. 1114; it is also an immediate 
consequence of the first two formulas and of %nk.,k(z(p,)) = p”,. 

COROLLARY. Let k be an algebraic number-field, and a a fractional ideal 
of’ k. Then %&a) is the fractional ideal %(a) Z of Q, where YI is the norm 
as dejined in definition 5 of Chap.V-3. 

This follows at once from the latter definition and from the second 
formula in proposition 11, applied to the fields k and Q. 

As every ideal in the ring Z is of the form mZ with mEN, every 
fractional ideal of Q can be written in one and only one way as rZ with 
rEQ, r >O; one may therefore identify the group Z(Q) of fractional ideals 
of Q with Q: = Q” n R; , by means of the isomorphism r+rZ of the 
latter onto the former. Then the norm % of definition 5, Chap. V-3, be- 
comes the same as ‘SklQ as defined above. 
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PROPOSITION 12. Let x be the character of QA, trivial on Q, such that 
x,(x) = e( - x) ; let k be an algebraic number-field, and put x’ = xo TrklQ ; 
let a = (a,) be a differental idele for k, attached to x’. Then a, = 1 for every 
infinite place v of k, and id(a) is the dvferent bklQ of k over Q. 

The character x is the same which has been introduced in the first 
part of the proof of th. 3, Chap. IV-2 ; it was shown there that it is uniquely 
determined by the condition stated above, and that xP is of order 0 for 
every place p of Q. Our first assertion is now an immediate consequence 
of the definition of differental ideles in Chap. VII-2, combined with 
corollary 3 of th. 1, Chap. IV-l. Our last assertion is an immediate conse- 
quence of the same results, combined with corollary 3 of prop. 4,§ 1. 

COROLLARY. Let k be as in proposition 12, and let D be its discriminant. 
Then IDI = ‘%(b,,,). 

If a is as in proposition 12, we have (alA= (D(- ‘, by prop. 6 of Chap. 
VII-2. On the other hand, since a”= 1 for all infinite places of k, the defi- 
nition of ‘% shows at once that lalA = %(i d(a))- i ; in view of proposition 12, 
this proves our assertion. 

Now we generalize the definition of the discriminant, i.e. definition 6 
of Chap. V-4, as follows : 

DEFINITION 4. Let k be an algebraic number-field, k’ a finite extension 
of k, and b the different of k’ over k. Then the ideal a= &,,&J), in the 
maximal order r of k, is called the discriminant of k’ over k. 

One should note that, according to this, the discriminant of k over 
Q is not D, but the ideal DZ=IDI Z in Z. When the latter is given, D is 
determined by D = (- 1y2 1 Dj, as follows from the remark at the end of the 
proof of prop. 7, Chap. V-4. 

PROPOSITION 13. Let k, k’, k” be algebraic number-fields such that 
kc k’ c k” ; let b and a, b’ and 9, b” and W be the differents and the dis- 
criminants of k’ over k, of k” over k’, and of k” over k, respectively. Then: 

b” = z’(b)b’, 9” = a*’ 111,.,,( a’), 

where I’ is the natural embedding of I(k) into Z(k”), and n’ is the degree of 
k” over k’. 

The first formula follows at once from the corresponding local result, 
i.e. corollary 4 of prop. 4,§ 1. The second one follows from this and defi- 
nition 4, combined with the transitivity property of norms. 

Now let k be an A-field of characteristic p> 1, and k’ a separable 
extension of k of finite degree n. As a --f div(a) is a morphism of k; onto the 
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group D(k) of divisors of k, with the kernel n YC, we see, just as in the case 
of number-fields, that the natural embedding of k; into ka” determines an 
injective morphism z ofD(k) into D(k’), which we call the natural embedding 
of D(k) into D(k’). Similarly, the norm mapping N,,,, of k: into ki deter- 
mines a morphism of D(k’) into D(k), which we denote by G,,:, (the 
notation % would be undesirable here, since the groups of divisors are 
written additively). The properties of I and 6 are quite similar to those of 
I and % in the case of number-fields. In particular, we have G,,,,Jr(a))= 
= n a for every divisor a of k, and, with the same notations as in proposi- 
tion 11: 

r (4 = C 44.4 %,&) = f(w).u, C 44 f(w) = 4 
WI0 40 

the proof being the same as there. Let F,, F,, be the fields of constants of k 
and of k’, and let fO be the degree of the latter over the former. Then the 
definition of f(w), and that of the degree of a place, give &deg(w)= 
f(w)deg(u), and consequently, at first for places, and then for arbitrary 
divisors : 

(12) deg (G&‘)) =fo deg(a’), deg(+)) = (n/f&W4 

where a’ is any divisor of k’, and a any divisor of k. 
If b is the different of k’ over k, we define the discriminant of k’ over k as 

being the divisor G,,,,(b) of k. With notations similar to those in prop. 13, 
we have: 

b” = z’(b) + b’, D’=n’I)+ G/&a’). 

PROPOSITION 14. Let k and k’ be as above; let b be the different of k’ 
over k, and let c be a canonical divisor of k. Then the divisor z(c)+ b is a 
canonical divisor of k’. 

By the definition of a canonical divisor, there is a “basic character” x 
for k, such that c = div(X). Then corollary 3 of prop. 4, $1, combined with 
corollary 3 of th. 1, Chap. IV-l, and with the definitions, shows at once 
that the divisor of xo Trkjlk is z(c) + b. 

COROLLARY. Let k, k’ and b be as in proposition 14 : let g be the genus of 
k; let n be the degree of k’ over k, and f. the degree of the field of constants 
of k’ over that of k. Then the genus g’ of k’ is given by 

2g’-2=(nlf,) (29-2) +deg(b). 

This follows at once from proposition 14, corollary 1 of th. 2, Chap. VI, 
and the second formula (12). It implies that the degree of the different is 
always an even integer; a more precise result will be proved in Chap. 
x111-12. 
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0 5. Splitting places in separable extensions. Assumptions and nota- 
tions being as in theorem 1 of $4, one can express that theorem by 
saying that, for almost all places w  of k’, the degree of ki over k, is equal 
to its modular degree over k,. Therefore corollaries 2 and 3 of prop. 1, 
Chap. VII-l, and corollaries 3 and 4 of th. 2, Chap. VII-5, are valid if 
“degree” is substituted for “modular degree”, provided one adds there the 
assumption that k is separable over k,. We will now consider some 
consequences of these results. 

As before, let k be an A-field, k’ a separable extension of k of finite 
degree n, and u a place of k. We can write k’ = k(t), where 5 is a root of an 
irreducible manic polynomial F of degree n in k[X]. Combining th. 4 of 
Chap. III-4 with prop. 2 of Chap. 111-2, we see that the places w  of A’ 
which lie above v are in a one-to-one correspondence with the irredu- 
cible manic polynomials dividing F in k,[X] ; if, for each such place M‘. 
we call F, the corresponding polynomial, the degree of k: over k, is 
equal to the degree of F,,,; by th. 1 of 5 4, that degree, for almost all v, is 
equal to the modular degree of k; over k,. We also see that the places w, 
lying above u, for which kk = k, are in a one-to-one correspondence with 
the roots of F in k,. By corollary 1 of th. 4, Chap. 1114, there are n distinct 
places of k’ lying above o if and only if kk = k, for every such place w; 
when that is so, one says that u splits filly in k’ ; it does so if and only if F 
has n distinct roots in k,. If L is a Galois extension of k, then, by corollary 
4 of th. 4, Chap. 1114, the completions of L at the places of L lying above 
v are all isomorphic ; therefore, if L,= k, for one such place U, u splits fully 
in L. Let k’= k(5) be a field between k and L; then, if F is defined as above, 
it splits into linear factors in L[X], and the smallest Galois extension L’ 
of k, contained in L and containing k’, is the subfield of L generated over li 
by the roots of F in L. If now t is a place of L’ lying above v, L; is generated 
over k, by the roots of F, so that L’, = k, if and only if v splits fully in k’; in 
that case, as we have seen, it also splits fully in L’. 

PROPOSITION 15. Let k’, k” be two extensions of k, both contained in a 
separable extension L of k of finite degree. Let X be the set of the places v 
of k such that kk = k, for at least one place w of k’ lying above v. If almost 
all the places VEX split fully in k”, k” is contained in k’. 

We may assume that L is the compositum of k’ and k”. Call W the 
set of the places w  of k’ such that the place u of k which lies below w  
splits fully in k” and that k, = kk. Let u be a place of L above w, and t 
the place of k” below u; L, is generated over k, by L, hence by kk and 
k;‘; therefore, if WE W, L,= k,; this shows that all the places in W split 
fully in L. Now take a place w  of k’, not in W; call u the place of k below 
w. If then k,= kk, u is in X, so that it must be in the finite subset of X, 
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consisting of the places in X which do not split fully in k”. If k,# kk, 
the degree of kk over k, is > 1; by th. 1 of 9 4, this is the same as the 
modular degree, except for finitely many places. We have thus shown 
that the modular degree of k:, over k, is > 1 for almost all the places w 
of k’, not in W. Applying now corollary 4 of th. 2, Chap. VII-5, to k, 
k’ and L (instead of k,, k and k’ of that corollary), we get k’= L, i. e. 
k”ck’. 

COROLLARY. Let k’, k” be two Galois extensions of k, contained in 
some extension of k of finite degree. Let S’, S” be the sets of the places 
of k which split fully in k’ and in k”, respectively. Then k’ contains k” 
if and only if s” contains almost all the places VES’. 

If k’ I> k”, it is obvious that a place of k which splits fully in k’ does 
the same in k”. Conversely, as k’ is a Galois extension, S’ is the same 
as the set X in proposition 15 ; our conclusion is now a special case of 
that proposition. In particular, we see that, k’ must be the same as k” 
if S’, S” differ by no more than finitely many elements. 

5 6. An application to inseparable extensions. It will now be shown 
that one of our main results, the isomorphism between k:, and (k’/k),, 
which was proved for separable extensions as theorem 1 of Chap.IV-1, 
is still valid without the assumption of separability. For this, we need 
a lemma : 

LEMMA 1. Let k be an A-field of characteristic p> 1; then k is purely 
inseparable of degree p over its image kP under the endomorphism x-+xp. 

By lemma 1 of Chap. 111-2, we may write k as k = F,(x,,. . .,x,), 
where x0 is transcendental over F,, and xi is separably algebraic over 
F,(x,) for l<i<N. Then kP=Fp(x~,...,x~). Put k’=kP(x,)= 
Fph,,%..., xi). As each xi is purely inseparable over F,(xf) and sepa- 
rable over F,(x,), k is at the same time purely inseparable and separable 
over k’, so that k = k’ ; this implies that k is purely inseparable of degree 
1 or p over kp. If k was the same as kp, it would contain an element y 
such that ye= x0. Clearly y cannot be in F,(x,), so that it is purely 
inseparable over F,(x,); this contradicts the assumption that k is sep- 
arable over F,(x,). 

Now, in order to extend theorem 1 of Chap. IV-1 to the case of an 
inseparable extension k’ of k, it is clearly enough to show the validity 
of th. 4, Chap. 111-4, in that case, since the latter alone is involved in 
the proof of the former. We will first do this for a purely inseparable 
extension of k of degree p. Let k’ be such an extension; for any x’ek’, 
there must then be an integer n 20 such that xfp”Ek, and, if n is the 
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smallest such integer, the degree of x’ over k is p”; as this must be <p, 
n is 0 or 1. This shows that kPc kck’, hence, in view of lemma 1, that 
k = k’P. For that case, we prove the following : 

PROPOSITION 16. Let k’ be an A-field of characteristic p> 1; put 
k = k’p. Then, above each place v of k, there lies one and only one place 
w of k’; it is the image of v under the isomorphism x-+x’~~ of k onto k’; 
we have k,=(kk)P, and the k,-linear extension CD, of the natural injection 
of k’ into k; to A,= k’ak k, is an isomorphism of A, onto kW. Moreover, if 
u is a basis of k’ over k, and u,, for each v, is the r,-module generated by 
a in A,, then, for almost all v, @” maps a, onto the maximal compact 
subring r; of kk. 

Let v be a place of k, and w a place of k’ lying above u. By the corollary 
of prop. 1, Chap. III-l, kk is generated over k, by k’, hence purely in- 
separable of degree 1 or p over k,. In the former case, every element of 
k must be a p-th power in k,; this is impossible, since k is dense in k, 
and therefore contains at least one prime element of k,. Therefore, by 
corollary 2 of prop. 4, Chap. I-4, kk is uniquely determined, up to an 
isomorphism, and y+yp is an isomorphism of k; onto k,. Let A be the 
natural injection of k’ into k; ; this must induce on k the natural in- 
jection lo of k into k,; therefore, for every tEk’, we have &,({P)=n(5)“; 
as this determines A(<) uniquely, we see that w is uniquely determined 
by u, and also that it is the image of v under x+xi’J’. If now @, is as in 
our proposition, it is clearly a surjective homomorphism of A, onto 
kk; as both of these spaces have the dimension p over k,, it is an iso- 
morphism. Finally, let u be a basis of k’ over k. In view of corollary 1 
of th. 3, Chap. III-l, and of lemma 1 of Chap. 111-2, we may assume 
that u contains an element a such that k’ is separably algebraic over 
F,(a). Let then u and w be as above, and let u be the place of the field 
k, = F,(a) which lies below w. By th. 1 of 3 4, for almost all w, kk is 
unramified over (k,),. Take w such that this is so ; since th. 2 of Chap.III-1 
shows that k, has just one place u for which [al,> 1, we may also assume 
that w does not lie above that place. Then, by that theorem, there is a 
polynomial rc~F,[Tl such that n(a) is a prime element of (k,),, hence 
also of kk since kk is unramified over (k,),. Now, by corollary 2 of th. 3, 
Chap. III-l, u, is a compact subring of A, for almost all v ; this implies 
that it contains 1. hence r,, 1. As it contains a, it contains z(a), hence 
the ring r”[rt(a)]; by prop. 4 of Chap. I-4 and its corollary 1, this is 
the same as r$. 

Clearly proposition 16 implies the validity of th. 4, Chap. 111-4, 
when k = klP. Now take for k’ an arbitrary extension of k, of finite degree. 
Call kb the maximal separably algebraic extension of k, contained in 
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k’; let p” be the degree of k’ over kb. If x’ is any element of k’, there is 
n 30 such that x’~“E k& and, if n is the smallest such integer, x’ is of 
degree p” over k& so that n<m; this shows that k’1 kbIk’*“. Applying 
lemma 1 to the sequence of fields k’, klP,. . .,klpm, we see that each is of 
degree p over the next one, so that k’ is of degree p” over kfpm, which is 
therefore the same as kb. Proceeding now by induction on m, we may 
assume that theorem 4 of Chap. III-4 is valid for the extension ktP of 
k, and we have to show that it is also valid for the extension k’ of k. Put 
k” = k’P ; let u be a place of k ; call w;, . . . , w; the places of k” lying above 
u, and, for each i, call k:’ the completion of k” at wt. By prop. 16, there 
is, for each i, one and only one place wi of k’, lying above w;, and the 
completion k: of k’ at wi may be identified with k’Ok-k:‘. By the in- 
duction assumption, we have an isomorphism @L of A: = k”Okk, onto 
the direct sum of the fields kf’, with the properties stated in our theorem. 
By the properties of tensor-products, the tensor-product A, = k’& k, 
is canonically isomorphic, in an obvious manner, to k’Okff Ah, hence to 
the direct sum of the products k’ Ok,, k;’ and therefore to the direct sum 
of the fields k:; it is then easily seen that the isomorphism @, of A, onto 
the latter sum which has been so defined has the properties required 
by our theorem. As to the last part, it can be deduced in the same manner 
from the induction assumption and prop. 16, by taking a basis Co of k” 
over k, a basis /I of k’ over k”, and taking for k’ over k the basis CI con- 
sisting of all the products a’b of an element a’ of ci and an element b of fi. 



Chapter IX 

Simple algebras 

$ 1. Structure of simple algebras. This Chapter will be purely algebraic 
in nature ; this means that we will operate over a groundfield, subject 
to no restriction except commutativity, and carrying no additional 
structure. All fields are understood to be commutative. All algebras are 
understood to have a unit, to be of finite dimension over their ground- 
field, and to be central over that field (an algebra A over K is called 
central if K is its center). If A, B are algebras over K with these properties, 
so is A@,B; if A is an algebra over K with these properties, and L is a 
field containing K, then A, = A OK L is an algebra over L with the same 
properties. Tensor-products will be understood to be taken over the 
groundfield ; thus we write A 0 B instead of A OK B when A, B are algebras 
over K, and A @ L or A,, instead of A OK L, when A is an algebra over K 
and L a field containing K, A, being always considered as an algebra 
over L. 

Let A be an algebra over K, with the unit 1, ; all modules over A 
will be understood to be unitary (this means, e.g. for a left module M, 
that 1,. m = m for all rnE M) and of finite dimension over K, when regarded 
as vector-spaces over K by putting, e.g. for a left module M, trn = (5 .l,)m 
forallcEKandmeM. IfM’isasubset ofaleft A-module M, theannihilator 
of M’ in A is the set of all XEA such that xm=O for all rnEM; this is a 
left ideal in A. The annihilator of M in A is a two-sided ideal in A ; if it is 
{0}, M is called faithful. 

DEFINITION 1. Let A be an algebra over K. An A-module is called simple 
if it is not (0) and has no submodule except itself and (0). The algebra A 
is called simple if it has no two-sided ideal except itself and (0). 

For a given A, there are always simple left A-modules ; for instance, 
any left ideal of A, other than {0), with the smallest dimension over K, 
will be such a module. 

PROPOSITION 1. Let A be an algebra over K, with a faithful simple 
left A-module M. Then every left A-module is a direct sum of modules, all 
isomorphic to M. 

We first prove our assertion for A itself, considered as a left A-module. 
In M, there are finite subsets with the annihilator (0) in A (e.g. any basis 
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of M over K); take any minimal set {m,, . . ., m,} with that property. 
For 0 < i < n, call Ai the annihilator of {mi+ r, . . . , m,} in A ; for i b 1, put 
Mi=Aimi. Clearly A,=(O), A,=A; for ial, AixAimI, and Ai#Ai-,, 
since otherwise xmj = 0 for j > i would imply xmi = 0, and mi could be 
omitted from {m,, . . . . m,}. For i> 1, Ai is a left ideal, Mi is a submodule 
of M, and x +x mi induces on Ai a morphism of Ai onto Mi with the kernel 
Ai- 1, so that it determines an isomorphism of AJA,- 1 onto Mi for their 
structures as left A-modules. As Ai #Ai- 1, Mi is not (0) ; therefore it 
is M. By induction on i for 0 < i,<n, one sees now at once that 
x -+(xm,, . . ., xmi) induces on Ai a bijective mapping of Ai onto the 
product M’=M x . . . x M of i modules, all equal to M; this is obviously 
an isomorphism for the structure of left A-module. For i = n, this proves 
our assertion for A. Now take any left A-module M’, and a finite set 
(4, . . . . m:} generating M’ (e.g. any basis of M’ over K). Then the 
mapping of A’ into M’, given by (xi)1 Q i $ r --t 1 x,m:, is a surjective mor- 
phism of left A-modules ; as we have just proved that A, as such, is iso- 
morphic to M” for some n, this shows that there is a surjective morphism 
of M”’ onto M’, or, what amounts to the same, a surjective morphism F, 
onto M’, of a direct sum of s = nr modules Mi, all isomorphic to M. 
Call N the kernel of F, and take a maximal subset {MiI, . . . . Mi,) of 

{M 1, . . . . M,} such that the sum N’ = Nf c Min is direct; after renumber- 
ing the Mi if necessary, we may assume that this subset is {M,, . . ., M,,}. 
Then, forj>h, the sum N’+ Mj is not direct, so that N’nMj is not (0) ; 
as it is a submodule of Mj, which is isomorphic to M, it is Mj. This shows 
that Mjc N’ for all j > h. Therefore F maps N’ onto M’ ; as its kernel is N, 

h 

it determines an isomorphism of 1 Mi onto N’. 
i=l 

PROPOSITION 2. Let A and M be as in proposition 1, and let D be the 
ring of endomorphisms of M. Then D is a division algebra over K, and A 
is isomorphic to M,,(D) for some n > 1. 

We recall that here, as explained on p. XV, D should be understood as 
a ring of right operators on M, the multiplication in it being defined 
accordingly. As D is a subspace of the ring of endomorphisms of the 
underlying vector-space of M over K, it is a vector-space of finite dimen- 
sion over K. Every element of D maps M onto a submodule of M, hence 
onto M or (0) ; therefore, if it is not 0, it is an automorphism, hence 
invertible. This shows that D is a division algebra over a center which is 
of finite dimension over K. By prop. 1, there is, for some n3 1, an iso- 
morphism of A, regarded as a left A-module, onto M”; this must deter- 
mine an isomorphism between the rings of endomorphisms of these two 
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left A-modules. Clearly that of M” consists of the mappings 

with dijeD for 1 <i,j<n, and may therefore be identified with the 
ring M,(D) of the matrices (dij) over D. On the other hand, an endo- 
morphism of A regarded as a left A-module is a mapping f such that 
f(xy) = x f(y) for all x, y in A; for y = l,, this shows that f can be written 
as x-+xa with a =f(lJ; the ring of such endomorphisms may now be 
identified with A, which is therefore isomorphic to M,(D). As the center 
of M,(D) is clearly isomorphic to that of D, this implies that the latter 
is K, which completes the proof. 

THEOREM 1. An algebra A over K is simple if and only if it is iso- 
morphic to an algebra M,,(D), where D is a division algebra over K; when 
A is given, n is uniquely determined, and so is D up to an isomorphism. 

Let A be simple; take any simple left A-module M; as the annihila- 
tor of M in A is a two-sided ideal in A and is not A, it is (0); therefore M 
is faithful, and we can apply prop. 2 to A and M; it shows that A is iso- 
morphic to an algebra M,(D). Conversely, take A = M,(D). For 19 h, k <n, 
call ehk the matrix (xij) given by xhk= 1, xij=O for (i,j)#(h,k). If a=(aij) 
is any matrix in M,,(D), we have eijae,, = aj,,ei, for all i, j, h, k; this shows 
that, if a # 0, the two-sided ideal generated by a in A contains all the e,; 
therefore it is A, so that A is simple. Let now M be the left ideal generated 
by e,, in A; it consists of the matrices (aij) such that aij=O for ja2; 
if a is such a matrix, we have eija = ajI eii, which shows that, if af0, 
the left ideal generated by a is M, which is therefore a minimal left ideal 
and a simple left A-module. Let now f be an endomorphism of M 
regarded as a left A-module, and put f (er i) = a with a = (aij), aij = 0 for 
j32. Writing that f(eije,,)=eija, we get, for j>2, ajl=O; then, for 
x=(xij) with xij=O for ja2, we get f(x)=f(xe,l)=xa=(xijal,). This 
shows that the ring of endomorphisms of M is isomorphic to D. As 
prop. 1 shows that all simple left A-modules are isomorphic to M, this 
shows that D is uniquely determined by A up to an isomorphism. As 
the dimension of A over K is n* times that of D, n also is uniquely 
determined. 

We recall now that the inverse of an algebra A over K is the algebra A0 
with the same underlying vector-space over K as A, but with the multi- 
plication law changed from (x,y)-+xy to (x,y)+yx. 

PROPOSITION 3. Let A be an algebra over K; call A0 its inverse, and 
put C= ABA’. For all a, b in A, call f (a,b) the endomorphism x+uxb 
of the underlying vector-space of A; let F be the K-linear mapping of C 
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into End,(A) such that F(a@b)=f (a, b) for all a, b. Then A is simple if 
and only if F maps C surjectively onto End,(A); when that is so, F is 
an isomorphism of C onto End,(A). 

One verifies at once that F is a homomorphism of C into End,(A). 
If N is the dimension of A over K, both C and End,(A) have the dimen- 
sion N* over K; therefore F is an isomorphism of C onto End,(A) if 
and only if it is surjective, and if and only if it is injective. Assume that A 
is not simple, i.e. that it has a two-sided ideal I other than {0} and A. 
Then, for all a, b, f (a, b) maps I into I; therefore the same is true of F(c) 
for all CEC, so that the image of C under F is not the whole of End,(A). 
Assume now that A is simple, and call M the underlying vector-space 
of A over K, regarded as a left C-module for the law (c,x)-+F(c)x. Any 
submodule M’ of M is then mapped into itself by x-taxb for all N, h, so 
that it is a two-sided ideal in A ; as A is simple, this shows that M is 
simple. An endomorphism cp of M is a mapping cp such that cp(axb)= 
=acp(x)b for all a,x,b in A; for x=b= l,, this gives q$a)=acp(l,), hence 
axbq(l,)=cuxcp(l,)b, so that ~(1,) must be in the center K of A; in 
other words, cp is of the form x-+5x with {EK. Call C’ the annihilator 
of M in C, which is the same as the kernel of F. We can now apply 
prop. 2 to the algebra C/C’, to its center Z, and to the module M; as D * 
is then K, it shows that C/C’ is isomorphic to some M,,(K), hence Z 
to K; but then, as has been seen in the proof of th. 1, M must have the 
dimension n over K, so that n = N. As C/C’ has then the same dimension 
N* over K as C, we get C’= {0}, which completes the proof. 

COROLLARY 1. Let L be a field containing K. Then the algebra 
A,= A@L over L is simple if and only if A is so. 

In fact, let C,, F, be defined for A, just as C, F are defined for A 
in proposition 3 ; one sees at once that C,= C@L, and that F, is the 
L-linear extension of F to C,. Our assertion follows now from pro- 
position 3. 

COROLLARY 2. Let L be an algebraically closed field containing K. 
Then A is simple if and only if A, is isomorphic to some M,,(L). 

If D is a division algebra over a field K, the extension of K generated 
in D by any 5 ED - K is an algebraic extension of K, other than K. In 
particular, if L is algebraically closed, there is no division algebra over L, 
other than L. Therefore, by th. 1, an algebra over L is simple if and only 
if it is isomorphic to some M,,(L). Our assertion follows now from 
corollary 1. 

COROLLARY 3. The dimension of a simple algebra A over K is of 
the form n*. 
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In fact, by corollary 2, A, is isomorphic to some M,(L) if L is an 
algebraic closure of K; its dimension over L is then n2, and it is the 
same as that of A over K. 

COROLLARY 4. Let A, B be two simple algebras over K; then A@B 
is simple over K. 

Take an algebraic closure L of K; (AOB), is the same as A,@B,. 
Since clearly M,(K)@M,(K) is isomorphic to M,,(K) for all m, n, and 
all fields K, our conclusion follows from corollary 2. 

COROLLARY 5. Let A be a simple algebra of dimension n2 over K. 
Let L be a field containing K, and let F be a K-linear homomorphism 
of A into M,(L). Then the L-linear extension FL of F to A, is an iso- 
morphism of A, onto M,,(L). 

Clearly FL is a homomorphism of A, into M,(L), so that its kernel 
is a two-sided ideal in A,. As A, is simple by corollary 1, and as FL 
is not 0, this kernel is {0), i.e. FL is injective. As A, and M,(L) have 
the same dimension n2 over L, this implies that it is bijective, so that 
it is an isomorphism of A, onto M,(L). 

COROLLARY 6. Let L be an extension of K of degree n; let A be a 
simple algebra of dimension n2 over K, containing a subfield isomorphic 
to L. Then A, is isomorphic to M,,(L). 

We may assume that A contains L. Then (x, o-+x 5, for XE A, 5 EL, 
defines on A a structure of vector-space over L; call I/ that vector- 
space, which is clearly of dimension n over L. For every aE A, the map- 
ping x+ax may be regarded as an endomorphism of V, which, if we 
choose a basis for I’ over L, is given by a matrix F(a) in M,(L). Our 
assertion follows now from corollary 5. 

PROPOSITION 4. Let A be a simple algebra over K. Then every auto- 
morphism CL of A over K is of the form x-ta-‘xa with aEAX. 

Take a basis {a 1,. . . , aN} of A over K. Then every element of A@A” 
can be written in one and only one way as xai@bi, with b,G A0 for 
1 di< N. By prop. 3, IX can therefore be written as x+Caixbi. Writing 
that a(xy)=cr(x)a(y) for all x, y, we get 

O=Ca,xyb,-Caixbia(y)=Caix(ybi-bia(y)). 

For each yeA, this is so for all x ; by prop. 3, we must therefore have 
y bi= b,cc(y). In particular, since this gives y(b,z)= b,a(y)z for all y and z 
in A, b,A is a two-sided ideal in A, hence A or {0), for all i, so that bi is 
either 0 or invertible in A. As CI is an automorphism, the b, cannot all 
be 0; taking a = b,#O, we get the announced result. 
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COROLLARY. Let a and a be as in proposition 4, and let a’EA be such 
that a’a(x)=xa’for all XEA. Then a’=<a with <EK. 

In fact, the assumption can be written as a’a- i x = xa’a- ’ for all x ; 
this means that a’a-’ is in the center K of A. 

Proposition 4 is generally known as “the theorem of Skolem- 
Noether” (although that name is sometimes reserved for a more com- 
plete statement involving a simple subalgebra of A). One can prove, 
quite similarly, that every derivation of A is of the form x -+x a - ax, with 
aEA. 

We will also need a stronger result than corollary 2 of prop. 3; this 
will appear as a corollary of the following: 

PROPOSITION 5. Let D be a division algebra over K, other than K. 
Then D contains a separably algebraic extension of K, other than K. 

We reproduce Artin’s proof. In D, considered as a vector-space 
over K, take a supplementary subspace E to K = K . l,, and call cp the 
projection from D= EOK . 1, onto E. Then, for every integer m> 1, 
x+cp(x”) is a polynomial mapping of D into E, whose extension to D, 
and EL, if L is any field containing K, is again given by x+cp(xm), where cp 
denotes again the L-linear extension of p to 0,. and EL. Now call N 
the dimension of D over K. Clearly every (ED, not in K, generates 
over K an extension K(c) of degree > 1 and <N ; moreover, if this is 
not purely inseparable over K, it contains a separable extension of K, 
other than K. Assume now that our proposition is not true for D. Then 
K has inseparable extensions, which implies that it is of characteristic 
p > 1 and that it is not a finite field ; moreover, every 5~ D must be 
purely inseparable over K, hence must satisfy an equation <P”=~~K, 
where p” is its degree over K. As this degree is <N, it divides the highest 
power q of p which is <N, so that cq~ K. Then, if E and cp are as above 
defined, the polynomial mapping x+&x4) maps D onto 0. As K is an 
infinite field, this implies that the same holds true for the extension of 
that mapping to D, and E,, when L is any field containing K. In other 
words, for all L, x-+x4 maps D, into its center L. 1,. This is palpably 
false when L is algebraically closed, for then D, is isomorphic to an 
algebra M,(L), and taking e.g. x=el 1 in the notation of the proof of 
th. 1, we have xq=ell, and this is not in the center of M,(L). 

COROLLARY. Let A be a simple algebra over K, and L a separably 
algebraically closed field containing K. Then A, is isomorphic to an 
algebra M,(L). 

The assumption means that L has no separably algebraic extension 
other than itself. Then proposition 5 shows that there is no division 
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algebra over L, other than L. Our conclusion follows now at once from 
th. 1, combined with corollary 1 of prop. 3. 

Q 2. The representations of a simple algebra. Let A be a simple algebra 
over K ; by corollary 3 of prop. 3, 3 1, its dimension N over K may be 
written as N=n’. For any field L containing K, call ‘%NmL the space of 
the K-linear mappings of A into M,(L); every such mapping F can be 
uniquely extended to an L-linear mapping F, of A, into M,(L). If one 
takes a basis a = (al,. , uN} of A over K, F is uniquely determined by 
the N matrices Xi=F(ai), so that, by the choice of this basis, 911J1, is 
identified with the space of the sets (Xi)IQi4N of N matrices in M,(L), 
which is obviously of dimension IV2 over L. 

By corollary 5 of prop. 3, 9 1, a mapping FE’SJI~ is an isomorphism 
of A into M,(L), and its extension FL to A, is an isomorphism of A, 
onto M,(L), if and only if F is a homomorphism, i.e. if and only if 
F(l,)= 1, and F(ub)= F(u)F(b) for all a, b in A, or, what amounts to 
the same, for all a, b in the basis CI. When that is so, we say that F is an 
L-representation of A; if we write K(F) for the field generated over K 
by the coefficients of the matrices F(a) for all UEA, or, what amounts 
to the same, for all QEH, then F is also a K(F)-representation of A. 

If L is suitably chosen (for instance, by corollary 2 of prop. 3, 9 1, 
if it is algebraically closed, or even, by the corollary of prop. 5, # 1, if 
it is separably algebraically closed), the set of L-representations of A 
is not empty. Moreover, if F and F’ are in that set, then FLoF; 1 is an 
automorphism of M,(L), hence, by prop. 4 of 0 1, of the form X-+ Y- r X Y 
with YEM,(L)” ; this can be written as Fi(Fi’(X))= Y-l X Y; for 
UEA, X= F(a), it implies F’(u)= Y-l F(u) Y; we express this by writing 
F’= Y-‘F Y. Moreover, when F and F’ are given, the corollary of 
prop. 4, 9 1, shows that Y is uniquely determined up to a factor in the 
center Lx of M,(L)‘. 

PROPOSITION 6. Let A be a simple algebra of dimension n2 over K. 
Then there is a K-linear form zj0 and a K-valued function v on A, such 
that, if L is any field containing K, and F any L-representation of A, 
z(a)=tr(F(u)) and v(u)=det(F(u)) f or a UEA; if K is an infinite field, 11 
v is a polynomial function of degree n on A. 

Put N=n’, and take a basis {u l,...,uN} of A over K. Take first for L 
a “separable algebraic closure” of K, i.e. the union of all separably 
algebraic extensions of K in some algebraically closed field containing K; 
this is always an infinite field. By the corollary of prop. 5, 0 1, there is 
an L-representation F of A, and then, as we have seen above, all such 
representations can be written as F’= Y-l F Y with YEM,(L)~. Clearly 
u-tr(F,(u)) is an L-linear form z on AL, and u+det(F,(u)) is a poly- 
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nomial function v of degree n on A, ; as FL is an isomorphism of A, 
onto M,(L), r is not 0; neither z nor v is changed if F is replaced by 
F’= Y-‘F Y. Writing a=xxiai with x,EL for 1 <igN, we can write r 
and v as a linear form and as a homogeneous polynomial of degree n, 
respectively, in the xi, with coefficients in L. If cr is any automorphism 
of L over K, we will write zb, vu for the polynomials in the xi, respec- 
tively derived from r, v by substituting for each coefficient its image 
under 0. Similarly, we write F” for the L-representation of A such that, 
for each a in the basis {a,,. . .,a,}, F”(a) is the image F(a)” of F(a) under G, 
i.e. the matrix whose coefficients are respectively the images of those 
of F(a). Then, clearly, for all aE&, TO(a) and vu(a) are respectively the 
trace and the determinant of F”(a) ; as we have seen above, they must 
therefore be equal to $a), v(a) for all ae A,. This implies that all the 
coefficients in r and v, when these are written as polynomials in the xi, 
are invariant under all automorphisms of L over K, hence that they 
are in K. This proves our assertion, so far as only L-representations 
are concerned, with L chosen as above. Obviously it remains true for 
L-representations if L’ is any field containing L. As every field containing 
K is isomorphic over K to a subfield of such a field L, this completes the 
proof. 

The functions r, v defined in proposition 6 are called the reduced 
trace and the reduced norm in A. Clearly r(x y) = z(yx) and v(x y) = v(x) v(y) 
for all x, y in A ; in particular, v determines a morphism of A ’ into Kx. 

COROLLARY 1. Let A and v be as in proposition 6. Then, for every 
acA, the endomorphisms x+ax, x-+xa of the underlying vector-space 
of A over K have both the determinant NAIK(u)=v(a)“. 

It is clearly enough to verify this for A, with a suitable L; taking L 
such that A, is isomorphic to M,,(L), we see that it is enough to verify 
it for an algebra M,(L) over L; but then it is obvious. This is the result 
announced in the remarks preceding th. 4 of Chap. IV-3. 

COROLLARY 2. Let D be a division algebra over K; let zO, vO be the 
reduced trace and the reduced norm in D. For any m> 1, put A= M,,,(D), 
and call z, v the reduced trace and the reduced norm in A. Then, ,for every 
x=(xij) in A, z(x)=~zO(xii); {f th e matrix x =(xij) in A is triangular, 

i.e. if xii=0 ,for lGj>igm, v(x)=nvO(xii). 

Take L such that D has an L-representation F. Then the mapping 
which, to every matrix x=(xij) in M,(D), assigns the matrix obtained 
by substituting the matrix F(xij) for each coefficient xij in x is an 
L-representation of A. Using this for defining r and v, we get at once 
the conclusion of our corollary. 
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COROLLARY 3. Let assumptions and notations be as in corollary 2. 
Then v(A”)=v,(D”). 

We may regard A as the ring of endomorphisms of the space I’= D” 
considered as a left vector-space over D, and consequently A” as the 
group of automorphisms of that space. By an elementary result (already 
used in the proof of corollary 3 of th. 3, Chap. I-2, but only for a vector- 
space over a commutative field), every automorphism of V can be 
written as a product of automorphisms, each of which is either a permu- 
tation of the coordinates or of the form 

with alEDX and aiE D for 2< i<m. By corollary 2, the latter auto- 
morphism has the reduced norm v,(a,). As to a permutation of coordi- 
nates, the same L-representation of A which was used in the proof of 
corollary 2 shows at once that it has the reduced norm 1 if the dimen- 
sion d2 of D over K is even, and + 1 if it is odd. As v,,( - lD)=( - l)d, 
we have thus shown that v(A “) contains v,(D “) and is contained in it. 

0 3. Factor-sets and the Brauer group. Up to an isomorphism, the al- 
gebras over a given field K may be regarded as making up a set, since 
the algebra structures that one can put on a given vector-space over K 
clearly make up a set, and every such space is isomorphic to K” for 
some n. 

From now on, we will consider only simple algebras over K; it is 
still understood that they are of finite dimension and central over K. 
Consider two such algebras A, A’; by th. 1 of 9 1, they are isomorphic 
to algebras M,(D), M,,(D’), where D, D’ are division algebras over K 
which are uniquely determined, up to an isomorphism, by A, A’. One 
says then that A and A’ are similar, and that they belong to the same 
class, if D and D’ are isomorphic over K. Clearly, in each class of simple 
algebras, there is, up to an isomorphism, one and only one division 
algebra, and there is at most one algebra of given dimension over K. 
An algebra will be called trivial over K if it is similar to K, i.e. isomor- 
phic to M,(K) for some n. We will write Cl(A) for the class of simple 
algebras similar to a given one A. 

Let A, A’ be two simple algebras, respectively isomorphic to M,(D) 
and to M&D’), where D, D’ are division algebras over K. By corollary 4 
of prop. 3,§ 1, D 0 D’ is simple, hence isomorphic to an algebra MJD”), 
where D” is a division algebra over K which is uniquely determined, 
up to an isomorphism, by D and D’, hence also by A and A’. By the 
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associativity of tensor-products, A @A’ is isomorphic to M,,.,(D”). This 
shows that the class of ABA is uniquely determined by those of A 
and A’. Write now: 

Cl(A@ A’) = Cl(A) . Cl(A’), 

and consider this as a law of composition in the set of classes of simple 
algebras over K. It is clearly associative and commutative ; it has a 
neutral element, viz., the class Cl(K) of trivial algebras over K. More- 
over, if A0 is the inverse algebra to A, prop. 3 of $1 shows that A@ A0 
is trivial, so that Cl(A’) is the inverse of Cl(A) for our law of composition. 
Therefore, for this law, the classes of simple algebras over K make up 
a group ; this is known as the Brauer group qf K; we will denote it by 
B(K). If K’ is any field containing K, and A a simple algebra over K, 
it is obvious that the class of A,. is determined uniquely by that of A, 
and that the mapping Cl(A)-+Cl(A,.) is a morphism of B(K) into B(K’), 
which will be called the natural morphism of B(K) into B(K’). 

It will now be shown that the Brauer group can be defined in another 
way, by means of “factor-sets”; this will require some preliminary deli- 
nitions. We choose once for all an algebraic closure r?- for K; we will 
denote by Ksep the maximal separable extension of K in I?, i.e. the 
union of all separable extensions of K of finite degree, contained in K. 
We will denote by 8 the Galois group of Ksep over K, topologized as 
usual by taking, as a fundamental system of neighborhoods of the iden- 
tity E, all the subgroups of 6 attached to separable extensions of K of 
finite degree. Clearly this makes 6 into a totally disconnected compact 
group. As If is purely inseparable over-K,,,, each automorphism of 
Ksep can be uniquely extended to one of K, so that 6 may be identified 
with the group of all automorphisms of I? over K. 

DEFINITION 2. Let Grn) be the product 8 x .*. x 6 qf m factors equal 
to 6; let fj be an open subgroup sf 6. Then a mapping .f qf @“” into 
any set S will be called $-regular tf it is constant on left cosets in W”’ 
with respect to $j(“‘). 

This amounts to saying that ,f(o I , . . . , o,,,) depends only upon the left 
cosets %a,,. . .,scr,,, determined by the oi in 6. When that is so, ,f is 
locally constant, or, what amounts to the same, it is continuous when S 
is provided with the discrete topology. Conversely, let .f be a mapping 
of @“) into S; if it is locally constant, it is continuous if S is topologized 
discretely, hence uniformly continuous since 8 is compact ; this implies 
that there is an open subgroup J3 of 8 such that ,f is e-regular. 
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DEFINITION 3. Let (Si(“‘) be as in d&ition 2. Then a mapping ,f qf Gm) 
into Mn(K,,J, ,for any n 3 1, will be called covariant !f it is locally constant 
and satisfies the condition 

.fbJl~,..., ~m4=.f(%...,%JA 
.for all fsI ,..., ffm,J. in 6. 

LEMMA 1. Let Jj be an open subgroup qf 6; let L be the &field qf 
K sep, consisting qf the elements invariant under 9. Then an $-regular 
mapping qf 8 into Ksep is covariant {f and only {f it is qf the ,form o+&jO, 
with (EL. 

Let x, i.e. u+x(o), be a mapping of 8 into Ksep, and put 5 =X(E). 
If x is covariant, we have x(a) = 5” for all a; if this is %-regular, 5 must 
be in L. The converse is obvious. 

LEMMA 2. Let $ be an open subgroup qf 8. Call X, the space qf 
B-regular covariant mappings qf W” into Ksep, regarded as a vector- 
space over K; call XL the space qf all s-regular mappings qf @“‘) into 
K sep, regarded as a vector-space over Ksep. Then XL = X, OK Ksep, and 
the dimension qf X, over K, and sf Xk over Ksep, is nm, [f n is the index 
qf !ij in 6. 

Let L be as in lemma 1; it has the degree n over K. Take a full set 
a= {ai,. . . ,a,> of representatives of the cosets $$3a of !+j in 6 ; then the 
isomorphisms Ai,...,&,, respectively induced on L by the cli, are the n 
distinct K-linear isomorphisms of L into Ksep. Any mapping XEX~ is 
uniquely determined by its values on a x ... x a, and these can be chosen 
arbitrarily; therefore XL has the dimension n”’ over Ksep, and every 
linear form L on Xk can be written as 

L(X)=Cail...i,X(Cli,,...,Cli,) 
(9 

with coefficients a(,, in Ksep. Now we proceed by induction on m. For 
m= 1, lemma 1 shows that X,, as a vector-space over K, is isomorphic 
to L, hence of dimension n, so that we need only show that X, generates 
Xi as a vector-space over Ksep. If not, there would be a linear form 
L on Xi, other than 0, which would be 0 on Xi ; writing L as above, 
and making use of lemma 1, we get 0 = c ai 5” for all 5 EL ; this contra- 
dicts the linear independence of the Izi over Ksep, i.e. corollary 3 of 
prop. 3, Chap. 111-2. Now, for any m, consider the tensor-product 
Y,= X, @....@X,, taken over K, of m factors equal to X,, and the 
similar product Yh = Xi @ ... 0 Xi taken over Ksep ; as we have just 
shown that Xi is the same as X, OK Ksep, we may, in an obvious manner, 
identify YA with Y, OK Ksep. Call rp the KS,.-linear mapping of YA into 
Xh which, to every element xi @...@x,,, of Y;, assigns the mapping 
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(0 l,...,(T,)~Xl(Ol)...X,(d,) 

of (tj@) into K sep. This is surjective ; for, if a linear form L on Xk is 0 on 
cp( Yd), we must have, for all xi,. . .,x, in X’, : 

O=CUjl...i,Xl(ait)...X,(C(i_), 
(0 

which clearly implies that all the aCi) are 0. As YA has the same dimen- 
sion n” as Xk, this shows that cp is an isomorphism of YA onto XL. Now 
take a basis {,fl,.. .,,f,} of X, over K. Then the n”’ elements ,f;, @...@,fi, 
make up a basis of Y, over K, hence also of Yk over Ksep, so that their 
images under 40 make up a basis of Xk over Ksep. This amounts to 
saying that every element of XL can be written uniquely in the form 

with coefficients xCi) in Ksep. Writing now that this is in X,,,, i.e. that 
it is covariant, we see that this is so if and only if all the xCi) are invariant 
under 8, i.e. if and only if they are all in K. Therefore cp maps Y, onto 
X,. This completes the proof. 

Let now K’ be any field containing K, and let I?, K&,, 6’ be defined 
for K’ as K, Ksep, 8 have been defined for K. As K is determined only 
up to an isomorphism, we will always assume, in such a situation, that 
we have taken for If the algebraic closure of K in If’. It is obvious that 
Ksep is then contained in K&,. Every automorphism C’ of R’ over K’ 
induces on I? an automorphism CJ of R over K (more precisely, over 
RnK’); clearly the mapping CJ’-+CJ is a continuous morphism p of 6’ 
into (tj ; this will be called the restriction morphism; it is injective if K’ 
is algebraic over K, since then I?‘= K ; in that case one will usually 
identify 6’ with its image in 6, which is always a closed subgroup 
of 8, and is open in (fi when K’ is of finite degree over K. If 5 is any 
open subgroup of 8, and L is the corresponding subfield of Ksep, i.e. 
the one consisting of the elements invariant under 43, the subgroup 
sj’ = p- ’ (9) of 6’ is open, and the corresponding subfield of Ki,, is the 
one generated by L over K’. 

Let notations be as above, and let ,f be as in definition 2, i.e. a map- 
ping of (fj(*) into some set S. We will write ,fop for the mapping 

wl,..., dnb.f(Pwl)~. . .~PKl)) 

of 6”“’ into S. This is obviously continuous, i.e. locally constant, if ,f 
is so ; if ,f is $-regular, it is !$-regular, with 5’ = p- ’ @) ; if S = M,,(K,,J, 
and ,f is covariant, fop is covariant. If K’ is algebraic over K, 6’ is a 
subgroup of 6, and p is its natural injection into 8 ; then fop is the 
restriction of ,f to CP). 
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After these preliminaries, we can now go back to our main topic. 

THEOREM 2. Let A be a simple algebra qf dimension n2 over K. Let 5 
be an open subgroup qf 6, L the corresponding subfield sf Ksep, and F 
an L-representation qf A. Then there is an e-regular covariant mapping Y 
qf 8 x 6 into Mn(K,,p)x, such that F”= Y(p,a)- ’ FP Y(p,a) ,for all p, a 
in 6; (f Y is such, there is an $-regular covariant mapping .f sf 6 x Q x 6 
into K& such that, for all p, o, z in 8: 

(1) .f(P, 09 z) m, r) = m 4 YkT 4 
and this satisfies the condition 

(2) .f (P, g’, 2) .f(v, P, 4 = .f (v, 02 4 .f (VT P2 0) 

,for all v,p,o,z in 6. 

For every 1~6, F” is a Ksep- representation of A, hence of the form 
Z(n)- ’ FZ(1), with Z(J)EM,(K,,,) x. As F” depends only upon the left 
coset %A, we may, to begin with, assume that J+Z(A) is !&regular; it 
would then be easy to verify that Y(p,a)=Z(ap- ‘)Q satisfies all the 
conditions of the first part of our theorem, except possibly that of the 
!+regularity. To obtain this, we refine our construction as follows. Take 
a full set n of representatives of the double cosets J3n$ in 6 with respect 
to $3. For each AEJI, F and F” are both L’-representations, if L’ is the 
compositum L. L’ of L and its image L” under 1; choose then Z(1) in 
MJL’)“, so that F”=Z(1)-’ FZ(I). Each peB can be written as p=aA/I, 
with a uniquely determined AE.~ and with CL, p in a. If at the same time 
we have p=a’;1/? with a’,b’ in !& then: 

pp-‘=A-‘(cr’Lx)l, 

so that, if we put y =p’p- ‘, y is both in sj and in A- ‘51, which implies 
that it leaves fixed all the elements of L and of L’, hence L. L’ and Z(1). 
Therefore, if we put Z(P)=Z(I)~, this depends only upon p, not upon 
the choice of CI, /3, subject to the conditions stated above. It is then easy 
to check that Y(p,a)= Z(O~-‘)~ satisfies all the conditions stated in 
our theorem. Now, for all p,~,z: 

F’= Y(a,z)-’ FbY(o,z)= Y(o,z)-’ Y(p,o)-‘FP Y(p,a)Y(o,z). 

At the same time, we have F’= Y(p,z)- ’ FP Y(p,z). As we have observed 
above, this implies, by the corollary of prop. 4, 0 1, that Y(p,o) Y(G,z) 
differs from Y(p,r) only by a scalar factor &,a,~), which proves (1). 
One can then verify (2) by a straightforward calculation, and the re- 
maining assertions are obvious. 
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COROLLARY. Let assumptions and notations be as in theorem 2; let 
K’ be a field containing K; 6’ being as before, let p be the restriction 
morphism of 8’ into 6. Let FK, be the K’-linear extension of F to A,,. 
Then Yop and f op are related to FK, in the same manner as Y and f to F. 

This is obvious. When Y and f are related to an L-representation F 
of A in the manner described in theorem 2, we will say that they belong 
to A. 

DEFINITION 4. A covariant mapping f of 8 x 8 x 8 into K&, is 
called a factor-set of K if it satisfies (2) for all v,p,o,z in 8. 

Clearly the factor-sets of K make up a group c(K) under multipli- 
cation. If K’, 6’ and p are as above, f + f op is obviously a morphism 
of c(K) into ((K’). 

Let z be any covariant mapping of 6 x 8 into K&. Obviously the 
mapping 

(3) (P,a,z)~z(P,o)z(o,z)z(P,z)-’ 

is covariant, and one verities immediately that it is a factor-set. 

DEFINITION 5. The factor-set defined by (3) will be called the co- 
boundary of z; a factor-set of K will be called trivial if it is the coboundary 
of a covariant mapping of (si x 6 into K&,. 

The trivial factor-sets make up a subgroup B(K) of the group i(K) 
of all factor-sets of K. The quotient [(K)//?(K) will be denoted by H(K), 
and its elements, i.e. the classes modulo p(K) in c(K), will be called 
the factor-classes of K. If K’ and p are again as before, it is obvious 
that f + f op maps coboundaries into coboundaries, so that p deter- 
mines a morphism of H(K) into H(K’), which we again denote by p. 

PROPOSITION 7. The factor-sets belonging to a simple algebra A over 
K make up a factor-class of K. 

Let !& L, F, Y and f be as in th. 2 ; let z be any covariant mapping 
of 8 x 6 into K& ; let $’ be an open subgroup of s such that z is 
$3’-regular; let L’ be the subfield of Ksep corresponding to 6’. Then F 
is also an L’representation ; Y’ = z Y is related to F in the same manner 
as Y, and it determines the factor-set f’ = fO f, where fO is the coboundary 
of z. This shows that all the factor-sets in the class determined by f 
belong to A. On the other hand, let s’, L: F’, Y’, f’ be related to A in 
the same manner as $3, L, F, Y and f. Put 5j”=!$$‘, and call L” the 
corresponding subfield of Ksep, which is the compositum of L and LI 



176 Simple algebras IX 

Then there is ZEM,(L”)’ such that F’=Z- ’ FZ. A trivial calculation 
gives now F’“= W-l F’e W with W=(Ze)- ’ Y(p,o)Z”, so that Y’(p,o) 
can differ from W only by a scalar factor. If we write z(p,a) for this 
factor, we have now 

YYP, 4 = zb, 4 (Z”) - l m, 4 Z”, 

which implies that z is $3”-regular and covariant. Then f’f-l is the 
coboundary of z, which completes the proof. 

COROLLARY. Let K’ be a field containing K; then the factor-class 
of K’ determined by A,, is the image of the factor-class of K determined 
by A under the restriction morphism p of 8’ into 6. 

This is obvious in view of the corollary of th. 2. 
If A is a simple algebra over K, the factor-class of K, consisting 

of the factor-sets belonging to A, will be said to belong to A or to be 
attached to A. 

THEOREM 3. The mapping which, to every simple algebra A over K, 
assigns the factor-class of K attached to A, is constant on classes of 
simple algebras over K and determines an isomorphism of the group B(K) 
of such classes onto the group H(K) of factor-classes of K. 

Take first two simple algebras A, A’ over K ; call n2, n” their dimen- 
sions over K. Let L, F, Y and f be defined for A as in th. 2, and let 
L’, F’, Y’, f' be similarly related to A’; call L” the compositum of Land 
L’. We may identify M,(L”) @ M,(L”) with M,,(L”). Then, if we put 
A” = A @ A’, and if we write F” = F @ 8” for the K-linear mapping of A” 
into M,,,(L”) given by F”(a@a’)= F(a)@F’(a’) for all aeA and a’EA’, 
F” is an L/‘-representation of A”, and one sees at once that Y”= Y@ Y’ 
and f”= ff’ are related to A” and F” as in th. 2. This shows that the 
factor-class attached to A” is the product of those attached to A and 
to A’. If A=M,(K), one can take for F the identity mapping of A onto 
M,(K) and then take Y = 1, hence f = 1; therefore the factor-class at- 
tached to a trivial algebra is the trivial one, and the factor-classes at- 
tached to A’ and to M,(A’) are the same. This proves the first assertion 
in our theorem and shows that the mapping ~1 of B(K) into H(K) which 
is thus defined is a morphism. It will now be shown, firstly that p is 
injective, and then that it is surjective; this will be done in several steps, 
which we formulate as lemmas. 

LEMMA 3. Let $ be an open subgroup of 8, and L the subfield of Ksep 
corresponding to 8. Let Y be an !+regular covariant mapping of 8 x 8 
into Mn(K,,J x, such that Y(p, 2) = Y(p,o) Y(a, z) for all p, o, z in 6. Then 
there is ZEM,(L) ’ such that Y(p, a) = (Ze)- ’ Z” for all p, o in 8. 
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Take a full set a of representatives of the cosets %SS~ of $3 in 6 ; as 
we have observed in the proof of lemma 2, they induce on L all the 
distinct K-linear isomorphisms of L into I&,, and these are linearly 
independent over I&, as has been shown in corollary 3 of prop. 3, 
Chap. 111-2. Let M,,(K,,,,) operate on the right, by matrix multiplication, 
on the space M1,.(KSep) of row vectors over I&,, and similarly on the 
left on column vectors. For each UEM,,,(L), put 

z = 1 zf Y(cr, E). 
ClEcl 

For any ~~65, ap is again a full set of representatives of the cosets of !$ 
in ($5 ; as Y is covariant, we have then 

a OL 

for p~sj, this shows that z is invariant under $5, i.e. that it is in M,,,(L). 
Therefore, if we write cp for the mapping u+z defined above, cp maps 
M,,,(L) into itself. Now we show that there are n vectors ul, . . . ,u, in 
M,,,(L), such that the vectors Cp(Ui) are linearly independent over L. 
In fact, if this were not so, there would be a column vector v in M, ,(L), 
other than 0, such that cp(u)v=O for all EM,,,(L). This can be written 
as Cu’( Y(a,s)u) = 0, which, in view of the linear independence of the a 
on L, implies Y(a, E) u = 0 for all ~1, hence u = 0. Choose now n vectors ui 
such that the Cp(Ui) are linearly independent over L; call U the matrix 
in M,(L) whose rows are the ui, and put Z= 1 U” Y(ct,&). As the rows 
of Z are the cp(u,), Z is invertible in M,(L). Just as above, we have, for 
all p, 0: 

zp = 1 U” Y(cc,p), z”=c UdY(a,o), 
d d 

and therefore Zb=ZP Y(p,o) in view of the assumption on Y. This 
shows that Z has the property stated in our lemma. 

It is now easy to show that the morphism p of B(K) into H(K) which 
has been defined above is injective. In fact, assume a simple algebra A 
over K to have a trivial factor-set; in view of prop. 7, this implies that 
we can choose !& L, F and Y as in th. 2, so that (1) holds with f = 1. 
Let now Z be as in lemma 3, and put F’ = ZFZ- ’ ; then one sees at 
once that F’” = FfP for all p, e in 6. This means that F’ is a K-represen- 
tation of A, i.e. an isomorphism of A onto M,(K), so that A is trivial. 

Finally, the surjectivity of p is contained in the following more 
precise result: 

LEMMA 4. Let f, and L be as in lemma 3; call n the degree of L over K. 
Let f be an b-regular factor-set of K. Then one can choose A, F and Y 
with the properties described in theorem 2, so that the factor-set defined 
by (1) is the given one and that A contains a subfield isomorphic to L. 
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+ This will be proved by an explicit construction, due to R. Brauer. 
We first observe that, if we take v = p = CJ in the formula (2) of th. 2 which 
defines factor-sets, we get f&p, z) =f(p,p,p) ; as f is covariant, this 
gives f(p,p,r)= ap with a=f(&,&,~). Now apply lemma 2 to the case 
m= 2; this gives two spaces X,, XL of dimension n2, over K and over 
Ksep respectively, and Xi =X2 Ox Ksep. Take a full set a of representa- 
tives of the cosets 9 cz of 5 in 6. For any x, y in Xi, and any p, 0 in 8, put 

Clearly z, i.e. the mapping (~,o)-+z(p,a), is in Xi, and it is in X2 if x, y 
are in X2 ; more precisely, (x,y)+z is a bilinear mapping of Xi x Xi 
into Xi which induces on X, x X2 a bilinear mapping of X2 x X, into X2. 
It will now be shown that, if we write this as (x,y)+xy, it makes X, 
into an algebra A with the required properties. In fact, for each PEE), 
and each XEX;, put 

After choosing an ordering on the set a, we may identify mappings of 
ax a into Ksep with the matrices in M,(K,,,); then each @,, may be 
regarded as a mapping of Xi into M,(K,,J ; as such, it is obviously 
&,-linear and bijective. Using formula (2), one verifies at once that 
@,,(xy)= QO(x) QP(y) for all x, y in X;. Call e the element of Xi given 
by e(p,o)=(uT’, with u=~(E,E,E), whenever D is in the same 
coset $p as p, and e(p,a)=O otherwise. Clearly e is in X2 ; since 
f(cr,cc,p)=a” for all tl, p, we have QP(e)= 1,. It is now obvious that, for 
each p,QP maps Xi, with the multiplication (x,y)-+xy, isomorphically 
onto the algebra M,(K,,J, the unit of the former being e. As Xi= 
= X, O,c Ksepr this implies, by corollary 1 of prop. 3, 5 1, that this multi- 
plication makes X2 into a simple algebra A over K, with l,=e. For 
any 5~ L, and any XEA, write 5x for the element of X, given by 
(p, a)-[“x(p,g); this defines on X2 a structure of left vector-space 
over L ; moreover, it is clear that (tx)y= ((xy) for all ifs L and all x, y 
in A; therefore t-t<e is an isomorphism of L into A, and Sx=(le)x 
for all MEL and all XEA. 

We will now construct F and Y with the properties stated in our 
lemma. For all p, G in 6, call D(p, 0) the diagonal matrix given by 

NP, 0) = k&i f’k P> 4, /JEO 

with a,,= 1 or 0 according as CI= b or not. Using (2) one verifies at 
once that one has, for all p,~, and all XEX; : 

(4) D(p,a)~~,(x)=~~,(x)D(p,a). 
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Now choose a basis { tl,. . . , t,,} of L over K, and call {vi,. . . ,r,} the dual 
basis to this when L is identified with its own dual by putting [&r] = 
= Tr,,,(5 PI). As the elements CI of a induce on L the 12 distinct K-linear 
isomorphisms of L into I&, we have, for every CE L, Tr,,,(c) = 2 l’, 

a 
so that the definition of the vi may be written as 

6ij= TYI,/K(tiVj)= CtTVg. 

ils(1 

Therefore we may put: 

X=(t31<iCn;aea, x-1=(Y3aco;l<i<n. 

Write now, for each p, F, = X @,X- ’ ; this gives 

F,(x)=(~~~54f(D.a.P)X(~,~)~~)l4i,j~.. 

Assume that SEA, i.e. that it is covariant ; as f is covariant, and as ail, 
for every I, is a full set of representatives of the cosets of 9 in 8, we have 

F,(x)“=(~~~~r~f(B,a,pE.)x(1,8)11:),ai,ja.=Fpi(x). 

In particular, if we put F = F,, we have, for every p, F, = FP. By the defmi- 
tion of FP, this gives FP = F for pa fj, i.e. F(x)~= F(x) for every XE A and 
every PEG; in other words, F maps A into M,(L), so that it is an L- 
representation of A. For all PE 6, we have FP = X @,X- ‘. In view of (4), 
this gives F” = Y(p, D)- i FP Y(p, (T), where we have put 

y(P9cr)=xD(P~g)x-1=[ C59f(a,p,~)?j),,i,js”. 

@Ea 

One can now verify at once that this, together with A and F, is as re- 
quired by our lemma. We also note for future use that the reduced trace 
z and the reduced norm v in A can be calculated by means of any one of 
the Z&,-representations QP of A, e.g. from GE ; this gives, for all XC A, 
z(x) = tr(@,(x)), v(x) = det(@,(x)), and in particular: 

for all CE L. 
z(5. IA)= TrL,K(SL v(5. la) = NL,K(S) 

With lemma 4, the proof of theorem 3 is now complete. 

COROLLARY 1. Let K’ be a field containing K, and p the restriction 
morphism of 6’ into 6. Let A be a simple algebra over K, and f a,fktor-set 
belonging to A. Then A,, is trivial if and only if fop is so. 

This follows at once from theorem 3 and the corollary of th. 2. 
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COROLLARY 2. Let !jj be an open subgroup of 6, and f an %-regular 
factor-set of K. Then f is trivial if and only if it is the coboundary of an 
!+regular covariant mapping of 6 x 6 into K&, . 

Assume that f is trivial ; construct A, F and Y as in lemma 4. By 
theorem 3, A is trivial, so that there is an isomorphism F’ of A onto 
M,(K). Then F =2-l F’Z, with some ZEM,(L)~, hence F”= 
= Y’(p, o)- ’ FP Y’(p, a) with Y’(p,o) = (ZP)- r Z”. This implies Y(p, O) = 
=z(p,a) Y’(p,o), where z is B-regular and covariant. Then f is the co- 
boundary of z. 

COROLLARY 3. Let L be a separable extension of K of degree n. Let A 
be a simple algebra over K. Then A, is trivial tf and only if there is an 
algebra A’ of dimension n2 over K, similar to A, containing a subfield 
isomorphic to L; when A’ exists, it is unique, up to an isomorphism. 

The last assertion is obvious. By corollary 6 of prop. 3, 4 1, the 
existence of A’ implies the triviality of Ai, hence that of A,. Conversely, 
assume that there is an isomorphism of A, onto a matrix algebra M,(L); 
this induces on A an Lrepresentation F. By th. 2, we can construct an 
$-regular factor-set f belonging to A. Then, by lemma 4, we can construct 
an algebra A’ such as required our corollary. 

It is frequently convenient to identify the groups Z?(K) and H(K) by 
means of the isomorphism ,~4 described in theorem 3. If this is done, and 
if K’ is any field containing K, the corollaries of th. 2 and of prop. 7 
show that the natural morphism of B(K) into B(K’), which maps the 
class of every simple algebra A over K onto the class of A,., coincides 
with the restriction morphism p of H(K) into H(K’). 

0 4. Cyclic factor-sets. We will now discuss in greater detail a type 
of factor-sets of particular importance, attached to the cyclic extensions 
of the groundfield K. Here, as always, we understand “cyclic” as meaning 
a Galois extension (hence, by definition, a separable one) with a finite 
cyclic Galois group. With the same notations as in 0 3, the cyclic exten- 
sions of K are the subtields L of K corresponding to the open subgroups 
5 of 8 with cyclic factor-group. If L and 5 are such, and if n is the degree 
of L over K, O/b is isomorphic to the group of the n-th roots of 1 in C; 
any isomorphism of O/!?j onto the latter group may be regarded as a 
character x of 8, with the kernel sj ; such a character, which is of order n, 
will be said to be attached to L. If CI is a representative in 8 of a generator 
of S/B, there is one and only one character x of 8, attached to L, such that 
x(4 = Wn). 

Conversely, let x be any homomorphism of 8 into C x ; by lemmas 3 
and 4 of Chap. VII-3, it is a character of 8 of finite order n; its kernel fi 
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is then an open subgroup of 6, with a cyclic factor-group of order n, 
and the subfield L of Ksep corresponding to $ is cyclic of degree n over 
K; we will then say that L is attached to x. 

Let notations be as above ; as x is locally constant on 6, one can 
choose, in infinitely many ways, a locally constant mapping @ of 6 into 
R such that X(o)=e(@(a)) f or all a~@. For instance, one may choose @ 
so that 0~ @(a)< 1 for all a; if @ is chosen according to this condition, 
it is determined uniquely, and it is $-regular, since x is so. In any case, 
since x is of order IZ, @ maps 6 into (l/n)Z. Consider now the mapping 

(5) (p,a,z)~e(p,a,z)=~(op-‘)+ @(~a-‘)--@(zp-‘) 

of 6 x 8 x ($5 into R ; as @ is locally constant, this is so ; as x is a character, 
one sees at once that e maps 6 x 6 x 6 into Z. Put now, for any @EK x : 

(6) f(p, CT, z) = ee(p,“.r); 

obviously, f is a covariant mapping of 6 x oi x 8 into KS,,” (more 
precisely, into K “), and one verifies at once that it satisfies condition (2) 
in th. 2, 6 3, i.e. that it is a factor-set. Any factor-set f defined in this 
manner will be called a cyclic factor-set. Let @’ be another locally con- 
stant mapping of 6 into R such that ~(o)=e(@‘(o)) for all (T; let f’ be the 
factor-set defined by @’ and 8, just as f has been defined by @ and 8. 
Put Y = @’ - Qi ; clearly Y maps 8 into Z; putting z(p,a)= OV(Op-‘), 
one sees at once that flf - ’ is the coboundary of z. This shows that the 
class of the factor-set f; modulo the group p(K) of trivial factor-sets, is 
uniquely determined by x and 0 ; it will be denoted by {x, 0}, and every 
such factor-class will be called cyclic. 

PROPOSITION 8. For each 0~ K ‘, x--t {x, 19} is a morphism of the group 
of characters of 6 into the group H(K) of factor-classes of K ; for each 

character x of C&t?-+ {x,0} is a morphism of Kx into H(K). 

This is obvious in view of our definitions. 

Let K’ be a field containing K ; as in 0 3, we assume that I? is contained 
in K’, and we denote by p the restriction morphism of 6’ into Cr,, as well 
as the morphisms for factor-sets and factor-classes derived from this in 
the manner explained in 5 3. If 2 is any character of 8, x’ = xo p is a charac- 
ter of 6’; if x is of order n, the order n’ of x’ divides n ; if 5 is the kernel 
of x, the kernel of x’ is $3’=p-‘($3), and p determines an injective mor- 
phism of @Y/$3’ into O/B ; if L is the cyclic extension of K attached to x, 
the cyclic extension of K’ attached to x’ is the compositum of L and K’; 
it is cyclic of degree n’. Then, for every 8EKx, we have: 

(7) 
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PROPOSITION 9. Let x be a character of 8, L the cyclic extension of K 
attached to x, and A a simple algebra over K. Then A, is trivial if and only 
if the factor-class attached to A can be written in the form {x,0} with 
8EK”. 

Call !?J the kernel of x; it is the subgroup of 8 corresponding to L. 
If the factor-class attached to A is (x,0}, the one attached to A, is given 
by (7) when one takes for p the restriction morphism of sj into 8; then 
xop, being the character induced by x on 5, is trivial, so that A, is trivial. 
Conversely, assume that A, is trivial; then, if n is the degree of L over K, 
corollary 3 of th. 3,§ 3, shows that, after replacing A by an algebra similar 
to A if necessary, we may assume A to be of dimension n2 over K. Let F be 
an L-representation of A, induced on A by an isomorphism of A, onto 
M,(L). As x is of order n, we may choose C(E 8 such that x(a) =e(l/n); then 
8/$j is generated by the image of tx in that group. There is XEM,(L)’ such 
that F’ = X- 1 F X, hence, by induction on i, Fai = X; ’ F Xi if we put 

x,=xX”... xai-’ 

for all i > 0. Take i = n ; as ~1” induces the identity on L, F”” = F ; therefore 
X, must be of the form 0.1, with 8~ Lx. Applying c( to both sides of the 
formula defining X,, we get Xt = X- ’ X,X, hence 8* = 0, so that 0 is in 
K”.Takeanyi~Zandwriteitasi=nv+jwithv,jinZandl~j~n;if 
then we write Xi=8”Xj, one verifies easily that, for i>O, this coincides 
with Xi as above defined, that X,,=8”~1, for VEZ, and that Xi+j=XiXg’ 
for all i, j in Z. Take now a locally constant function @ on 8 such that 
~(4 = e(@k% h ence n@(o)EZ, for all cr, and put Y(p,o)= (XnO,(ap-lJ’ 
for all p,o in Q. One verifies easily that I: in relation to A and F, has the 
properties required by th. 2 of 0 3, and that the factor-set f determined 
in terms of Y by (1) of th. 2 is the one given by (5) and (6). 

PROPOSITION 10. Let x and L be as in proposition 9. Then the kernel of 
the morphism 0+ {x,0} of Kx into H(K) is N&L”). 

In the proof of proposition 9, take A= M,(K) ; then we may take for 
F the identity, and, as F”= F, we may take X=5:.1, with any EELS. 
Then f3=N,,&& and {x,0} is trivial, since A is so. Conversely, assume 
BEK’ to be such that (x,0} is trivial. Take @ such that ~(o)=e(@(a)) 
and O<@(o)< 1 for all a; then @(c?)=i/n for O,<i<n-1, and @ is Jj- 
regular, so that, if we define f by (5) and (6), f is an $-regular factor-set. 
As f is trivial, corollary 2 of th. 3,§ 3, shows that it is the coboundary of 
an $-regular covariant mapping z of 8 x 8 into K&, . As $ is a normal 
subgroup of 8, left cosets and right cosets of 9 in Q are the same ; this 
implies that, for all p, cr in 8, z(p,o) is invariant under all 1~9 and is 
therefore in L” . For all 0~ 8, put w(cr) = Z(E, a), and put wi = ~(a’) for all i. 
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Then z(p, 0) = W((T p- ‘)“. Write now that f(p, (T, r), as given by (6), is equal 
to the coboundary of z, as given by (3) of 6 3, for p = E, 0 = ai, r = cli+ i ; 
for Odidn-2, we get l=wi(w$wi;~, and, for i=n-1, we get 
e=W,-l(Wl)a”-‘W(p Therefore 6’= NLIK(wl), which completes the proof. 

Let x and L be as in propositions 9 and 10, 9 and c1 as in the proofs 
of these propositions. If Qi is chosen as in the proof of prop. 10, we have 
j-(a-j, cI-i, E) = 1 or 8 according as i <j or i > j, and in particular 
~(E,E,E) = 1. We now apply to this factor-set the construction described 
in the proof of lemma 4,s 3, and define the algebra A as has been explained 
there. As indicated above, the fact that here J3 is a normal subgroup of 8 
implies that every $-regular covariant mapping of 8 x (55 into Ksep 
maps 8 x 8 into L. For ieZ, define ui as the mapping of (3i x 8 into L 
given by Ui(p, a) = 1 or 0 according as 0 p- ’ is in 9 a- i or not; clearly UiE A 
and u,,+~= ui for all i, and u0 is the same as the unit e= 1, of A. One finds 
atoncethat,forO~i,jdn-1,uiuj=ui+jwheni+j~n-1anduiuj=8ui+j 
when i+ j> n. As in the proof of lemma 4, define tx, for 5~ L, XE A, as 
given by the mapping (p,o)+ tPx(p,o); one finds at once that <x = (<. 1,)x. 
Similarly, define x 5 as given by the mapping (p,o) + x(p, 0) 5”; then 
x 5 = x(5.1 A). Clearly 5 ui = ui tai for all <E L and all i. As A has the dimen- 
sion n2 over K, it has the dimension n over L when considered either as a 
left vector-space, by (5,x)-+ tx, or as a right vector-space, by (&x)+x5. 
Moreover, {uO,ul, . . . , u,- ,} is a basis for both of these spaces ; in fact, 
if we put x=xliui with tieL for O<i<n--1, we have ~(&,a-‘)=(~, so 
that x =0 implies ti = 0 for all i, and a similar proof holds for A as a 
right vector-space. Finally, as has been observed at the end of the proof 
of lemma 4, Q 3, one can use the isomorphism QE of A into Mn(Ksep) 
which was defined there, and which is now an L-representation of A, 
for the calculation of the reduced trace r and of the reduced norm v in A. 
Taking {E,CI-‘, . . . . ct-“+l } as the full set a of representatives of O/s in (li 
used in the definition of Qi,, we get at once, for all CE L: 

(8) z(5’ lA)= TTLJK(S); z(t”i)‘o (ldi<n-1), 

(9) 45 1‘4) = NL,K(S) ; v(@=(- l)i(n-i)g (l<i<n-1). 

PROPOSITION 11. Let L be a cyclic extension of K of degree n, and a 
a generator of its Galois group over K. Let X be a left vector-space of 
dimensionnoverL,withthebasis{u,,u,,...,u,.-,). Then,foreach8EK”, 
there is one and only one K-bilinear and associative mapping (x, y)-x y 
of X x X into X such that: (i) for all MEL and all XEX, tx=(<u,)x and 
XU,=X; (ii) Ui’(U1)‘for l<idn-1; (iii) (u,)“=8u,; (iv) <u,=u,(~uo). 
This makes X into a simple algebra A over K, in which the reduced trace z 
and the reduced norm v satisfy (8) and (9), and the factor-class of K attached 
to A is {x,0} if x is the character of 8 attached to L, such that ~(a)=e(l/n). 
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As all this has been proved above for the algebra A which we con- 
structed there, it only remains for us to show that the conditions (i) to (iv), 
together with the associativity, determine the multiplication uniquely. 
In fact, by induction on i, (iv) gives 5 ui = ui(ei u,,) for 0 < i < II - 1. Then, 
using (i) and the associativity of the multiplication, we get, for 
O<i,j,<n-landforall<,qinL: 

By (ii), u~u~=u~+~ if i+j~n-1; by (ii) and (iii), uiuj=O~i+j-n if i+j>n. 
This shows that, using (i) to (iv) and the associativity, one can write 
uniquely ({ui)(~uj) in the form [uk with [EL, which completes the proof 
of our proposition. 

DEFINITION 6. Assumptions and notations being as in proposition 11, 
the algebra A defined there will be called the cyclic algebra [L/K ;x,tI]. 

An illustration for the above concepts, which will be considered more 
closely in the following chapters, is provided by the division algebras 
over a commutative p-field K. In fact, prop. 5 of Chap. I-4 may now be 
interpreted as saying precisely that every such algebra D can be written 
as a cyclic algebra [K,/K;x,z], where K, is an unramified extension 
of K, x a character attached to K,, and rc a suitable prime element 
of K. But now we can say more; prop. 10, combined with prop. 3 
of Chap. VIII-l, shows that {x,c> is trivial for lgRX, so that {x,x} is 
independent of the choice of n ; so is [K,/K ; x,rc], since there can be only 
one algebra of given dimension over K in a given class, up to an isomor- 
phism. 

As a further illustration for the above theory, we will apply it to the 
field K = R. We may then identify R with C, and 6 has only two elements, 
the identity E and the automorphism rs of C given by z+Z, and only one 
non-trivial character x, given by x(a)= - 1. The cyclic extension of R, 
attached to x, is C. Combining now corollary 2 of prop. 3, $1, corollary 3 
of th. 3, $3, and propositions 9 and 11, we see that every class of simple 
algebras over R contains a cyclic algebra [C/R;x,8]. As the group 
N,,,(C) is R: and is of index 2 in R” , prop. 10 shows that there are 
exactly two such algebras, up to isomorphism, viz., a trivial one and the 
algebra H= [C/R ;x, - 11. The latter is a division algebra; in fact, it is of 
dimension 4 over R ; writing it as M,(D), where D is a division algebra 
over R, and calling d2 the dimension of D over R, we get n d = 2, hence 
n = 1 since H is not trivial. Writing H in the manner described in prop. 11, 
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we see that it has a basis over C consisting of two elements u,-, = 1 and ui, 
hence a basis over R consisting of 1, i,j=u, and k = iu, ; it is then trivial 
to verify that the multiplication table for 1, i, j, k is the well-known one 
for the “quaternion units” in the algebra of “classical” quaternions. 

0 5. Special cyclic factor-sets. Now we apply the results of $4 to the 
characters attached to “Kummer extensions” and to “Artin-Schreier 
extensions” of K. 

In the first place, let IZ be such that K contains n distinct n-th roots 
of 1; then these make up a cyclic group E of order n ; of course, if K is of 
characteristic p> 1, our assumption implies that n is prime to p. Let $ 
be an isomorphism of E onto the group of n-th roots of 1 in C; this will 
be determined uniquely if we choose a generator s1 of E and prescribe 
that $(s,)=e(l/n). Take any SeKX, and let x be any one of the roots of 
the equation X” = 5 in R ; then x is in K&,, and the equation X” = < has 
the IZ distinct roots ax, with EEE. In particular, for each 0~65, x” must be 
one of these roots, so that x6x-l is in E. Now put 

as E c K, the right-hand side does not change if we replace x by EX with 
EEE and is therefore independent of the choice of a root x for X”= 5. For 
a similar reason, we have, for all p, o in 0: 

X~~X-1=(X~X-l)a(X~X-1)=(X~X-1)(X~X-1), 

and therefore 
x,,r(Po)=Xn,C(P)X”,5(~)) 

which shows that x,,< is a character of 6. Take now any ~EK’, and 
call y a root of X” = q ; then x y is a root of X” = ?j q, and we have, for all 
GE@: 

and therefore 

which shows that t- x,,< is a morphism of K” into the group of char- 
acters of 6. It is obvious that x,,,( is trivial if and only if the equation 
X”= 5 has one root, hence all its roots, in K, i.e. if ME”; in other 
words, (K ’ )” is the kernel of 5 -+ x,,, <. It would be easy to show that the 
image of K” under that morphism consists of all the characters of 6 
whose order divides n, but this will not be needed. 

Now we put, for t and 9 in K: 
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this is known as “Hilbert’s symbol”; one should note that it depends 
upon the choice of $, or, what amounts to the same, of the generator s1 
of the group E of n-th roots of 1 in K. By prop. 8,3 4, we have : 

for all c, t’, 8,@ in K ‘. 
Call again x a root of x” = 4; clearly the kernel $ of x,,, 5 consists of 

the elements 0 of 8 such that x0=x, so that the corresponding subfield 
of Ksep which is the cyclic extension of K attached to xn, <, is L = K(x). 
Call d the order of xn,<; then xn,< determines an isomorphism of S/sj 
onto the group of d-th roots of 1 in C; d divides IZ, and it is also the 
degree of L over K. Therefore the distinct conjugates of x over K, i.e. 
its images under the d distinct automorphisms of L over K, are the ele- 
ments EX, where E runs through the group E’ of d-th roots of 1 in K. 
Write e=njd, and, for any [eK: 

e-l 
oJ= ncr-+), 

v=o 

where .sl , as before, is a generator of E ; as the ~1 for 0 d v de - 1 are a full 
set of representatives of the cosets modulo E’ in E, we have: 

&,,r&d= ~K-~x)=i”-~. 
EEE 

For i=O and [= 1, this shows that -5 and l-5 are in NLIK(L). By 
prop. 10 of 0 4, this gives: 

(11) Ii”,-5},=1, {5,1-<},=L 

these formulas being valid whenever they are meaningful, i.e. the first 
one for all t E K ‘, and the second one for all 5 # 0,l in K. In the first one, 
replace 4 by 5 VI with 5, q in K ‘, and apply (10) ; we get : 

Here, by (ll), the first factor is 1, and the last one is equal to {q, - l},,; 
applying (10) again, we get 

(12) ~h>:{%r>“= 1, 

which is known as “the law of reciprocity” for the symbol {t,yl},. The 
same could be proved by the explicit construction of the simple algebra 
corresponding to the latter factor-class; we merely sketch the proof in 
the case when the equations X” = <, X” = v] are both irreducible over K. 
That being assumed, put L = K(x), where x is a root of X” = 4 ; let A be 
the cyclic algebra [L/K; xn, r, ~1. By prop. 11 of Q 4, where we write now y 
instead of u1 , A has a basis over L consisting of the yj for 0 <j < IZ - 1, hence 
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a basis over K consisting of the xi yj with 0 < i, j < IZ - 1, with the relations 
x”={, y”=q, xy=s,yx. If we exchange c and r, and also x and y, A is 
clearly replaced by its inverse A0 ; this implies (12). 

Now let K be of characteristic p > 1; identify the prime field in K 
with F,, and call I// the character of the additive group of F, given by 
rl/(l) =: e(l/p). Take any <E K, and let x be any one of the roots of the 
equation X - Xp = 5 ; then x is in Ksep, and that equation has the p distinct 
roots x+a with UEF,. In particular, for each ~~(lj,x~ must be one of 
these roots, so that x”- x is in F,. Now put 

xp, &d = ICI 6” - 4 ; 

as the right-hand side does not change if we replace x by x+a with 
~EF,, it is independent of the choice of x. A calculation, quite similar to 
the one given above for x,,, <, shows that xp, 5 is a character of 6, and that 
5 -+ xp, r is a morphism of the additive group of K into the (multiplicative) 
group of characters of 8 ; the kernel of that morphism is the image of K 
under the mapping 5 + t - 5” of K into itself, and it would again be easy 
to show that the image of that morphism consists of x= 1 and of the 
characters of 8 of order p. Put now, for all 5 EK and all OE X” : 

Then we have: 

(13) (~+~‘,0},={~,0};{~‘,0>,~ {~,00’>,={~~0>;~~~0’~, 

for all <, 5’ in K and all 0, 0’ in K”. Assume now that x is not in K; 
then L=K(x) is the cyclic extension of K attached to x,,<, and it is of 
degree p over K ; Xp-X+ 5 =0 must then be the irreducible equation 
for x over K, so that N,,,(x) = ( - l)p 5 = - g. By prop. 10 of 5 4, this gives 

(14) {L -;“>p= 1, 

which is therefore valid whenever x is not in K. If XEK, xp, 6 is trivial, so 
that (14) is still valid provided it is meaningful, i.e. provided 5 # 0. There- 
fore (14) is valid for all ~EK ‘. 



Chapter X 

Simple algebras over local fields 

0 1. Orders and lattices. Let D be a division algebra of finite dimension 
over any field K; we will consider left vector-spaces over D, whose 
dimension will always be assumed finite and >O. If V and W are such 
spaces, we write Hom(K W) for the space of homomorphisms of V into 
K and let it operate on the right on V; in other words, if cI is such a homo- 
morphism, and VE V, we write v c( for the image of v under a. We consider 
Hom(v W), in an obvious manner, as a vector-space over K; as such, it 
has a finite dimension, since it is a subspace of the space of K-linear 
mappings of I’ into IV As usual, we write End(V) for Hom(K V). 

If K I”, V” are left vector-spaces over D, and aeHom(y V’) and 
j?EHom(V’,V”), we write c$ for the morphism u+(va)/? of I/ into I”‘. 
For I’= I/‘= Y,,, this makes End(V) into a ring; as before, we write 
Aut(V) for End(V)“, this being the group of automorphisms of I/: For 
I/= I”, V = v we get for Hom(K W) a structure of left End(V)-module ; 
for I” = I”‘= fl we get for Hom(K W) a structure of right End(W)- 
module. 

Let D and I/ be as above; let d2 be the dimension of D over K, and m 
that of V over D. Take a basis (vi, . . . , u,} of I/ over D ; for each <E End( V), 
write ui<=~xijvj, with Xij~D for l<i,j<m; this defines a mapping 

t+(xij) of &d(V) into M,(D), which is obviously an isomorphism of 
End(V) onto M,,,(D); in particular, this shows that End(V) is a simple 
algebra of dimension m2d2 over K. Obviously r! considered as a right 
End(V)-module, is simple; therefore, by prop. 1 of Chap. 1X-1, every 
such module is a direct sum of modules isomorphic to K 

Let I’ and W be left vector-spaces over D ; call m, n their dimensions ; 
put A = End(V), B = End(W), H = Hom( I’, W). As H is a right B-module, 
it is a direct sum of modules isomorphic to W; comparing dimensions 
over K, one sees at once that it is the direct sum of m such modules. 
Similarly, as a left A-module, H is the direct sum of n modules isomor- 
phic to the dual space I/’ = Hom(K D) of I! this being a simple left 
A-module and a right vector-space of dimension m over D. One could 
easily see that every endomorphism of H for its structure as a left 
A-module is of the form n+nfi with PEB, and that every endomorphism 
of H for its structure as a right B-module is of the form 1+a;l with aeA. 
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Let D, V and A = End(V) be as above, and let v be the reduced norm 
in A ; by corollary 1 of prop. 6, Chap. 1X-2, the determinant of the endo- 
morphisms x+c(x and x-+x& of the underlying vector-space of A 
over K, for any CIE A, is ~(a)~~ ; in particular, a is in Ax if and only if 
VW # 0. 

If K is a local field, all the above spaces, being vector-spaces of 
finite dimension over K, can be topologized as such in one and only 
one way, according to corollary 1 of th. 3, Chap. 1-2 ; conversely, by 
corollary 2 of the same theorem, the requirement of finite dimensional- 
ity over K could everywhere be replaced by that of local compactness. 
If we write again A = End(V), the group A” = Aut(V) is the open subset 
of A determined by ~(a)# 0; as such, it is a locally compact group. More- 
over, the Haar measure in it is right-invariant as well as left-invariant; 
this is contained in the following lemma, which generalizes lemma 5 
of Chap. VII-4: 

LEMMA 1. Let K be a local field; let D, V and A= End( V) be as above, 
and let CI be a Haar measure on A. Then the measure p on A”, given by 

dp(x) = mod,(N,,,(x))- i dcr(x) = mod,(v(x))-mdda(x) 

is both left-invariant and right-invariant on A”. 

This follows at once from corollary 1 of prop. 6, Chap. 1X-2, com- 
bined with corollary 3 of th. 3, Chap. I-2. 

In the rest of this 0, we assume that K is a commutative p-field ; 
D being a division algebra over K, hence also a p-field (a non-commuta- 
tive one, unless d = l), we write R and Ro for the maximal compact 
subrings of K and of D, and P and PD for the maximal ideals in R and 
in R,, respectively. 

Let V and W be as above; let L be a D-lattice in V, and M a D-lattice 
in W; then we write Hom(V,L; W,M) for the set of all morphisms of 
V into W which map L into M. Choose bases {vi ,..., v,}, {wr ,..., w,,} 
for V and W according to th. 1 of Chap. 11-2, i.e. so that L=c R,vi 
and M=xRowj. For each 2~Hom(V, W), we can write vi~=~xijwj 
with xij~ D for 1 <i < m, 1 <j< n, and this determines a bijection ;l+(xij) 
of Hom(V, W) onto the space M,,.(D) of the matrices with m rows and n 
columns over D ; clearly 2 is then in Hom(V, L; W, M) if and only if the 
matrix (xii) is in M,,,(R,). In particular, this shows that Hom(V, L; W,M) 
is a K-lattice in the space Hom(V, W) considered as a vector-space 
over K, and also that it can be identified with the space of all morphisms 
of L into M for their structures as R,-modules. We write End(V, L) for 
Hom(V, L; V, L) ; this is a K-lattice and an open compact subring of 
End(V), which may be identified with End(L). We write Aut(V,L) for 
End(V, L)” ; it is the group of automorphisms of L. 
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PROPOSITION 1. Let K be a p-field, D a division algebra over K, V a 
left vector-space over D, and La D-lattice in V. Let v be the reduced norm 
in the algebra A= End(V) over K. Then Aut(V, L) consists of the ele- 
ments [ of End(V, L) such that mod,(v(l))= 1. 

Take 5 E A ; it is in AX if and only if v(c) #O. If m, d are as before, 
the module of the automorphism x-+x5 of A is modK(v(t))“d; as A, for 
its structure as a right A-module, is the direct sum of m modules iso- 
morphic to V, this implies that the module of the automorphism v-+vs 
of V is modK(v(Q)d. N ow assume that 5 is in End(V,L); then it maps L 
onto a D-lattice L’= L( contained in L, so that the module of v+vt 
is equal to [L: L’]-I. This shows that L= L’ if and only if mod,(v(t))= 1, 
which proves our proposition. 

COROLLARY. Notations being as in proposition 1, Aut( V, L) is a com- 
pact open subset of End(V, L) and of End(V) and a compact open sub- 
group of Aut(V). 

This is now obvious. 

PROPOSITION 2. Let V be as in proposition 1; let X be a multipli- 
catively closed subset qf End(V). Then X is relatively compact in End(V) 
if and only if there is a D-lattice L in V such that Xc End( I! L). 

Let X be relatively compact in End(V); we may assume that it is 
compact, since otherwise we replace it by its closure. Let L be any 
D-lattice in V. Call L’ the set of the vectors VEL such that V~EL for all 
<E X ; clearly this is an &module, hence closed, by prop. 5 of Chap. II-2 ; 
being contained in L, it is compact. As X is compact and L is open, 
L’ is open. Therefore L’ is a D-lattice. As X is multiplicatively closed, 
v l is in L’ for all VEL’ and all [EX, so that Xc End(l/;L’). The converse 
is obvious. 

PROPOSITION 3. Let V be as above, and let L, L’ be two D-lattices in V. 
Then either Aut(V, L) is not contained in End(V,L’), or there is XED’ 
such that L’ =x L. 

By th. 2 of Chap. 11-2, there is a basis {v,, . . . ,v,} of V, and there are 
integers Vi, such that L=xR,vi and L’=~P$Vi. Every permutation of 
the vi determines an automorphism of V which belongs to Aut(V,L); 
if all these are in End(V, L’), all the vi must be equal ; if v is their common 
value, we have L’=ngL for any prime element 7~~ of D. 

THEOREM 1. Let D be a division algebra over a p-field K, and let V 
be a left vector-space over D. Then the maximal compact subrings of the 
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algebra A=End(V) are the rings End(V, L), and the maximal compact 
subgroups of A” are the groups Aut(V, L), when one takes for L all the 
D-lattices in V. 

By prop. 2, a compact subring of End(V) must be contained in some 
End(V L), hence must be equal to it if it is maximal. Now assume that, 
for some L, End(V, L) is contained in a compact subring X of End(V); 
this, in turn, must be contained in some End(V,.L!). Then, by prop. 3, 
L’=xL with some XED~; this gives End( V, L!) = End( V, L), hence 
X= End(V, L). Similarly, a compact subgroup of A” = Aut(V) must be 
contained in some End(V, L), hence in End(V, L)“, i.e. in Aut(V, L). If 
this is contained in a compact subgroup X of Aut(V), X must be con- 
tained in some End( V, L), and we get L’= x L and X = Aut( V,L), just as 
before. In the conclusion of theorem 1, one might take for L, instead 
of all the D-lattices in V, a full set of representatives for the equivalence 
relation among D-lattices defined by L’= x L, x E D” . 

Compact open subrings of a simple algebra over a p-field are also 
called orders; thus, the first part of theorem 1 states the existence of 
maximal orders in the algebra A= End(V), viz., all the rings End(V, L). 
As we have seen above, these are all isomorphic to M,,&) if m is the 
dimension of V over D; clearly they are the transforms of one another 
under the automorphisms of V, since any basis of V over D can be trans- 
formed into any other basis by such an automorphism. It amounts to 
the same to say that they are the transforms of one another under the 
inner automorphisms of A. 

PROPOSITION 4. Let D be as above, and let V, W be two left vector- 
spaces over D. Let M, M’ be compact open subgroups of Hom(V, W), and 
let X be the set of the elements t of End(V) such that [M c M’. Then X 
is a compact open subgroup of End( V) ; if M = M’, it is a subring of End( V). 

Obviously X is a subgroup of End(V), and a subring if M = M’. 
As M is compact and M’ is open, X is open. Now put H= Hom(V, W). 
As M is open, it contains a basis {pi,. . . ,b} for H regarded as a vector- 
space over K. If now we regard H as a left End( V)-module, the annihila- 
tor of that basis in End(V) is the same as that of H, hence (0) since 
End(V simple and Wis not (0). Therefore the mapping r-(<pi,...,{&) 
of End(V) into H’=H x ... x H is injective, hence an isomorphism of 
End(V) onto its image in H’, for their structures as vector-spaces over K, 
hence also for their topological structures. This implies that the set X’ 
of Fhe elements r of End(V) such that <k~ M’ for 1 <i< r is compact. 
As X is a subgroup of X’ and is open in End(V), it is an open subgroup 
of X’, hence closed in X’, hence compact. 
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For M =M, the ring X defined by proposition 4 is called the left 
order of M. Exchanging right and left, we see that the set Y of the ele- 
ments ‘1 of End(W) such that Mn c M is a compact open subring of 
End(W); this is called the right order of M. Now we show that, if one 
of these orders is maximal, the other is also maximal. This is contained 
in the following: 

THEOREM 2. Let K and D be as in theorem 1; let V, W be two left 
vector-spaces over D, and let L be a D-lattice in V. Let N be a compact 
open subgroup of Hom(V, W) such that 4; NC N for all 5 in End(V, L). 
Then there is a D-lattice M in W such that N= Hom(V,L; W,M), and 
the left and right orders of N are End(V,L) and End(W, M), respectively. 

By th. 1 of Chap. 11-2, we can choose a basis {vr ,..., v,} of V over D, 
so that L= 1 R,vi ; then, as explained above, we can use this basis for 
identifying End(V) with M,,,(D) and End(V, L) with M,(R,), by assigning 
to each element 5 of End(V) the matrix (x,) given by Uis=Cxijvj. Now 
consider the mapping c~+(ui c1,.. .,~,,,a) of Hom(V, W) into the direct 
sum W” of m spaces isomorphic to W; clearly it is a bijection of 
Hom(V, W) onto W”; call it rp, and put N’=(p(N), where N is the set 
in theorem 2. If CI is in Hom(V, W) and cp(a)=(w,,...,w,), and if 5 and 
(xij) are as above, then cp(ta)=(w;,...,wA), with w~=~xijwj for 1 di<m; 
by our assumption on N, this must be in N’ whenever (wl,. . . , w,,,) is in N’ 
and all the xij are in R,. Writing eij for the “matrix units” in M,(D), 
as defined in the proof of th. 1, Chap. IX-l, take first for (xij) the matrix 
unit e,,,, ; then we see that, if (wr , . . . , w,,,) is in N’, every one of the elements 
(0 )...) 0, Wh,O )...( 0), for 1 <h <m, must also be in N’. This is the same 
as to say that, if we call WI, . . . , W, the m summands of W”, and if we 
put NA= N’n W, for 1 <h <m, we have N’=x NA. Similarly, taking for 
(xij) the matrix unit ehk, we see now that Ni = NL for all h and k ; put 
M = NA for any h. Finally, taking for (xij) the matrix x.1, with XER,, 
we see that M is an R,-module. As N is open and compact in Hom( V, W), 
N’ is so in W”, hence NA in W,, and M in W; therefore M is a D-lattice 
in W. Now we see that an element CI of Hom(V, W) is in N if and only if 
viaisinMfor1~i~m;thisisthesameastosaythatN=Hom(V,L;W,M). 
Then the left order and the right order of N contain End(V, L) and 
End(W,M), respectively; as the latter are maximal orders, this com- 
pletes our proof. 

COROLLARY 1. Let A be a simple algebra over K, RA a maximal com- 
pact subring of A, and I a left ideal in RA. Then Z is open in A if and only 
if it can be written as I=R,a with MERRIAM. 
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We may assume that A =End(V), where V is as in theorem 2 ; then, 
by th. 1, we may assume that R,= End(VL), where Lis as in theorem 2. 
If I is open, we may apply theorem 2 to it, taking W= V and N =I ; 
this gives I = Hom( V, L ; V, M), where M is a D-lattice in V. Take bases 
{b..., %>2 {WI,... ,w,,,} of V, so that L=xR,vi and M=xR,q, and 
call 5 the automorphism of V which maps the former basis onto the 
latter one. Then M = L t and I = R, i” ; as 5 is in I, it is in RA. The con- 
verse is obvious. 

COROLLARY 2. Let A and RA be as in corollary 1, and let J be a com- 
pact two-sided R,-module in A, other than (0); then J is open in A. If 
A= End(V) and R, = End(V, L), with V and L as in theorem 2, then J 
can be written as J= Hom(V, L; V,rtg L), where VEZ and rcn is a prime 
element of D. 

As RA is a K-lattice in A, we can choose a basis {a,,. . .,c(N} of A 
over K, consisting of elements of RA. If [ is in A and not 0, the two-sided 
ideal generated by 5 in A is A, since A is simple ; therefore the elements 
cci5crj, for 1 <i, j< N, generate A as a vector-space over K, so that the 
R-module they generate in A is a K-lattice, hence open. This implies 
that the set J in our corollary must be open ; then, by theorem 2, we 
can write it as J= Hom(V, L; V,M), where M is a D-lattice in V such 
that End(V, M) contains End(V, L). By prop. 3, this gives M = x L with 
xeDX ; we have then M=rt;L for v=ord,(x). 

If V and W are as in theorem 2, any set N with the properties des- 
cribed there, i.e. any set which can be written as N = Hom(V, L; W, M) 
for suitably chosen D-lattices L in V and M in W, will be called a normal 
lattice in Hom(V, W). 

0 2. Traces and norms. As before, we consider a local field K, a 
division algebra D of dimension d2 over K, and a simple algebra A 
over K, isomorphic to M,(D) for some m 2 1; we denote by r and z, 
the reduced traces in A and in D, and by v and v, the reduced norms 
in A and in D, respectively. We begin by considering the case of a p-field. 

PROPOSITION 5. Let K be a p-field; let D be a division algebra of 
dimension d2 over K; let Rn be the maximal compact subring of D, and 
let n, be a prime element of D. For any ma 1, put A=M,(D) and 
RA = M,,,(R,), and let z be the reduced trace in A. Then the set of the 
elements x of A, such that z(xy)~R for all PER,, is oR,= R,o, with 
O=7gd.lm. 

Consider first the case m= 1, A= D, RA = R,. As has already been 
observed in Chap. 1X-4, we may use prop. 5 of Chap. I-4 to describe D 
as a cyclic algebra [K,/K; x,rc] over K, where K, is an unramified 
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extension of K of degree d, x a character attached to that extension, 
and rc a prime element of K; then a comparison of that proposition 
with the definition of a cyclic algebra in prop. 11 of Chap. IX-4 shows 
that ur, in the latter proposition, is a prime element of D. We may now 
substitute u1 for rcD, as this does not affect the statement in our proposi- 
tion, and write therefore rcD=ul, hence, with the notations of prop. 11 
of Chap. 1X-4, u,=& for O<i<d - 1 and z=rc$. Call R, the maximal 
compact subring of K,; by (b) in prop. 5 of Chap. I-4, R, is the left 
RI-module generated by uO,. . .,u,- I ; therefore any XE D has the pro- 
perty stated in our proposition if and only if ~~D(xqrcQ~ R for all Y]ER~ 
and for 0 <j < d - 1. Again by (b) in prop. 5 of Chap. I-4, we may write 
x = c ti rcb with tin K, for 0 < i d d - 1. Using formula (8) of Chap. IX-4 

for the reduced trace zD in D, we get, for j=O, YDK,,K(~O~)~ R for all 
rl E R I ; by prop. 3 of Chap. VIII-l, this is so if and only if t,, E R t. Similar- 
ly, for 1 <j<d- 1, our condition can be written as Tr,,,,(&-j$n)ER 
with $=$, p=&*; as every automorphism /I of K, maps R, onto 
itself, this must be so for all V’E R,, and this, just as before, is equivalent 
to [d-jE7(-1 R,. Therefore the set defined in our proposition is the 
R, -module generated by 1,~~ ‘z,, . . ., z- ’ r$ ‘, i.e. by the elements 
wDnbfor06i<d-1 ifw,=$* . In view of(b) in prop. 5, Chap. I-4, this 
completes our proof for the case m = 1. For m> 1, our conclusion follows 
immediately from this and from corollary 2 of prop. 6, Chap. 1X-2, 
which says that z(x) = CzD(xii) for x = (xii) in A. 

COROLLARY 1. Assumptions and notations being as in proposition 5, 
let x be a character of K of order 0, and identify A with its topological 
dual by putting (x, y) =x(z(xy)). Then the dual K-lattice to RA is oRA. 

In fact, this dual lattice is defined as the set of the elements x of A 
such that x(z(xy))= 1 for all YER,. As z is K-linear, this is the same 
as to say that x($x y)z)= 1 for all PER, and all ZER, hence, by prop. 12 
of Chap. 11-5, the same as z(x ~)ER for all YER,. 

COROLLARY 2. Let A be a simple algebra over K; let z be the reduced 
trace in A, x a character of K of order 0, and identify A with its topologi- 
cal dual by (x, y) = x($x y)). Let M and M’ be two K-lattices in A, dual 
to each other in A. Assume that both M and M’ are subrings of A. Then A 
is trivial over K, M is a maximal compact subring of A, and M = M’. 

By th. 1 of Q 1, M is contained in some maximal compact subring RA 
of A, and we may, by using a suitable isomorphism of A with an algebra 
of the form M,(D), identify A with M,(D) and RA with M,(R,), where 
notations are as in proposition 5. As M c RA, corollary 1 shows now 
that M’~coR,x R,, hence, by th. 1 of 9 1, M’=oR,= RA. Clearly this 
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implies that d = 1, i.e. that A is trivial, and then, again by corollary 1, 
that M=R,. 

PROPOSITION 6. Let K be a p-field, A a simple algebra over K, and v 
the reduced norm in A. Then v(A”) = K”. 

By corollary 3 of prop. 6, Chap. 1X-2, it is enough to consider the 
case A = D ; then, just as above, we can write D as a cyclic algebra and 
use for vD the formula (9) in Chap. 1X-4. With the same notations as 
above in the proof of prop. 5, this shows, firstly, that v,(D’) contains 
NK&R;), which is the same as R” by prop. 3 of Chap. VIII-l, and 
secondly that it contains vD(ul)= rc. As K” is generated by R” and n, 
this proves our proposition. 

In the case of R-fields, the conclusion of proposition 6 is of course 
valid for A= M,,,(K) with K = R or C, but not for K = R and A = M,(H). 
In fact, as we have seen in Chap. 1X-4, the algebra H of “classical” 
quaternions has a basis over R, consisting of the “quaternion units” 
1, i, j, k, with the relations i2 = - 1, j’ = - 1, k = ij = -ji, which imply 
k2= -1, i=jk= -kj, j=ki= -ik. Clearly the R-linear bijection x+X 
of H onto itself which maps 1, i, j, k onto 1, - i, -j, - k is an antiautomor- 
phism, i.e. it maps xy onto JZ for all x, y. In order to determine the 
reduced trace z and the reduced norm v in H, one needs a C-represen- 
tation F of H. By applying some of the results in Chap. IX, or by a direct 
computation, one finds that such a representation is given by 

F(l)= 12, F(i)= (i -(!!, WI= (-y i), WI= (0 i) 
Then one finds at once, for x=t+ui+vj+wk, with t, u, v, w  in R: 

$x)=x+51=2& v(x)=xx=xx=t2+U2+v2+W2. 

This shows that v maps H” onto Rt ; by corollary 3 of prop. 6, Chap. 1X-2, 
the same is therefore true for A = M,(H) for any m> 1. 

9 3. Computation of some integrals. Here, in preparation for the 
computation of the zeta-function of a simple algebra in Chapter XI, we 
carry out some local calculations, generalizing the results of prop. 11, 
Chap. VII-4, and of lemma 8, Chap. VII-6. 

Take first a p-field K and a division algebra D over K. Call RD the 
maximal compact subring of D, PD the maximal ideal in R,, and rcD a 
prime element of D. For each ea0, choose a full set A(e) of represen- 
tatives of the classes modulo P; in RD. Now, for a given ma 1, we define 
three subsets 2, 2’, 2” of M,(D)“, as follows. By 2, we understand the 
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group of “triangular” matrices in M,(D)“, consisting of the matrices 
t=(tij) such that tij=O for l<jtidm, and tii#O for l<i$m. By 2’, 
we understand the subset of 2, consisting of the matrices t=(tij) in 2, 
such that tij~ R, for all i, j, and that each tii, for 1< i < m, is of the form 
rc$ with e,aO. By 2”, we understand the subset of 2’, consisting of the 
matrices t= (tij) in 2’, such that tij~A(ej) for 1~ i<j<m, ej being given 
by tjj= ~2. With these notations, we have : 

LEMMA 2. Let V be a left vector-space of dimension m over D; let L 
be a D-lattice in V, and let {q,. . . , v,,,} be a basis of I/such that L=xR,vi. 
Let L be a D-lattice in V, contained in L. Then there is one and only one 
basis {vi ,...,vk}of V,suchthatL’=~Rnv~andthatvf=~tijvjforl<i<m, 

j 
with a matrix t = (tij) belonging to the set 2”. 

For 1 < idm, call K the subspace of V generated by ui,. . .,a,,,. Let 
{Wl,... , w,} be any basis of V, and write it as wi=cxijvj. Clearly the 
matrix x=(xij) is in 2, i.e. it is triangular, if and only if, for each i, 
{wi,***, w,,,} is a basis of li$. By th. 1 of Chap. 11-2, one can choose such 
a basis for which L,‘=C Row;; then, since L’c L, all the xij are in RD. 
Write xii = yi 7c2, with y,~R;, and e,EZ, for 1 <i<m, and replace the wi 
by the vectors y; r wi, which obviously have the same properties ; after 
that is done, the matrix (Xij) is in 2’. Assume now that there are vectors 
vi,.. .,uk such as required by the lemma, and write vi =czijw.; clearly 
the matrix (Zij) must then be triangular, and, as L’= 1 Rnvi = 2 Ro wi, it 
must be in M,(R,)” ; for a triangular matrix (zij), the latter condition 
is fulfilled if and only if ziie R;I and zij~ R, for all i, j. Then the coefficient 
of ui in vi is zii7cegi, and, as this must be of the form $,, we must have 
zii = 1. Now, for 1 d i <j < m, the coefficient tij of vj in vi is given by 

j-l 

tij=Xij+ 1 ZihXhj+ZijTT;j, 
h=i+l 

and the proof of the lemma will be complete if one shows that the zij, 
for 1 < i<jQm, can be uniquely chosen in R, so that tijEA(ej) for 
1 <i <j<m. For each value of i, this can be verified at once by induc- 
tion on j for i+l<j<m. 

LEMMA 3. The set 2” is a full set of representatives for those left 
cosets of M,,,(Ro)” in M,(D)” which are contained in M,,,(R,). 

Take a left vector-space V of dimension m over D, a D-lattice L 
in V, and a basis {u,,..., vm} of V such that L= 1 Rnq ; as before, identify 
End(V) with M,(D) by assigning, to each [EEnd(V), the matrix (xij) 
given by uit= cxijuj: put A= End(V) and R,=End(VL); then R,= 
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=M,,&), and Ri , i.e. M,(R,)“, consists of the automorphisms 5 of 
I/ such that L{= L. Therefore two elements CI, fi of A” belong to the 
same left coset of R; if and only if La = L/3 ; that left coset is contained 
in R, if and only if La c L. At the same time, by lemma 2, every D-lattice 
L’of V, contained in L, can be written in one and only one way as 1 R,vi 
with v;=xtijvj and (tij)g2”; this is the same as to say that it can be 
written in one and only one way as Lz with r&Y, which proves our 
lemma. 

PROPOSITION 7. Let K be a p-Jield with the module q; let D be a division 
algebra of dimension d2 over K. Let A be a simple algebra over K, isomorphic 
to M,,,(D). Let R, be a maximal order in A, and cp its characteristic function. 
Let v be the reduced norm in A, and let ,LL be the Haar measure in A” such 
that ,u(R;) = 1. Then the integral 

Z(s)= J cP(4mo4&Wddd 
AX 

where SEC, is absolutely convergent for Re(s)>d(m- 1) and has then the 
value 

m-1 

Z(s)= n (1 -qd’-s)-l. 
i=O 

As before, identify A with End(V) and R, with End(T/;L), where I/ is 
a left vector-space of dimension m over D, and L a D-lattice in V. By 
prop. 1 of Q 1, the integrand in I(s) is constant on left cosets of Ri in A” ; 
in view of the definition of p, this gives: 

Z(s) = Cmod,(v(4)“, 

the sum being taken over any full set of representatives of those left 
cosets of Ri in A” which are contained in R,, and for instance over 
the set 2” supplied by lemma 3. If we identify now A with M,(D) and 
R, with M,(R,) as before, 2” consists of the triangular matrices t = (tij) 
such that tii = rcz and tijeA(ej) for all i, j, the e, being integers 20. By 
corollary 2 of prop. 6, Chap. 1X-2, we have then v(t) = n v,(tii) = vow 
with E = xei, vg being the reduced norm in D; as we have seen in 9 2, 
vg(zng) is a prime element of K if rrl) has been suitably chosen, and this 
implies that the same is true for any choice of rcn,. This gives mod,(v(t)) = 
=4-E. On the other hand, prop. 5 of Chap. I-4 shows that the module of 
D is qd, so that, for each e>O, the set A(e) consists of qde elements. Therefore, 
for a given set of integers e,, . . ., e,, there are qdN matrices t&“, with 
N=x(i-l)e,.Thusweget: 

1 m /+m \ 
Z(s)= I-I 1 (qd(i-l)-s)e . 

i=l L e=O ) 
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Clearly this is absolutely convergent for Re(s)>Q(m- 1) and has then 
the value stated in our proposition. 

COROLLARY. Let I(s) be as in proposition 7, and let Z,(s) be similarly 
defined for the algebra A,, = M,,(K) with n=dm. Then we have, for 
Re(s)>n-1: 

mMs)-‘= o<q<“(l-qh-s). 
h + ‘X4 

This follows at once from proposition 7. 

We will also need the corresponding results for algebras over R- 
fields. Here we have either K = R, and D = R or H, or K = D = C. In all 
three cases, x-+Z is an antiautomorphism of D such that x5?> 0 for all 
XED~ ; it is the identity if D =R, the non-trivial automorphism of C 
over R if D = C, and it is as defined at the end of 5 2 if D = H. As usual, if 
x = (xij) is any matrix in M,(D), we write ‘X for its transpose, and ji for 
the matrix (Zij); then x--t% is an antiautomorphism of M,(D). We will 
write 2 for the set of all triangular matrices (tij) in M,(D) such that 
tiiER: for 1< i < m ; clearly this is a subgroup of M,(D)“. Now let I/ be 
a left vector-space of dimension m over D. For the sake of brevity, and 
although this does not quite agree with the established usage, we will 
say that a mapping f of Vx V into D is a hermitian form on I/’ if there is a 
basis (vi, . . . . v,} of I/’ such that, for all xi, yi in D: 

every basis of I/’ with that property will then be called orthonormal for 
5 One sees at once that a basis { wl, . . . , w,} is orthonormal for f if and 
only if f (wi, wj) = 6,, for all i, j, or even if this is so merely for 1~ i <j < m. 
We topologize the space of all hermitian forms on I/ by the topology of 
“uniform convergence on compact subsets” of Vx I/‘; in other words, for 
each compact subset C of Vx V, and each e>O, the set of the hermitian 
forms f’ such that mod,(f’ -f) < E on C is to be a neighborhood of f, 
and these make up a fundamental system of neighborhoods off in the 
space of hermitian forms. 

LEMMA 4. For D = R, H or C, let V be a left vector-space over D, with 
the basis (vl, . . . . v,}, and let f be a hermitian fvrm on V Then there is one 
and only one orthonormal basis {vi, . . ., v&} for f such that vi= Ctijvj 
with (tij)&, and it depends continuously upon jY 

The proof is straightforward, and so well known that it may be 
omitted here. 
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Let I/ be as above ; let fbe a hermitian form on K with the orthonormal 
basis {ur ,..., v,}. Let {wr ,..., wmj be a basis of x given by wi = cuijvj 
with u=(uij)~M,(D); a trivial calculation shows at once that this is 
orthonormal for f if and only if u.‘U= 1,; clearly the matrices u with 
that property make up a compact subgroup of M,(D)‘, which we will 
denote by U. Now let a be any automorphism of I/; we will write f” 
for the transform of f by ~1, i.e. for the mapping defined by f”(v,w)= 
=f(vC1-l,wa-’ ) for all u, win I/; this is a hermitian form, with the ortho- 
normal basis { v1 CI, . . . , V,CI}. Clearly, when we identify A = End( V) with 
M,(D), as before, by means of the basis {ur,.. .,vlmj, U is the subgroup of 
Ax = M,(D)” consisting of the automorphisms < of I/ such that f5=f. 

LEMMA 5. The subgroups 2 and U of A ’ = M,,,(D) x being us defined 
above, the mapping (u, t)-u t is a homeomorphism of U x 2 onto A ‘. 

Let I! f and the orthonormal basis { ur, . . ., v,} be as above ; use that 
basis again to identify A= End(V) with M,(D), hence A” with M,(D)“. 
Let CY, /I3 be in A ’ ; we have f” =fP if and only if f=fau- I, i.e. if and only 
if/I@-’ EU, or /?eUa. Now, for any CYE A x, apply lemma 4 to f”; it shows 
that there is one and only one matrix (tij)& such that the vectors 
vi = c tijuj make up an orthonormal basis for f”. This is the same as to 
say that the automorphism T of V which corresponds to that matrix, i.e. 
which maps {vr, . . . . urn} onto {II;, . . . . vh}, transforms f into f’=f”. 
Moreover, by lemma 4, the matrix (tij) depends continuously upon f”, 
hence upon ~1. Expressing this in terms of the matrices x, U, t in M,(D)” 
which correspond respectively to a, CIZ-’ and r, we get the assertion in 
our lemma. 

LEMMA 6. Notations being as in lemma 5, let u be a Haar measure 
on A ‘. For every continuous function F with compact support on 2, call 
F’ the function on A” such that F’(u t)= F(t) for all UE U and all tE2. 
Then F’ is continuous with compact support on A”, and there is a right- 
invariant measure 6 on ‘I such that 1 F’du = 1 F dg for all F. 

The first assertion follows at once from lemma 5 and the compacity 
of the group U. Then, as p is right-invariant on A” by lemma 1, 9 1, 
it is obvious that the mapping F+iF’du is invariant under right trans- 
lations in 1. By the theory of the Haar measure, this shows that 8 is 
the image of a Haar measure, i.e. of a left-invariant measure on 2, 
under the homeomorphism t+t-’ of 2 onto itself. 

LEMMA 7. Let c( be a Haar measure on D; put 6= [K:R], and write, 
for t=(tij)E2: 

de(t) = fi (I~;~““(~- ‘)-I dtii) . n dcc(tij). 
i= 1 ldi<j<m 

Then this defines a right-invariant measure on 2. 
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As 6d2 is the dimension of D over R, corollary 2 of th. 3, Chap.I-2, 
shows that, for every UER;, the module of the automorphism x-+xa 
of D is add2. A straightforward computation shows then at once, firstly 
that the measure 9 in lemma 7 is invariant under t-t t’ for every diagonal 
matrix t’e2, and secondly that it is invariant under t-+t t” for every 
matrix t” = (t$e2 such that ti\ = 1 for 1 < i < m. As every matrix in 2 
can be written in the form t’ t”, this proves our lemma. 

PROPOSITION 8. Take K = R and D = R or H, or K = D = C ; call 6 the 
dimension of K over R, and d2 that of D over K. Call z the reduced trace 
and v the reduced norm in the algebra A= M,,,(D) over K. Let n be a Haar 
measure in A x. Then the integral 

Z(s) = Sexp(-rr?jr(‘z.x))mod,(v(x))“dp(x) 
AX 

is absolutely convergent for Re(s) > d(m - l), and, for a suitable choice of 
,u, it has then the value 

PI-1 
Z(S)=(~~~)-“~~“‘~ n T(6d(s-di)/2). 

i=O 

Clearly the first factor in the integrand of Z(s) is constant on left 
cosets of U in A ‘. Now, for any UEU, put z = v(u). If D = K, this means 
that z=det(u), so that UE Uimplies zZ=l, hence mod,(z)=l. If K=R 
and D =H, we have, for all XE A, v(x)= det(F(x)), where F is an iso- 
morphism of A into M,,(C); but then x+‘F(‘x) is also such an iso- 
morphism, so that v(%)= v(x); this implies that, for UEU, v(u)‘= 1, and 
therefore v(u)= 1 since we have seen in Q 2 that v maps M,(H)’ into 
RT. Therefore, in all cases, the second factor in the integrand of Z(s) 
is also constant on left cosets of U in A x. That being so, lemmas 6 and 
7 show that, for a suitable choice of p, Z(s) is the same as the integral 
with the same integrand, but taken on 2 with the measure de(t). The 
reduced trace zD in D is given by z,(x)= x if D= K, and 7,(x)=x+ jl 
if K = R and D =H ; in view of corollary 2 of prop. 6, Chap. 1X-2, we 
have now, for t =(tij)~2: 

z(‘t.t)=d. C ~ijtij, V(t) = 1 <~_(tii)d. 
1diQjQm . . 

This gives : 

L(s) = ifiI (‘d exp(--n6dt2) tSiP’dt) . (1 exp(-Ir6dtt)da(t)) “- 
D 

with si=6d(s- di+d) for 1 <i< m. The last factor is independent of 
s and is > 0. The other factors can be transformed into the usual integral 
for the gamma function by an obvious change of variable. Up to a 
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constant factor >O, which can be rendered equal to 1 by changing the 
Haar measure ~1, the result is that stated in our proposition. 

COROLLARY. Assume, in proposition 8, that K =R and D =H ; let 
I(s) be as defined there, and let I,(s) be the similarly defined integral for 
the algebra A, = M,(R) with n = 2m. Then we have, for Re(s) > n - 1: 

I(s)l = y n (s-h) 
O<h<n 
h 10(z) 

with a constant y > 0. 

This is an immediate consequence of proposition 8 and of the iden- 
tities 

T(s+l)=sT(s), q4=7+22”-‘r s r 
(2) (F) 

from the theory of the gamma function. 



Chapter XI 

Simple algebras over A-fields 

$ 1. Ramification. In this Chapter, k will be an A-field; we use all 
the notations introduced for such fields in earlier Chapters, such as 
k,, k,, r”, etc. We shall be principally concerned with a simple algebra 
A over k; as stipulated in Chapter IX, it is always understood that A 
is central, i. e. that its center is k, and that it has a finite dimension over 
k; by corollary 3 of prop. 3, Chap. IX-l, this dimension can then be 
written as n2, where y1 is an integer 3 1. We use A,, as explained in Chap- 
ters III and IV, for the algebra A,=A@k,. over k,., where, in agreement 
with Chapter IX, it is understood that the tensor-product is taken over 
k. By corollary 1 of prop. 3, Chap. IX-l, this is a simple algebra over 
k,.; therefore, by th. 1 of Chap. 1X-1, it is isomorphic to an algebra 
M,,,,(D(u)), where D(u) is a division algebra over k,,; the dimension of 
D(u) over k, can then be written as d(u)‘, and we have m(v)d(u)=n; 
the algebra D(u) is uniquely determined up to an isomorphism, and 
m(u) and d(u) are uniquely determined. One says that A is amramified or 
ramified at u according as A, is trivial over k, or not, i. e. according as 
d(u)= 1 or d(u)> 1. 

THEOREM 1. Let A he a simple algebra over an A-jield k; let a be a finite 
subset of A, containing a basis qf A ouer k. For each finite place u of k, 
call a(L: the r,-module generated by ct in A,. Then, for almost all u, A, is 
trivial ouer k,, and a,. is a maximal compact subring of A,.. 

By corollary 1 of th. 3, Chap. III-l, we may assume that CI is a basis of 
A over k, and that 1, belongs to it. Call z the reduced trace in A; by prop. 6 
of Chap. IX-2, it is not 0, and its k,-linear extension to A, is the reduced 
trace in A,. By lemma 3 of Chap. 111-3, we may identify the underlying 
vector-space of A over k with its algebraic dual by putting [x, y] = z(x y). 
Now, as in th. 3 of Chap. IV-2, take a “basic character” x of k,. By corol- 
lary 1 of that theorem, xv is of order 0 for almost all u; by corollary 3 of 
the same theorem, the kc-lattice c(,, is its own dual for almost all u, when A, 
is identified with its topological dual by putting (x, y) =~,,(~(xy)). By 
corollary 2 of th. 3, Chap. III-l, a, is a compact subring of A, for almost 
all u. Therefore, at almost all places u of k, the assumptions of corollary 2 
of prop. 5, Chap. X-2, are valid, the conclusion being as stated in our 
theorem. 
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The first part of theorem 1 can be expressed by saying that A is unra- 
mified at almost all places of k. The object of 9 2 will be to show that it 
cannot be unramified at all places of k unless it is trivial. 

$ 2. The zeta-function of a simple algebra. Let all notations be as 
in 4 1, and let c( be a basis of A over k. By th. 1 of 0 1, CI, is a maximal com- 
pact subring of A, for almost all v; therefore we may, for each finite place 
v of k, choose a maximal compact subring R, of A,, in such a way that 
R,= a, for almost all v; that being done, call @, the characteristic function 
of R,. For each infinite place u of k, choose an isomorphism of A, with 
M,(,)(D(v)), where D(u) is R, H or C, as the case may be; identifying A, 
with the latter algebra by means of that isomorphism, define Qr on A, 
by putting, for all XE A,, Q,(x)= exp( - 718 z(‘X.x)), where notations are 
the same as in prop. 8 of Chap. X-3. Then @= n @” is a standard function 
on A,. Taking now a Haar measure p on A;, we have : 

PROPOSITION 1. The integral 

Z,(s)= s WlWid/44 
is absolutely convergent for Re(s)> n and is then given by the formula 

where Z, is the function defined in theorem 3 of Chap. VII -6, or the zeta- 
function of k, according as k is of characteristic 0 or not, where p is the 
number of real places v of k for which D(u)=H, and C is a constant >O. 

For each v, choose a Haar measure pU on A”, , so that p,(Rz)= 1 for 
all finite places u of k; we may then assume that we have taken p = n cl”, 
in the same sense as has been explained in Chap. VII-4 for the case 
A = k. By following step by step the proof of prop. 10, Chap. VII-4, one 
finds that the integral Z,(s) is absolutely convergent, and equal to the 
infinite product 

whenever the factors in that product, and the product itself, are absolutely 
convergent. Those factors have been calculated in propositions 7 and 8 
of Chap. X-3 ; the absolute convergence of Z,(s) for Re(s) > n is t’hen an 
immediate consequence of the latter results, combined with prop. 1 of 
Chap. VII-l. The same results, combined with the definitions in Chap. 
VII-6, give now the final formula in our proposition for the case A= M,(k) ; 
combining this with the corollaries of propositions 7 and 8 of Chap. X-3, 
one obtains at once the general case of the same formula. 
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One should note that the middle product, in the formula for Z,(s) in 
proposition 1, is a finite one by th. 1 of $1, since that theorem shows that 
d(u)= 1 for almost all the places of k. It should also be pointed out that 
the computation of the constant C in that formula, for an explicitly given 
Haar measure p on Ai, offers no difficulty, and that it is important for 
some purposes, e.g. for the determination of the “Tamagawa number” of 
the subgroup A (l) of A ’ given by v(x) = 1. As this lies beyond the scope of 
the present volume, it will not be pursued any further. 

PROPOSITION 2. Let D be a division algebra of dimension d2 over k, 
and let Z,(s) be defined as in proposition 1. Then, if k is of characteristic 0, 
Z,(s) has no other pole than s=O and s=d; if k is of characteristic p > 1 
and has the field of constants F,, Z,(s) has no other pole than the zeros 
of (1 -q-S)(l -qd-y. 

This will be proved by following step by step the proof of th. 2, Chap. 
VII-5 In analogy with that proof, it will be convenient to adopt the follow- 
ing notations. For ZED; and SEC, write w,(z)=lv(z)l~; or is then a 
morphism of 0; into R: . For C; E D ’ , v(t) is in k x ; therefore, by th. 5 of 
Chap. IV-4, o1 is trivial on D”. Consider first the case where k is of 
characteristic p > 1; by prop. 6 of Chap. X-2, v maps 0: onto k”, for all u, 
so that o1 maps 0,” onto the subgroup of R: generated by qu; by corol- 
lary 6 of th. 2, Chap. VII-5, this implies that or maps 0; onto the sub- 
group of R; generated by q, if F, is the field of constants of k. In that case, 
take z1 ED; such that o,(z,)=q, and call M the subgroup of 0: gen- 
erated by z1 ; then 0; is the product of M and of the kernel 0: of oi. 
On the other hand, if k is of characteristic 0, call M the subgroup of k; 
defined in corollary 2 of th. 5, Chap. IV-4; k being identified with the 
center of D, k; is to be considered as a subgroup of 0: ; as v(z) = zd for 
zE k, the corollary we have just quoted shows that o i maps M onto R:, so 
that 0: is again the product of M and of the kernel 0: of ol. In both 
cases, th. 4 of Chap. IV-3 shows that 020’ is compact. 

As in the proof of th. 1, § 1, take a basic character x of k,; identify D, 
with its topological dual by (x,y) =~(r(xy)), and, for each u, identify D, 
with its topological dual by (x,y) = ~,(r(xy)). For each a, call CL, the self- 
dual Haar measure on D,; then, by corollary 1 of th. 1, Chap. VII-2, the 
measures CI, are coherent, and CI = n CI, is the Tamagawa measure on D,. 

Let again @=n@” be the standard function on D, which was used 
above in the construction of Z,(s), and let Y = n YU be any standard 
function on D,. Call Z( Y, s) the integral obtained by replacing @ by Y in 
the definition of Z,(s); with the present notations, this can be written: 

z( y, 4 = f ‘-W~,WAz). 
D; 
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It will now be shown that this is absolutely convergent for Re(s) > d and 
that it can be continued as a meromorphic function in the whole s-plane, 
with no other poles than those mentioned in proposition 2; this will then 
contain that proposition as a special case. As to the convergence, we have 
!I’, = @, for almost all u, by the definition of a standard function. For every 
finite place u of k, the support R, of @” is an open subgroup of D,, and the 
support S, of Yy, is compact; then, choosing a,,Ekz such that a,S,c R,, 
and putting y”=sup (Y,I, we have ~Y’,(~)~dy~@~(a~x) for all XED,. 
Similarly, the definition of standard functions shows at once that, for 
any infinite place O, one can find .a, and yv in R: such that IY,(x)l< 
<yvQU(e,x) for all XED,. This shows that there is aEk; and PER; 
such that (Y(x)1 < y@(ax) for all XED,. Therefore the integral .Z(Y,s), 
for Re(s) = 0, is majorized by 

rj ~(az)w,(z)d~(z)=yw,(a-‘)ZD(~), 

which, by prop. 1, is convergent for o > d. 
Now take the same two functions F,, F, as in the proof of th. 2 of 

Chap. VII-5 ; Z(Y,s) is then the sum of the two integrals 

Zi=J @(z)o,7(z)Fi(Ul (Z))dp(Z). 

0; 

Exactly as in that proof (but taking now B > d), we see that Z, is absolutely 
convergent for all s and defines therefore an entire function of s, and that 
the same is true for the integral Zb obtained by replacing Y by its Fourier 
transform Y’, s by d - s and F,, by t -+ F, (t- ‘) in the definition of Z,. Just 
as there, one can also apply Poisson’s summation formula (i.e. formula (1) 
of Chap. W-2), in combination with lemma 1 of Chap. VII-2, to the 
function x+ Y(zx) on DA; in applying the latter lemma, one has to use the 
fact that the module of the automorphism x-+z-lx of D,, forzeD1, is 

Then, proceeding exactly as in the proof in question, one finds that 
Z( Y, s) is the sum of the entire function Z,+ Zb and of the integral 

Here the integrand is constant on the cosets of the compact subgroup 
G, = DaD x of the group G = D;/D ‘. As G r is the kernel of the morphism 
of G into R: determined by (I)~, we may identify G/G, with the image 
Nof G in R: under that morphism, which is Rz or the group generated by 
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q, according to the characteristic of k. In view of lemma 6 of Chap. VII-5, 
and taking for v the measure occurring in that lemma, we have therefore 
(up to a constant factor which may be made equal to 1 by a suitable 
choice of p) : 

f(s)=S(IV’(0)-ndY/(O))n “-dF,(n)dv(n)= Y’(o)n(s-d)- Y(O)l”(S) 

where /1 is as defined there. In view of the statement about the poles of 1 
in that lemma, this completes our proof. 

Now the comparison between propositions 1 and 2 will give us the 
main result of this Chapter. 

THEOREM 2. A simple algebra A over an A-field k is trivial if’ and only if 
it is everywhere unramified, i.e. if’ and only if A, is trivial over k, jbr every 
place v  of k. 

It is clearly enough to prove this for a division algebra D. If D, is 
trivial for all v, prop. 1 shows that its zeta-function Z,(s), up to a constant 
factor, is given by 

d- 1 

Z,(s) = n Z,(s - i). 
i=O 

In view of theorems 3 and 4 of Chap. VII-6, this has poles of order 2 at 
s=l2 , ‘..., d - 1 if d > 1. By prop. 2, this cannot be. Therefore d = 1, and 
D=k. 

Actually the combination of propositions 1 and 2 allows one to draw 
stronger conclusions than theorem 2; for instance, it shows at once that, 
if d > 1, D must be ramified at least at two places of k. This need not be 
pursued any further now, since much stronger results will be obtained in 
Chapter XIII. 

Q 3. Norms in simple algebras. As a first application of theorem 2. 
we will now reproduce Eichler’s proof for the following: 

PROPOSITION 3. Let A be a simple algebra over an A-field k, and let v  be 
the reduced norm in A. Then v(A “) is the subgroup y  of kx, consisting qf the 
elements whose image in k, is >O for every real pluce v  of k where A is 
ramified. 

That proof depends upon the following lemmas. 

LEMMA 1. Let K be a commutative p-field, L = K(t) a separably alge- 
braic extension of K of degree n, and put 

F(X)=NLIK(X-5)=X”+ iaiXnmi. 
i= 1 
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Let G(X)= ib,X”-’ b e a polynomial of degree n- 1 in K [Xl. Then, 
i=l 

if all the coefficients of G are sufficiently close to 0 in K, the polynomial 
F+ G is irreducible over K and has a root in L. 

It will be convenient to extend mod, to a mapping x+/xl of an 
algebraic closure K of L into R, by putting 1x1 =mod,,(x)“’ whenever 
K(x)cK’cK. and K’ has the finite degree v over K; by corollary 2 
of th. 3, Chap. I-2, this is independent of the choice of K’ when x is given 
in K. Take AER; such that [ai1 <A’ for 1 d i< n, and assume, for some 
B<A, that lbil <B’ for 1 <i<n. Let q be any root of F+ G in K; then we 
have 

y”= - i (a,+ b,)y”-’ 
i=l 

and therefore 

Ir]J”dsupi(Ail~l”~i)~ 

hence 1~1 <A. Call [r,. . ,[,, the roots of F; they are all distinct, since L is 
separable over K, and they are the images of 5 under the automorphisms 
of I? over K. What we have proved for 4 can be applied to the {,, by taking 
G=O, so that [<,I <A for 1 <v<n. Now put 

a=inf l$lr<y,,15”-5,1~ 

we have 0 <a < A. Assume now that we have taken B < A(a/A)“. As q is 
a root of F-k G, we have 

and therefore 

infVlq-~Y(“<supi(BiA”Pi)<BA”-l <IX”, 

so that there is v such that ly - c,,l <LX. Clearly this implies that 1~ - & 13 CI 
for all ,U # v. Let 0 be an automorphism of K over K, mapping 4, onto t. 
After replacing q by y”, which is also a root of F+ G, we see that jr - (I< 
< c( and Iv] - (,I 2 CI for all t,+ 5. Assume that L is not contained in K(q); 
then there is an automorphism z of K over K(q) such that l’# t; as this 
must leave 1~ - Q invariant, we get a contradiction. Therefore K(y) IL; 
as v] is at most of degree n over K, this implies that K(y)= L and that 
F-k G is irreducible. 

Incidentally, since every extension of K of degree n can obviously be 
generated by a root of a manic polynomial F of degree n with coefficients 
in the maximal compact subring of K, lemma 1 shows that K has at most 
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* finitely many separable extensions of given degree, hence also (by corol- 
lary 2 of prop. 4, Chap. I-4) finitely many algebraic extensions of given 
degree. 

bMMA 2. Let K he u commututive p-field, R its maximml compuct sub- 
ring, clnd L an unramified extension of K. Then, for every xgR ‘, there is 
YE L such that NLIK(y)=x und that K(y)= L. 

Call n the degree of L over K ; call 6 the number of divisors of n ; since 
L is cyclic over K, 6 is also the number of distinct fields between K and L. 
We will first construct EEL such that NLIK(~)= 1 and that L= K(c’) 
for l<i<S. Take a common multiple D of the integers 1,2,...,6, e.g. 
D = 6 !. Call CI a generator of the Galois group of L over K. For 1 d h d n - 1, 
consider the mapping 

of L into itself. This is a polynomial mapping, when L is regarded as a 
vector-space over K, as one sees at once by choosing a basis for L over K 
and expressing 5 in terms of that basis. Taking again for K an algebraic 
closure of L, we can extend the mappings P, to the algebra 9= LO, E 
over I?. Now apply prop. 3 of Chap. III-2 to that algebra and to the n 
distinct isomorphisms mi of L into I?, for 0 <i < n - 1. As in that propo- 
sition, call /lithe E-linear extension of c(’ to Y, and put cp=(~.,...,p~- 1); 
that proposition shows that cp is an isomorphism of Pronto K”. Then the 
mapping pOoPho’p-’ of ffn into K is given by 

b O,...,X,-l)-)(Xh+lXO)D-(.~hXt)D, 

where it should be understood, for h = n - I, that x, =x0. As this is not 0. 
and as K is an infinite field, we see now that none of the P, is 0 and that 
one can choose [EL such that P,(<)#O for 1 <h < n - 1. Let 5 be so 
chosen, and put I: = t”i- ‘. Then NLIK(~)= 1, and the images (E”“)~ of eD, 
under the automorphisms ah with 1 < h<n- 1, are all # Ed, so that 
L= K(E~). As D is a multiple of i for 1 d ida, we have, for each such i, 
ED = (&D/i, hence K(E”)c K(?), so that L= K(E”). Now take any XE Rx ; 
by prop. 3 of Chap. VIII-l, we can write it in the form x=N,,~(~,) with 
y, EL’. Consider the infinite sequence of fields Ki= K(c’y,), for all i30. 
At most 6 of them can be distinct; therefore there are pairs (i,j) of integers 
such that 06 i<j and Ki= Kj, and, if we take such a pair for which j- i 
has the smallest value, we have O<j-iG6. As ciyl and &yl are both in 
Ki, &jmi is in K,. In view of our choice of c, this implies Ki= L. Thus 
y =e’y, satisfies the requirements in our lemma. 

We can now proceed to prove proposition 3. Call n2 the dimension of 
the given algebra A over k, and R, the set of the infinite places of k where 
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it is ramified. If v is in R,, it must be real, and A, must be isomorphic to 
an algebra M,(H) ; as this implies IZ= 2m, this can only happen if n is 
even, and, of course, if k is of characteristic 0. We have seen in Chap. X-2 
that the reduced norm 1’ maps M,(H)” onto Rt ; therefore v(A”) is 
contained in the group y defined in proposition 3. Choose now a non- 
empty finite set R’ of finite places of k, containing all the finite places of k 
where A is ramified, and put R = R’u R,. Take any 1’~ R’, and a prime 
element rr, of k,; by prop. 6 of Chap. X-2, there is X,.E A, such that v(x,) = 
= rr,.. Apply corollary 2 of th. 3, Chap. IV-2, to A and to some place v0 of k, 
not in R’; it shows that we can choose aeA so that its image in A, is 
arbitrarily close to x,, and that, for all w# v in R’, its image in A, is arbi- 
trarily close to 1. In view of the continuity of v, this can be done so that 
the image of V(M) in k, is so close to rc, as to be a prime element of k,, and 
that its image in k,, for every w# v in R’, is so close to 1 as to be in r”, ; then 
aEAX, since v(a)# 0. For each VE R’, choose an element a, of A” in this 
manner. Now take any 5 in the subgroup y of k” defined in our proposi- 
tion; we have to show that it is in v(A”). For each VER’, put n(v) = 
=ord ,({), and put a=na$“); after replacing 5 by Ev(a)- ‘, we see that 
it is enough to prove our assertion under the additional assumption that 
ord,(<) = 0 for all UE R’. For each place UE R’, take an unramified extension 
k: of k,, of degree n over k,. By lemma 2, there is y,Ek: such that 5= 
= NkL,,Jyv) and k: = k,(y,). As y, is then of degree it over k,, it is the root 
of an irreducible polynomial F, of degree n over k,, given by: 

n-l 

F,(X)=N,;,,“(X-y,)=X”+ CLQ~X~-~+(-I~)“& 
i=l 

with ai,,Ek, for lQi<n-1. For each UER~, put air”=0 for l<i<n--1, 
and consequently, since the existence of such a place implies that n is even : 

F,(X)=X”+(-l)“<=X”+t; 

then, because of our assumption 5 EY, F, has no root in k, = R, so that the 
same is true of every manic polynomial of degree n over R whose coeffi- 
cients are close enough to those of F,. Applying corollary 2 of th. 3, Chap. 
IV-2, to k and to some place u0 of k, not in R, we see that we can choose 
ORE k, for 1 d id n - 1, so that its image in k, is arbitrarily close to ai, v for 
every UER. In view of lemma 1 and what has just been said, this can be 
done so that the polynomial 

n-1 

F(X)=X”+ 1 wix-‘+(-qy 
i=l 

has the following properties: (a) for every UER’, F is irreducible over k, 
and has a root in kl,; (b) for every UE R,, F has no root in k, = R. As R’ is 
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not empty, (a) implies that F is irreducible over k and has no multiple 
roots. Call i a root of F in some algebraic closure of k, and put k’ = k(c). 
Take any VE R’, and a place w of k’, lying above v; as the completion of k’ 
at w must then be generated over k, by a root of F, this completion, by (a), 
is isomorphic to kk, with which we can identify it ; as it is of degree n over 
k,, corollary 1 of th. 4, Chap. 111-4, shows that w is the only place of k’ 
lying above v, and that theorem shows then that we may identify k; = kk 
with k’Okk,. Similarly, (b) shows that, if v is in R,, all the places of k’ 
lying above v are imaginary. 

Now consider the algebra A’= A,. over k’. Take any place w of k’, and 
call v the place of k lying below w. By the elementary properties of tensor- 
products, A’,, which is the algebra A’Bkf k; over k’, may be identified in an 
obvious manner with AvOk,kL. As A, is trivial over k, for v not in R, 
this shows that also AL must then be trivial. If v is in R,, w is imaginary, 
so that k: = C and that AL is trivial. Finally, let v be in R’, and write A, as 
M,~,~(D(v)), where D( ) v IS a d’ . . ivision algebra over k,; if its dimension over 
k, is do, we have n=m(v)d(v), so that d(v) divides n. Then kk, which is 
unramified, hence cyclic, and of degree n over k,, contains a field k” 
which is of degree d(v) over k,, and is of course unramified over k,. By 
prop. 5 of Chap. I-4, D(v) contains a field isomorphic to k”; therefore, by 
corollary 6 of prop. 3, Chap. IX-l, Do,, is trivial over k” ; obviously this 
implies that (A&, is trivial over k”, hence that AL = (AJk;, is so over k:. 

Having thus shown that A’ is unramified at all places of k’, we can 
conclude, by th. 2 of $2, that it is trivial over k’, which is the same as 
to say that A has a k’-representation into M,(k’). Therefore, by th. 2 of 
Chap. 1X-3, A has an s-regular factor-set, if $j is the Galois group over 
k’ of the separable algebraic closure ksep of k’. Then, by lemma 4 of 
Chap. 1X-3, we can construct an algebra of dimension n2 over k, con- 
taining a field isomorphic to k’, with the same factor-set as A; as this 
implies that it is similar to A, and as it has the same dimension as A 
over k, it is isomorphic to A and may be identified with it. As shown 
there, we have then v([. lA) = NkPlk([) = 5. 

Q 4. Simple algebras over algebraic number-fields. We will now 
combine the results of 5 1 with some of those of Chapter V in order to 
obtain a few basic results in the theory of ideals in simple algebras over 
algebraic number-fields. 

In this 8, k will be an algebraic number-field, r its maximal order, 
and all algebras will be simple algebras over k. We recall that, by prop.4 
of Chap. V-2, if L is any k-lattice in a vector-space E over k, and if v 
is a finite place of k, the closure L, of L in E, is the r,-module generated 
by L in E,. 
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Let D be a division algebra over k. As in Chap. X-l, let V, I”, I”’ 
be left vector-spaces of finite dimension over D, other than (0); put 
H = Hom(V, I”), H’ = Hom(V’, I”‘), H” = Hom( V, I”‘). If X, X’ are sub- 
groups of the additive groups of H and of H’, respectively, we write 
XX’, as usual, for the subgroup of H” generated by the elements tt’ 
for VEX, ~‘EX’ ; it is easily seen, e. g. by taking bases for V, V’, V” over 
D, that HH’= H”. Now let L, L! be k-lattices, in H and in H’, respectively, 
when these are regarded as vector-spaces over k ; then LL! is obviously 
a finitely generated r-module in H”, and, as H” = HH’, it is a k-lattice 
in H”. 

PROPOSITION 4. Let A be a simple algebra over k. Then there are 
maximal orders in A; these are k-lattices in A, and a k-lattice R in A is 
a maximal order if and only if its closure R, in A, is a maximal order 
in A, for every finite place v of k. Every order in A is contained in a 
maximal order. 

If R is any order in A, the r-module generated by R in A is also 
an order, and it is a k-lattice; this shows that, unless R is a k-lattice, 
it cannot be maximal. Let X be any k-lattice in A; the last part of th. 1, 
§ 1, may be expressed by saying that X, is a maximal order in A, for 
almost all v. Then th. 2 of Chap. V-2 shows that there is a one-to-one 
correspondence between the orders R in A which are k-lattices, and the 
possible choices of an order R, in A, for every finite place v of k, subject 
to the condition that R, be a k,-lattice for all v, and R,=X, for almost 
all v; if R is given, R, is the closure of R in A,, and, if the R, are 
given, R is defined by R =n(An R,). In view of th. 1, Chap. X-l, all our 
assertions are now obvious. 

PROPOSITION 5. Let D be a division algebra over k. Let V, W he two 
left vector-spaces of finite dimension over D; put H = Hom(V, W) and 
A=End(V). Let M, M’ be two k-lattices in H. Then the set X of the 
elements 5 of A such that 5 M CM’ is a k-lattice in A, whose closure in 
A,, for every finite place v of k, is the set X, of the elements x of A, 
such that x M, c ML. I f  M = M’, X is an order of A. 

For every v, by prop. 4 of Chap. X-l, X, is a k,-lattice in A,, and it 
is an order if MU= ML. Let L be any k-lattice in A; as we have seen 
above, LM is a k-lattice in H, whose closure in H,, for every v, is clearly 
L,,M,. Therefore, for almost all v, we have L,M,= M,= ML; this 
implies that, for almost all v, X, is an order and contains L,. As L, is 
a maximal order in A, for almost all v, we see that X,= L, for almost 
all v. Therefore, by th. 2 of Chap. V-2, there is a k-lattice X’ = n (AnXJ 
in A with the closure X, for all v. Clearly X cX’ ; conversely, since 
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X’M c ML for every u, and M’ = n (HnM:), we have X’ c X. This 
completes the proof, except for the last assertion, which is now obvious. 

If notations and assumptions are as in proposition 5, and if M = M’, 
the set X is called the lef order of M. Exchanging right and left, we see 
that the set of the elements q of B = End(W), such that M n c M, is an 
order of B; this is called the right order of M. 

PROPOSITIONS. Let V, W and M be as in proposition 5; assume that 
there is a maximal order R of A = End( V), such that M is a left R-module. 
Then R is the left order of M, and its right order is a maximal order of 
B=End(W). 

This is an immediate consequence of prop. 5, combined with th. 2 
of Chap. X-l. 

With the same notations and assumptions as in propositions 5 and 
6, a k-lattice M in Hom(V, W) with the left order R and the right order 
S will be called an (R,S)-lattice ; it is called a normal lattice if R or S, 
and consequently both R and S, are maximal orders. If V = W, hence 
H = A = B, a normal lattice is also known as a “normal fractional ideal”. 
Clearly, in that case, the three relations M .M c M, M c R, M c S are 
equivalent; when they hold, M is a left ideal in the ring R and a right 
ideal in the ring S ; it is then called a normal ideal and an (R,S)-ideal. 
By using the above results and those of Chap. X, one can see at once 
that, if R and S are any two maximal orders in A, there are always 
(R,S)-ideals. Furthermore, if a normal (R,S)-lattice M is a maximal left 
ideal in R, i. e. if M c R, M # R, and if there is no left ideal other than 
R and M between R and M, then it is a maximal right ideal in S, in the 
same sense ; when that is so, one must have M,= R,= S, for all finite 
places u of k except one. If the multiplication law (M,M’)+MM’ is 
restricted to those pairs (M,M’) of normal lattices in A for which the 
right order of M is the same as the left order of M’, the normal lattices, 
for this law, make up a so-called “groupoid” whose units are the maximal 
orders of A. It is also easily seen that, for this law, every normal ideal 
can be written, although in general not uniquely, as a product of maximal 
ideals. For two-sided ideals and (R,R)-lattices, one has a more precise 
result: 

PROPOSITION 7. Let R be a maximal order in A. Then, for the law 
(M,M’)-+MM’, the (R,R)-lattices in A make up a commutative group; it 
is the free group generated by the maximal two-sided ideals in R; for every 
prime ideal p in r, there is one such ideal, and only one, between R and p R. 

This follows in a quite straightforward manner from the above re- 
sults and corollary 2 of th. 2, Chap. X-l. 



Chapter XII 

Local classfield theory 

0 1. The formalism of classfield theory. The purpose of classfield 
theory is to give a description of the abelian extensions of the types of 
fields studied in this book, viz., local fields and A-fields. Here we 
assemble part of the formal machinery common to both types. 

LEMMA 1. Let G = G, x N be a quasicompact group, G, being compact 
and N isomorphic to R or Z; let H be an open subgroup of G. Then, if 
H is contained in G, (i.e. if it is compact), N is isomorphic to Z, and H 
is of finite index in G,; otherwise it is of finite index in G. 

Put H, = HnG,; as this is open in G,, and G, is compact, it is of 
finite index in G,; this proves the first assertion. As HnN is an open 
subgroup of N, it is N if N is isomorphic to R; therefore H = H, x N in 
that case, and G/H is isomorphic to G,/H,. If N is isomorphic to Z, let 
n, be a generator of N; if H is not contained in G,, it has an element 
of the form gin’; with glEG,, FEZ, p#O. As G,/H, is finite, there is 
v#O such that g; EH~. Then n:’ is in H, so that H contains the group 
H’ generated by H, and n $” As H’ is obviously of finite index in G, . 
this proves the lemma. Theorem 1 of Chap. IV-4 may be regarded as 
the special case where G = kL/k x, H being the image of L?(P) in k;/k ‘. 

LEMMA 2. Let G= G, x N, G’= G; x N’ be quasicompact groups, G, 
and G; being compact and N, N’ isomorphic to R or Z. Let F be a morphism 
of G’ into G but not into G,. Then F-‘(G,)=G;; the kernel of F is com- 
pact; F(G) is closed in G, and G/F(G) is compact. 

As G, is the maximal compact subgroup of G, F(G’J is contained in 
G,. For n’EN’, call f(n’) the projection of F(n’) onto N in G; f is then 
a non-trivial morphism of N’ into N, hence, obviously, an isomorphism 
of N’ onto a closed subgroup of N with compact quotient; our first and 
second assertions follow from this at once. We also see now that F 
induces on N’an isomorphism of N’ onto F(N’), and that F(N’)nG, = (1); 
therefore F(G’) is the direct product of F(G;) and F(N’) and is closed. 
Finally, G/G, F(N’) is clearly isomorphic to N/f (N’), hence compact; as 
the kernel of the obvious morphism of G/F(G’) onto G/G, F(N’) is the 
image of G, in G/F(G’), hence compact, G/F(G’) must also be compact. 
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From now on, in this 0, we will consider a field K; later on, this will 
be either a local field or an A-field. As in Chapter IX, we write K for an 
algebraic closure of K, Ksep for the union of all separable extensions of K 
contained in K, and 8 for the Galois group of K,, over K, topologized 
as usual. We will write K,, for the maximal abelian extension of K con- 
tained in K; this is the same as the union of all abelian extensions of K 
of finite degree, contained in K, i.e. of all the Galois extensions of K 
of finite degree, contained in K, whose Galois group is commutative; 
by definition, this is contained in K,,. We denote by 6(i) the subgroup 
of 6 corresponding to K,,; this is the smallest closed normal subgroup 
of Q such that B/Q (I) is commutative; it is therefore the same as the 
“topological commutator-group” of 8, i.e. the closure of the subgroup 
of Q generated by the commutators of elements of 6. We write 2l for 
the Galois group of K,, over K; this may be identified with Q/Q?‘); it 
is a compact commutative group. Let x be any character of 8; as in 
Chap. 1X-4, call $J its kernel and L the subfield of Ksep corresponding 
to 43, which is the cyclic extension of K attached to x; clearly LcKab 
and $j 3 6(l), so that we may identify x with a character of ‘$I, for which 
we will also write x. Conversely, every character of ‘$I determines in an 
obvious manner a character of 8, with which we identify it. Thus the 
group of characters of 6, for which we will write X,, is identified with 
the group of characters of ‘%I; the latter is the same as the dual ‘8” of 
‘Ql, except that we will always write the group X, multiplicatively; we 
put on X, the discrete topology, this being in agreement with the fact 
that the dual of a compact commutative group is always discrete. By 
the duality theory, the intersection of the kernels of all the characters 
of ?I is the neutral element; this is the same as to say that the intersection 
of the kernels $ of all the characters x of (li is oj(‘), or also that K,, is 
generated by all the cyclic extensions L of K; this is of course well-known. 

Let K' be any field containing K; as in Chap. 1X-3, we take an 
algebraic closure I? of K' and assume at the same time that we have 
taken for K the algebraic closure of K in 13’; then, as we have seen 
there, Ksep is contained in Kiep, and, if 8’ is the Galois group of K',,, 
over K', the restriction morphism p of 6’ into 6 is the one which maps 
every automorphism ofK&, over K' onto its restriction to K,,. Obviously 
p maps 8 ‘(l) into Q(1), so that it determines a morphism of ‘%!I’= 07/B’(‘) 
into Cu = 6/6”‘, which we also denote by p and call the restriction 
morphism of ‘??I’ into ‘$I. It amounts to the same to say that K,, is con- 
tained in K&,, and that p maps an element a’ of %I’, i.e. an automorphism 
of Kib over K', onto its restriction to K,,. Correspondingly, x--+xop is 
a morphism of X, into X,,. 

In classfield theory, one defines a “pairing” of the group X, of the 
characters of Q (or, what amounts to the same, of ‘u) with a locally 
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compact commutative group G,, invariantly associated with K. In this 
Chapter, where K will be a local field, we will take G, = K ’ ; in the next 
one, K will be an A-field, and we will take at first G, = Ki and later on 
G, = Ki/K ‘. This pairing, which will be called the canonical pairing, is a 
mapping of X, x G, into C x, whose value, for XEX, and gE G,, will be 
written as (~,g)k; to begin with, we assume that it satisfies the following 
condition : 

[I] (i) For all x, x’ in X,, and all g, g’ in G, : 

(XX’4dK =(a!4)K.wdl)K, (XT Ys’)K= (x9 dK.kY’)K; 

(ii) (x, g)+(X,g)K is a continuous mapping of X, x G, into Cx . 

As X, is discrete, the pairing is continuous, i.e. [I(ii)] is satisfied, if 
and only if g+(x,g)K is a continuous mapping of G, into C ’ for every 
XEX,; then [I(i)] implies that it is a character of G,, of an order dividing 
that of x. Consequently, if [I(i)] is assumed, [I(ii)] is equivalent to the 
following : 

[I(ii’)] For every XEX,, the kernel of g + (x, g)K is an open subgroup of G 
K. 

Assume that such a pairing has been given. Then, for each gEG,, 
X+(X,g)K is a character of X,. As X, is the same as the dual of ‘QI, the 
duality theory shows that this can be uniquely written as x-x(a) with 
CIE ‘K We will write a, or, when necessary, aK for the mapping g + a of G, 
into ‘3 determined in this manner. Obviously we have a(gg’)= a( 
for all g, g’ in G,, and the continuity of our pairing, i.e. condition [I(ii)], 
implies at once that a is continuous. Thus a is a morphism of G, into %!I, 
determined by the relation 

(1) k dK = x(a(s)), 

which is valid for all x6X, and all gE G,. We will call a the canonical 
morphism of G, into 2I. 

Now we assume the additional condition: 
[II] Zf (X,g)K= 1 for all geG,, rh z= 1. 

In view of [I], this is clearly equivalent to either one of the following 
conditions: 

[II’] X+Xoa is an injective morphism of X, into the group of characters 
of GP 

[II”] The image a(G,) of G, by a is dense in ‘?I. 

We also add the assumption that G, should be quasicompact, or rather 
a more precise one, which is as follows: 
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[III] Either (a) G, is the direct product of a compact group GA and of a 
group N isomorphic to R, or (b) G, is the direct product of a compact group 
Gk and of a group N isomorphic to Z, and there is, for each integer n > 1, 
a character x~X, of order n such that (x,g)K = 1 for all gE Gi. 

The two cases in [III] will be referred to as case [III(a)] and case 
[III(b)], respectively. In both cases, as has been observed in Chap. VII-3, 
Gk may be characterized as the unique maximal compact subgroup of G,. 

From now on, we will write UK for the kernel of the canonical mor- 
phism a of GK into ‘%I; it is the intersection of the kernels of the characters 
boa of G,, i.e. of the characters g+(X,g)K, for all XEX,. 

PROPOSITION 1. In case [III(a)], the canonical morphism a determines an 
isomorphism of G,/U, onto 2l; every character of G,, trivial on U,, can 
be uniquely written as zoo with XEX,; and ~-+~oa is an injective morphism 
of X, into the group of characters of finite order of G,. 

As every character x of 2I is of finite order, the last assertion is no more 
than a restatement of [II’]. For every XEX,, boa induces on the subgroup 
N of G, a character of N of finite order; as N is isomorphic toR, there is no 
such character except the trivial one. Therefore N c U,; if we put Uk = 
= U,nGi, we have UK= U& x N, and G&J, may be identified with 
Gi/Uk; as this is compact, a determines an isomorphism of that group 
onto a closed subgroup of 2I, hence onto 9I itself, by [II”]. Then, by the 
duality theory, ~+~oa is the “dual” or “transpose” of a, hence an iso- 
morphism of X, onto the subgroup of the group of characters of G, which 
is associated by duality with U,; this subgroup consists of the characters 
of G,, trivial on U,. 

COROLLARY. In case [III(a)], every character of G:, trivial on IJk= 
= U,nGk, can be uniquely extended to a character of G, of the form 
Xoa. 

In fact, it can be uniquely extended to a character of G,, trivial on N; 
this is then trivial on UK and is as required. 

PROPOSITION 2. In case [III(b)], call X, the subgroup of X, con- 
sisting of the characters x such that (X,g)K= 1 for all gEGk; call n, a 
generator of the subgroup N of G,. Then x-+(x, nl)K is an isomorphism of 
X, onto the group of all roots of 1 in C. 

As every XEX, is of finite order, (x,g)K is always a root of 1, for all x 
and all g. As G, is generated by Gi and n,, a character of G, which is 
trivial on Gi is uniquely determined by its value at nl; in view of [II’], 
this shows that X+(X,n,), is an injective morphism of X, into the group 
of roots of 1 in C; in particular, it maps every character x of order n, 
belonging to X,, onto a primitive n-th root of 1 in C. By [III(b)], there are 
such characters for every n Z 1; therefore the image of X, by that mor- 
phism contains all the roots of 1 in C. 
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COROLLARY 1. Assumptions and notations being as in proposition 2, 
Gk is the set of the elements g of G, such that (X,g)K= 1 for all XEX,. 

Let v be any integer other than 0; by proposition 2, there is XEX, 
such that (~,n;), # 1, hence (x,n”, g)K# 1 for all g EGk. As G, is the union 
of the cosets nY, Gk for all VEZ, this proves our assertion. 

COROLLARY 2. In case [III(b)], the kernel U, of the canonical morphism 
a is contained in Gk; a determines an isomorphism of Gi/LJ, onto the inter- 
section ‘%, of the kernels in 2I of the characters XEX,; and a-‘(9&)= Gk. 

The first and last assertion follow at once from corollary 1. Put 
23 = a(Gk); clearly 23 is compact, and a determines an isomorphism of 
G#J, onto 8; moreover, by the definition of X0, a character x of ‘+JI 
belongs to X, if and only if it is trivial on ?& so that 23 = ‘$I,,. 

COROLLARY 3. In case [III(b)], every character of Gk, trivial on U,, 
is of finite order and can be extended to a character of G, of the form 
xoa, where x is a character of ‘8. 

By corollary 2, every character of G&, trivial on U,, can be written as 
xroa,, where x1 is a character of a,, and a, is the morphism of Gk onto 
2I, induced by a. As x1 can be extended (although not uniquely) to a 
character x of !!I, and as every character of (II is of finite order, this proves 
our assertions. 

COROLLARY 4. In case [III(b)], the mapping x-+xoa is a bijective 
morphism of X, onto the group of the characters of G, of finite order, 
trivial on U,; it maps X, onto the group of the characters of G, of finite 
order, trivial on Gk. 

All we need show is that the mappings in question are surjective. Take 
first a character 1,9 of G, of finite order, trivial on Gk. As $ (nl) is then a 
root of 1 in C, proposition 2 shows that there is XEX,, such that (x,n,), = 
= II/ (n,); then xoa coincides with $ on Gk and at nl, hence on G,. 
Now take any character $ of G, of finite order, trivial on U,; by corol- 
lary 3, we can find XEX, such that Ic/ coincides with xoa on Gk; then 
$’ = $ .(xoa)- ’ is trivial on Gfy and of finite order, so that, by what we 
have just proved, it can be written as x’oa. This completes our proof. 

PROPOSITION 3. Assume [I], [II] and [III], and call a the canonical 
morphism of G, into 2I. For every extension L of K of finite degree, 
contained in Kab, call b(L) the subgroup of 2I corresponding to L, and put 
N(L)=a-‘(23(L)). Then 23(L) is the closure of a(N(L)) in ‘?I; L consists of 
the elements of K,, which are invariant under a(g) for all gEN(L); a 
determines an isomorphism of G,/N(L) onto the Galois group of L over K; 
and L-+N(L) is a one-to-one correspondence between subfields L of Kab 
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of finite degree over K, and the open subgroups of G, of finite index in 
G,, containing U,. 

As %3(L) is open in QI, N(L) is open in G,. By [II”], a(G,) is dense in 2l; 
this implies that a(N(L)) ’ d is ense in %3((L) and that a determines an iso- 
morphism of G,/N(L) onto ‘%/B(L), which is the same as the Galois 
group of L over K. As the operation of 2I on Kab is continuous, every 
element of Kab which is invariant under a(N(L)) is invariant under its 
closure 23(L), so that it is in L. Finally, let H be any open subgroup of G, 
of finite index n, containing U,; call Ii/i, for 1 < i<n, all the distinct 
characters of G,, trivial on H; then H is the intersection of their kernels. 
By prop. 1 in case [III(a)] and by corollary 4 of prop. 2 in case [III(b)], 
we can write tii = xi0 a for 1 <i < n, the xi being characters of ‘%!I; by [II’], 
the xi are uniquely determined and make up a finite subgroup of X,, 
since the ei make up a finite subgroup of the group of characters of G,. 
Call 23 the intersection of the kernels of the xi in ‘?I; it is an open subgroup 
of Iu, of index n; therefore the subfield L of Kab, corresponding to !S3, is 
of degree n over K. Clearly H = a-‘(23), hence H = N(L). This completes 
our proof. 

COROLLARY. In case [III(b)], call K, the subfield of K,, corresponding 
to the subgroup Qlu, = a(Gk) of ‘8. Then, for each integer v 2 1, K, contains 
one and only one extension K, of K of degree v; this is the cyclic extension 
of K, attached to any one of the characters of order v, belonging to X0; and 
N(K,) is the subgroup of G, generated by Gi and n;. 

By corollary 2 of prop. 2, we have Gk= a- ‘(‘$I,); therefore, if L and 
N(L) are as in proposition 3, we have L c K, if and only if N(L) 3 Gk; 
this implies that N(L) is generated by Gk and n; if v is the index of N(L) in 
G,. Then, by proposition 3, L is cyclic of degree v over K, and, if x is a 
character of ‘%?I attached to L, N(L) is the kernel of boa, so that x belongs 
to X0 and has the order v. Conversely, if x is such, the kernel of xo a is 
generated by Gk and n;, so that the cyclic extension attached to x is L. 

Now we consider a cyclic extension K’ of K, contained in K,,. We 
use the notations 67, O’(l), 2I’= 07/B’(‘) as explained above, and write p 
for the restriction morphism of 8’ into 8 and also for that of ‘$I’ into $8. 
As K’ is cyclic over K, 6’ is an open normal subgroup of 6, with cyclic 
factor-group; consequently, we have 6 3 6’ 2 O(r) 2 6’(l), and O’(i) is a 
normal subgroup of 6. For every i&5, the inner automorphism 
0+/102-i induces on 8’ an automorphism of 8’; therefore, if x’ is any 
character of o?‘, we can define a character x” of 6’ by putting, for every 
~‘~67, ~‘“(a’) =x’(Izo’A- I). Clearly x”‘=x’ if AE@‘, so that x1+x’* deter- 
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mines an operation of the Galois group S/O’ of K’ over K on the group 
X,. of the characters of 6’. 

Furthermore, we assume that we have been given canonical pairings 
(~,g)~, (x’, g’)K, of X, with a group G,, and of X,, with a group G,., both 
of them satisfying [I], [II], [III]; to simplify notations, put G= G,, 
G’ = G,,, G, = Gk, G; = G&; call a, a’ the canonical morphisms of G into 
2I, and of G’ into 9II’, respectively defined by these pairings. Assume also 
that 8 operates on G’, the action of any 1~ 6 on G’ being written as g’-+g’” 
and satisfying the following condition: 

[IV] (i) For 2~ W, g’-+g” is the identity on G’; (ii) For each AE 6, 
g’-+g’” is an automorphism of G’, and g’“g’- ’ EG; for all g’EG’; (iii) For all 
x’EX,,, g’E G’ and IE 6, we have: 

w, q’%, = (x’, d)K’ . 

Finally, assume that we have been given a morphism F of G’ into G, 
satisfying the following condition: 

[V] (i) For all g’EG’ and all 2~6, we have F(g’“)= F(g’); (ii) For all 
XEX, and all g’EG’, we have: 

Clearly [V(ii)] may also be written as poa’ = ao F. 

PROPOSITION 4. Let K’ be a cyclic extension of K; let a, a’ be the canon- 
ical morphisms respectively defined by canonical pairings of X, with a 
group G, and of X,. with a group G’, both satisfying [I], [II], [III]. Assume 
that the Galois group (fi of K,,, acts on G’, that F is a morphism of G’ into 
G, and that [IV] and [V] are satisfied. Then UnF(G’J=F(U’nG’J, 
where U, U’ are the kernels of a and of a’; moreover, we have UnF(G’)= 
= F(U’) if G’ satisfies [III(a)], or if G and G’ satisfy [III(b)] and F does not 
map G’ into G 1. 

By [V(ii)], we have poa’=aoF; therefore F(U’) is contained in U, 
hence in UnF(G’), and, if we put U; = U’nG;, F(U’J is contained in 
UnF(G’J. Let $ be a character of G, trivial on F(U;); then $ OF is a 
character of G’, trivial on U;. Apply now the corollary of prop. 1, in the 
case [III(a)], and corollary 3 of prop. 2, in the case [III(b)], to the character 
induced on G; by $ OF; this shows that $ OF coincides on G; with a 
character of the form ~‘oa’, with x’EX,,. In other words, we have, for all 
g’EG;: 

$ (F(d)) = (x’, dr . 

By [IV(ii)], this must hold if we substitute g”g’-’ for g’, with any g’EG’ 
and any J.E 6. In view of [V(i)], this gives 

1 =(~‘,g’Ag’-l)K.=(~‘,g”l)K~~(~‘,g’)~.l, 
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and therefore, by [IV(iii)] : 

(x’, d)K’ = (x’, g’% = w h’)K’. 
By [II], this shows that x’ is invariant under 1 for every 2~8; more expli- 
citly, it is invariant under all the automorphisms of 8’ induced on 8’ by 
inner automorphisms of 8. Therefore the same must be true of the 
kernel $’ of x’, so that $3’, which is an open subgroup of 6’ with cyclic 
factor-group, is a normal subgroup of 0). Let 01 be a representative in 6 of 
a generator of the cyclic group Q/Q’; let /I be a representative in 6’ of a 
generator of W/$3’; then 6’ is generated by 9’ and /I, and 6 is generated by 
6’ and tx, hence by 5’, B and CI. Consequently cli/%’ is generated by the 
images c1’, p’ of a,P in S/5’. As x’ is invariant under ~‘+Mo’c(-~, we get, 
for o’=B,x’(p)=x’(ccBol-‘). This shows that a/Ia-‘B-’ is in the kernel 
sj’ of x’, so that M’ commutes with /I’ in O/!?j’. Consequently O/!$ is com- 
mutative. Therefore the character of S’/sj’ determined by x’ can be ex- 
tended to a character of Q/!+j’. This is the same as to say that x’ can 
be extended to a character x of 6, so that we have x’=xop. In view of 
[V(ii)], th e d f ‘t’ e mi ion of x’ gives now, for all ~‘EG; : 

* VW)) = (XOPd)w = w%‘NK. 

This is the same as to say that $ coincides with boa on F(G;), so that it 
is trivial on UnF(G;). As F(U’J is a compact subgroup of G, and as we 
have proved that every character rl/ of G, trivial on F(U;), is trivial on 
CJnF(G;), we see that F(U;)z UnF(G;); in view of what we had proved 
before, this completes the proof of the first part of our proposition. If G 
and G’ satisfy [III(b)], we have UC G; and UC G,, by corollary 2 of 
prop.2; if F does not map G’into G1, we have F-‘(G,)=G;, bylemma2; 
UnF(G;) is then the same as UnF(G’), which completes the proof of the 
second part in that case. Now assume that G’= G; x N’ with N’ isomor- 
phic to R. As we have seen before, for every x’EX~,, the character of N’ 
induced on N’ by ~‘oa’, being of finite order, is trivial, so that N’c U’, 
hence U’= U; x N’; the same argument, applied to the character induced 
on N’ by 20aoF for XEX,, gives now F(N’)c U, and therefore: 

UnF(G’)=(UnF(G;)).F(N’)=F(U;)F(N’)=F(U’). 

0 2. The Brauer group of a local field. From now on, K will be a 
local field. As in Chapter IX, we write B(K) for its Brauer group, H(K) for 
the group of its factor-classes, and we identify these groups with each 
other by means of th. 3, Chap. 1X-3. In Chap. 1X-4, we have already 
determined these groups in the cases K =R, K =C, and we begin by 
recalling the results found there, and introducing some additional nota- 
tions which will be useful in the next Chapter. As B(R) has two elements, it 
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has a unique isomorphism q onto the subgroup { f l} of C” ; for any 
simple algebra A over R, we write h(A)=q(Cl(A)), and call this the 
Hasse invariant of A; it is + 1 or - 1 according as A is trivial or not. As 

’ B(C) has only one element, we write ye for the mapping which maps it 
onto { + l}, and, for every simple algebra A over C, we write h(A)= 
=q(Cl(A))= + 1 and call this the Hasse invariant of A. For K=R, the 
Galois group 6 of K,, over K consists of the identity E and of the auto- 
morphism x + ji of C over R; for K = C, 6 = {E}. For every character 2 of 
6, and every 8EK”, we have defined in Chap. IX-4 the factor-class 
(x,0> ; identifying H(K) with B(K) as we have said, we may now write, for 
K=R or C: 

65 e), = ~I({x, en. 
Clearly this is 1 if K = C, or if K =R and x is the trivial character of 8 ; 
if K =R and x is the non-trivial character of 6, our results of Chap. IX-4 
show that it is + 1 or - 1 according as 8>0 or 8<0. One verifies imme- 
diately that this is a canonical pairing of X, with Kx, in the sense of 5 1, 
and that it satisfies conditions [I], [II], [III(a)]; the kernel U, of the 
canonical morphism is Cx if K = C, and RF if K = R. 

From now on, K will always denote a commutative p-field, except that 
occasionally we will point out the validity of some of our results for K = R 
or C. As usual, we write R for the maximal compact subring of K, q for 
its module, P for the maximal ideal of R, and rc for a prime element of K. 
We use the notations K, Ksep, 6, Kab, 58, as in 0 1. Write ‘9JI for the set of 
all roots of 1 of order prime to p in K; this is clearly a subgroup of K&,. 
Put K, = K(!lJl), and call 5$, the closed subgroup of 8 corresponding to 
K,, i.e. consisting of the automorphisms of Ksep over K which leave 
invariant all the elements of K,, or, what amounts to the same, all those of 
‘9.R. By corollary 2 of th. 7, Chap. I-4, every finite subset of 9.R generates over 
K an unramified extension of K. Conversely, every extension of K, con- 
tained in an unramified extension, is itself unramilied, so that, by corol- 
lary 3 of th. 7, Chap. I-4, it is generated by a finite subset of mJz; moreover, 
by the same corollary, there is one and only one such extension K, of 
degree n over K, for every n> 1. Consequently, K, is the union of the 
fields K, for all n B 1. Again by corollary 2 of the same theorem, the map- 
ping p+pq of 9JI into itself is an automorphism of 1)32, and, for every 
na 1, there is one and only one automorphism of K, over K, viz., the 
Frobenius automorphism, which coincides with that mapping on YXnK,. 
Clearly this implies that there is one and only one automorphism ‘pO of 
K, over K which induces P+,u~ on 9Jl; this will be called the Frobenius 
automorphism of K, over K, and every automorphism cp of Ksep over K 
which induces ‘pO on K, will be called a Frobenius automorphism of Ksep 
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over K; then the Frobenius automorphisms of K,, over K make up the 
coset !&cp in 6. 

DEFINITION 1. A character x of 6 will be called unramified if the cyclic 
extension of K attached to x is unramified; we will write X, for the set of 
all unramified characters of 6. 

In view of what has been said above, it is clear that x is unramified if 
and only if the cyclic extension attached to x is contained in K,, or, what 
amounts to the same, if and only if x is trivial on the subgroup b0 of 6 
corresponding to K,; therefore X, is a subgroup of the group X, of all 
characters of 8. 

PROPOSITION 5. Let cp be a Frobenius automorphism of Ksep over K. 
Then x+x(q) is an isomorphism of the group X, of the unramified char- 
acters of 8 onto the group of all roots of 1 in C; it is independent of the 
choice of cp. 

Clearly that mapping is a morphism of X, into the group of the 
roots of 1 in C. With the notations explained above, the cyclic extension 
ofK attached to an unramified character x of order n is K,. As cp induces on 
K, the Frobenius automorphism of K, over K, and this generates the 
Galois group of K, over K, I is a primitive n-th root of 1; therefore the 
morphism in our proposition is both injective and surjective. The last 
assertion follows from the fact that two Frobenius automorphisms can 
differ only by an element of $jO, and every unramilied character is trivial 

on h. 

THEOREM 1. Let K be a commutative p-field, and n a prime element of 
K. Let X, be the group of the unramiJied characters of 8. Then x+ {x,rtj 
is an isomorphism qf X, onto the group H(K) of ,factor-classes of K; it is 
inrlcpc~ndent qf the choice of IL 

We can identify H(K) with the Brauer group B(K) of K. Every element 
of B(K), i.e. every class of simple algebras over K, contains one and only 
one division algebra over K. As has already been pointed out in Chap. 
IX-4, and again in Chap. X-2, prop. 5 of Chap. I-4 shows that such an 
algebra, if it is of dimension 11’ over K, can be written as [K,,IK; ~,n,], 
where x is a character attached to K, and n, is a suitable prime element of 
K; therefore the factor-class belonging to that algebra is {x,rrr}. Combin- 
ing prop. 10, Chap. 1X-4, with prop. 3 of Chap. VIII-l, we see that this 
is independent of rri, so that it is the same as {x,rr}. Consequently, 
x+ { x, rc} is a surjective morphism of X, onto H(K). As K, is unramified of 
degree n over K, its modular degree over K is n; therefore n cannot be in 
NKnIK(Kz) unless n = 1; again by prop. 10, Chap. 1X-4, this shows that, 
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if x is attached to K,, {x,x} # 1 unless n = 1, i. e. unless x = 1. This com- 
pletes our proof. 

COROLLARY 1. Let K and 71 be as in theorem 1; let K, be the unramified 
extension of K of degree n, and let x be a character attached to K,. Then 
[KJK; X, rt] is a division algebra over K. 

At any rate, it is of the form M,(D), D being a division algebra over K; 
if d2 is the dimension of D over K, D can be written as [K,/K; x’,n], 
where x’ is a character attached to K,. By theorem 1, this implies x’=x, 
hence n=d and m= 1. 

COROLLARY 2. Let cp be a Frobenius automorphism of Ksep over K. 
There is one and only one isomorphism n of H(K) onto the group of all roots 
of 1 in C, such that n({~,~})=~(q) for all XEX,; it is independent of 
the choice of n and of cp. 

This follows at once from theorem 1, combined with prop. 5. 

COROLLARY 3. Notations being as above, let X, be the group of all 
characters of 6 ; for all XE X, and all BE K x, put 

Then this defines a pairing between X, and Kx which satisfies conditions 
[I] and [III(b)] of Q 1. 

By prop. 8 of Chap. IX-4, it satisfies [I(i)]. By prop. 10 of Chap. IX-4 
and prop. 5 of Chap. VIII-l, it satisfies [I(ii’)]. As to [III(b)], we have 
here to take G, = K ‘, Gk = R ‘, and we can take for N the subgroup of 
Kx generated by rc. Then [III(b)] is satisfied by taking for x any character 
attached to the unramified extension K, of K of degree n, as follows at 
once from prop. 10 of Chap. IX-4 and prop. 3 of Chap. VIII-l. 

COROLLARY 4. For all XEX,, and all 0~ Kx , we have (x, g), = ~(cp)o~~‘*‘; 
if 71 is any prime element of K, (x,“)~ = x(q). 

The latter assertion is a restatement of corollary 2. Then the former 
holds for f3 = rc, and also, as proved in the proof of corollary 3, for TIER ’ ; 
the general case follows from this at once. 

COROLLARY 5. Let K, be a field isomorphic to K; let K1 be an al- 
gebraic closure of K,, and A an isomorphism of K onto K,, mapping K 
onto K,. For every character x of 6, write 2 for its transform by 1, i.e. 
for the character of the Galois group 6, of (KI)sep over K, given by 
x%,)=x(h~-‘) f 11 or a a,~@,. Then (x,f3),=(~“,8”),, for all XEX, 
and all 8cK”. 
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This follows at once from corollary 2, since obviously I maps a 
prime element of K onto a prime element of K,, and transforms a 
Frobenius automorphism of Ksep over K into one of (K1& over K,. 

From now on, the pairing of X, with K x, defined in corollary 3, 
will be called the canonical pairing for K. As explained in Q 1, we derive 
from this a morphism a of K” into the Galois group 2L of Kab over K 
which will be called the canonical morphism for K; it is defined by 
(~,@,=x(a(B)), this being valid for all XEX, and all BEK~. Corollary 4 
of th. 1 shows that a(rc) induces on K, the Frobenius automorphism of 
K, over K whenever 7t is a prime element of K. 

As we identify the Brauer group B(K) with the group H(K) considered 
in theorem 1 and its corollaries, we may consider the mapping q defined 
in corollary 2 of th. 1 as an isomorphism of B(K) onto the group of roots 
of 1 in C; for every simple algebra A over K, we will write h(A) = q(Cl(A)), 
and will call this the Hasse invariant of A; it is 1 if and only if A is trivial. 

THEOREM 2. Let K’ be an extension of K of finite degree, contained 
in I?; let 6, 8’ be the Galois groups of KS,, over K, and of K’,,, over K’, 
respectively, and let p be the restriction morphism of 8’ into 6. Then. 
for every XEX,, and every @EK’~, we have: 

(2) (x0 P? @hc =(x3 ~K’,Kv%. 

Let f be the modular degree of K’ over K; then the module of K’ is 
qf, and, if q, cp’ are Frobenius automorphisms of Ksep over K, and of 

Kk, over K’, respectively, rp’ coincides with qps on the group !lJI of the 
roots of 1 of order prime to p in K, hence on K, = K(m), so that P((P’)(P-f 
is in the subgroup !$, of Q which corresponds to K,. Now assume first 
that the character x in (2) is unramified, hence trivial on !&,; this implies 
that ~(p(cp’))=~((~)~. As we have observed in Chap. 1X-4, the cyclic 
extension of K’ attached to xop is the compositum of K’ and of the 
cyclic extension of K attached to x; as the latter is unramified, hence 
generated by elements of YJI, the same is true of the former, so that 
xop is unramified. We can now apply corollary 4 of th. 1 to both sides 
of (2); it shows that the left-hand side is x(p(#)) with r = ord,(@), and 
that the right-hand side is x(qp)” with s = ord,(N,,,,(B’)), hence s = f r by 
formula (2) of Chap. VIII-l. This proves (2) when x is unramified. In 
the general case, call n the order of x; as neither side of (2) is changed if 
we replace 9’ by (7,‘” with V’E K’ x, we may assume that r = ord,(t)‘) # 0. 
As we have just shown, if x1 is any unramified character of 8, (x10p,8’),, 
is equal to ~i(cp)f’; in view of prop. 5, we can choose x1 so that this is 
equal to any given root of 1 in C, and in particular to the left-hand side 
of (2); as (2) has already been proved for unramified characters, it will 
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therefore be enough, after replacing x by xx; ‘, to prove our result under 
the additional assumption that the left-hand side has the value 1. That 
being now assumed, call L the cyclic extension of K attached to x; the 
cyclic extension of K’ attached to xop is then the compositum L’ of K’ 
and L. As the left-hand side of (2) is 1, prop. 10 of Chap. IX-4 shows 
that there is V’EL such that Q’=N L’,K($). This gives, by Chap. 111-3: 
NK,&G’)= NLfIK(q’)= N,,,(NLfIL(+)); the same proposition shows then 
that the right-hand side of (2) is 1, which completes the proof. 

COROLLARY 1. If a, a’ are the canonical morphisms for K and for 
K’, respectively, we have po a’ = ao NKfIK. 

In view of our definitions, this is just another way of writing (2). 

COROLLARY 2. Let K and K’ be as in theorem 2; call n the degree of 
K’ over K. Then, for every simple algebra A over K, we have h(A,,)= h(A)“. 

By th. 1, the factor-class belonging to A can be written as {x,z}. By 
formula (7) of Chap. 1X-4, the restriction morphism of H(K) into H(K’) 
maps the class {~,a} onto the class {~op,O} for every XEX, and every 
OEK”; moreover, for BEK”, we have N,.,,(B)=@‘. By th. 2, this gives: 

COROLLARY 3. If x is a non-trivial character of 6, g-+(x,8), is a non- 
trivial character of Kx . 

Call n and d the orders of these two characters; clearly d divides n. 
Call L the cyclic extension of K attached to x; call x1 an unramified 
character of 6 of order n, K, the unramified extension of K of degree n, 
and put D=[K,/K;x,,E]. By corollary 2 of th. 1, we have h(D)=XI(q), 
so that h(D) is a primitive n-th root of 1. By corollary 2, we have then 
h(D,)=h(D)“=l, so that DL is trivial; this is the same as to say that D 
has an L-representation into M,(L); by prop. 9 of Chap. 1X-4, the factor- 
class attached to D can then be written in the form (x,0}, with some 
&K ‘, and we have h(D) = (x,0),. Therefore d = n. This shows that our 
canonical pairing satisfies condition [II] of 5 1. 

COROLLARY 4. If L is any cyclic extension of K of degree n, NLIK(LX) 
is an open subgroup of K ’ of index n. 

In fact, by prop. 10 of Chap. 1X-4, it is the kernel of O+(x,QK, where 
x is a character of 6 attached to L, and we have just proved that this is 
of order n. 

If K’ = K, or if x = 1, the conclusion (2) of theorem 2 is trivial; if K’ 
is the cyclic extension of K attached to x, (2) is equivalent to prop. 10 
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of Chap. 1X-4, since xop= 1 in that case. No other case than these can 
occur if K is an R-field, as one sees at once. Therefore theorem 2 remains 
valid for K=R or C; so do its corollaries. 

PROPOSITION 6. A character x of Q is unramijkd if and only if (x,8), = 1 
for all 8ER”. 

Call Xb the group of the characters with the latter property; as 
before, we call X, the group of the unramified characters of 8. By 
corollary 4 of th. 1, X, c XL. By prop. 2 of 4 1, x-+(x, 7~)~ is an isomorphism 
of XL onto the group of all roots of 1 in C; by th. 1, combined with 
prop. 5, this induces on X, an isomorphism of X, onto the same group. 
Therefore XL = X,. 

COROLLARY. A cyclic extension L of K is unramijied if and only if 
N&LX ) contains R ‘. 

In view of prop. 10, Chap. 1X-4, this follows at once from the appli- 
cation of proposition 6 to a character of 8 attached to L. 

5 3. The canonical morphism. We have now verified conditions 
[I], [II], [III(b)] of $1 for the canonical pairing (x,0),, and we have also 
shown that the subgroup X, of X, defined by means of such a pairing 
in 0 1 is here the same as the group X, of the unramitied characters of 
8. As in 0 1, we will now call UK the kernel of the canonical morphism 
a of K x into ‘%I; our main result in this 0 will be that UK = {l}. In applying 
the results of 5 1, we have to keep in mind that here Gk must be replaced 
by R ‘, n, by a prime element rr of K, and N by the subgroup of Kx 
generated by rc. Corollary 2 of prop. 2,§ 1, shows that UK is contained in 
Rx, and that a determines a morphism of Rx onto the intersection 2I,, 
of the kernels of the characters XEX,, when these are considered as 
characters of ‘3. Here, by prop. 6 of 8 2, X, consists of the characters of 
(si which are trivial on the subgroup !& of 8 corresponding to the union 
K, of all unramified extensions of K. Therefore ‘911, is the image of !?& 
in ‘%, i.e. the subgroup of rU corresponding to the subfield K, of Kab, 
or in other words the Galois group of Kab over K,. 

PROPOSITION 7. Let K, be the union of all the unram$ed extensions 
of K, contained in Ksep; let cpO be the Frobenius automorphism of K, 
over K, and let a be the canonical morphism of Kx into the Galois group 
‘3 of K,, over K. Then, for every BEK ‘, a(8) induces on K, the auto- 
morphism cpL with r = ord(6). 

In fact, corollary 4 of th. 1, 4 2, can be expressed by saying that 
x(a(Q))=X(cp)* for every XEX,, if cp is an automorphism of Ksep over K 
which induces ‘pO on K,. This is the same as to say that, if cp induces rp’ 
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on Kab, a(e)(p’-r is in the intersection of the kernels of all the characters 
XEX,, or again, in view of the definition of 911, and K,, that a(@cp’-’ 
induces the identity on K,, as was to be proved. 

COROLLARY. Notations being as in proposition 7, call cp’ an auto- 
morphism of K,, over K, inducing cpO on K,. Then a maps Rx onto 2I,; 
it maps Kx onto the union of the cosets ‘u,q’” for nEZ, and this union 
is dense in 2I. 

This follows at once from proposition 7 and from [II”] in 4 1. 

Now we consider the kernel U, of a. By definition, it is the intersection 
of the kernels of the characters 6+(x, f3), of Kx, when one takes for x 
all the characters of 6. By prop. 10 of Chap. 1X-4, this is the same as to 
say that it is the intersection of the groups NLIK(LX) when one takes for 
L all the cyclic extensions of K. 

PROPOSITION 8. Let K’ be an abelian extension of K of finite degree. 
Then U, = NKfIK( U,.). 

Assume first that K’ is cyclic over K. Then we can apply prop. 4 
of $1, by taking F = NKVIK; in fact, [IV(i)] and [IV(ii)] are obviously 
satisfied by the automorphisms x+x’ of IS ‘, for all /ZE 6; so is [IV(iii)], 
by corollary 5 of th. 1, 9 2; [V(‘)] . 1 is o b viously satisfied, and so is [V(ii)], 
by th. 2 of 5 2. In the conclusion of prop. 4, U and U’ are here the same, 
respectively, as U, and U,. ; moreover, as we have seen, U, is contained 
in NK,,K(K’X), which, in the notation of prop. 4, is the same as F(G’). 
This proves our assertion when K’ is cyclic over K. Otherwise we can 
find a sequence K, K1,..., K,= K’ of fields between K and K’, such that 
each one is cyclic over the preceding one. If we use induction on m, the 
induction assumption gives U,, = NKPIK1( U,,), and what we have proved 
gives UK= NKIIK(UK1); putting these together, we get our conclusion. 
The same proof would be valid for any solvable extension, but this will 
not be needed. 

PROPOSITION 9. Assume that K contains n distinct n-th roots of 1. 
Then the intersection of the kernels of the characters g+(~,,~,t?)~ of K ‘,, 
for all SeKX, is (K”)“. 

Here the assumption on K implies that n is not a multiple of the 
characteristic of K, and I,,< is as defined in Chap. 1X-5. By definition, 
the set in question is the intersection of the kernels of all the morphisms 
8+ { &19}, of K ’ into H(K). By formula (12) of Chap. IX-5 (the “reciprocity 
law”), this consists of the elements 9 of K x such that (0, S},= 1, i.e. 
{x,+ r} = 1, i.e. (x~,~, <)K = 1, for all 5~ Kx. By corollary 3 of th. 2, 9 2, 
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this is equivalent to xn 0= 
is so if and only if ~E(K’ )“. 

1; as we have observed in Chap. 1X-5, this 

COROLLARY. Let K be any p-field; if n is not a multiple of the char- 
acteristic of K, U, c (K ’ )“. 

The assumption on n implies that there are n distinct n-th roots of 
1inK Sep; then they generate an abelian extension K’ of K. By proposition 
9, we have U,, c (K’ ’ )“. By prop. 8, this gives 

U, = NKrIK( U,.) c N,,,,((K’ x ,“) c (K ’ )“. 

PROPOSITION 10. Assume that K is of characteristic p. Then the 
intersection of the kernels of the characters tl-+(~~,~,O)~ of K”, for all 
<EK, is (K”)P. 

Call 2 that intersection; as all the characters x,,< are of order p or 1, 
Z is a subgroup of K”, containing (K”)j’; as x,,<= 1 for t=O, Z may be 
defined as consisting of the elements 8 of Kx such that {&e},= 1 for 
all [EK’, or, what amounts to the same, such that {<e,e},= 1 for all 
{EKE. By formulas (13) and (14) of Chap. 1X-5, we have, for all SEK~, 
eEK”: 

1 =w, -w,={w, -r>,w,e),, 

so that Z is also the set of the elements 0 of Kx such that ((0, - t},= 1 
for all 5~ K ‘. Then, by the first formula (13) of Chap. IX-5 Zu{O} 
is an additive subgroup of K. As Z is a subgroup of K”, containing 
(K x)p, we see now that Zu{O} is a subfield of K, containing KP; therefore, 
by corollary 1 of prop. 4, Chap. I-4, it is either K or KP. If it was K, all 
the characters of the form xP,< would be trivial. As we have observed in 
Chap. 1X-5, the kernel of the morphism t-+xp,< is the image of K under 
the mapping x+x - xp; in view of th. 8 of Chap. I-4, one sees at once 
that this image cannot contain z-l, if TC is any prime element of K; 
therefore x,,~ is not trivial for 5 =rr-l. This proves that Zu{O} =Kp, 
hence Z = (K ’ )“. 

COROLLARY. If K is of characteristic p, U,c(U,)p. 

By proposition 10, U, c(K”)~, so that, if 0e U,, it can be written 
as VP with Y]EK~. Take any cyclic extension L of K; by prop. 8, 
U, =NLIK(UL), and, by prop. 10, U, c(L”)~; therefore we can write 0 
as NLIK(cp) with [EL” . This gives qp = NL,K([)P; as p is the characteristic, 
this implies q = N&I). We have thus shown that r] is in the intersection 
of the groups N&LX) for all cyclic extensions L of K; as this intersection 
is U,, this proves our corollary. 
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THEOREM 3. The mapping X+Xoa is a bijective morphism of the group 
X, of characters of Vl onto the group of the characters of finite order 
of K”. 

Take any integer nb 1. If K is not of characteristic p, we have 
U, c (K ’ )“, by the corollary of prop. 9. If K is of characteristic p, write 
n=n’p’ with n’ prime to p, and i>O, and take any 0E UK; by the same 
corollary, we can write tI=<“’ with SeKX. By the corollary of prop. 
10, and using induction on i, we see at once that U,C(U,)~‘, so that we 
can write 0 = VP’ with UE U,. Take integers a, b such that n’a + pi b = 1; 
then e=(ebray. This shows that, in all cases, U, c(K” )“, so that every 
character of K ‘, of order dividing n, is trivial on U,. As this is so for all n, 
our conclusion follows now at once from corollary 4 of prop. 2, 0 1. 

COROLLARY 1. The canonical morphism a of K ’ into the Galois group 
2I of Kab over K is injective. 

By lemma 2 of 0 1, applied to the endomorphism x+x” of K x, 
(K ‘)’ is a closed subgroup of Kx for every n >, 1; this implies that it is 
the intersection of the kernels of all the characters of Kx whose order 
divides n; that being so, theorem 3 shows that the kernel UK of a is the 
same as the intersection U’ of the groups (K ‘), for all na 1. Clearly U’ 
is contained in R x . As it is obvious that the compact group Rx is totally 
disconnected, lemma 4 of Chap. VII-3 shows that all its characters are 
of finite order. If rc is a prime element of K, every character of R ’ can be 
uniquely extended to a character o of Kx such that W(Z)= 1, which then 
must also be of finite order. This implies that U’ is contained in the kernel 
of all the characters of Rx, so that it is {l}. 

COROLLARY 2. The canonical morphism a induces on R x an isomorphism 
of R x onto the Galois group ‘?I, of Kab over the union K, of all unramified 
extensions of K in I?. 

This is now obvious, by corollary 1 and the corollary of prop. 7. 

THEOREM 4. Let K’ be an extension of K of finite degree, contained in 
K; put L = K’nKab. Then, for gE K x, a(0) induces the identity on L if and 
only if 8 is in N,,,,(K’“). 

Call p the restriction morphism of ‘%I’ into 2l, and put 23 = p(W). 
An element of K ab is invariant under 23 if and only if it is in K’; then it is 
in L; therefore LB is the subgroup of ‘$I corresponding to L. Put X = a-‘@) 
and X’=N,,,,(K’“); h t w a we have to prove is that X=X’. By lemma 2 
of Q 1, X’ is closed in Kx . If n is the degree of K’ over K, we have NK,,JQ) = 
= 8” for 0E K ‘, so that X’ 1 (K ’ )“; therefore, if $ is a character of K x, 
trivial on X’, it is trivial on (Kx )“, hence of a finite order dividing n, so 
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that, by th. 3, it can be written as Xoa with XEX,. Then Xoao NKfIK is 
trivial on K’ ’ ; by corollary 1 of th. 2,§ 2, it is the same as xopo a’, so that 
xop must be trivial on ?I’, hence x on p(‘W)=23, hence II/ on X. This 
shows that X’ 2 X. Conversely, if 0 = NKrIK(@) with O’EK ‘, corollary 1 
of th. 2,s 2, gives a(6) = p(a’(@)); as this is in 23, we see that X’ c X, which 
completes the proof. 

COROLLARY 1. Assumptions and notations being as in theorem 4, call 
% the subgroup of ‘%!I corresponding to L. Then N,,,(L”)=N,.,,(K’“)= 
=a - ‘(23). 

The latter equality is just a restatement of theorem 4. Applying 
theorem 4 to K’= L, we get NLIK(LX)=a-‘(FB). 

COROLLARY 2. For every extension L of K of finite degree, contained in 
Kab, call B(L) the subgroup of VI corresponding to L, and put N(L)= 
N&L”). Then N(L)=a-‘(23(L)); B(L) is the closure of a(N(L)) in %I; 
L consists of the elements of Kab, invariant under a(6) ,for all t3~ N(L), and 
a determines an isomorphism of K “/N(L) onto the Galois group ‘%/B(L) of 
L over K. Moreover, L+ N(L) maps the subjields of Kab, of finite degree 
over K, bijectively onto the open subgroups of Kx, of jinite index in Kx. 

All this is a restatement of prop. 3 of 9 1, once theorems 3 and 4 are 
taken into account. Traditionally, when Land N(L) are as in our corollary, 
one says that L is “the classheld” to the subgroup N(L) of Kx . In applying 
our corollary, it is frequently useful to keep in mind that, by lemma 1 of 
9 1, an open subgroup of K ’ is of finite index in K x if and only if it is not 
contained in R ‘. 

COROLLARY 3. Let K and K’ be as in theorem 4; let M be a subfield of 
Keb, of jinite degree over K, and call M’ its compositum with K’. Then 
N M,,KW’ ’ I= Nr,K ‘(N,,dM ’ ,). 

By corollary 2, N,,,(M “), which is the same as N(M), consists of the 
elements 8 of Kx such that a(@ leaves every element of M invariant. 
Similarly, N,.,,.(M’ “) consists of the elements 8’ of K’” such that a’(@) 
leaves every element of M’ invariant; the latter condition is fulfilled if and 
only if p(a’(0’)) leaves every element of M invariant; in view of corollary 
1 of th. 2,§ 2, this is the same as to say that a(NK.&@)) leaves every element 
of M invariant, i.e. that NKPIK(@) is in N,,,(M “). 

It is easily seen that theorem 4 and its corollaries retain their validity 
for R-fields; so does theorem 3. 

0 4. Ramification of abelian extensions. The above theory would be 
incomplete without the knowledge of the ramification properties of the 
abelian extensions of K, and in particular of their differents and discrimi- 
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nants. As shown in Chap. VIII-3, these properties can be fully expressed 
by a description of the Herbrand distribution on the Galois group ‘QI 
of K,, over K. We begin with some preliminary results, the first one of 
which has no reference to abelian extensions and may be regarded as 
supplementing Chap. VIII-3. We adopt the same notations as there, 
e.g. in prop. 9 of that Chapter, calling K’ a Galois extension of K of 
degree n with the Galois group g = go, and calling g,, for v 3 1, the higher 
ramification groups of K’ over K. We also call R, R’ the maximal com- 
pact subrings of K, K’, and P, P’ the maximal ideals of R, R’, respectively. 
We denote by E the neutral element of g. 

PROPOSITION 11. Let e be the order of ramification of K’ over K, and 
let Pld be its different. Take h> 1, ZEP~ and put: 

N,,,,(X-z)=X”+a,X”-‘f “‘+a,, 

where X is an indeterminate. 

(i)1f v(l)gh+l forall A#&, then, for ldi<n: 

e.ord,(a,)>h+d-e+l. 

(ii) If v(n) < h for all A # E, then, for 2 < i < n: 

e.ord,(a,)>h+d-e+l. 

(iii) Zf v(A)>h+l for all A#&, then, for ldidn: 

ord,(a,) > h. 

(iv)If v(/Z)>h+2 forall/Z#E, then, for l<i<n-1: 

ord,(a,) > h. 

As -a, = Tr,.&z), the inequality in (i), for i= 1, is nothing else than 
corollary 1 of prop. 4, Chap. VIII-l, and does not depend upon the as- 
sumption about v(L) in (i). In any case, we have 

(3) (-l)iai=Cz”1z”2...z”‘, 

where the sum is taken over all combinations of i distinct elements of 
g, or, what amounts to the same, over all subsets 5 = {J.r,. . .,&} of g of 
cardinal number i. For each such subset 5, write: 

z(5) = zA1 zA2.. . +. 

Take such a subset 5; for each a~g, write 50 for the image of 5 under the 
translation 242.0 in g; call h the subgroup of g, consisting of the ele- 
ments o such that 5 o = 5; call 1 the order of b, and take a full set {pl,. . . , pl} 
of representatives of the left cosets h p of b in g. Clearly 5 is a disjoint union 
of right cosets PE) of h in g; take a’full set m = {pr,. . . ,pL,} of representatives 
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for these cosets, so that 5 is the disjoint union of the cosets pi 6,. . . ,,~,h; 
we have i = m 1. Put w  = z(m), and call K” the subfield of K’ corresponding 
to the subgroup h of g; we have now: 

z(5) = n wb= NK.,Kf*(W). 
=h 

In view of the definition of h, the sets a pi,. . . , s pI are all distinct; as they 
have the same cardinal number i as 5, all the terms z(4pj), for 1 <j<r, 
occur in the right-hand side of (3). As the pi induce on K” all the distinct 
isomorphisms of K” into I?, the sum of these terms can be written as 

(4) ~Z(5pj)=~Z(5)Dj=~NK’,K”(WY)j=TYK,~,I((NK’,K”(W)). 
j j j 

Consequently, the right-hand side of (3) can be written as a sum of terms, 
each of which has the form shown in the right-hand side of (4); moreover, 
for each one of these terms, we have ml= i, where 1 is the order of h, i.e. 
the degree of K’ over K”. All we need do now is to prove the inequalities in 
our proposition for each term of that form, with ord,(w) 3 m h in view of 
the assumption on z and of the definition of w. Call e’ the order of ramifi- 
cation and f’ the modular degree of K’ over K”, so that Z= e’ f’ by corol- 
lary 6 of th. 6, Chap. I-4; then, by (2) of Chap. VIII-l, the order of NK,,&w) 
in K” is z f’mh. Call e” the order of ramification and d” the differental 
exponent of K” over K. If o is the order in K of the right-hand side of (4), 
we have, by corollary 1 of prop. 4, Chap. VIII-l : 

e”o>f’mh+d”-e”+ 1. 

As e = e’e”, i = m 1, and e’f ‘= 1, this gives 

eoaih+e’d”-e+e’. 

If now we call d’ the differental exponent of K’ over K”, corollary 4 of 
prop. 4, Chap. VIII-l, gives d = e’d”+ d’, so that our last inequality can 
be written as 

ewaih+(d-e+l)-(d’-e’+l). 

Now formula (9) of Chap. VIII-3, applied to K’ and K”, gives: 

S-e’+ 1 =C(v(l)- l)+, 
I 

where the sum is taken over all ;1 #E in h; moreover, as pointed out there, 
the number of terms > 0 in that sum is <e’ - 1. If the assumption in (i) is 
satisfied, every one of these terms is <h; this gives 

d’--e’+l<(e’-l)h, 
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and therefore 
ew-(h+d-e+l)a(i-e’)h; 

as e’ < 1~ i, this proves part (i) of our proposition. If the assumption in (ii) 
is satisfied, we get in the same way: 

d’ - e’ + 1 <(e’ - 1) (h - 1) 

and therefore 
eo-(h+d-e+l)>i-l+(i-e’)(h-1); 

this cannot be 0 unless i= 1, which proves (ii). On the other hand, if we 
apply formula (9) of Chap. VIII-3 to K’ and K, we get 

(d-e+l)-(d’-e’+l)=C(v(A)-l)+ 

where the sum is now taken over all A.E g - h and consists of n - 1 terms, 
so that it is > (n - l)h if the assumption in (iii) is satisfied. Then we get: 

e(w-h)>(i+n-l-e)h, 

which proves (iii), since 1~ i and e<n. Similarly, the assumption in (iv) 
gives : 

e(w-h)a(i+n-l-e)h+n--1; 

as 1~ i, e < n, 1~ n, the right-hand side cannot be 0 unless l= i, e = n, l= n, 
hence i = n. This proves (iv). 

COROLLARY 1. Notations being as in proposition 11, take again h> 1, 
ZEZ”~. That being so: 

(i) Zf v(l)<h +l for all A#&, then: 

e.ord,(N,.,,(l+z)-l)ah+d--efl. 

(ii) Zf v(A)<< for all A#&, and h=pe-(d-e+l) with PEZ, then: 

NKpIK( 1 + z) = 1 (P), NK& 1 i- z) = 1 + 7?,.,,(z) (P”’ ‘). 

(iii) Zf v(A) > h + 1 for all 1 #E, then: 

NKrIK( 1 + z) = 1 (Ph). 

(iv) Zf v(A) 3 h + 2 for all A # E, then: 

NKfIK( 1 + z) = 1+ NKpIK(z) (Ph+ ‘). 

In fact, with the notations of proposition 11, we have: 

N,,,,(l+z)=l+ ‘f(-1)‘~~; 
i= 1 
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the four assertions in our corollary follow now immediately from the 
corresponding ones in proposition 11. 

COROLLARY 2. Assumptions being as in corollary 1 (ii), we have 
N,.,,(l + P) = 1 + PP. 

As d-e + 12 0, these assumptions imply h dpe, hence p 3 1. By 
corollary 1 (ii), N,,,,(l + P”‘) is contained in 1 + Pp. Conversely, take any 
x,gPp; then we can define by induction two sequences (x0,x1,. . .) and 
(zO,zl,...), with xiePi+” and zi~Pfie+” for all i>O, by taking, for each 
i>O, z~EP’~~+~ such that Tr,.,,(z,)= xi, as may be done by prop. 4, 
Chap. VIII-l, and then putting 

corollary 1 (ii) shows at once that this is in Pi+ ’ +p, as it should. Then, 
obviously, 1 +x0 =N,,&y) with y given by the convergent product 

y= fi(l+zi); a s y is in 1 + plh, this proves our corollary. 
i=O 

PROPOSITION 12. Let K and K’ be as above, and assume that v(A) has 
the same value i > 2 for all A+ E in g. Then, for 1~ h < i, NKfIK( 1+ Pfh) is 
contained in 1 + Ph; and NK,J 1 + Pli -‘) is contained in 1 + Pi if and only if 
the degree n of K’ over K is equal to the module q of K. 

Here the higher groups of ramification of K’ over K are given by 
g,=gforv~iandg,={&}forv~i+l.Asg,=g,wehavee=n;K’hasthe 
modular degree f = 1 over K and has the same module q as K. By formula 
(9) of Chap. VIII-3, we have d = (n - 1) i. Taking h = i in corollary 1 (i) of 
prop. 11, we get our first assertion for that case; in the case h < i, it follows 
at once from corollary 1 (iii) of the same proposition. By corollary 3 of 
prop. 9, Chap. VIII-3, the degree n of K’ over K divides q; by that propo- 
sition, if we take a prime element rc’ of K’ and put y, =~Px’- ’ for all 
AEg, the mapping I +yl maps g onto a set Y of elements of 1 + Pfi- ’ 
which are all incongruent to each other modulo Pli. In particular, Y 
makes up a full set of representatives of the cosets of 1 + Pfi in 1 + P’- ’ 
if and only if n = q. Since obviously N K,,K(yVA) = 1 for all /2, this shows that, 
if n = q, NKTIK( 1 + P’- ‘) is the same as N,,,,(l + Pli), hence contained in 
1+ Pi. In order to prove the converse, take ZEK’~ such that ord,(z) = i - 1. 
As in prop. 11, write 

n 
N,.,,(X-z)=X”+ c ajXn-j. 

j=l 

Then an= NKTIK( - z), so that, by (2) of Chap. VIII-l, ord,(a,) = i- 1. 
Taking h = i - 1 in prop. 11 (i), we get ord,(aj) 3 i - 1 for 1 <j < n, so that, 
if we put bj=aj/a,, all the bj are in R. Now take any y~l+ Pfi-l; as 
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(1 - y)/z is in R’, and as K’ has the same module as K, there is CIE R such 
that (1 - y)/z = CI (P’), or, what amounts to the same, y = (1 - crz)u with 
UE 1 + Pfi. Then NKfjr((u) is in 1 + Pi, so that we have: 

NK,IK(y)=NK,IK(l -a~)= l+ i ai&= 1 +a,(a” +nilbjaj) (Pi). 
j=l j=l 

For 1 <j < n-l, call gj the image of bj in the field R/P, under the canonical 
homomorphism of R onto that field; then the above formula shows that 
NKTIK(y) is in 1 + Pi if and only if the image of CI in the same field is a root 
of the polynomial T”+ 1 Fj Tj; in particular, if this is so for all y, all the 
elements of R/P must be roots of that polynomial, so that n3q. This 
completes the proof. 

PROPOSITION 13. Let 7~ be a prime element of K; for each v > 1, call N, 
the subgroup of K ’ generated by IZ and 1 + P”, and call K, the subfield of 
K,, such that N(K,) = N, in the sense of corollary 2 of theorem 4,§ 3. Call 
g(“) the Galois group of K, over K, and a, the morphism of K” onto g”“, with 
the kernel N,, determined by the canonical morphism a of K. Call gj”‘, for 
i> 1, the higher groups of ramification of K, over K. Then gy)=g(“); for 
ldpdvandqP-l<i<qp,gjv)=a,,(N,). 

Choose some v > 1, and then, to simplify notations, write N instead of 
N,, L instead of K,, g instead of g@), gi instead of gp); as in Chap. VIII-3, 
call gi the number of elements of gi, for all ia 1; then gi divides gj for 
i>j. As g is isomorphic to K “IN, the degree of L over K is the index of N 
inK”,whichisn=(q-l)q’-’ . By the corollary ofprop. 6,§ 2, the maximal 
unramilied extension C of K, contained in L, is the one for which N(L’“) = 
=R” N; as R” N=K”, we get E=K; in other words, L is fully ramified 
over K, its order of ramification is e = n, and we have g1 = g; moreover, L 
has the same module q as K, and the same must then be true of all fields 
between K and L, so that, if K c K’ c K” c L, K” is fully ramified over K’. 
By corollary 1 of prop. 9, Chap. VIII-3, gi/gi+ 1 divides q for i > 2; therefore 
g1/g2=q-1. Put r,=O and ri=(g,+...+ gi)/n for all ig2; for each in- 
teger p 2 0, call i(p) the largest of the integers i such that ri < p. Assume 
ri<p<ri+,foranyp3Oandanyi~1;thenO<pn-(8,+...+gi)<gi+1; 
this is clearly a contradiction, since n, g2, . . . . gi are multiples of 
gt+ i . Therefore, for all p, we have rib) = p. We have i(0) = 1, and i(p) > 1 
for p > 0. Take now any p such that 0 d p < v; put i = i(p); call K’, K” the 
subtields of L consisting of the elements invariant under gi and under gi+ i, 
respectively; the Galois group g” of K” over K’ may then be identified 
with gi/gi+ i. If p =O, i= 1, and the degree of K” over K’ is g1/g2 =q- 1. 
From now on, assume that 1 <p < v; we will show that then K” is of de- 
gree q over K’. We first observe that the higher ramification groups g; 
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of K” over K’ are given by applying formula (11) of Chap. VIII-3 to K’, 
K” and I,; as K” is fully ramified over K’, its order of ramification is the 
same as its degree over K’, and then that formula shows at once that 
~(a”) = i for all Q”E g” except the identity, so that g; = g” for j< i, and 
g;=(E) for j>i+l. S imilarly, write g’=g/gi for the Galois group of K’ 
over K, and call gJ its higher ramification groups; in exactly the same 
manner, we find that gi is the image gj/gi of gj in g’, for j<i, and that it 
is {E} for j> i. Call R’, R” the maximal compact subrings of K’, K”, and 
P’, P” the maximal ideals in R’, R”, respectively. As K’ is fully ramified 
over K, its order of ramification e’ is the same as its degree n’=n/g,; 
then, if Pd’ is the different of K’ over K, formula (10) of Chap. VIII-3, gives 

d’-e’+l= C((gj/gi)-l)=rin/gi-i+l==n’-i+l. 
j=2 

Take any ZEL such that ord,(z)>i- 1; put v=N,,,.(z), so that v~P”~-l. 
Applying corollary 1 (iv) of prop. 11 to K” and L, with h = i- 1, we get 

N,,,“(l+z)El+v (Pi). 

Define now WEK’ by writing 

l+w=N,,,~(l+z)=NK”,K’(NL,K”(l+Z)). 

Applying to K’, K” the first assertion in prop. 12 with h = i, we get 

1+ w  = NKWIK’( 1+ v) (Pi); 

the case h= i- 1 of the same assertion in prop. 12 gives then WEP”-‘. 
Now, taking h= i- 1 in corollary 1 (ii) of prop. 11, we can apply it to K 
and K’; this gives 

NLIK( 1 + z) = NKtIK( 1 + w) = 1 + 7+x,&w) (P + ‘). 

By the definition of K,, and corollary 2 of th. 4,s 3, this must be in N, = N, 
hence in N,nR ‘, i.e. in 1 + P”; as p <v, this implies that PKfjK(w) is in 
Pp+ ‘. In view of the values found above for e’ and d’-e’f 1, prop. 4 of 
Chap. VIII-l shows that 7PFKsIK maps pliml surjectively onto Pp, and Pfi 
onto Pp+l; in particular, there is w’EP’~-’ such that Tr,,,,(w’) is not in 
Pp+ ’ Then, if we had ord,.(w)= i- 1, w’w- ’ would be in R’, so that we 
could write w’w- ’ - =U (P’) with CCER, since K’ has the same module 
as K ; this can be written w’ E CI w  (P”), which implies 

Ty,*,g(w’) = CI z-f,~,,(W) = 0 (P”’ ‘), 

against our assumption. This shows that w  is in Pfi, or in other words 
that NKPfIICr (1 + v) is in 1 + Pli whenever v = NLIK,(z) with ZE L, ord,(z) > 
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>, i - 1. Now choose zO~LX so that ord,(z,) = i - 1; put v0 = NLjK(zo), so 
that ord&u,) = i - 1; call M ’ the group of (4 - 1)-th roots of 1 in K, and 
take z = pz,, with PE Mx . As the degree of L over K” is gi+ i, and as 
gj/gj+ i divides 4 for all ja2, we have v =pQu,, where Q =gi+ 1 divides a 
power of 4 and is therefore prime to q - 1, so that p-+pQ is an automor- 
phism of Mx . Consequently, when ~1 runs through the set M = Mx u(O), 
1 + v runs through a full set of representatives of the cosets modulo 

v is in 1+ Pi for all these elements v, ;:,,p”;i$;;w~i;r;tp t&;,K$ + ) 
K,,,KP(l + P”- ‘) is contained in 1+ Pi, and 

then that the degree 0; K” over K’ must therefore be q. 
In other words, we have shown that gitiJ/gi@)+ I is equal to q for 1 Q p < 

Q v - 1; we had already found that it has the value q - 1 for p = 0. As we 
have 

n=(q-l)q”-‘= fi(gi/Cli+I)r 
i= 1 

this implies that gi=gi+ i whenever i is not one of the integers i(O)= 1, 
i(l),..., i(v - 1); therefore gj = gi@)+ r for i(p) <j< i(p + l), so that gi@+ i) is 
of index q in giti) for 1~ p < v, while this index is q - 1 for p = 0. By induc- 
tion on p, we see at once that giti) = qy-P for 1 d p < v. The definition of the 
integers ri gives now: 

ri@+l)-rib) =bil.p)+ 1 + ...+ gi~+,,)/n=(i(p+l)-i(p))q”-P-lfl~l, 

for O,<p<v. As rib)= p, the left-hand side is 1; this gives 

O+l)-O)=(c7-l)qp, 

and therefore i(p) = q” by induction on p. 
To complete the proof, observe that, in view of the values found above 

for e’ and d’ -e’ + 1, we may apply corollary 2 of prop. 11, with h = i - 1, to 
K and the same field K’ as above; it shows that 1 +P is the same as 
NK,,J 1+ Pfiel) and is th ere f ore contained in the group N’ = N,,,,(K’ ’ ) 
associated with K’ according to corollary 2 of th. 4, Q 3. As N’ contains the 
group N = N, associated with L = K,, it contains Z, hence the group N, 
generated by z and 1 + Pp. Let a, be the morphism of K x onto g = g(“‘, 
with the kernel N,, defined in our proposition; by corollary 2 of th.4, 
9 3, this maps N’ onto the subgroup giti) of g corresponding to K’; 
therefore giti) contains a,,(N,) for 1 <p < v. In view of our definitions, the 
same is obviously true for p = 0 if we define N, by N, = K x, and also for 
p = v. Now we prove by induction on p that g+) = a,,(N,) for 0 < p < v. It 
is true for p=O. Assume gi@- r)= aJN,- r), and let N’ be as above; N’ 
contains N,, as we have seen, and it is contained in N,- i, since giti) is 
contained in siti- i); its indexin N,- r is the same as that of gitiJ in gi@- i), 
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which is q - 1 if p = 1 and q if p > 1. As this is the same as the index of N, in 
NP- 1, we get N’ = N,. In view of what has already been proved above, 
this completes the proof of our proposition. 

COROLLARY. Notations being as in proposition 13, the order of ramifi- 
cation of K, over K is the same as its degree and is given by e, = (q - l)q”- ’ ; 
if d, is the differental exponent of K, over K, we have d,,/e, = v - (q - 1)-l. 

The value of e, has already been given above; that of d, can be ob- 
tained at once by applying formula (10) of Chap. VIII-3 to the results 
stated in proposition 13; this gives the formula in our corollary. 

As will presently be seen, proposition 13 contains in substance the 
determination of the Herbrand distribution on the Galois group %!I of 
K,, over K, which was our main object in this 9. We recall that this has 
been defined in Chap. VIII-3 as a certain linear form f -+ H(f) on the 
space of all locally constant functions on ‘8. As explained there, if X is 
any open and closed subset of 5II, its characteristic function fx is locally 
constant, and then we write H(X) instead of H(f,); X-H(X) is thus a 
finitely additive function of X. 

LEMMA 3. Let H be the Herbrand distribution on ‘?I. Then there is a 
unique distribution H, on VIZ, such that H(f)= H,(f,) whenever f is a 
locally constant function on !!I, and f. is the function induced on ‘u, by f: 

Let B be any open subgroup of 2l; let L be the subfield of Kab corre- 
sponding to ‘B. Let K, be as in 5 2, i.e. the union of all unramified exten- 
sions of K, so that ‘?I0 is the subgroup of 2I corresponding to K,. Then the 
maximal unramilied extension L, of K, contained in L, is K,nL and 
corresponds to the subgroup 23 5!IL, of QI. If !B CI is any coset of 23 in 2I, 
other than 93, and c1 induces on L the automorphism 1, H(B a) is by defi- 
nition equal to - v(A)/e, where e is the order of ramification of L over K; 
this is 0 if 2 does not induce the identity on L,, i.e. if B CI is not contained 
in %)‘u,,, or in other words if 23 an211, =p. As H is finitely additive, this 
implies that H(X) = 0 whenever Xn(U, =fl, and H(f) = 0 whenever the 
locally constant function f is 0 on ‘910. On the other hand, take any 
locally constant function f. on 2I,. As ‘?I, is compact, f. is uniformly 
continuous, so that there is an open subgroup 23 of 9I such that f. is con- 
stant on the cosets of %3n91U, in 911,. Then f. can be uniquely continued to 
a function f on ‘$I, constant on the cosets of ‘B in ‘$I and 0 outside !B%,. 
If then we put H,(f,)= H(f), it is clear that H, is as required by our 
lemma. Except for obvious notational changes, the lemma and its proof 
remain valid for the Herbrand distribution on the Galois group of any 
Galois extension of K, abelian or not. This will not be needed. 



§ 4. Ramification of abelian extensions 239 

As the canonical morphism a of K ’ into 2I maps Rx isomorphically 
onto 911,, we can transport to R ’ the distribution H, of lemma 3 by means 
of the inverse to that isomorphism. This defines a distribution HR on R ‘, 
which we extend to a distribution H, on K x by prescribing that 
HK(X) = HR (XnR “) for every open and closed subset X of Kx . We will 
call H, the Herbrand distribution on Kx ; in an obvious sense, its support 
is contained in R ‘. In view ofthe definition of H,, we have H(f) = HK(foa) 
for every locally constant function f on ?I, and H(X)=H,(a-‘(X)) 
for every open and closed subset X of VI. The distribution H, is given by 
the following theorem: 

THEOREM 5. Let H, be the Herbrand distribution on K ‘. Then its 
support is R x ; H,(R”)=O; H,(l+Pv)=v-(q-l)-l for all ~31; if 
O<p<v, &Rx, and ord,( 1 - 5) = p, then 

H,((l +P”)c) = -qP+l-‘(q- 1)-l. 

By the definition of the Herbrand distribution, we have H(cU)=O; 
thisgives H,(K “)=O, hence H,(R”)=O. Let K,, N,, d,,, e, be as in prop.13 
and its corollary; if S3, is the subgroup of ‘?I corresponding to K,, we 
have H(BJ=d,/e, by the definition of the Herbrand distribution; as 
N,,=a-‘(23J by corollary 2 of th. 4, 4 3, and as N,nR’ = l+ P’, this, 
together with the corollary of prop. 13, gives for H,(l+ P”) the value 
given in our theorem. Finally, let 5 be as in our theorem; call ,? the auto- 
morphism of K, induced by a(5). By the definition of the Herbrand 
distribution, H(23,,a(<)) is -v@)/e,, or, what amounts to the same, it 
is -i/e, if i is the largest integer such that J.Egjv). By prop. 13, this is 
i= $ if p is the largest integer such that 2~a,,(N,), or, what amounts 
to the same, such that SENT; this is given by p =ord,(l - 5). On the 
other hand, H(&a(c)) is the same as H,(N,<) and as H,((l +P”)t). 
This completes our proof. 

COROLLARY 1. Let x be a character of ‘?I, and Pf the conductor of 
the character xo a of K x. Then f= H(X) = H&oa). 

Put o = xo a. If f = 0, o is trivial on R ‘, so that HK(co) = H,(R ” ) = 0 
by theorem 5. Assume now that f 3 1; call p. the characteristic function 
ofR”,andcp,thatofl+P’forl<idf.Wehave: 

s-1 
HK(a)= 1 H,((qoi-(Pi+l)W)+HK(~P/W) 

i=O 

By the definition of the conductor, w is trivial on 1 + Pf, so that the 
last term is equal to H,(l+ Pf), hence to f-(q- 1)-i by theorem 5. 
Also by theorem 5, and in view of the fact that co is constant on cosets 
modulol+PfinR”,wehave,forO<i<f-1: 
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where Si is the sum co(t) taken over a full set of representatives of 
the cosets modulo l+Pf in R” if i=O and in l+P’ if i>l. By the 
definition of the conductor, o is not trivial on R ‘, nor on 1+ Pi for any 
i <f; therefore Si=O for i <f, and S,= 1. Our conclusion follows from 
this at once. 

COROLLARY 2. Let L be an abelian extension of K of finite degree. 
Let w  1,. . . ,a,, be all the distinct characters of K ‘, trivial on the subgroup 
N(L) = N,,,(L” ) of K x associated with L; for each i, call Pf i the conductor 
of oi. Then the discriminant of L over K is P’ with S=ch. 

Call 23 the closure of a(N(L)) in 2I; by corollary 2 of th. 4, 9 3, it is 
the subgroup of ‘?X corresponding to L, and a determines an isomorphism 
of K “/N(L) onto cU/B. Therefore we can write, for each i, oi=Xioa, 
where xi is a character of %?I, trivial on 23, and the xi, for 1 d i<n, are 
then all the characters of ‘8, trivial on B$, so that the characteristic 
function of 23 on ‘$I can be written as n- ’ xxi. Call e, f and d the order 

of ramification, the modular degree and ihe differental exponent of L 
over K; then n=ef, and, by the corollary of prop. 6, Chap. VIII-2, the 
discriminant of L over K is Pfd. By the definition of the Herbrand 
distribution, we have H(B)=d/e; this can be written as 

d/e=H( nmlcxi) =n-‘xH(XJ, 
1 I 

hence fd=xfi, . m view of corollary 1. This completes the proof. 

0 5. The transfer. Notations being as before, let K’ be an extension 
of K of finite degree; call a, a’ the canonical morphisms of K x into 2l, 
and of K’ ’ into ‘%I’, respectively. As a is injective, there is a mapping t 
of the image a(K “) of K x in 9l into the image a’(K’ “) of K’ ’ in ‘$I’, 
defined by t(a(Q))= a’(0) for every OEK ‘, or in other words by toa=a’oj 

if j is the natural injection of Kx into K’ ‘. The question arises whether 
this can be characterized in group-theoretical terms, and extended by 
continuity to a morphism t of 9I into 2l’; this will now be answered 
affirmatively. For simplicity, we will assume K’ to be separable over K; 
a consideration of the general case would complicate our statements 
without adding to them anything of value. 

Consequently, let K’ be a subfield of Ksep, of finite degree n over K. 
As before, we call 8’ the subgroup of Q corresponding to K’, and identify 
21 with B/W’ and ‘%I’ with W/W”‘. It will be shown that the morphism 
we are looking for is none other than the so-called “transfer homo- 
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morphism” t of 2I into ‘3’; we recall that this is defined as follows. Take 
a full set {oi,..., a,} of representatives of the right cosets 08’ of 6’ in 
6. For every CJE~, the mapping 0~8’ -+cJ(T~Q is a permutation of these 
cosets, so that one may write, for each i, aai8’ = ojCi) W, where i-j(i) 
is a permutation of {l,..., n}; this can be written as aoi=ojCi,zi with 
~~~65’. It is now easily seen that the image of z, ... z, in ‘$I’=B’/Q’(‘), 
under the canonical morphism of 6’ onto ‘5X’, depends neither upon the 
choice of the representatives gi nor upon their ordering, so that, if we 
call that image a(o), the mapping o-+x(a) of 8 into ?I’ depends only 
upon 6 and (5’. One sees then at once that cc(aa’)=a(a)cc(a’) for all 
D, CJ’ in 6. Moreover, the subgroup 6” of 6, consisting of the elements 0 
such that oai~aiB’ for all i, is the intersection of the open subgroups 
ci 8’0; i for 1~ id n, hence itself an open subgroup of 6; as it is obvious 
that cr+a(a) is continuous on oi”, it is continuous on 6, hence a morphism 
of 6 into ‘?I’. As ‘%I’ is commutative, the kernel of this morphism must 
contain O(l), so that it determines a morphism t of 53 = 6/6”’ into 2I’; 
by definition, this is the transfer homomorphism of ‘$I into 5X’. 

THEOREM 6. Let K’ be an extension of K of finite degree, contained 
in K,,; let a, a’ be the canonical morphisms of KY into ‘3, and of K’ ’ 
into W, respectively. Let t be the transfer homomorphism of 2l into %I’, 
and j the natural injection of K x into K’“. Then toa = a’oj. 

Let 6, 8’ be as above; let L be any Galois extension of K of finite * 
degree, containing K’ and contained in Ksep, and let $3 be the subgroup 
of 6 corresponding to L. Then 5 is a normal open subgroup of 6, 
contained in 6’; the Galois group of L over K is g = O/e, and the sub- 
group of g corresponding to K’ is g’ = @Y/s. Let K” be any field between 
K and L; let 6” and g” = 8”/~ be the subgroups of 6 and of g, respec- 
tively, corresponding to K”. The canonical morphism u” for K” is then 
a morphism of K” ’ into 5X” = @Y/6”(i), which, to every 5 E K” x, assigns 
an automorphism a”(l) of Kib over K”; we will write b(K”;<) for the 
automorphism of Ln Ki,, over K” induced on that field by a”(4). As the 
subgroup of 6 corresponding to LnK$, is 5 (Ij”(‘), t--+ b(K”; 5) is a mor- 
phism of K” ’ into the group @?“/$j 6”(i); clearly the latter group may be 
identified with g”/g”(i), where g”(r) is the commutator subgroup of g”. 
In particular, 8+ b(K; e) is a morphism of K ’ into g/g”‘. We will denote 
by t, the transfer homomorphism defined for g and g’ just as t has been 
defined above for 8 and 8’; it is a morphism of g/g”’ into g’/g”“. Our 
theorem will be proved if we show that, for all 0~ Kx, b(K’;B) = t,(b(K;B)); 
for this implies that a’(0) can differ from t(a(0)) only by an element of 
the image of eS’(‘) in Q’/C!Y(r), i.e. by an element which is arbitrarily 
close to the identity, since we can take for $j an arb&arily small open 
subgroup of 8’, normal in 6. 
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We will denote by h, h’ the canonical morphisms of g onto g/g”’ 
and of g’ onto g’/g’(‘), respectively; h is the same as the “restriction 
morphism” which, to every automorphism of L over K, assigns its 
restriction to LnKab , and h’ can be similarly interpreted. If now K” is 
a field between K and L, corresponding to the subgroup g” of g, K”n Kab 
is the subfield of L corresponding to the subgroup g”g”’ of g, or, what 
amounts to the same, it is the subfield of LnK,, corresponding to the 
subgroup h(g”) of the Galois group g/g(‘) of LnK,, over K. Conse- 
quently, by th. 4 of 9 3, and in view of our definition of b(K ;0), the sub- 
group N,..,l,(K” “) of Kx consists of the elements 19 of K x such that 
b(K;8) is in h(g”). Now assume that g” is commutative, so that <+b(K”;g) 
maps K” ’ into 9”; then we see in a similar manner, by applying corollary 1 
of th. 2, § 2, to K and K”, that we have, for all TV K” ’ : 

(5) WW’; 0) = WW,,,,&)). 

If K” 3 K’, i.e. if g” c g’, we have a similar formula with K’, h’ replacing K,h. 
Now, for a given ICE K ‘, we can choose a cyclic subgroup r of g 

such that b(K;8) is in h(T); for instance, we may take for r the group 
generated by any y ~g such that h(y) = b(K ;0). Then, as we have seen 
above, if Z is the subfield of L corresponding to r, 8 may be written as 
NzIK([) with [EZ”. Take a full set of representatives {Al,...,&} for the 
double cosets Tilg’ of r and g’ in g, and call y1 a generator of r. For 
each i, TAi g’ is a union of right cosets y&g’ of g’, with yeE If y, y’ are in r: 
y Ai g’ is the same as y’ili g’ if and only if y - i y’ is in the group c = rn/&g’& ‘. 
Call di the index of & in r; then c is generated by yy, and d, is also the 
smallest of the integers d such that A; i y: ;li is in 9’. That being so, T&g’ 
is the disjoint union of the cosets yi &g’ for 0 <j< di. Consequently, the 
elements y{ li, for 1~ i <Y, 0 <j < d,, make up a full set of representatives 
of the right cosets of g’ in g, and we can use it for computing the transfer 
t,(y) of any element y of lY Taking at first y=yi, we find at once, in that 
case : 

(6) to(y)=h’ ~(~~~‘yd’;.i) 
( 1 

= h h’(;l; 1 yd’&) ; 
i=l i=l 

this being true for y = yr, it is obvious that it remains so for y = yi for all j, 
or in other words for all y~l: 

For each i, put Zi= Z”‘, and call Z; the compositum of Zi and K’; 
obviously (&,Z:) is a proper embedding of Z above K’ in the sense of 
Chap. 111-2. Let (A,Z’) be any such embedding; after replacing it if 
necessary by an equivalent one, we may assume that Z’ is contained in 
Ksep, hence in L, so that the isomorphism il of Z onto Z’ can be extended 
to an automorphism I of L over K. Then (AZ’) is equivalent to (A,,Z;) 
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if and only if there is a K’-linear isomorphism of Z’ onto Zi, which we 
can then extend to an automorphism o of L over K’, such that I coincides 
with &a on Z. Then J=yL,a with YET and aeg’. Consequently (n,Z’) 
is equivalent to one and only one of the embeddings (&, Zi). Now prop. 4 
of Chap. III-3 gives: 

e=N,,&= fpG,K.(P). 
i=l 

As we may apply (5) to K’ and to K” = Zi for each i, we get: 

(7) b(K’;@= j$r’(b(Z@)). 
i=l 

Put y = b(Z;[); by the definition of b, this is in I: By corollary 5 of th. 1, 
Q 2, we have then: 

We may apply (5) to the fields Zi,Zi instead of K, K”, replacing at the 
same time h by the identity since the Galois group of L over Zi is the 
commutative group 2; ’ T&. The Galois group of L over Z; is the inter- 
section of the latter group with g’; with the same notations as before, 
this is 2,: ’ &&; it is of index di in 1; 1 Tili, so that di is the degree of Z: over 
Zi. As [‘1 is in Zi, we have then N,L,z,(cii)=([ai)di. Therefore (5), applied 
to Zi, Z: and jrli, gives: 

b(Z;; ia’) = b(Z,; ([“i)d’) = (A; ’ ~1~)~~. 

In view of (6) and (7) our conclusion follows from this at once. 



Chapter XIII 

Global classfield theory 

0 1. The canonical pairing. In this Chapter, k will be an A-field; we 
use the same notations as in earlier chapters, e.g. k,, ro, q”, k,, etc. We 
choose an algebraic closure E of k, and, for each place u of k, an algebraic 
closure K, of k,, containing k: We write kse,,, kv,sep for the maximal se- 
parable extensions of k in E, and of k, in K,, respectively. We write kab, 
k “,+ for the maximal abelian extensions of k in ksep, and of k, in k,,+,,, 
respectively. One could easily deduce from lemma 1, Chap. X1-3, that 
k v,sep is generated over k, by ksepr and therefore K, by k; and we shall see 
in 0 9 of this Chapter that kv,ab is generated over k, by k,,; no use will be 
made of these facts. We write 6 and ‘% = 8/8(‘) for the Galois groups of 
k,, and of kab, respectively, over k; we write 8, and ‘$I, = SJS~‘) for 
those of kv,sep and of kv,ab, respectively, over k,. We write pv for the re- 
striction morphism of 8, into 6, and also, as explained in Chap.XII-1, 
for that of 21z, into ‘?I. We write X, for the group of characters of 6, or, 
what amounts to the same, of ‘%u; for each XE X,, we write xv = xo pv; this is 
a character of 8,, or, what amounts to the same, of ‘$I,. 

PROPOSITION 1. Take any XEX,; call L the cyclic extension of k 
attached to x. Let v be any place of k; let L’ be the cyclic extension of k, 
attached to xv = xop”, and let w be any place of L lying above v. Then there 
is a k,-linear isomorphism of L’ onto L,. 

As observed in Chap. 1X-4, L’ is the compositum of L and k, in K,. 
As it is of finite degree over k,, it is a local field, and prop. 1 of Chap. 
III-1 shows that L is dense in it; therefore it is the completion of L at a 
place lying above u. Our conclusion follows now from corollary 4 of th. 4, 
Chap. 111-4. 

COROLLARY. Notations being as in proposition 1, x0 is unramijied for 

almost all v; if xv is trivial for almost all 21, x is trivial. 

The first assertion follows at once from th. 1 of Chap. VIII-4, combined 
with proposition 1; the second one follows similarly from corollary 4 of 
th. 2, Chap. VII-5, when one takes there for T/ the set of all the finite places 
of k where x0 is trivial. 

We can now apply to k, and xv the definitions and results of Chap. 
X11-2. For any zE k,” , we will write (x”,z), instead of (x,,z),,. The canonical 
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morphism of kz into ‘9II, will be denoted by a,; then we have (x”,z)“= 
= x,(a,(z)) for all ,zE k”, . For every zE k:, p,(a,(z)) is the automorphism of 
k,, over k induced on k,, by the automorphism a,(z) of kv,ab over k,. 

Take now .z=(z& k;. For almost all u, z, is in rz, and, by the corol- 
lary of prop. 1,~” is unramified, so that we have (xU,zJv = 1 by corollary 4 
of th. 1, Chap. X11-2. Therefore, in the product 

(1) 

taken over all the places of k, almost all the factors are equal to 1, so that 
the product is well defined. The continuity of z,+(x,,z,), for each u, 
together with the facts mentioned above, implies that z-+(x,z), is conti- 
nuous on ki; therefore it is a character of k;, whose order is finite since 
it divides that of x. The pairing of X, with ki, given by (l), will be called 
the canonical pairing for k; it is clear that it satisfies condition [I] of 
Chap. X11-1. As to condition [II], assume that z-f(~,z)~ is trivial on k;; 
then z,+(x~,z,), must be trivial for every u. As [II] is satisfied for local 
fields, this implies that all x0 are trivial, hence that x is so, by the corollary 
of prop. 1. This proves [II] for the pairing (1). 

As explained in Chap. X11-1, we can now define the canonical mor- 
phism a of ki into 2I by writing, for all XEX, and all z =(z,)E ki: 

(2) x(a(z))=(x,z),=n(x,,z,),. 

Then, by [II”] of Chap. XII-l, a maps k; onto a dense subgroup of a. 

PROPOSITION 2. Let j, be the natural injection of kz into ki, mapping 
k”, onto the quasifactor k: of k;. Then aojv=p,oa,. 

In fact, if z,ekz, z =j”(z,) is the idele whose coordinates are all 1 
except the one corresponding to u which is z,. Put CI = a&z,); (2) gives here: 

x(44) = twJv = x,(4 = x(PJ~). 

As this is so for all characters x of rU, it implies a(z) = p,(cr), as was to be 
proved. 

THEOREM 1. Let k’ be an extension of k of finite degree, contained in I?; 
let 6,(li’ be the Galois groups of k,, over k, and of k&, over k’, respectively, 
and let p be the restriction morphism of 8’ into 6. Then, for every charac- 
ter XEX~, and for every zIEky , we have: 

(x0 P, z’)v = (x2 NC,&% 

In view of our definitions, this is an immediate consequence of th. 2 
of Chap. X11-2, combined with corollary 3 of th. 1, Chap. IV-l. 
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COROLLARY 1. If a, a’ are the canonical morphisms for k and for k’, 
respectively, we have pea’= ao Nkrlk. 

This is just a restatement of theorem 1. 

COROLLARY 2. Assumptions and notations being as in theorem 1, 
Nk,,k(kT) is contained in the kernel of boa if and only if k’ contains the 
cyclic extension of k attached to x. 

In fact, theorem 1 shows that it is contained in that kernel if and only 
if XOPOU’ is trivial, hence, by [II], if and only if xop is trivial. Let L be 
the cyclic extension of k attached to 1; then the cyclic extension of k’ 
attached to xop is the compositum L’of k’ and L, and xop is trivial if and 
only if L’= k’, i.e. k’ I L. 

Our main business in this chapter will be to determine the kernel 
of the canonical morphism a. For the time being, we merely observe that 
it must contain the kernel of a, for every v; this is { l> if v is finite, but it is 
R: if v is real, and C ’ if v is imaginary. We will write k: + for the product 
of the latter kernels in ki, i.e. for the group of the ideles (z,) such that 
zV= 1 for every finite place v, and z,>O for every real place v; then this 
group is contained in the kernel of a; of course it is {l} if k is of charac- 
teristic p > 1. 

We will now give explicit formulas for (x,z), in some special cases, and 
begin by considering a held k of characteristic p> 1. Let then F be the 
field of constants of k; call q the number of elements of F, and P the alge- 
braic closure of F in z. By th. 2 of Chap. I-l, F x is the group of the roots 
of 1 in &, and all these roots have an order prime to p. We will call k, the 
compositum of k and P, e. the subgroup of Q corresponding to k,, and 
X0 the subgroup of X, consisting of the characters of 6, trivial on !&. 
Clearly every extension of k of finite degree, contained in k,, is generated 
over k by finitely many elements of P, hence by an extension F’ of F of 
finite degree. More precisely, we have the following: 

LEMMA 1. Let F’ be the extension of F of degree n, contained in k; then 
the compositum k’ of k and F’ is cyclic of degree n over k; its field of con- 
stants is F’; and the restriction morphism of the Galois group of k’ over k 
into that of F’ over F is an isomorphism of the former onto the latter group. 

Call F” the field of constants of k’, n’ the degree of k’ over k, and n” that 
of F” over F; clearly n’ 6 n < n”. Take [E F” such that F” = F(c), and call P 
the irreducible manic polynomial in F[X] with the root [. If Q is a manic 
polynomial in k[X], dividing P in k[X], all its roots are in P, so that its 
coefficients are in Fnk, i.e. in F. Therefore P is irreducible in k[X], so 
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that n’ 2 n”, hence n’ = n = n”. The assertion about the Galois groups may 
now be regarded as a special case of corollary 1 of prop. 3, Chap. 111-2, or 
also as following from k’ = F’O, k, which is an immediate consequence of 
prop. 2, Chap. 111-2. 

Whenever k and k’ are as in lemma 1, we will say that k’ is a constant- 
field extension of k. In view of th. 2, Chap. I-l, there is, for every integer 
n 2 1, one and only one such extension of k of degree n; this will be denoted 
by k,. Then k, is the union of the cyclic extensions k, for all n > 1; in parti- 
cular, it is contained in k,,; we will denote by ?I, the subgroup of 2I 
corresponding to k,, i.e. the group of automorphisms of k,, over k,. We 
may then consid :r X, as being the group of characters of ‘%, trivial on %,; 
a character XEX, belongs to X, if and only if the cyclic extension of k 
attached to x is contained in k,, hence if and only if it is one of the fields 
k n’ 

By corollary 2 of th. 2, Chap. I-l, combined with lemma 1, there is, for 
every n >, 1, one and only one automorphism of k, over k, inducing on the 
field of constants F,,=Fnk, of k, the automorphism x+x4, where q, as 
before, is the number of elements of F; moreover, this generates the Galois 
group of k, over k. Consequently there is one and only one automorphism 
qO of k, over k, inducing on F the automorphism x+x4; this will be 
called the Frobenius automorphism of k, over k. Every automorphism 
cp ofkse, over k, inducing cp,, on k,, will be called a Frobenius automorphism 
of ksep over k; then the Frobenius automorphisms of ksep over k make up 
the coset !&,(p in 6. 

PROPOSITION 3. Let k be an A-field of characteristic p > 1 with the field 
of constants F = Fq. Let x be a character of 8 belonging to X,, i.e. such 
that the cyclic extension of k attached to x is a constant-field extension of k. 
Let cp be any Frobenius automorphism of k,, over k. Take zcki, and put 
IzIA=qWr. Then (x,z),=x((p)I. 

Put z = (z,). Let v be a place of k of degree d, i.e. such that the module of 
k, is qv = qd. Let L be the cyclic extension of k attached to x; this is gener- 
ated over k by some extension F’ of F, hence by roots of 1 of order prime 
to p. Therefore the extension of k, attached to xv, being generated by F’ 
over k,, is unramified, so that xv is unramilied. Moreover, a Frobenius 
automorphism of k,, sep over k, induces on F the automorphism x+xqd 
and therefore coincides with cpd on P, hence on k,. By corollary 4 of th. 1, 
Chap. X11-2, this gives (xV,zJv= x(q’)” with v= ord,(z,). As jz,I, =qPdv 

and 14A=~l& our conclusion follows from this at once. 

COROLLARY 1. Assumptions and notations being as in proposition 3, and 
a being the canonical morphism for k, a(z) coincides with cp” on k,. 
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In fact, they can differ only by an element belonging to the kernels of 
all the characters XEX,, and the intersection of these kernels is !+j,,, 
which is the group leaving k, invariant. 

COROLLARY 2. If XEX, and 19~k”, (x,0),= 1. 

This follows at once from proposition 3 and from the fact that 10jA = 1 
by th. 5 of Chap. IV-4. 

COROLLARY 3. A character x of 8 belongs to X0 if and only if (x,z)~ = 1 
for all zek:. 

If XEX,,, proposition 3 shows that 2 has the latter property. Now 
assume that x has that property. By corollary 6 of th. 2, Chap. VII-5, 
there is z,Eki such that l.zljA =q, and then kz is generated by k: and zi. 
Let n be the order of x; then (x,zJk is a primitive n-th root of 1 in C. As cp 
induces on k, a generator of the Galois group of k, over k, there is a 
character x’ attached to k,, such that x’(p) =(x, ~i)~. By proposition 3, we 
have then (x’,z,), = x’(q)) ‘, hence (xx’, zJk = 1, and therefore, in view of 
proposition 3 and our assumption on x, (xx’,z), = 1 for all zski. This 
implies that x=x1-l, so that XEX,,. 

When k is of characteristic 0, there is no such convenient tool as the 
one supplied by the constant-field extensions in the case of characteristic 
p > 1; the nearest substitute is provided by the “cyclotomic” extensions; 
here we merely consider the case k= Q; then (si is the Galois group of 
Q = Q,,, over Q. For m > 1, let E be a primitive m-th root of 1 in Q ; call !&,, 
the subgroup of UZj corresponding to Q(E), so that the Galois group of 
Q(E) over Q is g = S/e,,,. It is well known that g consists of the automor- 
phisms determined by E+@, when one takes for x all the integers prime to 
m modulo m; it may thus be identified with (Z/mZ)‘, i.e. with the multi- 
plicative group of the ring Z/mZ. Let x be any character of g, with the 
kernel lj; we identify this in an obvious manner with a character of 8, 
which we also call x; this has a kernel 45 x!&. On the other hand, when we 
identify g with (Z/mZ)“, we also identify x with a function on the latter 
group and therefore with a function on the set of all integers prime to m, 
which we also call 1, and which is then such that x(ab)= x(a)x(b) when- 
ever a, b are two such integers. This can then be uniquely extended to a 
character of the subgroup of Q” consisting of the fractions a/b, with 
a, b in Z and prime to m; also the latter character will be denoted by x. 
With these notations, we have: 

PROPOSITION 4. Let x be as above, and let Z be the cyclic extension of Q 
attached to x. Then, for every rational prime p not dividing m, xP is unrami- 
fied, and, for every ZEQ~, (x,,z),=x(lzl,-‘); for every zeRX, (x~,z)~= 
= X(sgnz). 
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Let p be any prime not dividing m; let w be a place of Z, lying above p, 
and let u be a place of the field L=Q(s), lying above w. By prop. 1 of 
Chap. III-l, L, is generated over Q, by E; as this is of order m prime to p, 
L, is unramified, and so is Z,, hence also xP, by prop. 1. A Frobenius 
automorphism cp, over Qp, of the algebraic closure of Q, induces on L,, 
hence on L, the automorphism determined by s+sP; therefore x(q), 
according to the notations explained above, is the same as x(p). In view of 
this, our assertion about (x,, z)~ is an immediate consequence of corollary 
4 of th. 1, Chap. X11-2, and of lzlp = p- Ord(‘) Similarly, let w be a place of Z . 
lying above the place cc of Q, and u a place of L lying above w. If m = 1 or 2, 
x is trivial, and our last assertion is obvious. If m > 2, L, =R(E) = C has 
the non-trivial automorphism x +X over R; this is the one determined 
by &+E-‘, so that, if g and lj are as explained above, it induces on Z, 
the automorphism corresponding to the image of - 1 in g/h. If x( - 1) = 1, 
-lisinh,Z,=R,and~,istrivial;if+l)=-1, -lisnotinh,Z,=C, 
and xrn is non-trivial. The last assertion in proposition 4 follows at once 
from this and from the results stated at the beginning of Chap. X11-2. 

COROLLARY 1. Assumptions and notations being as above, let w be a 
place of Z. If w lies above a rational prime p, not dividing m, the degree 
of Z, over Q, is the order of x(p) in the group C” ; if w lies above 00, 
the degree of Z, over R is the order of x( - 1) in Cx . 

The latter assertion was proved above; as to the former, prop. 1 
shows that the degree in question is equal to the order of the character 
z+(x~,z)~ of Q,; proposition 4 shows that this is as stated in our corollary. 

COROLLARY 2. The character x being as above, take z = (z&Q: such 
that, for every prime p dividing m, ord,(z,)=O and (x~,z~)~= 1. Then 
(x,z)a = X(r(z)), with r(z) given by 

44 = sgn(z,)~lz,l; ‘. 
P 

In the latter formula, the product is taken over all the rational 
primes, or (what amounts to the same, in view of the assumption on z) 
over all the primes not dividing m; then X(r(z)) is well defined. Our 
assertion follows now at once from proposition 4 and the definitions. 

COROLLARY 3. The character x being as above, one can choose, for 
every prime p dividing m, an open subgroup gp of QE such that (x, 5)a = 1 
for all 5~ 0 (Qx ngp). 

For each p dividing m, let p” be the highest power of p dividing m ; 
then 1+ mZ, is the same as the subgroup 1 +p”Z, of Qf. Take now 
for gp, for each p dividing m, the intersection of 1 + mZ, with the kernel 
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of z-+(x~,z)~ in Qf. Then, if C; is as in our corollary, corollary 2 shows 
that (x,& is equal to x(r(<)); by th. 5 of Chap. IV-4, r(r) is equal to 
wWlL i.e. to <. Write 5 = u/b, with a, b in Z and (a, b)= 1. If p is 
any prime dividing m, i” is in Z,, so that b is prime to p; if pP is as above, 
5 is in 1 + pP FP, so that a = b (p”). Therefore a and b are prime to m, and 
a = b (m); this implies x(a) = X(b), hence, in view of our definitions, ~(5) = 1, 
which completes the proof. 

0 2. An elementary lemma. As above, let x be a character of (Z/mZ)x; 
considering it again as a function on the set of all integers prime to m, 
we now associate with it the function $ on Z such that $(x)=x(x) 
whenever x is prime to m, and $(x) =0 otherwise. It is customary, by 
abuse of language, to call such a function (// “a multiplicative character 
modulo m”, or, more briefly, “a character modulo m” on Z. Obviously 
a function II/ on Z is such a character if and only if $(x +m)=$(x) for 
all XEZ, $(x)=0 for (x,m)#l, $(l)=l, and $(ab)=$(u)$(b) for all 
a, b in Z; it will be called trivial if Ii/(x) takes no other values than 0 
and 1, and of order IZ if t+P is trivial. If $, I/ are such characters, modulo 
m and modulo m’ respectively, $ JI’ is a character modulo mm’. 

The object of this 5 is to prove lemma 3; the lemma and the proof 
are due to van der Waerden. We begin with a special case. 

LEMMA 2. Let 1 be a rational prime, n an integer 3 1, and a,,...,~, 
integers > 1. Then there is a multiplicative character $ on Z, such that, 
for every i, $ (a,) is a root of 1 whose order is a multiple of 1”; moreover, 
there is such a @ whose order is a power of 1, and, if 1=2, there is such a 
$ for which II/ (- l)= - 1. 

Clearly the order of $(aJ is a multiple of that of $(a!). If 1=2, we 
replace each Ui by a,“; after doing this, we may therefore assume, in that 
case, that a, = 0 or l(4) for all i. For each i, we will now define a sequence 
of primes p+(v = 0, 1,. . .) as follows. If ai + 1 (l), we take for pi,y any prime 
divisor of the integer 

u!“+‘- 1 
I = I+&+...+ &(I-‘) 

&l I I 

Clearly, as P + ’ E 1 (l- l), the numerator of the left-hand side is = a, - 1 (l), 
hence not a multiple of 1; therefore pi,V # 1. On the other hand, if a, = 1 (l), 
write LZ~” in the form L$ = 1 + 1” b with a > 1 and b + 0 (1); if l= 2, we have 
CI > 2, in view of our assumption on the ai in that case. Then: 

&+L (l+l”b)‘-1+ Z”+‘b (P+2). 
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This shows that the left-hand side of (3) is then a multiple of 1 and not 
of 1’; as the right-hand side shows, it is >l; we take then for pi,y any 
prime divisor of that left-hand side, other than 1. Now we show that, 
in all cases, pi,” cannot divide the denominator of the left-hand side of 
(3). In fact, assume that it does; then all the terms in the right-hand side 
are = 1 (pi,J so that the right-hand side itself is = 1 (pi,,); as it is a multiple 
Of Pi,"> and as pi,y #l, this cannot be. This shows that the image of a, in 
the group (Z/p,,,Z) x is exactly of order P’+r ; in particular, for each i, all 
the p+ are distinct. Therefore, choosing an integer p such that P>r, we 
may, for each i, choose an integer v,>n+p--2 such that the prime 
pi =P+~ does not divide any of the integers a,, . . . ,a,. For each i, the 
group (Z/p, Z) ’ is cyclic of order pi - 1, and the image of a, in that group 
has the order P+ r; call xi a generator of the group of characters of 
that group; call 1’1 the highest power of 1 dividing pi - 1; put 
p=Ai-vi+n+p-2, m=l-‘(pi-l) and x:=x:; clearly Li>vi, so that 
~L>O; then xf is a character of order P, and it is easily verified that ~:(a~) 
is a root of 1 of order P+P- ‘. For each i, extend xi to a multiplicative 
character $i modulo pi on Z, as explained above; let M be an integer 
such that P is a multiple of the order of all the xf, hence of all the ei. 
As each pi is prime to all the aj, we can then write 

with bijeZ, for 1~ i,j< r; moreover, for each i, the highest power of 1 
dividing bii is 1 M-n-p+1. Now consider the EM’ characters 

with 0 <xi < lM for 1< i < r; of course they need not all be distinct. For 
each j, we have 

This is a root of 1, of order dividing l”; that order is a multiple of 1” 
unless it divides Z’- ‘, i.e. unless we have 

bjjxj= - 1 bijxi 
i#j 

(l”-+ 1). 

For a given j, and for each set of values for the xi for i #j, this congruence 
has either no solution xj at all, or exactly l”-p solutions modulo P; 
therefore, for each j, there are at most lMr-p sets of values for the xi, 
satisfying 0 <xi < lM for 1 < i < r, such that u,(uj) has an order dividing 
P-l. Consequently there are at most rlMr-p such sets for which at least 
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one of the o,(aj) has an order dividing l”- ’ ; as r < F, the number of such 
sets is <Y’. This proves that one can choose x so that the order of 
o,(aj) is a multiple of I” for allj. Then rc/ = w, is a solution of our problem, 
except perhaps in the case 1=2, since then we also want II/ to be such 
that $ (- 1) = - 1. In that case, if w,( - 1) = - 1, we take fi = w,. If not, 
take a prime pO dividing 4a, u2.. . a, - 1, and = - 1 (4); clearly there is 
at least one such prime. Then the group (Z/p,Z)” is cyclic of order 
2m, with m,=(p, - 1)/2- 1 (2), so that it has exactly one character x0 
of order 2; this satisfies x0( - 1) = - 1. Extending x0 to a multiplicative 
character $,, modulo pO on Z, one sees at once that @ = $,, o, is a solu- 
tion of our problem, provided one has taken n32, as may of course 
always be assumed. This completes the proof. 

LEMMA 3. Let a, ,..., a,, n1 ,..., n, be integers > 1. Then there is a 
multiplicative character r// on Z such that tj( - l)= - 1 and that, for 
every i, $ (ai) is a root of 1 whose order is a multiple of ni. 

Put N =2nni; for every prime 1 dividing N, let 1” be the highest 
power of 1 dividing N, and let til be chosen according to lemma 2, so 
that its order is a power of 1, the order of til(ui) is a multiple of 1” for 
every i, and @I( - 1) = - 1 if I= 2. When 1 is odd, tiI( - l), being f 1 and 
of odd order, is 1. That being so, it is clear that +G = n 11/1 solves the 
problem. 

§ 3. Hasse’s “law of reciprocity”. As in Chap. XI, if A is a simple 
algebra over k, and v any place of k, we write A, for the algebra AO,k, 
over k,; we have seen in Chap. IX-3 that the mapping Cl(A)+Cl(A,) is 
then a morphism of the Brauer group B(k) of k into the Brauer group 
B(k,) of k,. It has been shown in Chap. XII-2 that the Hasse invariant h 
determines an isomorphism of B(k,) onto a group H, consisting of all 
the roots of 1 in C if u is a finite place, of + 1 if v is real and of 1 if v is 
imaginary. From now on, for any simple algebra A over k, we will write 
h,(A)= h(A,); this will be called the Husse invariant of A at v. By th. 1 
of Chap. XI-l, we have h,(A) = 1 for almost all v; therefore the mapping 
A+(h,(A)) determines a morphism h of B(k) into the “direct sum” of 
the groups H, for all v, i.e. into the subset H of RHO consisting of the 

elements (vu) of that product such that qV= 1 for almost all v. By th. 2 
of Chap. X1-2, the kernel of h is the class of trivial algebras over k, so 
that h is injective. It will be shown in $6 that h(B(k)) consists of the 
elements (y,) of H such that nq, = 1. In this 0, we show that nh,(A) = 1 

for every simple algebra A ovlr k. 
” 
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As in 8 1, let x be a character of 8, and L the cyclic extension of k 
attached to x; for any 8~k”, consider the cyclic algebra A=[L/k;x,O], 
corresponding to the factor-class {x,0}. As we have seen in Chap. 1X-4, 
the restriction morphism maps the factor-class {x, 0> of k onto the factor- 
class {x,,0> of k,, so that A, belongs to the latter class. Therefore, by the 
definition of the Hasse invariant, we have, for all u : 

On the other hand, let k’ be an rxtension of k of finite degree; A being 
any simple algebra over k, put A’ = A 0, k’ ; let w  be a place of k’, and zi the 
place of k lying below w. The transitivity properties of tensor-products 
show at once that the algebra (A’), = A’@,. k; over k:, may be identified 
with A,O,vkk; therefore, by corollary 2 of th. 2, Chap. X11-2, we have 
h,(A’) = h”(A)“‘“’ if n(w) is the degree of k: over k,. In particular, in view 
of what has been said above, A’ is trivial if and only if h,(A)“(“‘) = 1 for 
every place w  of k’. 

PROPOSITION 5. For any XEX,, let L be the cyclic extension of k 
attached to x. Let A be a simple algebra over k. Then the following asser- 
tions are equivalent: (i) A, is trivial; (ii) for every place v of k, and every 
place w of L above v, the degree of L, over k, is a multiple of the order of 
h,(A) in the group C ’ ; (iii) A is similar to a cyclic algebra [L/k; x, 01 with 
some t9~ k” ; (iv) there is z= (z,) in k;, such that h,(A)=(x,, z,), for every 
place u of k. Moreover, if 0 is as in (iii) and z as in (iv), 8- 1 z iS in NLlk(Li). 

The equivalence of(i) and (ii) is a special case of what has just been 
proved above; that of (i) and (iii) is contained in prop. 9 of Chap. 1X-4. 
Assume (iii); then, by (4), (iv) is satisfied if we take z= 8. Now assume 
(iv); then the order of h,(A) divides that of xv, which, by prop. 1 of 0 1, 
is equal to the degree of L, over k, for every place w  of L lying above u, so 
that (ii) is satisfied. Finally, let 6’ be as in (iii), z as in (iv), and put z’= 8- ‘z; 
by (4), we have then (x,,.z:),= 1 for all u; by prop. 10 of Chap. 1X-4, and 
prop. 1 of 5 1, this implies that, if w  is any place of L above u, z: is in 
N L,,k,(Lz). For each place u of k, choose t,,,ELz, for all the places w  of 
L lying above u, so that z\ = iVLwIk, (t,) for one of these places, and t, = 1 
for all the others; as lzL10 = 1 for almost all v, this implies that 1 t,l, = 1 for 
almost all w, so that t = (t,) is in Li ; then we have z’= NLlk(t). 

We will now use proposition 5 in order to show that every simple 
algebra A over k is similar to one of a very special type. For this, we re- 
quire two lemmas. 

LEMMA 4. Let k be of characteristic p > 1. For every place v of k, let 
v(v) be an integer > 1, such that v(u) = 1 for almost all v. Then there is a 
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constant-field extension k’ of k such that, if v is any place of k and w a 
place of k’ above v, the degree of k:, over k, is a multiple of v(v). 

Let F = F4 be the field of constants of k. For a place v of k of degree 
d(v) the module of k, is qd(‘); therefore, by corollary 3 of th. 7, Chap. I-4, 
if k’:, contains a primitive root of 1 of order qdcuJf - 1, its degree over k, 
must be a multiple off: The condition in lemma 4 will therefore be satis- 
lied if we take for k’ a constant-field extension of k whose degree over k is 
a multiple of all the integers d(v)v(v) corresponding to the finitely many 
places v where v(u) > 1. 

LEMMA 5. Let k be of characteristic 0. For every place v of k, let v(v) 
be an integer > 1, such that v(v) = 1 for almost all v, v(v) = 1 or 2 whenever v 
is real, and v(v) = 1 whenever v is imaginary. Then there is an integer m > 1 
and a cyclic extension Z of Q, contained in the extension Q(E) generated by 
a primitive m-th root E of 1, with the following properties: (a) if v is any 
place of k, and w a place, lying above v, of the compositum k’ of k and Z, 
the degree of k; over k, is a multiple of v(v); (b) lrnl”= 1 whenever v is 
a finite place of k and v(v)> 1. 

To begin with, let Z be any extension of Q, and let k’ be its composi- 
turn with k. Let v be any place of k, w a place of k’ lying above v, u the 
place of Z lying below w, and t the place of Q lying below u. Then k,, 
Z, and Q, are respectively the closures of k, Z and Q in kk, so that t also 
lies below v. We have: 

[k:,:k,]=[k:,:Z,].[Z,:QJ[k,:Q,]-’; 

therefore, if we put 

and if [Z,:Q,] is a multiple of v’(v), [kk: k,] will be a multiple of v(v). 
Now, for every finite place t of Q above which there lies some place v of 
k where v(v) > 1, call n(t) some common multiple of the integers v’(v) for 
all the places v of k above t ; for all other finite places t of Q, put n(t) = 1; put 
n(a) = 2, this being a multiple of v’(v) for every infinite place v of k, as 
one sees at once. Then m and Z, in our lemma, will satisfy our require- 
ments if [Z, : Q,] is always a multiple of n(t) and if lmlt = 1 when t # co, 
n(t)> 1; in other words, it is enough to prove our lemma for k=Q. 
Call then p 1 , . . . , p,. the rational primes p for which n(p) > 1; apply lemma 3 
of 4 2 to the integers ai =pi, ni = n(pJ; we get a multiplicative character tj 
on Z, modulo some integer m, such that (/I ( - 1) = - 1 and that, for each i, 
$(p,) is a root of 1 whose order is a multiple of n(p,). As $(x) = 0 when x 
is not prime to m, m is then prime to all the pi, which is the same as to say 
that Iml, = 1 when n(p) > 1. Let then x be the character of (Z/m Z) x deter- 
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mined by ti; consider this as a character of the Galois group of Q(E) 
over Q, E being a primitive m-th root of 1, and call 2 the cyclic extension 
of Q attached to x; then corollary 1 of prop. 4,§ 1, shows that m and 2 
satisfy all the requirements in our lemma. 

THEOREM 2. If A is any simple algebra over k, we have nh”(A)= 1, 
the product being taken over all the places v of k. ” 

If k is of characteristic p > 1, prop. 5 and lemma 4 show that A is simi- 
lar to a cyclic algebra [k//k; x, 01, where k’ is a constam-field extension of 
k, x a character attached to k’, and 6E kx . Then x is in X,, where X, is 
as defined in 0 1, and our conclusion follows at once from (4) and corollary 
2 of prop. 3,§ 1. If k is of characteristic 0, we apply prop. 5 and lemma 5, 
taking for v(v), in the latter lemma, the order of h,(A) in C x ; this shows 
that A is similar to a cyclic algebra [k’/k; x’, 01, where k’ is as in lemma 5, 
x’ is any character attached to k’, and 0E kx . By (4), what we have to prove 
is that (x’, 0), = 1. Let m and Z be as in lemma 5; then we can take x’= xop, 
where p is the restriction morphism of the Galois group of Q over k into 
that of Q over Q, and x is a character of the latter group attached to Z. 
Call v 1,. . . , uM all the places of k lying above some rational prime dividing 
m; for each i, choose a place wi of k’ lying above vi; call w;, . . . , w;V all the 
places of k’, other than the wi, lying above some vi; for each i, call ki, k; the 
completions of k at ui, and of k’ at wi, respectively; for each j, call k; the 
completion of k’ at wi. By condition (b) in lemma 5, and in view of our 
choice of the v(v), we have hoi(A) = 1 for all i; by (4), prop. 1 of 0 1, and prop. 
10 of Chap. 1X-4, this implies that, for each i, we can write O=Nkilki(zi) 
with ziE k; ‘. By corollary 2 of th. 3, Chap. IV-2, there is an element c of 
k’ whose image in k;, for 1 d id M, is arbitrarily close to zi, and whose 
image in k;, for 1 <j< N, is arbitrarily close to 1. In view of corollary 3 
of th. 1, Chap. IV-l, this implies that we can choose iEklX so that the 
image of 0i = t!JN,,,,([)- ’ in ki is arbitrarily close to 1 for 1 <i < M. By 
prop. 10 of Chap. 1X-4, one does not change the factor-class {x’,0> if one 
replaces 8 by 8,; consequently, this does not change the invariants 
h,(A) =(x:,8), of A. Therefore it is enough if we prove our assertion 
(x’, 0),= 1 under the additional assumption that the image of 6 in ki, 
for 1 < i d M, is in a prescribed neighborhood of 1. By corollary 3 of th. 1, 
Chap. IV-l, these neighborhoods can be so chosen that the image of 
NklQ(f9) in Q,,, for every prime p dividing m, is arbitrarily close to 1. As 
x’ = xop, and as we have, by th. 1 of 4 1: 

our assertion follows now from corollary 3 of prop. 4,§ 1 

18 Wed, Basic Number Theory 
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COROLLARY. For every XEX,, and every t3E k”, we have (x,0),= 1. 

This follows at once from (4) and theorem 2. 

The corollary of theorem 2 is known as “Artin’s law of reciprocity” 
because Artin discovered it (in substance) and pointed out that the “laws 
of reciprocity” of classical number-theory can easily be derived from it 
and from purely local considerations. Theorem 2 is due to Hasse; its 
close connection with “Artin’s law” accounts for the name of “Hasse’s 
law of reciprocity” which is usually given to it. 

The corollary of theorem 2 may be expressed by saying that, for every 
XEX,, the character z-+(x, z)~ of ki is trivial on kx, or that k ’ is contained 
in the kernel of the canonical morphism. Consequently, we may now 
regard (x,z)~ as defining a pairing between X, and the “idele-class group” 
G, = ki/k” of k; in order not to complicate notations, we do not intro- 
duce any new symbol for this pairing, but we will apply to it the results of 
Chap. XII-l in an obvious manner. It is clear that it satisfies conditions 
[I] and [II] of Chap. XII-l, since these have been verified in Q 1 for (x,z)~ 
considered as a pairing of X, and k;. By th. 6 of Chap. IV-4, G, is quasi- 
compact, and we have G: = kilk”. If k is of characteristic 0, condition 
[III(a)] of Chap. XII-l is satisfied. If k is of characteristic p > 1, corollary 3 
of prop. 3, Q 1, together with lemma 1 of 9 1, shows that condition [III(b)] 
of Chap. XII-l is satisfied by taking for x, in that condition, a character 
attached to the constant-field extension of degree n of k; it also shows 
that the group denoted by X, in Q 1, and consisting of the characters 
attached to the constant-field extensions of k, is now the same as the 
group which was so denoted in Chap. XII-l. In that case, we can now 
apply corollary 2 of prop. 2, Chap. XII-l, which shows that the canonical 
morphism a maps k: onto the subgroup ‘%I0 of ‘?I corresponding to the 
union k, of the constant-held extensions of k; similarly, if k is of charac- 
teristic 0, prop. 1 of Chap. XII-l shows that a maps k; onto ‘$I. If we call 
again U, the kernel of a, it contains k x, and, if k is of characteristic p > 1, 
corollary 2 of prop. 2, Chap. XII-l, shows now that U, c k:; on the other 
hand, if k is of characteristic 0 and if the subgroup kz + of ki is defined as 
in (i 1, U, contains the closure of kx ki + . In $8, it will be shown that U, is 
that closure if k is of characteristic 0, and that otherwise U, = k x. 

We will now reformulate prop. 4 of Chap. XII-l for the pairing 
between X, and G, defined above. Let k’ be a cyclic extension of k. Then 
5+5”, for every 1~6, and t+Nk,,,JQ are polynomial mappings of k’, into 
k’ and into k respectively, when k’ is regarded as a vector-space over k, 
and we have NkP,k(tl)=Nk,,k(t) for all <. As explained in Chap. IV-l, 
N k’lk? as a mapping of k” into k,, is the extension to these spaces of the 
polynomial mapping N,.,, of k’ into k, and we now extend to k; the 
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k-linear mapping 4-5” of k’ onto k’ in the same manner. Then we have 
Nk,,,Jx’“)= Nk.,,Jx’) for all x’~ka, and in particular for all x’ek; At the 
same time, by the corollary of prop. 3, Chap. IV-3, we have lz’l,,= 
= JN,.,,Jz’)lA for all Z’E k:, hence lz”ll,,=~z’~~ for all z’eka” and all 1~6. 
As the morphisms z’+z”, z’-+Nk,,,Jz’) of k: onto kz and of k: into k; 
map k’” onto k’” and into k” respectively, they determine morphisms 
of G,, onto G,, and into G, respectively; we take these as the mappings 
g’+g”, g’-+F(g’), in prop. 4, Chap. XII-l. It is now clear that these map- 
pings satisfy conditions [IV(i)--(ii)] and [V(i)]; [IV(iii)] is an immediate 
consequence of the definitions and of corollary 5 of th. 1, Chap. XII-2 (it 
admits of an obvious generalization, quite similar to the latter corollary), 
while [V(ii)] is here the same as the assertion in th. 1,§ 1. All conditions for 
the application of prop. 4, Chap. XII-l, being thus fulfilled, we conclude 
that we have, in our present notation: 

(5) U,nk ’ Nk,,k(k;x ) = k x Nkslk( U,,), 

where k is any A-field, k’ any cyclic extension of k, and Uk, Ukr are the 
kernels of the canonical morphisms for k and for k’, respectively. 

0 4. Classfield theory for Q. The results already obtained make it 
easy to conclude our investigation in the special case k = Q; this is due to 
the fact expressed in the following lemma: 

LEMMA 6. We have the direct product decomposition: 

Q;=Q” xR: xnZ; 
P 

where the last product is taken over all the rational primes p. 

Here RF and the ZF are to be understood as subgroups of the quasi- 
factors Rx = Qz and Qi of Q;. As in corollary 2 of prop. 4,§ 1, define a 
morphism r of Q; into Q ’ by putting, for z = (z,) in Q; : 

44=w(z,)~lz,l;‘; 
P 

as we have already observed (in the proof of corollary 3 of prop. 4,§ l), r 
induces the identity on Q”, as follows at once from th. 5 of Chap. IV-4. 
Therefore, if R is the kernel of r, r determines a direct product decomposi- 
tion Q: = Q x x R and is the projection from that product onto its first 
factor. Clearly R = R; x n Zz . This proves the lemma. 

P 

Clearly the subgroup nZi of Qi is totally disconnected, so that, 
by lemma 4 of Chap. VII-3, all its characters are of finite order. It follows 
now at once from lemma 6, combined with corollary 2 of prop. 7, Chap. 

18’ 
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VII-3, that every quasicharacter of Q;, trivial on Q ‘, is of the form w, I,+, 
where $ is trivial on Qx x R; and where oS, as in Chap. VII, denotes 
the quasicharacter z+IzIi and is trivial on Q ’ and on nZz ; rj is then a 
character of finite order. We recall that, if o is any quasicharacter of Q;, 
trivial on Q”, the conductor of o, according to the definition given in 
Chap. VII-7 for an arbitrary number-field, is the ideal npf(P’ of Z, 
where, for each rational prime p, p f(P) is the conductor of the quasi- 
character or, induced by o on Q”,; here, as usual, we identify a non-zero 
ideal in Z with the integer >O which generates it. 

As explained in 4 1, if E is a primitive m-th root of 1 in Q, we identify 
the Galois group g of Q(E) over Q with (Z/mZ)x, and every character x 
of g with a character of the Galois group 8 of Q over Q, or, what amounts 
to the same, with a character of the Galois group 9I of Qab over Q. Of 
course Q(E) c Qai, for all m. 

THEOREM 3. For any m> 1, let E be a primitive m-th root of 1 in 0, 
and let g=(Z/mZ)” be the Galois group of Q(E) over Q. Then X+Xoa 
is an isomorphism of the group of the characters x of g onto the group of 
the characters of Qz, trivial on Q x x R :, whose conductor divides m. 

Call r the latter group. Call P the set consisting of cc and of the 
primes p dividing m; for each prime PEP, put gp= l+ p’Z,, where p’ 
is the highest power of p dividing m; call H the subgroup of Q; con- 
sisting of the ideles (z,) such that z, >O, zpEgp for every prime PEP, 
and z,EZ,X for p not in P. Then r is the group of the characters o of 
Qi which are trivial on Qx and on H. Put gm =Rx and g= ng,, the 
latter product being taken over all VEP; as in Chap. VII-g, call G, the 
subgroup of Qi consisting of the ideles (z,) such that z,= 1 for all VEP; 
as g x G, is an open subgroup of Q;, and as Q ’ G, is dense in Qi by 
prop. 15, Chap. VII-8, we have Qi = Q ’ *(g x Gp). The morphism r of 
Q; onto Qx defined in the proof of lemma 6 maps g x G, onto the 
subgroup Q’“” of Q ’ consisting of the fractions a/b, where a, b are in Z 
and are prime to m; the kernel of the morphism of g x G, onto Q(“‘) 
induced by r is the group H defined above. As every character in r is 
trivial on H, this implies that, for any OET, there is a character x of 
Q(*) such that Xor coincides with o on g x G,. Then, if aEZ and a = 1 (m), 
we have aeg x G, and r(a) = a, hence x(a) = o(a) = 1. Therefore x deter- 
mines a character of (Z/m Z) ’ ; this being also denoted by x, and being 
regarded as a character of g, hence of 8, corollary 2 of prop. 4, 5 1, 
shows that (X,z)Q=X(r(z)) for all zeg’x G,, if g’ is a suitable open sub- 
group of g. This means that Xoa coincides with Xor, hence with o, on 
g’ x G,. As Q; = Q ’ .(g’ x GP) by prop. 15, Chap. VII-8, and as boa and 
o are both trivial on Q ‘, this proves that ~oa=o. Conversely, let now 
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x be any character of g =(Z/mZ)x ; as in 4 1, consider this as a function 
on the set of all integers prime to m, and extend this to a character x of 
Qcm); then nor is a character of g x G,. Take ~EQ~ n(g x GP); then 
r(T)= 5, and one sees at once, as in the proof of corollary 3 of prop. 4,§ 1, 
that ~EQ(“‘) and x(t)= 1. Therefore nor is trivial on Q” n(g x G,), so 
that it can be uniquely extended to a character w of Q; = Q ’ ‘(g x Gp), 
trivial on Q ’ ; as Y is trivial on H, o is also trivial on H, so that it belongs 
to K As above, corollary 2 of prop. 4,§ 1, shows now that boa coincides 
with nor, hence with w, on g’ x Gp, if g’ is a suitable open subgroup of 
g; as above, this gives ~oa=o, which completes our proof. We see also 
that boa coincides with nor, not only on g’ x G,, but even on g x G,; in 
other words, the conclusion of corollary 2 of prop. 4,§ 1, is valid provided 
zpEgp for every prime PEP; we will not formulate this as a separate 
result, but will use it in the proof of our next corollary. 

COROLLARY 1. Let E be as in theorem 3; take any z=(z,.) in nZ; and 
put or=a(z))‘. Then there is an integer a such that agz,,+ mZ, for every 
prime p, and, for every such a, we have P = Ea. 

The condition on a can also be written as a = zp (p”) for every prime 
p dividing m, p” being the highest power of p dividing m; it is well known 
that these congruences have a unique solution modulo m (this may also 
be regarded as a special case of corollary 1 of th. 1, Chap. V-2). As zpgZ i 
for all p, a is then prime to m; in particular, it is not 0. Put then z’ = a- i z; 
then zbggI, for all primes PEP; therefore, as shown at the end of the 
proof of theorem 3, we have x(a(z’))=x(r(z’)). As a is trivial on Q”, 
a(z’)=a(z)=a-‘; as r(a) = a and r(z) = 1, we get x(a) = x(a). As this is so 
for all characters x of g, it shows that the automorphism of Q(E) induced 
by c1 is the one determined by E-E’. 

COROLLARY 2. The kernel of the canonical morphism a for Q is 
Q” xR:, and a determines an isomorphism of nZz onto the Galois 
group 5N of Qab over Q. 

In fact, we already knew that the kernel of a contains Q ’ x R;, and 
theorem 3 shows that it is contained in it. The last assertion follows now 
at once from lemma 6, and prop. 1 of Chap. XII-l. 

COROLLARY 3. Qa,, is generated over Q by the roots of 1 in the al- 
gebraic closure Q of Q. 

Let K be the extension of Q generated by these roots, which is the 
same as the union of the fields Q(E) for all m> 1, where E is as in theo- 
rem 3. Let 23 be the subgroup of 9I corresponding to K. Then, if x is as 
in theorem 3, it is trivial on %), so that boa is trivial on a-‘(S). By theo- 
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rem 3, a- ‘(23) must therefore be contained in Q ’ x Rt ; as this, by 
corollary 2, is the kernel of a, we must have % = (11, hence K=Qab. 

0 5. The Hilbert symbol. The determination of the kernel of the 
canonical morphism in the general case depends on two results, corre- 
sponding to propositions 9 and 10 of Chap.XII-3. In this Q, we deal with 
the former one; this will require some preparations. 

By n, we will understand any integer > 1. 

LEMMA 7. Let G be a quasicompact group. Let y be a group of char- 
acters of G, all of order dividing n, and let X be the intersection of their 
kernels. Then every character of G, trivial on X, is in y. 

By lemma 2 of Chap. XII-l, applied to the endomorphism x+x” of 
G, G” is a closed subgroup of G, and G/G” is compact; therefore the 
subgroup of the dual of G, associated by duality with G”, is discrete; 
it consists of all the characters of G which are trivial on G”, i.e. whose 
order divides n. Consequently y is discrete, hence closed, in the dual of 
G. Our assertion follows now from the duality theory. 

PROPOSITION 6. Let K be a local field containing n distinct n-th roots 
of 1. For x, y in K”, put (x,Y),,,~=(L,~,Y)P Then 

(YA”,, = (X,Y)“i l 

for all x, y in K”; (K”)” is th e set of the elements y of K” such that 
(~,y).,~= 1 for all xeKX; if mod,(n)= 1, and if R is the maximal compact 
subring of K, the set of the elements y of K ’ such that (x, Y)~,~ = 1 for all 
XER~ is (K”)“R”. 

In view of our definitions in Chap. IX-5 and in Chap. X11-2, (~,y)~,~ 
is the same as q({x,y},), where q is as defined in corollary 2 of th. 1, 
Chap. X11-2; our first assertion is then nothing else than formula (12) 
of Chap. 1X-5. The second one is identical with prop. 9 of Chap. XII-3 
if K is a p-field; it is trivial if K = C; it can be verified at once if K =R, 
since in that case our assumption, about the n-th roots of 1 being in K, 
implies that n = 2. As to the last assertion, the assumption mod,(n)= 1 
implies that K is a p-field, with p prime to n. In view of our first formula, 
and of prop. 6 of Chap. X11-2, our assertion amounts to saying that 
xn,y is unramified if and only if y is in (Kx )” R ‘. Call q the module of K; 
our assumption about the n-th roots of 1 implies that n divides q - 1. In 
an algebraic closure K of K, take a primitive root [ of 1 of order n(q - 1). 
For any f 2 1, let K, be the unramified extension of K of degree f, 
contained in rf ; then [ is in K, if and only if n(q - 1) divides qf - 1, i.e. 
if and only if 1 +q +... + qf-’ ~0 (n); as q- 1 (n), this is so if and only 
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if f=O (n). This shows that K([)=K,. Put E=Y; as this is a primitive 
(q- l)-th root of 1, it is in K. In view of the definitions of Chap. 1X-5, 
we have thus shown that x,,~ is an unramified character of order n, 
attached to K,; therefore, by prop. 5 of Chap. X11-2, it generates the 
group of the unramified characters of order dividing n. In particular, 
for YEK”, xn,, is unramified if and only if it is equal to (x,,,)” for some 
VEZ, i.e. if ye-” is in the kernel of the morphism x-+x,,,; as we have 
seen in Chap. 1X-5, that kernel is (K x)n. Consequently xn,y is unramified 
if and only if y is in the subgroup of K” generated by (K”)” and E. By 
prop. 8 of Chap. 11-3, (K x )” contains 1 + P; as R ’ is generated by 1+ P 
and E, our assertion is now obvious. 

COROLLARY. For every local field K containing n distinct n-th roots 
of 1, (XYY),,KN defines a locally constant mapping of K” x K” into the 
group of the &th roots of 1 in C. 

This is obvious if K=R or C; if K is a p-field, it is an immediate 
consequence of proposition 6, and of the fact (contained in prop. 8 of 
Chap. II-3 if K is of characteristic p, since then n must be prime to p, 
and otherwise in the corollary of prop. 9, Chap. 11-3) that (K”)” is an 
open subgroup of K ‘, of finite index in K x. The symbol (x, y),, K may be 
said to determine a duality between the finite group K”/(K ‘), and 
itself, by means of which that group can be identified with its own dual. 

PROPOSITION 7. Let k be an ATfield containing n distinct n-th roots of 1. 
Then, jtir all z = (z,), z’ = (z:) in k;, almost all factors of the product 

(zt al = n (Z”, 4)n, k” 

taken over all the places v of k, are equal to 1; it defines a locally constant 
mapping of k; x k; into the group of the n-th roots of 1 in C, and satisfies 
(z,z’),=(z’,z); 1 for all z, z’. Moreover, (k;)” is the set of the elements z 
of k,: such that (z, z’), = 1 for all z’E k; . 

If k is of characteristic p> 1, our assumption about k implies that n 
is prime to p; consequently, in all cases, we have InI,= 1 for almost all v. 
As zV, z: are in rz for almost all v, our first assertion follows now at once 
from prop. 6; the same facts, combined with the corollary of prop. 6, 
show that (z,z’). is locally constant. By prop. 6, if z is in the kernel of all 
the characters z -+ (z, z’),, we must have Z,E (k;)” for all u; then, if we write 
z, = t”, with t,Ekz, the fact that z, is in t-c for almost all v implies the same 
for t,, so that t =(t,) is in kl and that z = t”. 

COROLLARY 1. For every finite set P of places of k, containing all the 
places z’ for which Inl,,# 1, put 
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Then these are open subgroups oJ’ ki, and the set of the elements z of ki 
such that (z,z’),=l for all z’EQ(P) (resp. for all z’EQ’(P)) is (k:)” Q’(P) 
(resp. (ki )” Q(P)). 

Concerning the definition of P, one should observe that InI,> 1 for 
every infinite place of k, so that P contains all these places. Then L?(P) 
is the same as the open subgroup of ki which was so denoted in Chap. 
IV-4; as we have seen above, (k:)” is open in k,” for all 0, so that Q’(P) 
is open in Q(P). The first set considered in our corollary consists of the 
ideles (z,) such that (z,,z:),,,” - - 1 for all z, E kz if IJEP, and for all z:,E r: 
if v is not in P. Our assertion follows now at once from prop. 6. The other 
set can be treated in the same manner. 

COROLLARY 2. Let P be as in corollary 1, and assume also that ki = 
= k”Q(P). Then (k” )“= k” n(k;)“SZ’(P). 

In this last relation, (k”)” is clearly contained in the right-hand side. 
Conversely, let 5 be an element of this right-hand side. Then, by corollary 
1, (&z),= 1 for all ZESZ(P); by definition, this is the same as to say that 
Q(P) is in the kernel of the character z-+(x,,~,z)~ of ki. As that kernel 
contains k”, by the corollary of th. 2, 9 3, and as ki = k”Q(P), this 
implies that x,,< is trivial, hence that t~(k ‘)‘. 

The symbol (z,z’), defined in prop. 7 may be called the Hilbert symbol 
for k. As the last assertion of prop. 7 implies that (k;)” is a closed sub- 
group of ki, the main content of that proposition may be expressed by 
saying that the Hilbert symbol determines a duality between the group 
ki/(ki)” and itself, by means of which it can be identified with its own 
dual. As observed above, we have, for SEkX, zEki: 

and therefore, by the corollary of th. 2,§ 3, (t,~)~= 1 for all 5, q in k”. 

PROPOSITION 8. Let k contain n distinct n-th roots of 1. Then k”(ki) 
is the set of the elements z of kt such that (t,z),,= 1 for all [sky, and it 

* contains the kernel U, of a. 

Call X, the set in question; it may also be described as the intersection 
of the kernels of the characters x,,< oa of k; for all t~k ‘; clearly it con- 
tains U,. As before, put G,= ki/k”; applying lemma 2 of Chap. XII-l 
to G, and to the endomorphism x+x” of G,, we see that k” (ki)” is 
a closed subgroup of ki with compact factor-group. Applying lemma 7 
to G,, and to the group of the characters of G, determined by characters 
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of k; of the form 1 “, ro a with 5 E k ‘, we see that every character of k;, 
trivial on X,, is of that form. Clearly X, contains k”(k;)“; as they are 
both closed in k;, our proposition will be proved if we show that there 
are arbitrarily small neighborhoods U of 1 in ki such that X, is con- 
tained in k x (k:)” U; we will choose U as follows. Let P, be a finite set of 
places of k, containing all the places v where lnlv # 1, and satisfying the 
condition in the corollary of th. 7, Chap. IV-4, i.e. such that k; = k”S;Z(P,) ; 
then every finite set of places P 3 P,, has these same properties. Take any 
such set P; take U = n U,, where U, is an arbitrary neighborhood of 1 in 
(k;)” for ueP, and U,= r,” for u not in P; clearly U is a neighborhood 
of 1 in ki and can be made arbitrarily small by suitable choices of P 
and the neighborhoods U, for ueP. One sees at once that (ki)” U is the 
same as (kL)nQ’(P), where Q’(P) is as defined in corollary 1 of prop. 7. 
What we have to prove is that X, is contained in the group W(P)= 
k” (ki )“Q’(P), or in other words that X, W(P)= W(P). By lemma 1 of 
Chap. XII-l, applied to G,=ki/k” and to the image of W(P) in G,, we 
see that W(P) has a finite index in ki; it will thus be enough to show that 
W(P) and X, W(P) have the same index in k;. 

The index of X, W(P) in k; is equal to the number of distinct 
characters of k;, trivial on X, and on W(P). Being trivial on X,, such a 
character must be of the form xn, <o a with 5 E k x. As X, contains k ’ (ki )“, 
this is trivial on W(P) if and only if it is trivial on Q’(P), hence, by corol- 
lary 1 of prop. 7, if and only if t is in (ki )nQ(P). In view of our assumptions 
on P, we can write 

(k;)“Q(P)=(k” Q(P))“fi(P)= (k”)“R(P). 

As in Chap. IV-4, put E(P) = k ’ n O(P); we see now that the characters 
in question are those of the form x,,, 5o a with 5 E (k ’ )” E(P), and we must 
compute the number of distinct ones among these, which is the index in 
(k “)“E(P) of the kernel of the morphism 5 +~,,<oa. That kernel is the 
same as that of (-+x,,~, which is (k “)“; consequently that index is the 
same as that of E(P)” in E(P). In view of th. 9 of Chap. IV-4, and of the 
fact that n divides the order of the group of the roots of 1 in k, that index 
is 11’ with c = card(P). 

Now we have to compute the index of W(P) in kz. Consider the 
groups G= k” x L?(P), G’=k” x Q’(P), and the morphism ,f of G into ki 
given by f(&u)=t~ for {EkX, ue!S(P). Call H the kernel of f; this 
consists of the elements (l,<- ‘) of G with ~SEE(P). In view of our assump- 
tion on P. ,f maps G onto ki; it maps G’ onto W(P), as appears from the 
formula 

W’(P) = k’(k;)“Q’(P)= k”(k” Q(P))“S2’(P)= k”(L?(P)“Q’(P))= k” Q’(P). 
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This gives f - ‘(W(P)) = H G’, and therefore: 

[k:: W(P)] =[G:HG’]=[G:G’].[HG’:G’]-1. 

Here [G: G’] is given by 

[G: G’] = [Q(P):Q’(P)] = n [k,“:(k,“)“]. 
UEP 

In the right-hand side, each factor corresponding to an imaginary place v 
is equal to 1, which can also be written as n21nl;‘, since in that case 
lnj,=n2. If u is real, n must be 2, since k,.=R must contain a primitive 
n-th root of 1; then the corresponding factor is 2, which can again be 
written as n21nl;‘. The factors corresponding to the finite places VEP 
are given by the corollary of prop. 9, Chap. 11-3, if k is of characteristic 0, 
and by prop. 8 of Chap. II-3 otherwise; here one has to take into account 
the fact that n divides the order of the group of roots of 1 in k, hence 
also in k,,, and that consequently it is prime to p if k is of characteristic p. 
Then one sees that the factors in question are again respectively equal 
to n2 Inl; ‘. This gives 

[G:G’]= ~(n21nl;‘)=n2c~InI;1=n2c 
VEP I, 

since lnlv = 1 for all places zi not in P. 
Our proof will now be complete if we show that [HG’:G’] =nc. This 

is the same as the index of HnG’ in H, or, in view of the definition of H 
and G’, as that of E(P)nQ’(P) in E(P). By corollary 2 of prop. 7, 
E(P)nQ’(P) is contained in E(P)n(k”)“, i.e. in E(P)“, and it is obvious 
that it contains E(P)“. Therefore the index is question is that of E(P) 
in E(P); we have already found above that this is nc; this completes 
our proof. 

$6. The Brauer group of an A-field. In Q 3, we have seen that a class 
of simple algebras A over k is uniquely determined by its local invariants 
h,(A), with h,(A)= 1 for almost all a, h,(A)= 1 for ali imaginary places, 
and h,(A) = 1 or 2 for all real places; and we have proved that n h,(A) = 1. 
Therefore the Brauer group H(k) will be known if we prove the following: 

THEOREM 4. Let k be an A-field. For each place v of k, let yO be a root 
of 1 in C. Assume that y,= 1 for almost all v, qV= 1 for every imaginary 
place v, yv= 1 or 2 for every real place v, and that nq”= 1. Then there 

is a simple algebra A over k with the invariants h,(kj= y,. 

The proof of this, for a field k of characteristic 0, will be postponed 
until the end of this 0; we proceed to prove it now for a field k of charac- 
teristic p> 1. As in Chap. VI, write D(k) for the group of divisors of k, 
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D,(k) for the group of divisors of degree 0, and P(k) for the group of 
principal divisors; call h the number of divisor-classes of degree 0, i.e. 
the index of P(k) in D,(k). Let vl,..., uN be all the places of k where q, # 1; 
taking for II an integer 2 1 such that (so,)“= 1 for all i, we can write 
ylui=e(ui/n) with U,EZ for 1didN. As nq,=l, we have za,=na with 
UEZ; after replacing a, by a,--na, we may assume that za,=O. For 
each i, call d, the degree of the place ui; put d = ndi and m = x(aid/di)vi. 
Then deg(m)= Iaid =O, m is in D,,(k), hence hm in P(k), so that there 
is 8Ek” such that div(@=hm, i.e. ord,,(8)=huid/di for lgi<N, and 
ord,(@=O when vu= 1. Now consider the constant-field extension k’ 
of k of degree h nd; let cp be the Frobenius automorphism of k’ over k, 
and x the character of the Galois group of k’ over k such that x(q)= 
= e(l/h nd). Just as in the proof of prop. 3 of 4 1, one sees at once, by 
applying corollary 4 of th. 1, Chap. X11-2, that, if u is any place of k, 
and 6 its degree, (x0,8),= x(cp’)” with v = ord,(@. In view of our choice 
of 8 and x, this gives (x,, f3),= qv for all 21. Therefore, by formula (4) of 
§ 3, the cyclic algebra A = [k’/k; x, 191 solves our problem. 

PROPOSITION 9. For each XEX,, cull U(x) the kernel of the character 
boa of k;. Then: (a) if k’ is the cyclic extension of k attached to x, U(x) = 
= k” NkClk(kax); (b) for every n > 1, prime to p if k is of characteristic p > 1, 
the intersection U,, of the kernels U(x), for all the characters XEX, of 

order dividing n, is k” (ki )“. 

Put U’(x)= k” NkSlk(kjQX), when x and k’ are as above, and put 
UA= k” (ki )“. Applying lemma 2 of Chap. XII-l to the endomorphism 
x+x” of the group Gk= k;lk”, we see that UA is closed in ki; applying 
the same lemma to the morphism of Gk, into Gk determined by the 
morphism N,.,, of ka” into ki, we ice that U’(x) is also closed in ki. 
If x is of order n, and k’ is as in (a), n is the degree of k’ over k, so that 
Nktlk(z) = z” for zGk, hence also for zEkA; therefore we have then 
U’(x)1 UA. A character of ki is trivial on (k; )” if and only if its order 
divides n; therefore a character of ki, trivial on k”, has an order divid- 
ing n if and only if it is trivial on UA. As before, call U, the kernel of a; 
we know that it contains k” _ If k is of characteristic 0, apply prop. 1 of 
Chap. XII-1 to the pairing between X, and G, determined by (x,z)~; 
otherwise apply corollary 4 of prop. 2, Chap. X11-2; in both cases we see 
that every character of k!Z of finite order, trivial on U,, can be uniquely 
written as boa with XEX,. This implies that U, is the intersection of the 
characters of ki, trivial on UA and on Uk; therefore it is the closure of 
Ui U,, and we have U,, = VA if and only if Ui=, U,. We also see now that 
every character of ki, trivial on U’(x) and on U,, must be of the form 
~‘oa with x’EX,; by corollary 2 of th. 1, Q 1, this is trivial on U’(x) if 
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and only if the cyclic extension of k attached to x’ is contained in k’, 
i.e. if and only if x’=x’ with some VEZ; as the intersection of the kernels 
U(x’) for VEZ is obviously U(x), this shows that U(x) is the closure 
of U’(x) U,, and that we have U(x)= U’(x) if and only if U’(x)3 U,. Now 
consider first the case of characteristic 0. Proceeding by induction on n, 
we assume that, for all fields k of characteristic 0, (a) holds for every x 
of order <n. Then Ukc kXNkfik(ky) whenever k is such a field and k 
is a cyclic extension of k of degree <n; by formula (5) at the end of 
4 3, this implies U, = kXNktik (CT,,). Let L be the extension of k generated 
by a primitive n-th root of 1; as this is abelian of degree <n over k, 
we can find a sequence k,= L, kl,..., k,.= k of fields between L and k, 
such that, for 1~ i<v, ki- i is cyclic of degree <n over ki; therefore we 
have, for 1 <i<r: 

u,, = kl N,c+ JU,c- ,I. 

By induction on i for 1~ i < r, we see now at once that Uki is contained 
in kx((k,l; )“, since this is so for i = 0 by prop. 8. For i = I, we get U, c VA; 
as we have seen above, this proves (b), and it implies U,c U’(x) for 
every x of order n, which proves (a) for such characters and completes 
the induction. Now let k be of characteristic p > 1. Take x and k’ as in (a); 
take ZE U(x), so that (x,z),= 1; then, if we put z =(z”) and r,=(~,, z&, 
these satisfy the conditions in th. 4. As th. 4 has been proved for charac- 
teristic p > 1, we conclude that there is a simple algebra A over k with 
the invariants h,(A) = q,; as this is condition (iv) in prop. 5 of 0 3, we can 
apply that proposition, the last assertion in which shows now that 
ZE U’(x). This proves (a). Just as above, we can now conclude, by apply- 
ing formula (5) at the end of 5 3, that U,=k”N,.,,(U,.) for all cyclic 
extensions k’ of k. Assuming that n is prime to p, take for k’ the constant- 
field extension of k generated by a primitive n-th root of 1. Then prop. 8 
gives U,,c k’” (ka”)“; therefore the same is true for k. 

We can now prove theorem 4 in the case of characteristic 0. For 
every place u of k, call v(u) the order of qv in C”. One can construct a 
character x such that, for every u, the order of xv is a multiple of V(D); 
for instance, this will be so if we take for x a character attached to the 
cyclic extension k’ of k described in lemma 5 of 9 3. Then, for every u, 
z-+(x,,z), is a character of k; whose order, being equal to that of x,, 
is a multiple of v(v); therefore we can choose z,Ek,X so that (xv,z,),=qv. 
If, in doing so, we take z,= 1 whenever YI”= 1, z=(z,) is in k;, and the 
assumption nqv= 1 implies that z is in the kernel of xoa; therefore, by 
prop. 9, it is in k” Nkrlk(kix), k’ being the cyclic extension of k attached 
to x. Writing z = f3NkTjk(z’) with z’E ki’, one sees at once, by combining 
prop. 10 of Chap. IX-4 with corollary 3 of th. 1, Chap. IV-l, and with 
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prop. 1 of 5 1, that the cyclic algebra A = [k’/k;x,0] has the required 
local invariants h,(A) = qO, so that it solves our problem. 

6 7. The Hilbert p-symbol. By now, as will be seen in the next Q, our 
investigation is essentially complete, so far as only algebraic number- 
fields are concerned. For the case of characteristic p > 1, we still need 
a symbol, similar to the Hilbert symbol studied in 9 5 but based on the 
factor-classes {<,S}, of Chap. 1X-5. 

In any field K of characteristic p> 1, we will denote by @ the endo- 
morphism x-+x-xp of the additive group of K; its kernel is the prime 
field F,. We begin by considering a local p-field K of characteristic p; 
as usual, we write R for its maximal compact subring, P for the maximal 
ideal of R, and 4 for the module of K. Obviously, @ maps R into R, 
P into P, and, if ord(x) = v ~0, we have ord(@(x))=pv ~0, so that 
@-‘(R)=R. 

PROPOSITION 10. Let K, R, P and @ be as above; for XEK, ZE Kx , 
Put (x3 z)p, K = (xp,w z)~. Then Q(K) contains P and not R; the set of the 
elements x of K, such that (x,z)~,~= 1 for all ZEK~ (resp. for all ZER”) 
is Q(K) (resp, R+ Q(K)); the set of the elements z of K x such that 
(x,z)~,~= 1 for all XEK (resp. fbr all XER) is (K”)P (resp. (K”)PRX). 

For XEP, put Y(x)= f xp”; clearly this is convergent and defines 
n=O 

an endomorphism of P, and one sees at once that both @ o Y and !Po @ 
induce the identity on P. Therefore @ induces on P an automorphism 
of the additive group of P, so that P c Q(K). Call F the algebraic closure 
of the prime field F, in K; by th. 7 of Chap. I-4, F is a field with 4 ele- 
ments, and R = F +P, so that a(R)= Q(F)+ P. As the endomorphism 
induced by @ on the finite field F has the kernel F,, it is not surjective; 
therefore @ (R)# R; as @ -l(R)= R, this shows that R is not contained 
in Cp (K). If (x,z)~,~ = 1 for all ZEK~, xp,r must be trivial; as we have 
seen in Chap. 1X-5, this is so if and only if xE@(K). Take any XE R+ @ (K); 
as R=F+P and PC@(K), we can write x=a+@(u) with aeF, UEK; 
then xp,x is the same as xp,a and is a character attached to the cyclic 
extension of K generated by any root c( of X-Xp= a. As c( is algebraic 
over F, it is 0 or a root of 1 of order prime to p, so that K(a), hence also 
x p,x, are unramified over K; therefore (x,z),!, = 1 for all ZE R” . Now 
take a root [ of X-X*= 1 in some algebraic closure of K, and put 
E = 5 - cp. The Galois group of K(c) over K is generated by the Frobenius 
automorphism; as [ is algebraic over F, this maps [ onto c4=[- 1, so 
that it leaves E invariant; therefore E is in F, K(r) is the unramified ex- 
tension of K of degree p, and xp, E is a character attached to that extension. 
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Then the unramified characters over K, of order p or 1, are those of the 
form (x,,,)” with VEZ; consequently a character xP,x is unramified if and 
only if it can be so written, i.e. if and only if x=vs+@(u) with UEK; 
then x is in R+ Q(K). As to the last two assertions, one is nothing else 
than prop. 10 of Chap. X11-3. Finally, if E is as above, the kernel of 
z-+(E,z)~,~ is the subgroup of K” of index p containing R” ; this is 
(K” )P R” ; for every XE R, we have seen that xp, x is unramified, and it 
is of order p or 1, so that the kernel of z+(x,z)~,~ contains (K”)PR”. 
This completes our proof. 

COROLLARY. For each integer m>O, call Q’(m,K) the set of the ele- 
ments z of K” such that (x,z)~,~= 1 for all XEP-“‘. Then this is an open 
subgroup of Kx , containing (K”)P; its index in K” is p.qm-“” if m’ is the 
largest integer <m/p. For every neighborhood U of 1 in K”, there is 
m30 such that Q’(m,K)c(K”)PU. Moreover, Q’(O,K)=(KX)PRX; and, 
for every m20, the set of the elements x of K such that (x,z)~,~= 1 for 

all zEQ’(m,K) is P-“+@(K). 

Let the finite field F be as above, and let 71 be a prime element of K; 
by th. 8 of Chap. I-4, K may be identified with the field of formal power- 
series in z with coefficients in F; therefore, if we call V, the space of 
polynomials of degree <m in Y 1 with coefficients in F, P-” is the direct 
sum of V, and P, and V, is a vector-space of dimension m + 1 over F; 
moreover, one verifies at once that V,n@(K)=@(J$), with m’ as in our 
corollary. By prop. 10, Q’(m,K) is the intersection of the kernels of the 
characters z+(x,z)~,~ of K” for XE V,; therefore it is open and contains 
(K”)P, and, by lemma 7 of Q 5, all the characters of K” , trivial on 
CY(m, K), are of that form. This implies that the index of Q’(m,K) in K” 
is equal to the number of distinct characters of that form, which is the 
index of I/,n@(K) in V,; as V,, V,. have respectively q”‘+l and qm’+l 
elements, and as the morphism @ of V,, onto V,n@(K) has the kernel Fp, 
that index is p.q”-“‘. By lemma 2 of Chap. X11-1, and lemma 7 of 5 5, 
the group G’=K”/(K”)P 1s compact, and its characters are those deter- 
mined by the characters z--+(x,z)~,~ of K” for XCK. Therefore the inter- 
sections of the kernels of finitely many such characters make up a funda- 
mental system of neighborhoods of 1 in G’. This is the same as to say 
that, if U is any neighborhood of 1 in K”, one can find finitely many 
characters z-+(x~,z)~,~ such that the intersection W of their kernels is 
contained in (K Y )P U; then W contains SL’(m,K) if we take m 2 0 such that 
-m<ord(x,) for all i. By prop. 10, Q’(O,K) =(KX)PRX. Finally, if 
z-+(y,z),, is trivial on SL’(m,K), it must coincide with a character 
z+(x,z)~,~ with some XEV,; by prop. 10, this is the same as to say 
that YE V,+ Q(K); as @ (K)x P, and V,+ P=P-“, this proves the last 
assertion in our corollary. 
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From now on, in this #, k will be an A-field of characteristic p. We 
will need the following lemma: 

LEMMA 8. If  v  is any place of k, kn(kJP = kP. 

Clearly kn(k$ is a field between k and kP; by lemma 1 of Chap. 
VIII-& it must be k or kP. As (kJP contains no prime element of k,, it 
is not dense in k,; as k is dense in k,,(kJP cannot contain k. 

PROPOSITION 11. For all x=(x,) in kA, and all z =(z,) in ki, almost 
all the factors of the product 

(x,4p=~(x”~z”)p,k” 

are equal to 1; it defines a locally constant mapping of kA x ki into the 
group of the p-th roots of 1 in C; the set of the elements x of kA (resp. 
of the elements z of ki) such that (x,z)~= 1 for all ZE ki (resp. for all 
xEk,,) is @(kA) (resp. (ki)p). 

All this follows at once from prop. 10. 

COROLLARY 1. For every divisor m=xm(v).v>O of k, put 

Q’(m) = n L?‘(m(v), k,). 

Then this is an open subgroup of ‘ki, containing (ki)P. For every neigh- 
borhood U of 1 in ki, there is a divisor m such that Q’(m)c(ki)P U. The 
set of the elements x of kA such that (x,z)~= 1 for all z~S;Z’(rn) is 

( ~P,Y’)) + @(k.J. 
” 

For all v, P(m(v),k,) is an open subgroup of k,“, containing (k”,)P, 
and, for almost all v, m(v) =O, so that Q’(m(v), k,) contains rz ; this proves 
the first assertion. In the second assertion, it is enough to consider a 
neighborhood U = n U,, where U, is a neighborhood of 1 in k,” for all v, 
and U,= rz for almost all v; then our assertion follows at once from 
the corollary of prop. 10. Assume that x=(x,) is as in the last assertion; 
then, by the same corollary, we can write x,=y,+@(u,) with yv~p;“‘(“), 
u,Ek, for all v, and y, = x,, a, = 0 whenever m(v) = 0 and X~ET,, hence 
for almost all u. Then y =(y,) and u= (u,) are in kA, and x =y +@ (u), 
yEnp;m(“). 

COROLLARY 2. Notations being as in corollary 1, assume also that 
deg(m)>2g-2. Then (k”)P=kXnQ’(m). 

Clearly the right-hand side of this last formula contains (k”)P. Now 
take SEkX ; if <~Q’(nt), we have (~,t)~= 1 for all x~np;~(“) and also 
for all xFk, hence for all XE kA by corollary 3 of th. 2, Chap. VI. By pro- 
position 11 this implies 5~ (ki)P, hence SE(kX )” by lemma 8. 
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COROLLARY 3. Notations being as in corollary 1, assume that 
n=~n(u)=v is a divisor of k, of degree >2g-2, such that nthpn. Then 
the set of the elements x qf kA such that (x,z)~= 1 for all zeQ’(m) is 

(np,“‘“‘) + Q(k). 
” 

Again by corollary 3 of th. 2, Chap. VI, we can write 

~(kA)=(D(k)+(P(npun(‘)) . 
L, 

Our assumptions imply that the second term in the right-hand side is 
a subgroup of JJp; m(“) Our assertion follows now from the last one in . 
corollary 1. 

PROPOSITION 12. The set of the elements z of ki such that (&z),=l 
for all <ek is k” (kj;)P. 

Call that set X,; it is the intersection of the kernels of the charac- 
ters xp,<o a of ki for all {E k; it contains k” (k;)P. By lemma 2 of Chap. 
XII-l, applied to G,= ki/k”, k” (k;)P is a closed subgroup of k; with 
compact factor-group; by lemma 7 of 9 5, every character of k:, trivial 
on X,, must be of the form xp,<oa with 5~ k. Choose a divisor n>O of k, 
of degree > 2g - 2. In view of corollary 1 of prop. 11, it will be enough 
for us to show that X, is contained in W(m)=k” Q’(m) for all divisors 
m=~m(u)~v>pn. By lemma 1 of Chap. X11-1, W(m) is of finite index 
in ki; therefore it will be enough to show that X, W(m) and W(m) have 
the same index in ki. 

The index N of X, W(m) is equal to the number of distinct characters 
of ki of the form xp,< oa, or, what amounts to the same, of the form 
z-t(&z),, with 5Ek, which are trivial on Q’(m). By corollary 3 of prop. 11, 
the latter character is trivial on Q’(m) if and only if 5~ U(m)+@(k), with 
u(m)=nP; . M”) As in Chap. VI, put n (m) = kn U(m). Then we see that N 
is the index of @i(k) in ii(m) + D(k), or, what amounts to the same, of 
n(m)n@(k) in n(m). Put m’=xm’(v).v, where m’(v), for each v, is the 
largest integer < m(u)/p; call m, m’, n the degrees of m, m’, n, respectively; 
then mam’>n>2g -2. Clearly A(m)n@(k) is the same as @(/l(m’)); 
corollary 2 of th. 2, Chap. VI, shows that n (m), /1 (m’) are vector-spaces, 
of dimension m-g + 1 and m’ - g + 1 respectively, over the field of con- 
stants F of k; as @ maps A(m’) onto A(m)n@(k) with the kernel F,, we 
see that the latter group has p-l q”’ -g+l elements while /l(m) has 
4 m-g+1 elements. This gives N =p.q”-“‘. 

Now we have to compute the index of W(m) in k;. Take a finite 
set P of places of k, containing all the places u for which m(v) >O, and 
satisfying the condition in the corollary of th. 7, Chap. IV-4, i.e. such 
that k; = k” a(P). Put: 
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Clearly this contains Q(P)j’, and we have L?‘(m) = (ki)P0”, hence : 

W(m)=k”(k;)P52”=kX(kXQ(P))%?“=kXQ”. 

Put now G= k” x O(P), G’= k” x a”; call f the morphism of G into ki 
given by f(4,u) = <u for &kX, u&(P), and call H the kernel of J Then f 
maps G onto k; , G’ onto W(m), and H consists of the elements (&t-i) 
with 5 in E(P)= k” 42(P). We have now: 

[k;: W(m)]=[G:HG’]=[G:G’].[HG’:G’]-l. 

Here, in view of the corollary of prop. 10, [G: G’] is given by 

[G:G’]=[Q(P):Q”]= n [k; :S2’(m(v),k,)]=p’q”-“’ 
VEP 

with c=card(P). Finally, [H G’: G’] is the same as the index of HnG’ in 
H, i.e. as that of E(P)nQ” in E(P). Clearly E(P)nQ” is contained in 
k” nL?‘(m), which is (k”)P by corollary 2 of prop. 11, and it contains 
E(P)P; as E(P)n(k”)P is the same as E(P)P, we see that E(P)nCY’ is 
E(P)P, and it follows at once from th. 9 of Chap. IV-4 that its index in 
E(P) is p’- ‘. This completes the proof. 

COROLLARY. If k is as above, and U, is the kernel of the canonical 
morphism a, we have U, c k ’ ( U,)p. 

By proposition 12, U, is contained in kx (ki)P, so that, if u is any 
element of U,, it can be written as u = 5 vp with 5 E k ‘, vE k; Take any 
XEX,; call k’ the cyclic extension of k attached to x. By prop. 9 of $6, the 
kernel U(x) of xo a is k x N,,,,(ki” ); as U, c U(x), this implies, by formula 
(5) at the end of 0 3, that U,= k x Nk,,,JUkS). Again by proposition 12, U,. 
is contained in k’ ’ (ky)p, so that U, is contained in k” NkS,k(kkx)P; there- 
fore, if u is as above, we can write u = q Nk,,k(~)P with q E k ‘, WE ki’. This 
gives (1-i =v-J’N~,,~(w)~. As <q, 1 is in k” and in (ki)P, it is in (k”)P, 
by lemma 8; writing it as lp with [e kx , we get v = [- ’ Nk.,,Jw), since p 
is the characteristic. This shows that v is in U(x); as this is so for all 
XEX,, it is in U,, which completes the proof. 

6 8. The kernel of the canonical morphism. We are now able to deter- 
mine U, in all cases. 

THEOREM 5. Let k be an A-field, and a the canonical morphism of ki 
into the Galois group ‘2l of kab over k. Then ,y + xo a is a bijective morphism 
of the group X, qf characters qf ‘QI onto the group of the characters of kz 
of finite order, trivial on kx . 

19 Wed, Basic Number Theory 
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Every character of k; of order n, trivial on k”, is trivial on k”(k;)“, 
hence on CJ,, by prop. 9 of Q 6, if k is of characteristic 0; in that case, our 
conclusion follows from this at once by applying prop. 1 of Chap. XII-1 
to G, = ki/k” . Now let k be of characteristic p > 1, and let o be a character 
of k: of order n, trivial on k” . Write n = n’ pi with n’ prime top and i 3 0 ; 
taking integers a, b such that n’a + pi b = 1, we have o = w’o” with o’ = gPIb 
of order n’, and o” = QY”’ of order pi, both being trivial on k”. Just as 
above, we conclude from prop. 9 of Q 6 that o’ is trivial on U,. On the 
other hand, one concludes at once from the corollary of prop. 12 of $7, 
by induction on i, that U, is contained in k” (U,Jp’, hence in k” (kz)“‘, 
and then, just as above, that 0” is trivial on U,. This shows that o is 
trivial on U,; our conclusion follows from this at once by applying 
corollary 4 of prop. 2, Chap. XII-l, to G, = k;/k’ . 

COROLLARY 1. The kernel U, of a is the intersection of the closed 
subgroups k”(ki)” of ki for all na 1. 

In the proof of prop. 9,§ 6, we have already seen that these are closed 
subgroups; clearly, then, k” (k;)” is the intersection of the kernels of 
all the characters of ki, trivial on kx, whose order divides n. Our assertion 
follows now at once from theorem 5. 

COROLLARY 2. If k is of characteristic p > 1, U, = k x. 

Write G, = G: x N, with G: = k:/k and N isomorphic to Z. As G: 
is compact, and as it is obvious that it is totally disconnected, lemma 4 of 
Chap. VII-3 shows that all its characters are of finite order; every such 
character can be uniquely extended to one of G,, trivial on N, which is 
then also of finite order, hence, by theorem 5, trivial on the image of 
U, in G,. As corollary 2 of prop. 2, Chap. XII-l, shows that this image is 
contained in GL, it must therefore be {l}, which is the same as to say 
that U,=k”. 

COROLLARV 3. If k is of characteristic 0, U, is the closure of k” ki, 
in k:, kz, being the group of the ideles (z,) such that z,>O for all real 
places and z, = 1 for all finite places v of k. 

Write G, = G: x N, with G: = k:/k x, N being the image in G, of the 
group M defined in corollary 2 of th. 5, Chap. IV-4. Call U’ the closure of 
k”kG, in k;, U” its image in Gk, and put U;= U”n G:. Obviously 
G/k: + is totally disconnected, so that the same is true of ki/U’, hence 
of G,/U”. As M is contained in U’, N is contained in U”, so that U” = 
= Uy x N and that G JU” may be identified with G:/U; and therefore 
is compact. This shows that every character of G,, trivial on Ur, or, what 
amounts to the same, every character of ki, trivial on U’, is of finite 
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order. Consequently U, is contained in U’; as we already knew that it 
contains U’. we see that it is U’. 

In order to obtain more precise results about U, in the case of 
characteristic 0, one needs an algebraic lemma: 

LEMMA 9. Let 1 be a rational prime, K a field, not of characteristic 1, 
and I? an algebraic closure of K. For each n 2 0, call K, the extension of K 
generated by a primitive l”-th root of 1 in I?. Then, if 112, or if l= 2 and 
K=K,, K”n (K,“)‘“=(K”)‘” for all n. If 1=2, K#K,, 2<m<n and 
K, i&n+,, then K”n(K,“)2”~(KX)2”~m 

Take aEK”n(K,“)‘“; assume at first that a is not in (KY)‘“, and 
let i be the smallest integer such that a is in (Kf, i)‘” and not in (KY)‘“. 
Then 1 <i<n, Ki #Ki+I, and we can write a= xLn with x in Ki+ i and 
not in Ki. Call q a primitive l’+ ‘-th root of 1 in Ki+ 1, and put E = #, 
[=$‘; E, [ are-roots of 1 of order I’ and 1, respectively, and are in Ki. 
We have Ki+ 1 = Ki(q), $ = E, and E is in Ki and is not 1; therefore Ki+ I 
is cyclic of degree 1 over Ki, with a Galois group generated by the auto- 
morphism 0 given by ~“=~~. Put (3=x6x-i; then BEK~+, and 8’“=1, 
so that 19 is a root of 1 of some order r dividing I”; therefore 8” must be 
of the form 8” with SEZ; moreover, if v< i, 8 is in Ki, so that we can take 
s=l,while,ifv>i,wehave~=8’withsomer~Z,hence~”=r]“,~=y”-‘, 
and therefore SE 1+ 1’ (li+i). By induction on h, one sees at once that 
X 

oh =xO1+s+“‘+sh~‘; for h=l, this gives l+s+~~~+s’-‘-O (Iy). If v<i, 
we have s = 1, so that the latter congruence implies v < 1. If v > i, we have 
s=1+aliwitha~1(1);ifl#2,orifl=2andi~2,thisimpliess’=1+bI’f’ 
with b = 1 (l), which shows that (sl - l)/(s - 1) cannot be a multiple of 12, 
hence also not of I”; as this contradicts what we have found above, we 
conclude that v< 1 except possibly for 1=2, i= 1. Therefore, except in 
that case, we can write l3=[’ with tEZ; writing then x’=q-‘x, we have 
x’~=x’, so that x’ is in Ki, and a=~““, which contradicts the definition 
of i. This proves that a is in (K;)“’ if 122, and, for 1=2, it proves that, 
if it is not in (K;)2”, ’ it is in (K;)2”. In the former case, write a=~‘” with 
~EK,. As the Galois group of K, over K is a subgroup of (Z//Z)“. the 
degree d of K i over K divides I- 1 and is prime to 1; write 1 = de + 1”f; we 
have ad = b’” with b = NKIIK(y), hence a = ($ be)“‘. If 1= 2, we have K, = K; 
if then a is not in (K x)2”, we must have K # K,, and we can apply what 
we have found above, with i = 1; if at the same time K, # K, + i, the order 
2’ of 8 cannot be a multiple of 2”+ ‘, so that it divides 2”; putting then 
b=x2=‘, we have b”=b, so that b is in K,=K, and, if n>m, a=b2”mm 
In the case I= 2, K # K,, one can easily show, by using similar arguments, 
that (K x)2” is a subgroup of index 2 of Kx n (K,“)2”, the latter group 
being generated by (K”)2” and (1+ 0)‘” if o is a generator of the group 

19* 
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of the roots u of 1 in K,, of order dividing 2”, such that NKzIK(u)= 1. 
These facts will not be used here. 

PROPOSITION 13. Let P be a finite set of places of k, containing Pm ; 
put H=nk,? Then U,nH is kz, if k is of characteristic 0, and (1) 

LEP 

ij” it is of characteristic p> 1. 

The latter assertion is obvious, since in that case U,= kx ; we may 
therefore assume that k is of characteristic 0. By corollary 1 of th. 5, 
Ukn H is the same as the intersection of the groups k ’ (ki)Nn H for all 
N > 1. An element of k; belongs to the latter group if and only if it can be 
written as tz” with SEkX, z=(z,)Eki and t=ziN for all u not in P. 
Take N =l”, where 1 is a rational prime; let k’ be the extension of k 
generated by a primitive N-th root of 1 in k; and k” the extension of k’ 
generated by any root of XN= 5 in k: Clearly, for all places w  of k’ which 
do not lie above a place UEP, we have <E(kkx,XN; therefore, by corollary 4 
of th. 2, Chap. VII-5, we have k”=k’, so that 5 is in (k’“)? By lemma 9, 
this implies <c(k x)N if I# 2. If Z=2, call k, the extension of k generated 
by a primitive 4-th root of 1; if k, = k, we have again cE(k x)N. If k, # k, 
call 2”’ the highest power of 2 dividing the order of the group of roots of 1 
in k,; then lemma 9 gives t;s(k”)W with N’=2-“N, provided n>m. 
Taking N = 2m+p in the latter case, and otherwise N =P‘, we see that 
k”(ki)NnH is then contained in (k;)‘“nH, which is the same as HI’. 
This shows that U,n H is contained in H’” for all primes 1 and all p > 0. 
Take any integer M > 1; for every prime 1 dividing M, let 1’ be the highest 
power of 1 dividing M; we can find integers a(l) such that l/M = 1 l-“a(l). 
Take any he U,n H, and, for each I, write h = (h,)” with hlE H; then h = h’M 
with h’= n(h,) ‘(I). therefore U,nH c HM for all M > 1. In corollary 1 , 
of th. 3, Chap. X11-3, we have shown that the intersection of all the groups 
(kt)“, for a given finite place u of k, is (1) ; this same intersection is 
obviously C” if k,, = C, and R; if k,=R. Therefore the intersection of 
all the groups H”is kg,, so that U,nH is contained in kz+ : as it 
obviously contains it, this completes our proof. 

COROLLARY. For every place v of k, k,,.b is generated over k, by k,,. 

This is trivial if k,=C, and it is obvious if k,=R, since then kv,ab is C 
and is generated by a primitive 4-th root of 1 in k: Assume now that v 
is a finite place. The union k,,, of all unramified extensions of k, is 
generated over k, by roots of 1; therefore, if k’ is the subfield of k,,, 
generated over k, by kab, it contains k,,o. As in 9 1, let ‘$I, be the Galols 
group of kv,ab over k,, and let p0 be the restriction morphism of ‘?I0 into cll. 
An automorphism c1 of kv+,, over k, induces the identity on k’ if and only 
if it induces the identity on kab, i.e. if and only if p,(a) is the identity. 
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Assume that this is so; then, as k, O c k’, a is in the Galois group of 
Lb over k,, o, so that, by corollary 2 of th. 3, Chap. X11-3, it can be written 
as a= a,(z) with zeri. Then, by prop. 2 of 5 1, we have p,(a)= a(j&z)), 
where j, is the natural injection of k,” into k; ; if p,(m) is the identity, 
j”(z) must be in U,; taking for P, in proposition 13, a set containing U, 
we see now that a itselfmust then be the identity. This proves our corollary. 

As an example for the above corollary, we may apply it to the case 
k = Q; then, in combination with corollary 3 of th. 3, $4, it shows that, 
for every rational prime p, the maximal abelian extension of Qp, in an 
algebraic closure of Qp, is generated by all the roots of 1. This could 
also, of course, have been derived directly from the results of Chap. XII. 

Q 9. The main theorems. The main results of classfield theory are 
either immediate consequences of those found above, or can be derived 
from them by following exactly the proofs given for the corresponding 
theorems in Chap. XII. 

THEOREM 6. If k is of characteristic 0, the canonical morphism a 
determines an isomorphism of ki/U, onto the Galois group 2l of kab 
over k, U, being the closure of kx kz + in k; ; if k is of characteristic 
p> 1, a determines a bijective morphism of ki/k” onto a dense subgroup 
of ‘2X, and an isomorphism of k:/k’ onto the Galois group 2I, of k,, over 
the union k, of all constant-field extensions of k. 

The first assertion merely repeats part of prop. 1, Chap. XII-l, 
corollary 3 of th. 5, 0 8, being taken into account. The other assertions 
repeat part of corollary 2 of prop. 2, Chap. XII-l, and [II”] of Chap. XII-l, 
taking into account the fact that U,= kx and that ‘$I0 has been deter- 
mined in $1. 

THEOREM 7. Let k’ be an extension of k of finite degree, contained in 
E; put L=k’nkab. Then, for zek;, a(z) induces the identity on L if and 
only if z is in kx Nkflk(kr). 

The proof is identical to that of th. 4, Chap. X11-3, except that of 
course one must now make use of th. 5 of§ 8, instead of th. 3 of Chap. X11-3, 
and corollary 1 of th. 1, 0 1, instead of corollary 1 of th. 2, Chap. X11-2. 

COROLLARY 1. Assumptions and notations being as in theorem 7, call 
23 the subgroup qf % corresponding to L. Then: 

kx NtJL;) = kx Nk,,,Jkax)= a- ‘(23). 

The latter equality is a restatement of theorem 7. Applying theorem 7 
to k’=L, we get k” NLIL(Li)=a-l(B). 
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COROLLARY 2. For every extension L qf k of ,finite degree, contained 
in kab, call ‘B(L) the subgroup qf 2I corresponding to L, and put N(L)= 
= k”N,,,(L;). Then N(L)=a-‘(B(L)); B(L) is the closure of a(N(L)) 
in Iu; L consists of the elements of kah, invariant under a(z) jbr all ZEN(L), 
and a determines an isomorphism of ki/N(L) onto the Galois group 
‘u/%(L) of L over k. Moreover, L+ N(L) maps the subfields of kab, qf ,jinite 
degree over k, bijectively onto the open subgroups of k;, of finite index 
in k; and containing k x. 

All this merely repeats prop. 3 of Chap. X11-1, the corollaries of 
th. 5, 0 8, being taken into account; one should notice here that, when k 
is of characteristic 0, the group k: + , being a product of finitely many 
factors isomorphic to R; or to C ’ , is generated by every neighborhood 
of 1 in that group, and is therefore contained in every open subgroup 
of k:. 

COROLLARY 3. Notations being as in corollary 2, let r he the group 
of the characters of ‘?I, trivial on 23 (L). Then the subgroup N(L) of ki 
associated with L is the intersection of the kernels of the characters 
w=;~oa of k; for XE~, and X-+Xoa is an isomorphism of r onto the 
group y of the characters of k;, trivial on N(L). 

The first assertion is merely a restatement, in other terms, of the 
equality N(L)= a- ‘(B(L)); similarly, the second one is a restatement of 
the fact that a determines an isomorphism of ki/N(L) onto “u/%(L). 

COROLLARY 4. Let x be any character of ‘u; then, if L is the cyclic 
extension of k attached to x, the subgroup N(L) associated with L is the 
kernel of the character o = xo a of ki . 

This is a special case of corollary 3, since here the group r of that 
corollary is the one generated by x. 

COROLLARY 5. Let k and k’ be as in theorem 7; let M be a subfield of 
kab, of finite degree over k, and call M’ its compositum with k’. Let U= 
=k” Nhlik(Mi), U’=k” N,,,,,k,(MT) be the open subgroups of kJk and 
of kiX associated with the abelian extensions M of k, and M’ of k’, respec- 
tively, by corollary 2. Then U’ = NF,:( U). 

The proof is identical to that of corollary 3 of th. 4, Chap. X11-3. 

THEOREM 8. Let k’ be an extension of k of finite degree, contained 
in kep; let a, a’ be the canonical morphisms of k; into 2X, and of kr into 
the Galois group W of k& over k’, respectively. Let t be the transfer homo- 
morphism of 9L into ‘W, and j the natural injection of k, into ky . Then 
toa=a’oj. 
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The proof is identical to that of th. 6, Chap. X11-5, except that here, 
of course, one must use th. 7, instead of th. 4 of Chap. X11-3. 

&j 10. Local behavior of abelian extensions. Let k be as above ; let u 
be any place of k; as in § 1, we choose an algebraic closure K, of k,, 
containing the algebraic closure E of k. If k’ is any extension of k of 
finite degree, contained in k; prop. 1 of Chap. III-1 shows that the sub- 
field of K, generated by k’ over k, may be identified with the completion 
kk of k’ at one of the places w lying above u. If k’ is a Galois extension 
of k, with the Galois group g, we can apply corollary 4 of th. 4, Chap. 111-4, 
as we have already done in similar cases on earlier occasions. This shows 
that kk is a Galois extension of k,; if h is its Galois group over k,, the 
restriction morphism of h into g is injective and may be used to identify h 
with a subgroup of g; then the completions of k’ at the places of k’ lying 
above u are in a one-to-one correspondence with the cosets of h in g 
and are all isomorphic to k:. 

We now apply this to the case when k’ is abelian over k. Then, by 
corollary 2 of th. 7, § 9, its Galois group g is isomorphic to k;/U with 
U =N(k’)= k” NkPlk(ky), U being then an open subgroup of ki of 
finite index. More precisely, if 23 is the subgroup of the Galois group ‘%!I 
of k,, over k, corresponding to k’, the canonical morphism a determines 
an isomorphism of k;/U onto g=‘u/B. On the other hand, if k,, kk are 
as above, k; is an abelian extension of k,, with which corollary 2 of 
th. 4, Chap. X11-3, associates the open subgroup U,=N,,,,JkLx) of 
k,“. Call ‘?I”, as before, the Galois group of kr,ab over k,; call !?J” the 
subgroup of ‘Qlu, corresponding to kh; then the same corollary shows 
that the canonical morphism a, of k,” into ‘?I, determines an isomorphism 
of k,“/U, onto h = QIJ23,. The relation between these various groups is 
given by the following: 

PROPOSITION 14. Assumptions and notations being as above, the 
subgroup U, of k,“, associated with kk, is given by U,= k,” A U. If g is 
identified with k;/U by means of a, and 6 with k,/U, by means of a,, 
the restriction morphism of t, into g is the same as the morphism of’ k,” /U, 
into k;fU determined by the natural injection ,j, of kz into k:, and the 
places of k’ which lie above v are in a one-to-one correspondence with the 
cosets of kz U in kz. 

Take any z, E k,” , and put c(= a,(~,). By prop. 2 of Q 1, the automor- 
phism of k,, induced by c( is P,(U) = a(z) with z = j”(zJ. As kk is generated 
by k’ over k,, cz induces the identity on ki if and only if p,(a) induces the 
identity on k’; in view of corollary 2 of th. 4, Chap. X11-3, and of corollary 2 
of th. 7,§ 9, this amounts to saying that z, is in U, if and only if jU(zJ is 
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in U, which we express by U, = k,” n U. The second assertion in our 
proposition follows at once from the same facts; they also imply that 
the image of h in g can be identified with that of k,” in k; jU, which is 
k,” U/U, and that g/h can be identified with ki/kz U. As we have 
recalled above, the places of k’ above v correspond bijectively to the 
cosets of h in g, hence also to those of k,” U in ki; this completes the 
proof. Our proposition and its proof remain valid when u is an infinite 
place, since theorem 4 of Chap. X11-3, and its corollaries, remain valid 
for R and C, as has been observed at the time. The relations between the 
various groups and morphisms considered above are illustrated by the 
following diagram. 

k: 
Q” 

+ ‘u” 

k;lU q , 
/ g2 

k; -+2l 
a 

COROLLARY 1. Let y be the group of the characters of ki, trivial 
on U; let y,, be the group of the characters of k,“, trivial on U,. Then the 
mapping which, to every o~y, assigns the character co, induced by o on 
k,“, is a surjective morphism of y onto y”, and the order of its kernel is 
equal to the number of places of k’ lying above v. 

Clearly o+o, determines a morphism of y into y,. Every character 
of k,“, trivial on U,, can be uniquely extended to one of k,” U, trivial on 
U, and this can be extended to one of k;, which then belongs to y ; 
therefore the morphism in question is surjective. Its kernel consists of 
the characters of k;, trivial on kz U ; this is the dual group to k;,Ikz U; 
in view of the last assertion in proposition 14, its order is therefore as 
stated in our corollary. 

COROLLARY 2. Assumptions being as above, assume also that v is a 
finite place of k. Then the modular degree J and the order qf ramification 



p 10. Local behavior of abelian extensions 279 

e, of k:, over k, are given by 

f=[k,” :r,X U,]=[k,” U:r,” U], e=[r,X U,: U,]=[rt U: U]. 

By the corollary of prop. 6, Chap. X11-2, and corollary 2 of th. 4, 
Chap. X11-3, the maximal unramified extension of k, contained in k; is 
the one associated with the subgroup rz U, of k,“; the first part of our 
corollary follows from this at once; the second part is an immediate 
consequence of the first. 

COROLLARY 3. Assumptions being as in corollary 2, kh is unramijied 
over k, if and only if U 2 r,” ; when that is so, the automorphism of k’ 
over k, induced by the Frobenius automorphism of kk over k,, is the image 
in g=k;/U of any prime element 7tn, of k,, and it is an element of g of 
order f. 

To say that kk is unramitied over k, is to say that e= 1, so that the 
first assertion is a special case of corollary 2. The second one follows 
at once from proposition 14, combined with corollary 4 of th. 1, 
Chap. X11-2, which says that a,(~,) is here the Frobenius automorphism 
of k; over k,. 

Notations being as in corollaries 2 and 3, we know from the corol- 
lary of prop. 3, Chap. VIII-l, that kk is unramified over k, if and only 
if its different over k, is rk. In view of the definitions of the different 
and of the discriminant in Chap. VIII-4, and of the fact that the com- 
pletions of k’, at the places of k’ lying above v, are all isomorphic to k, 
it amounts to the same to say that k; is unramitied over k, if and only 
if v does not occur in the discriminant of k’ over k. By corollary 3 of 
prop. 14, this is so if and only if U I> r,: . This qualitative result can be 
refined into a more precise one, as follows: 

THEOREM 9. Let k’ be an extension of k of finite degree, contained 
in k,,; let U= k”N,,,,(ki’) be the subgroup of k; associated with k’, and 
call y the group of the characters of k;, trivial on U. For each wry, call 
f(o) the conductor of co. Then the discriminant a of k’ over k is given by 
~=nfW,orby~= Cf( w 1 , according as k is of characteristic 0 or not. 

OEY WEY 

Let notations be the same as in corollary 2 of prop. 14; let p0 be the 
maximal ideal in the maximal compact subring r, of k,; call p,” the dis- 
criminant of k; over k,, and v the number of places of k’ lying above v. 
As the completions of k’ at these places are all isomorphic to k;, they 
all make the same contribution to the discriminant D, so that their 
total contribution is pi’ (resp. 6v.v). Let y, be defined as in corollary 1 
of prop. 14; call ot, for 1 <i<d, the distinct elements of y”, and, for 
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each i, call p:“’ the conductor of 0;; by corollary 2 of th. 5, Chap. X11-4, 
we have 6 = c f(i). By corollary 1 of prop. 14, each oi is induced on k,” 
by exactly v characters WE?. Our assertion is now obvious. 

THEOREM 10. Assumptions and notations being as in theorem 9, the 
Dedekind zeta-function of k’ is given by &(s)= n L(s,w). 

It is enough to prove this for Re(s) > 1, when the infinite products 
for these functions are absolutely convergent; and then it is enough to 
show that, for each finite place u of k, the contribution of the places 
of k’ above v to ck,(s) is equal to the product of the contributions of u 
to the products Z,(s,w). If f is as in corollary 2 of prop. 14, the contri- 
bution of w to the product &(s) is (1 -q;f”)- ‘; that is also the contri- 
bution of each one of the places of k’ above v, so that, if v is their number, 
their total contribution is (1 -LI;~“)-“, On the other hand, for WE-~, 
the contribution of v to L(s,o) is 1 unless o, is unramilied, and 
(1 - ~,(rc,)q;~)-~ if it is unramified. In view of corollary 1 of prop. 14, 
their product is equal to fl(l -oJ(n,)q;“)-‘, where the latter product 
is taken over all the distinct characters o’ of k,” , trivial on U, and on r”, , 
i.e. trivial on r,” U,. By corollary 2 of prop. 14, the group kc/r: U, is 
of order f; clearly it is generated by the image of rcn, in it, hence cyclic; 
therefore there are f characters o’, and the values they take at rc, are 
the 5th roots of 1 in C. This implies that the product fl(l -o’(n,)t), 
for every t EC, is equal to 1 - tf, which completes our proof. 

COROLLARY. Assumptions and notations being as in theorems 9 
and 10, assume also that k is an algebraic number-field. Then Z,(s)= 
c/2 I-I ( , 1, h A s co w ere n is the degree of k’ over k, and p is the number 

WEY 
of real places of k such that the places of k’ above them are imaginary. 

Here Z,.(s) and A(s,o) are the functions defined in theorem 3 of 
Chap. VII-6, and in theorem 5 of Chap. VII-7, respectively. In view of 
theorem 10, what we have to show is that each infinite place u of k contri- 
butes the same G-factors to both sides of the formula in our corollary. 
Define v as above; then the total contribution to Z,(s) of the v places 
of k’ above u is G,(s)’ or G2(s)“, according as w is real or not. The con- 
tribution of u to /i (s,o) is G,(s+ s,) or G,(s+ s,) according as v is real 
or not, s, depending upon w, in the manner described in Chap. VII-7. 
Here o, has to be trivial on U,, which, being an open subgroup of k;, 
is C” if k,= C, and either R” or R; if k,=R. If o, is trivial on k,“, we 
must put s,=O; if not, we must have k,=R, U,=Ri and o,(x)=x-iJx(, 
hence so= 1. As the degree of kk over k, is [kc : u,], it is 2 in the latter 
case, and otherwise 1. Taking now corollary 1 of prop. 14 into account, 
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we see that the contribution of 21 to n,4(~,0) is G,(s)” if u and w are 
real, Gz(s)Y if they are both imaginary, and Gr(s)“G,(s + 1)” if u is real 
and w imaginary. In the latter case, we have v = n/2, e.g. by corollary 1 
of th. 4, Chap. 1114. Our corollary follows now at once from these facts 
and from the identity G,(s) =rc G,(s)G,(s + l), which is the same as the 
identity between gamma functions already quoted at the end of Chap. X. 

0 11. “Classical” classfield theory. The reinterpretation of our results, 
in the traditional language of this theory, depends upon the following 
facts : 

(a) Let U be the set of all the open subgroups of k;, containing k”; 
let U’ be the set of those which are of finite index in ki, and U” the set 
of those which are contained in ki and of finite index in ki. Lemma 1 
of Chap. XII-l shows that U = U’ and U” = $3 if k is an algebraic number- 
field, and that U = U’uU” if k is of characteristic p > 1. 

(b) Let R be the set of all the fields between k and kab, of finite degree 
over k; when k is of characteristic p > 1, let 53, be the set of all the fields 
between k, and kab, of finite degree over k,. Then corollary 2 of th. 7, 
0 9, defines a one-to-one correspondence between U’ and 53, while, by 
the last assertion in th. 6, 9 9, and Galois theory, there is a one-to-one 
correspondence between u” and 53, when k is of characteristic p > 1. 

(c) As the open subgroups of any group are the kernels of its mor- 
phisms onto discrete groups, we may regard the open subgroups of k; 
in (a) as kernels of such morphisms, and describe these morphisms in 
terms of morphisms of the groups I(P), D(P), in the manner explained 
in Chap. VII-S. In order to reinterpret the results of Chap. VII-8 more 
conveniently for our present purposes, we will modify its notations as 
follows. 

As in Chap. VII-8, when P is any finite set of places of k, contain- 
ing P,, we write G, for the group of the ideles (z,) of k such that z,= 1 
for all UEP, and Glp for the group of the ideles (z,) such that zO= 1 for 
VEP, and z,Er,X, i.e. (zolv= 1, for v not in P. We will now write Lp for 
the free group generated by the places z, not in P, that group being 
written multiplicatively; this may be identified in an obvious manner 
with the group I(P) or D(P) of Chap. VII-8, according to the charac- 
teristic of k. We write 1, for the morphism of G, onto L,, with the 
kernel Glp, given by (z,)-+~zP) with Y(U) = ord,(z,); moreover, for every 

WV 
SEkX such that tar,” for all finite places UEP, we write pr(r)=nzY(“) 

W 
with p(u)=ord,(t) for u not in P. 
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DEFINITION 1. A subgroup J of L, will be called a congruence group 
if one can find, for every VE P, an open subgroup g,, of kz , contained in rC 
when v is finite, such that pr(5) E J for every {E n (k” ng,); the group 
g= ngU will th en be called a defining group for J. 

VEP 

Clearly it would make no difference in this definition if the groups gv 
were restricted to be of the form 1 + pz with m > 1 for every finite VE P. 

PROPOSITION 15. Notations being as above, call U(P) the set of the 
open subgroups of k; containing k” and containing rC for all v not in P. 
Then, for each UEU(P), the formula UnG,=l,‘(J) defines a congruence 
subgroup J = J( U, P) of L,; a group g = n go, where the g,, are as in de- 
finition 1, is a defining group for J if and only if it is contained in U; 
U is the closure of k” 1; ‘(J) in kj;, and the canonical homomorphism of 
k; onto k;/U determines an isomorphism of L,/J onto kill/. Moreover, 
U-r J( U, P) maps U(P) bijectively onto the set of all congruence subgroups 
of LP. 

Take UeU(P); call o the canonical homomorphism of ki onto the 
discrete group r= k;/U; as the morphism of G, into r induced by w  
is trivial on Glp, it can be written as qolp, where cp is a morphism of L, 
into r; clearly the kernel of cp is J. By the corollary of prop. 17, Chap. 
VII-8, this implies that J is a congruence subgroup of L,; then, by 
prop. 17, Chap. VII-8, w  is the unique extension of ‘pal, to ki, trivial on 
k ‘, and it is trivial on g if g is a group of definition for J, so that g c U 
when that is so. By prop. 15 of Chap. VII-& kx Gp is dense in ki ; this 
implies that (PO 1, maps G, surjectively onto f, so that cp(L,) = f, and also 
that Un(k x GP) is dense in U; this is the same as k ’ . (UnG,), i.e. k ’ 1; l(J). 
Conversely, let J be any congruence subgroup of L,, and call rp the 
canonical homomorphism of L, onto the discrete group r= L,/J; again 
by prop. 17 of Chap. VII-S, (~01, can be uniquely extended to a mor- 
phism o of k; into r, trivial on k” ; if then U is the kernel of w, we have 
LIEU(P) and J= J(U, P). Finally, if the groups gv are as in def. 1, and if 
g = n go, every (E n (k” ng,) is in g x G,, so that, if g c U, the projec- 
tion of 4 onto G, is in UnG,, and the image of that projection in L,, 
which is the same as pr(t), is in J; thus y is then a defining group for J. 

COROLLARY 1. Notations being as in proposition 15, let P’ be a finite 
set of places of k, containing P. Then, if J is any congruence subgroup 
of L,, J’ = JnL,, is a congruence subgroup of L,.; if J = J(U, P) with 
LIEU(P), J’= J(U,P’). 

Here it is understood that L,. is to be regarded as a subgroup of L,, 
in the obvious manner, for P’I P. Clearly, then, U(P)cU(P’). If now 
UeU(P) and UnG,=l; ‘(J), it is obvious that UnG,f=l;rl(J’) with 
J’=JnL,.; our corollary follows at once from this and proposition 15. 
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COROLLARY 2. Let P P’ be two finite sets of places of k, containing P,; 
let J, J’ be congruence subgroups of L, and of L,,, respectively. Then 
k” IpI and k” lp’l(J’) have the same closure U in ki if and only if there 
is a finite set P”, containing P and P’, such that JnL,..= J’nL,!,; when 
that is so, the same is true for all finite sets P” containing P and P’, and 
U is in U(PnP’). 

Call U, U’ the closures of the two sets in question; then, by pro- 
position 15, J = J(U, P) and J’ = J(U’, P’). If U = U’, it follows at once 
from proposition 15 that U is in U(PnP’); therefore, by corollary 1, if 
P”xPuP’, JnL,.. and J’nL,.. are both the same as J(U,P”). On the 
other hand, if there is P” and J” such that P”x PUP’ and J”= JnL,,, = 
= J’nL,.., corollary 1 gives J”= J(U, P”) = J( U’,P”), hence U = U’ by 
proposition 15. 

When two congruence groups J, J’ are as in corollary 2, one says 
that they are equivalent. Since every open subgroup U of ki, contain- 
ing k”, belongs to U(P) when P is suitably chosen, it is now clear that 
there is a one-to-one correspondence between the set U of all such 
groups and the set of equivalence classes of congruence groups. There- 
fore the one-to-one correspondence between U and R (resp. 52~3,) 
mentioned above under (b) determines a similar correspondence between 
fi (resp. RuJI,) and the equivalence classes of congruence groups. This 
will now be described more in detail. 

To begin with, it is obvious, from proposition 15 and its corollaries, 
that, when an equivalence class of congruence groups is given, there is 
a smallest set P such that this class contains a congruence subgroup J 
of L,; in fact, if U is the open subgroup of ki corresponding to that 
class, P consists of the infinite places, and of the finite places v such 
that r,” is not contained in U; if we write U, = Un kz for all v, this is 
the same as to say that rz is not contained in U,. Similarly, there is 
then a largest defining group for J; this is n go, where go= U, for every 

infinite place, and go= U,nr~ for every finite VE P. When one considers 
only defining groups for which gV is of the form 1 + p,” with m 3 1 when v 
is finite, one must then take, for each such VEP, the smallest integer 
m(v) 3 1 such that 1 + p,“‘“’ is contained in U,. If k is of characteristic 
p> 1, the divisor xm(v).v is then called “the conductor” of U and of 
every congruence group equivalent to J. If k is of characteristic 0, one 
puts m(u) =0 or 1, for each real place v of k, according as U, is R” or R; ; 
one puts m(u)=0 for all imaginary places u of k; attaching then a sym- 
bol p,, called an “infinite prime”, to each infinite place v of k, one calls 
the symbol 11~;“’ ” the conductor” of U, of J, and of the congruence 

VEP 

groups equivalent to J. 
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In the case of characteristic p> 1, it is obvious that a congruence 
subgroup J of L corresponds to an open subgroup U of ki if and only 
if it consists of divisors of degree 0 when L, is identified with the 
group D(P) of divisors prime to P. From now on, this case will be ex- 
cluded; in other words, when the characteristic is not 0, we consider 
exclusively open subgroups of ki of finite index in ki, abelian extensions 
of k of finite degree, and congruence groups which contain at least one 
divisor of degree # 0. This being understood, we can make use of prop. 14 
of 5 10 and its corollaries. In particular, if k’ is the abelian extension 
of k corresponding to the open subgroup U of k;, corollary 4 of that 
proposition shows that U contains rz if and only if k; is unramitied 
over k, for all w above u, i.e. if and only if v does not occur in the dis- 
criminant ID of k’ over k. We will write d for the set consisting of the 
infinite places of k and of those occurring in the discriminant a; then 
there is a congruence subgroup J of L,, corresponding to U, if and only 
if PI A. As to the conductor of U, if we leave aside the infinite places. 
it is, in an obvious sense, sup,,), (f(w)) if notations are as in th. 9 of 4 10; 
as to the infinite places, the proof of the corollary of th. 10, 5 10, shows 
that such a place occurs in the conductor if and only if it is real and the 
places of k’ lying above it are imaginary. 

Before discussing the relation between the congruence groups asso- 
ciated with U and the Frobenius automorphisms, we introduce some 
definitions, valid for an arbitrary Galois extension k’ of k of finite degree. 
Call g the Galois group of k’ over k; let u be any place of k, and w a place 
of k’ lying above u. By corollary 4 of th. 4, Chap. 111-4, we can identify 
the Galois group lj of k; over k, with a subgroup of g by means of the 
restriction morphism of h into g. If v is a finite place, and k; is unramified 
over k,, lj is cyclic and generated by the Frobenius automorphism qpw 
of kh over k,; after lj has been identified with its image in g, q,,, may 
be regarded as an element of g; this is called the Frobenius automorphism 
of k’ over k at w. If w’ is another place of k’ above v, the same corollary 
shows that there is a k,-linear isomorphism of kk onto ki,, determined 
by an automorphism CJ of k’ over k; then the Frobenius automorphism 
of k’ over k at w’ is K ’ cpwo. Clearly cp,,, is the identity if and only if v 
splits fully in k’. In particular, let k, k’ be algebraic number-fields; let c, r’ 
be their maximal orders; let pu7 pk be the prime ideals, in r and in r’ 
respectively, corresponding to u and to w; then r/p,, r’/& are finite fields, 
with q =qu and q’= q: elements, respectively, and cp,,, is the automor- 
phism of k’ over k which determines on r’/pk the automorphism x+x4. 
This may also be defined as the automorphism cp of k’ over k for which 
<” z tq (p;,) for every rcr’. 

If, in addition to the above assumptions, we also assume k’ to be 
abelian over k, i.e. g to be commutative, cp,,, is the same for all the places w 
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above k; in this case, the only one with which we are concerned here, 
cp,,, is called the Frobenius automorphism of k’ over k at v; we will denote 
it by (k’/klv), or (k’lv) when there is no risk of confusion. We may now 
reinterpret corollary 3 of prop. 14, 4 10, as follows. As in that corollary, 
call U the open subgroup of ki associated with k’, and identify the 
Galois group g of k’ over k with ki jU by means of the canonical mor- 
phism. Take P 1 A, with A defined as above. The canonical homomor- 
phism of ki onto g= k;/U is trivial on r,” for every v not in A, so that 
it induces on G, a morphism of G, into g, trivial on Glp, which deter- 
mines a morphism 40 of L, = G,/Gk into g. Corollary 3 of prop. 14, 4 10, 
says now that, for every v not in P, p(v) is the Frobenius automorphism 
q,=(k’l v) of k’ over k at v, as defined above. This morphism cp of L, 
into g, defined for PI A, will be denoted by m+(k’/kjm); one writes 
(k’lm) instead of (k//k/m) when there is no risk of confusion, and calls 
this “the Artin symbol”. It may be characterized as the morphism of L, 
(or, what amounts to the same, of the group of ideals I(P), or of the group 
of divisors D(P), according to the characteristic) into g which maps 
every place of k, not in P, onto the Frobenius automorphism of k’ over k 
at that place. In view of prop. 15, we have thus proved that this mor- 
phism is surjective and that its kernel J=J(U, P) is a congruence sub- 
group of L,. When one takes for P all the finite sets of places contain- 
ing A, the kernels J(U,P) make up an equivalence class of congruence 
groups; they are all contained in J(k’) =J(U, A). 

The above results show also that a finite place v of k splits fully in k’ 
if and only if it belongs to J(k’). It follows now from prop. 15 of Chap. 
VIII-5 that, if k” is a separable extension of k contained in k; and if 
almost all the places of k belonging to J(k’) split fully in k”, k” is 
contained in k’. Obviously this implies that there are infinitely many 
places of k belonging to J(k’); it will be seen in 5 12 that the same is true 
for all the cosets of J(k’) in L,. The corollary of prop. 15, Chap. VIII-5, 
shows also that, if k” is a Galois extension of k, it contains k’ if and only 
if almost all the places of k which split fully in k” are in J(k’). From this, 
it follows that, if k’ and k” are two abelian extensions of k contained 
in li, k” contains k’ if and only if there is a set P for which J(k”)nL, is 
contained in J(k’)nL P; this may also be considered as a consequence 
of the results of Q 9, combined with prop. 15 of this 9. In particular, k’ is 
uniquely determined by the equivalence class of congruence groups 
determined by J(k’); this, too, is an immediate consequence of the results 
of Q 9 and of prop. 15 of this 0. Traditionally, one says that k’ is “the 
classlicld” for that class of congruence groups or for any group belong- 
ing to that class. 

The above characterization of the class of congruence groups for 
which k’ is “the classfield” is based solely on the “Artin symbol”; another 



286 Global classfield theory XIII 

one will now be derived from the fact that U = k” Nksik(kax). More ge- 
nerally, if we take for k’ any extension of k of finite degree, th. 7 of Q 9, 
and its corollaries, show that the group U = k” Nkrlk(kix) is the open 
subgroup of finite index of k; associated with the maximal abelian ex- 
tension L of k, contained in k’. Take any finite set P of places of k, con- 
taining Pm ; for each IJE P, take an open subgroup go of kl: , contained 
in rl: when v is finite; put g= ng,, U,=kX gGlp and J,=J(U,,P); then, 

in the notation of def. 1, J, is the subgroup of L, consisting of the ele- 
ments pr({) for 5~ n (k” ng,). As U, U contains Gb, it determines a con- 
gruence group J = J(U, U, P), given by Zp l(J)= U, UnG,. Call H, the 
group of the ideles (zk) of k’ such that zk = 1 for every place w  of k’ lying 
above a place VEP, and HL the group of the ideles (z:) of k’ such that 
z: = 1 when w  lies above a place VEP, and lzJ,= 1 otherwise; then 
LIP = HP/H; is the free group generated by the places of k’ which do not 
lie above P. As NkPlk maps H, into G, and Hip into Glp, it determines a 
morphism ‘3 of UP into L,, which is the same as the morphism %k,,k 
(resp. (Zkk’J of Chap. VIII-4 when L,‘,, L, are interpreted as groups of 
ideals (resp. of divisors) of k’ and of k. By prop. 15 of Chap. VII-g, k’” H, 
is dense in ki’, so that k” NkTlk(HP) is dense in U. As U, is open in k;l, 
this implies that we have 

U, U = kx g Glp’ NkTlk(HP). 

From this, one concludes immediately that J is the subgroup of L, 
generated by J, and !3(EP). Call k” the classfield for the congruence 
group J; this is the abelian extension of k associated with the open 
subgroup U, U of ki, so that it is contained in the abelian extension L 
of k associated with U. Call n, n, the degrees of k’ and of L, respectively, 
over k; it is now clear that the index of J in L,, which is equal to that 
of U, U in ki and to the degree of k” over k, is <n,, and that it is equal 
to n, if and only if U, c U, hence k” = L; this will be the case when P is 
taken large enough, and g small enough. We see at the same time that the 
index of J in L, is always <n, and that it is equal to n if and only if k’ 
is abelian over k and is the classfield for J. In other words, when a con- 
gruence subgroup J of L, is given, an extension k’ of k of finite degree is 
abelian and is the classfield for J if and only if J contains ‘S(&.) and has 
an index in L, equal to the degree of k’ over k. 

Finally, we can reinterpret corollary 5 of th. 7, ?j 9, as follows. As above, 
let k’ be an extension of k of finite degree. Let M be an abelian extension 
of k contained in some extension of k’, and call M’ the compositum of M 
and k’. Assume that M is the classfield for a congruence subgroup J of 
L,. Let v be a place of k, w a place of k’ above 21, u’ a place of M’ above 
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w, and u the place of M below a’; MU, is the compositum of kk and M’, 
hence of k; and M, hence of ki and M,. If v is not in P, M, is unramified 
over k,; this implies that MU. is then unramilied over k;. Therefore M’ 
is the classfield for some congruence subgroup J’ of &. Now let U, U’ 
be the open subgroups of kz, kkx, respectively associated with M and 
with M’; by corollary 5 of th. 7, $9, U’= N,,:(U). By prop. 15, J, J’ can 
be defined by Zp i(J) = Un G, and by the similar formula for J’, U’; 
therefore an element m’ of L!P is in J’ if and only if it is the image of an 
element z’ of H, such that Z’E U’, i.e. N,,,,(z’)E U; as Nkfik maps H, 
into G,, this is equivalent to NkPik(z’)~ Un G,, hence to %(rn’)~J. There- 
fore we have J’ = W l(J). 

As an illustration, we will now apply the above considerations to 
the case k = Q, which has been treated from another point of view in 0 4. 
Take k’ = Q(E), where E is a primitive m-th root of 1; as before, identify its 
Galois group g with (Z/mZ)’ by assigning to the automorphism E-+E~, 
with XEZ, (x,m) = 1, the image of x in (Z/mZ)‘. As we have observed 
before, it is obvious that, for every rational prime p, not dividing m, and 
for every place w  of k’ above p, k; is unramified over Qp, and that the 
Frobenius automorphism of k’ over Q at p is the one given by s+sP, 
i.e. the image of p in (Z/mZ)“. Consequently, only primes dividing m 
can occur in the discriminant of k’ over Q, and k’ is the classlield for some 
congruence subgroup J of the group L, of the fractional ideals of Q, 
prime to m; L, can be identified in an obvious manner with the group 
of the fractions r = a/b, where a, b are two integers > 0, both prime to m. 
Moreover, the Artin symbol r-(k’/Qlr) is the morphism of L, into 
(Z/mZ)” which maps every prime p, not dividing m, onto its image in 
WmZ)” ; clearly this maps every integer a>O, prime to m, onto its 
image in (Z/mZ)“, and its kernel J consists of the elements a/b of L, 
for which a = b (m). It can easily be verified that the “conductor” for this 
group J is 1 if m = 1 or 2, that it is p,(m/2) if m is even and m/2 is odd, and 
that it is p, m in all other cases. Except in the trivial cases m = 1 or 2, 
when k’ = Q, one may express this by saying that the conductor is p, m’, 
where m’ is the smallest integer such that Q(E) is generated over Q by a 
primitive m’-th root of 1. As we have seen, this implies that the primes 
occurring in the discriminant of Q(E) over Q are those which divide m’; 
it would be easy now to compute that discriminant itself, by means of 
th. 9 of 4 10. It is also a consequence of what we have seen above that, 
if k is any algebraic number-field, and E is again a primitive m-th root of 1, 
k(c) is the classfield for the congruence subgroup J’ of the group L:, of 
fractional ideals of k, prime to m, consisting of the fractional ideals m 
such that ‘S(m)E J, where J is as defined above. 
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5 12. “Coronidis loco”. The results of 9 10 give the answer to a 
question which could not be settled in Chap. VII-5. 

THEOREM 11. Let o be any non-trivial character of ki , trivial on k ‘. 
* Then L(l,o)#O. 

Except for the case o2 = 1, this is contained in corollary 2 of th. 2, 
Chap. VII-j. Assume now that o is of order 2; call U its kernel, which is 
an open subgroup of ki of index 2, containing kx By corollary 2 of 
th. 7,s 9, there is a quadratic extension k’ of k associated with U. By th. 10 
of 9 10, we have 

L’(S) = i/h)L(s, 0). 

If k is of characteristic 0, by the corollary of th. 3, Chap. VII-6, both 
ik and ik, have a simple pole at s = 1, and their residues there, whose 
values are given by that corollary, are >O. The same is true when k is 
of characteristic p > 1, by th. 4 of Chap. VII-6. Therefore L( 1 ,w) > 0. 

One should observe that the above proof can be extended in an 
obvious manner to any non-trivial character (1) of ki of tinite order, 
trivial on k”, by applying th. 10 of 9: 10 to the cyclic extension k’ of k 
associated with the kernel U of o; so far as the conclusion of theorem 11 
is concerned, this adds nothing new to what has already been proved 
by a different method in corollary 2 of th. 2, Chap. VII-5, but it supplies 
some important relations between the class-numbers of k and k’ and the 
values of the corresponding L-functions at s = 1; more generally, th. 10 
of $10 shows at once that similar relations hold for all abelian extensions 
of k of finite degree. One should also note that, if w,, for SEC, has the 
same meaning as in Chap. VII, and if one replaces o by oit o in theorem 11, 

* one finds that L( 1+ it, o) # 0 for all t ER. 

COROLLARY. Let k, be an A-field contained in k; let V be a set of finite 
places of k, such that, for almost all the finite places v  of k, not in V the 
closure of k, in k, is not k,. Let w be a non-trivial character of k;, trivial 
on k”, such that w, is unramified at all the places VE I/: Then the product 

dk Kws)= n (1 -~,(~,W-l 
“E” 

is absolutely convergent for Re(s)> 1 and tends to a finite limit, other 
than 0, when s tends to 1. 

For almost all v, by th. 1 of Chap. VIII-4, k, is unramified over the 
closure (k,), of k, in k,, so that its modular degree over (k,), is equal to 
its degree over the same field. In view of this, the assumption made 
above about V is identical with that made in corollary 3 of th. 2, Chap. 
VII-5. That being so, the proof of the latter corollary can be applied here; 
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when that is done, one sees that our assertion is an immediate conse- 
quence of theorem 11, combined with corollary 3 of prop. 1, Chap. VII-l. 

THEOREM 12. Let L be an A-field, k, an A-field contained in L, and c( 
an automorphism of L over k,. Then there are infinitely many places w  
of L such that L, is unramified over the closure of k, in L, and that the 
Frobenius automorphism of L, over that closure induces c1 on L. 

Call k the subfield of L consisting of the elements of L, fixed under a; 
as k, c k c L, L has a finite degree d over k; by Galois theory, this implies 
that L is cyclic over k, its Galois group g over k being the one generated 
by cc For each place v of k, call u the place of k, which lies below v, and 
let w  be any place of L above v; then the closure of k, in L, is (k,),. By 
th. 1 of Chap. VIII-4, there is a finite set P of places of k, containing P,, 
such that, when v is not in P, k, is unramified over (k,),, and L, over k,, 
hence also over (k,),. Call then cp the Frobenius automorphism of L, 
over (k&; as this generates the Galois group of L, over (k,),, it leaves no 
element of L, fixed except those of (k,),; therefore, if it induces c( on L, 
we must have kc (k,),, hence k, = (k,),, and then, in view of our defini- 
tions in 9 11, a is the Frobenius automorphism of L over k at v. Call M, 
the set of the places v of k, not in P, such that k,# (ko)“; for every place v 
of k, not in PuM,, call cpO the Frobenius automorphism of L over k 
at v; call M, the set of the places v of k, not in PuM,, for which (P”=cI, 
and call 1/ the complement of PuM, uM, in the set of all places of k. 
Clearly the assertion in our theorem amounts to saying that M, is not a 
finite set, and M, is finite if and only if I’ has the property described in 
the corollary of th. 11. Assuming now that V has that property, we will 
derive a contradiction from this assumption. With our usual notations, 
call x a character of 2I attached to the cyclic extension L of k; here, of 
course, %!I is the Galois group of k,, over k, and L is regarded as a subfield 
of k,,. Let 23 be the subgroup of ‘$I corresponding to L; then we may write 
g=2I/23, and the group of the characters of g consists of the characters 
xi for 0~ i<d. Put o= xoa; then, by corollary 3 of prop. 14, 9 10, o, is 
unramified if and only if L, is unramified over k,, and then the Frobenius 
automorphism cp,, of L over k at v is the image of rc,, in g under the mor- 
phism of ki onto g determined by a. This gives now, with the notation 
of the corollary of th. 11: 

q(k KmO’,s)= n (1 -x’(cp,)q;“)- ‘. 
“E” 

For brevity, call this qi(s); we have now 

log 4its) = C +f i&J 4; ns/n, 
"S" n=l 
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this being absolutely convergent for Re(s) > 1. This gives: 
d-l 

+m d-l 

vcv n=2 i=O 

In the right-hand side, all the coefficients in the first series are 0, since 
cp,# CY for VE I/: On the other hand, q,>2 for all v, so that, for each v 
and for Re(s) > 1, we have 

n+,Cl!“Ct tc” 4;“64;2. 
n=2 

Therefore the second series in the right-hand side of the above formula 
is majorized by dxqi2, which is convergent by prop. 1 of Chap. VII-l. 

We have thus shown that the left-hand side remains bounded for Re(s) > 1. 
On the other hand, the corollary of th. 11 shows that, for 1 <i-cd, 
logq,(s) remains bounded when s tends to 1, and corollary 3 of th. 2, 
Chap. VII-5, shows that logq,(s) does not. This is a contradiction. 

COROLLARY. Notations being as in definition 1 of 0 11, let J be a con- 
gruence subgroup of L,; if k is of characteristic p> 1, assume that J con- 
tains divisors of degree #O. Then there are infinitely many places of k in 
every coset of J in L,. 

In fact, let k’ be the “classfield” for J, as explained in 5 11; call g 
its Galois group over k. It has been shown in @ 11 that the places v of k, 
in a given coset of J in L,, are those places, not in P, where the Frobenius 
automorphism of k’ over k is a given one. Our assertion is now a special 
case of theorem 12. 

As an illustration for theorem 12, take k, = Q, and take for L the field 
generated by a primitive m-th root of 1. Then our theorem says that, 
if a is any integer prime to m, there are infinitely many rational primes 
congruent to a modulo m. This is Dirichlet’s “theorem of the arithmetic 
progression”, and the proof given above for theorem 12 is directly 
modelled on Dirichlet’s original proof for his theorem. 

Finally, let w, k and k’ be again as in the proof of theorem 11, so that 
we have 

MS) = &c(S) Lh 4. 

If k is of characteristic 0, we have also, by the corollary of th. 10, § 10: 

Z,.(s) = nPZ,(s) A (s, w), 
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where p is as explained in that corollary. Now write that the functions 
in these formulas satisfy the functional equations contained in theorems 3 
and 4 of Chap. VII-6 and theorems 5 and 6 of Chap. VII-7. Writing that 
the exponential factors must be the same in the functional equations for 
both sides, one gets nothing new; the relation obtained in this manner is 
an immediate consequence of th. 9 of (j 9. Writing that the constant 
factors are the same on both sides, one gets JCO(~)= I, with K and b 
defined as in theorems 5 and 6 of Chap. VII-7. This will now be applied 
to a special case. Assume that we have taken for w a character of ki of 
order 2, trivial on k x sZ(P,), or, what amounts to the same, trivial on k” , 
on k,” whenever u is an infinite place, and on r-z whenever v is a finite 
place. According to prop. 14 of Chap. VII-7, we have then K,, = 1 for all v, 
hence K = 1, and the idele b is the same as the differental idele a. Therefore, 
for every such character o, we have o(a) = 1. Here, if k is an algebraic 
number-field, a may be assumed to have been chosen as in prop. 12 of 
Chap. VIII-4, i.e. so that id(a) is the different b ofk over Q; ifk is ofcharac- 
teristic p> 1, we know, by the definition of a differental idele in Chap. 
VII-2, that c = div(a) is a divisor belonging to the canonical class. On the 
other hand, the conditions imposed on o amount to saying that it is 
trivial on k”(k~)2R(PK); therefore a is in that group. As ki/k’ C2(Pxa) 
may be identified with the group I(k)/P(k) of the ideal-classes of k, if k 
is an algebraic number-field, and with the group D(k)/P(k) of the divisor- 
classes of k if k is of characteristic p > 1, we have thus proved the following 
theorem (due to Hecke in the case of algebraic number-fields): 

THEOREM 13. !f k is an algebraic number-field, there is an ideal-class 
of k whose square is the class dejined by the difkrent qf’ k over Q. If’ k 
is of characteristic p> 1, there is a divisor-class of k whose square is the 
canonical class of k. 



Notes to the text 

(The places in the text to which these notes belong have been marked by a * in the 
margin.) 

P. 1: Cf. E. Witt, Hamb. Abhandl. 8 (19.31) 413. 

P. 27 : The analogy in the text can be pursued much further. Let K and I/ 
be as in definition 1; call two norms N, N’ on T/ equivalent if N’/N is 
constant on I/: Then the quotient of the set of all K-norms on I’ by this 
equivalence relation can be identified with the so-called “building” 
associated by F. Bruhat and J. Tits (cf. Publ. Math. IHES, no 41, 1971) 
with the group Aut (V), i.e. with GL(n, K) if I/= K”; this corresponds to 
the “Riemannian symmetric space” associated with GL(n, K) for 
K = R, C or H in the classical theory. An “apartment” of that building 
consists of the points determined by norms of the form given by pro- 
position 3 for a fixed decomposition I/= Vi + ... + V, of I/: The “buildings” 
associated with the other “classical groups” over K can also be inter- 
preted by means of norms in the spaces on which these groups operate. 

P. 74: The proof of theorem 4 given in the text is the one due to G. Fuji- 
saki (J. Fat. SC. Tokyo (I) VII (19.58) 567-604). It is in this proof that the 
“Minkowski argument” (which appears here in the form of lemma I, 
Chap. 11-4) plays a decisive role, just as it did at the corresponding place 
in the classical theory. 

P. 101: For a treatment (due to C. Chevalley) of the topic of “linear 
compacity”, cf. Chapter II, $3 27-33, of S. Lefschetz, AIgrbruic Topology, 
A.M. S. 1942. In a locally linearly compact vector-space T/ over a 
(discretely topologized) field K, one can attach, to each linearly compact 
open subspace w an integer d(W) so that, if W 3 W’, d( W)-d( W’) is 
the dimension of W/W’ over K; this takes the place of the Haar measure 
in the theory of locally compact groups. 

P. 122: The proof given here is Tate’s (cf. J. Tate, Thesis, Princeton 1950 = 
Chapter XV of Cassels-Frohlich, Algebraic Number Theory, Acad. Press 
1967). 

P. 125: The proof given here, based on lemma 7, is the classical one, due 
to Hadamard (Bull. Sot. Math. 24 (I 896) 199-220) with the improve- 
ments due to F. Mertens (Sitz.-ber. Ak. Wiss., Wien (Math.-nat. Kl.), 107 
( 1 X98), 1429- 1434). 
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P. 126: In fact, it will be seen (cf. proof of th. 11, Chap. X111-12) that, if 
o2 = 1, w + 1, there is a quadratic extension k’ of k such that 

p(k, P, co, s)=p(k’, P’, s)p(k, P, s)-’ 

where P’ is the set of places of k’ above P; in substance, this is equivalent 
to the “law of quadratic reciprocity” for k. As both factors in the right- 
hand side have a simple pole at s= 1, this proves the assertion. That 
proof, however, can be replaced by a simple function-theoretic argument, 
as follows. Note first that, for o2 = 1, the product 

p1l.4 = p (k, P, to, s) p (k, P, s) 

is a product of factors respectively equal to 

. 
or to 

according as j*(u) is 1 or - 1. Expanding this into a Dirichlet series, we 
get for p, (s) a series with coefficients in R, which diverges for s=O. By 
an elementary lemma, originally due to Landau (cf. e.g. E. C. Titchmarsh, 
T?te T&or-y of’ Function.s (2nd ed.), Oxford 1939, 3 9.2) the function 
defined by such a series must have a singular point on R,. On the other 
hand, in view of our results in $3 6-7, pi(s) would be holomorphic in the 
whole plane if p(k, P, o, s) was 0 at s= 1. Cf. also the remark at the end 
of the proof of th. 1 I, Chap. X111-12, and the Notes to p. 2X8. 

P. 152: The theorem expressed by formula (I 1) is due to J. Herbrand 
(J. de Math. (IX) 10 (1931), 481-498); hence the name we have given to 
“the Herbrand distribution”. 

P. 165: This argument is incomplete. Before applying prop. 2 to C/C’, 
Z, M, one should first observe that M, regarded as a (C/C’)-module, is 
both faithful and simple. For any ZEZ, the mapping m+;rn is an endo- 
morphism of M as a (C/C’)-module, hence also of M as a C-module, 
hence of the form m+lrn with <EK; therefore 2 is isomorphic to K, 
and C/C’ is an algebra over K in the sense of 9: 1 (this was tacitly assumed 
in the text). The proof proceeds then as before. 

P. 178: Cf. R. Brauer, Math. Zeit. 28 (1928) 677-696. 

P. 202: An alternative proof (communicated by A. Dress) is as follows. 
Call N =112 the dimension of A over k; take a as in the text; identify 
End,(A) with MN(k) by means of the basis CL. Then prop. 3 of Chap. IX-1 
defines an isomorphism F of ABA0 onto M,,,(k). As a@sl is a basis of 
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A@A” over k, F determines, for almost all u, an isomorphism F, of the 
rt,-lattice & generated in A,@Az by a@cr onto MN(y); when that is so, by 
th. 1 of Chap. X-l, /2, is a maximal compact subring of A,@&?; as easily 
seen, this implies that CI, is a maximal compact subring of A,. By th. 1 of 
Chap. X-l, there is then a division algebra D over k,, an integer v and an 
isomorphism cp of M,(D) onto A, such that cp maps M,(R) onto CI,, 
R being the maximal compact subring in D. Let 7~ be a prime element 
of k,; using prop. 5 of Chap. I-4, one sees easily that R/nR and M,(R)/ 
nM,(R) are simple rings (i.e. that they have no non-trivial two-sided 
ideals) if and only if D = k,. Consequently, A is unramified at v if and 
only if the ring cc&a, is simple; but it must be so if u is as above, as one 
sees at once by using the isomorphism F, and the fact that the ring 
MJr,)/n MN(r,) is simple. 

P. 206: Cf. M. Eichler, Math. Zeit. 43 (1938), 481-494. 

P. 208: This statement is obviously false if K is of characteristic p > 1; 
for instance, it contradicts the results of Chap. XII-3 if those of Chap. II-3 
are taken into account. If K is of characteristic 0, the statement is correct. 

P. 241: The proof of the transfer theorem given here is the one due to 
C. Chevalley (J. Math. Sot. Japan 3 (1951), 36-44). For another proof, 
cf. Appendix I in this volume. 

P. 256: Cf. H. Hasse, Math. Ann. 107 (1933), 731-760. 

P. 262: The content of proposition 8 may be expressed by saying that, 
in the duality between k;/(ki)n and itself defined by the Hilbert symbol 
(cf. prop. 7) the image of k” in that group (which is a discrete subgroup 
with compact factor-group) is self-dual, i.e. that it is the group “associated 
by duality” with itself in the sense of Chap. H-5. 

P. 273: Cf. C. Chevalley, lot. cit. (in the Note to p. 241). 

P. 288: Cf. above, Note to p. 126. 

P. 288: Of course the same argument applies to o= I; in other words, 
&(l +it)#O for tER, t#O. As first shown by Hadamard for k=Q (lot. 
cit., Note to p. 12.5) this fact is essentially equivalent to the “prime 
number theorem” (more precisely, the “prime ideal theorem”) for k. 

P. 291: This proof (originally arising from a suggestion by J.-P. Serre) is 
taken from J. V. Armitage, Invent. Math. 2 (1967), 238-246. 



Appendix I 

The transfer theorem 

1. As in .Chap. 1X-3, take an arbitrary field K and an extension K’ 
of K of finite degree n, contained in KS,,; write 6, 8’ for the Galois 
groups of Ksep over K and over K’, respectively. Call t the transfer 
homomorphism of 6/8’i’ into 6’/C5’(1); as explained in Chap. X11-5, 
this may be defined by means of any full set (0, , . . , a,} of representatives 
of the cosets 08’ of 8’ in 8. 

Let .f” be any factor-set of K’ (cf. Chap. 1X-3, def. 4). For any Q, 0, r 
in 8, and for 1 I i I n, we can write p gi, CO-~, z gi uniquely in the form 

(1) pCri=fJjCli, OCTi=Okpi, ,Coj=CT?/i, 

with 1 <j, k, /ln and with zi, pi, yi in 8’. Then the formula 

defines a factor-set f’ of K; we will write ,f’=v(J”). If z’ is a covariant 
mapping of 6’~ 03’ into KS&, we can define quite similarly a covariant 
mapping z= v(z’) of 8 x 6 into KS”,,; then, if ,f” is the coboundary of z’, 
v(f”) is the coboundary of v(z’). Therefore v maps coboundaries into 
coboundaries and determines a morphism, for which we also write r, 
of factor-classes of K’ into factor-classes of K. If, for each i, we replace 
(TV by a,/$ with &E@‘, then, for a given ,f”, I is modified by the co- 
boundary of the covariant mapping 

where j. li. xi. /Ii are as in (1). This shows that the morphism v for factor- 
classes does not depend upon the choice of the cri. 

2. Now let notations be as in Chap. 1X-4; instead of {x, O}, however, 
we will write {x, 0) K; and we write ix’. O’),. for the similarly defined 
symbol over K’. 

LEMMA A. Let 31’ be a chumcter of’ 6’; then, .ftir all OE Kx : 

{X’“t> @,=v({x’, Q,,). 

As in Chap. 1X-4, write II’ = e 0 @‘, where @’ is a mapping of 6’ into 
the interval [O, I[ on R; @’ is constant on cosets modulo Q’(i). Then 
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X’ot=eo@ with @=@‘ot; if p and the a, are as in (1) this gives (by 
definition of the transfer) Q(p) = @‘(~cQ). In the formula to be proved, 

both sides are defined as the classesi of certain factor-sets; one has to 
show that those factor-sets differ only by the coboundary of some co- 
variant mapping z. For any p, CJ in 8, define the CY~, pi as in (1) and put 
z(p, 0) = ON where N is the integer 

It is trivial to verify that z is then a covariant mapping with the required 
property. 

LEMMA B. Let x be u character of’ 6, and x’ its restriction to 6’. Then, 
,jix all @E K’ ‘, we have 

1x9 Nr,K(@)lK = ~CX’, WI,.). 

The proof is similar to that of lemma A. Write ~=eo @; both sides 
of the formula to be proved are defined as the classes of certain factor- 
sets; one verifies that the latter differ by the coboundary of the covariant 
mapping z given, for all p, g, by the formulas 

z(p, cr)=~(fPqN~, 
I 

where j, k, c(~, fii are given by (1) so that the Ni are integers. 
3. Now we take for K a commutative p-field. In view of the definition 

of the canonical morphism in Chap. X11-2, the local “transfer theorem”, 
i.e. theorem 6 of Chap. X11-5, is equivalent to the following statement: 

THEOREM. Let K, K’ be as in theorem 8 qf’ Chapter X11-5; then, ,jbr all 
1’~ X,. and all 0~ K ‘, we have 

(x’ o t, m, = (x’, O),, 

Consider the symbol q defined in Chap. X11-2; let II’ be the corre- 
sponding symbol for K’. In view of lemma A, the theorem will be proved 
if we show that, for any factor-class c’ of K’, we have q [v(c’)] = $(c’). By 
th. 1 of Chap. X11-2, we may write c’ in the form {x’, I)‘},, with an un- 
ramified character x’ of (5’ and some VEK’. Then x’ is attached to a 
cyclic extension K’(p) of K’ generated by a root p of 1 of order prime 
to y, and it is the restriction to 8’ of a suitably chosen character x of (5 
attached to the cyclic unramified extension K(p) of K. Our conclusion 
follows now at once from lemma B, combined with th. 2 of Chap. X11-2. 
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4. In order to deduce the global transfer theorem (theorem 8 of 
Chap. X111-9) from the local one, we first observe the following. Let 
notations be as in Chap. XIII-l@; let k’ be an extension of k of finite 
degree, contained in ksep. For any place v of k, and any place w of k’ 
lying above U, let 2lL be the Galois group of kk,ab over /&,, and p: the 
restriction morphism of 2IL, into the Galois group 21’ of kHb over k’. 
Call t, t, the transfer homomorphisms of 2I into !!I’ and of 21, into %L, 
respectively. Then we have 

the product being taken over all the places w of k’ lying above v; the 
proof of this is easy (and purely group-theoretical) and will be left as an 
exercise to the reader. This being granted, the global transfer theorem 
is an immediate consequence of the local theorem and of the definitions. 



Appendix II 

W-groups for local fields 

1. For the formulation of Shafarevitch’s theorem and related results, 
it is convenient to introduce modified Galois groups, to be called 
W-groups, as follows. Let K be a commutative p-field; as in Chap. X11-2, 
let K,=K(!U);I1) be the subfield of Ksep generated over K by the set YJl of 
all roots of 1 of crder prime to p in Ksep. Let A be a Galois extension of 
K between K, and K,,,; let 8, (SO be the Galois groups of $3 over K and 
over K,, respectively. Let cp be the restriction to A of a Frobenius 
automorphism of Ksep over K. We put 

and give to !IB the topology determined by a fundamental system of 
neighborhoods of the identity in 6, (e.g., by all open subgroups of 6,). 
This makes $93 into a locally compact group with the maximal compact 
subgroup 6,; ‘%B/@J, is discrete and isomorphic to Z. With this topology, 
93 will be called the W-group of si over K; it has an obvious injective 
morphism 6 into 6, which maps it onto a dense subgroup of 6. 

Call q the module of K; the Frobenius automorphism cp determines 
on ‘m the bijective mapping p+pV=@, and cp” determines on !IJl, for 
every ncZ, a bijection which we write as p+pQ with Q=q”. Then $YB 
may be described as consisting of those automorphisms o of A over K 
which determine on YJI a bijection of the form ,P+,P=~~ with Q =q”, 
ncZ; when cc) and Q are such, we will write lolm=Q-’ and call lo& 
the module of o in 2% Clearly o+Iol* is a morphism of ‘2u into R; 
with the compact kernel Q,, and it maps ‘YB onto the subgroup of R: 
generated by q. 

2. If 53’ is any Galois extension of K between K, and R, and r is the 
Galois group of A over K, we may clearly identify the W-group of A’ 
over K with %323/r. On the other hand, let K’ be any finite extension of K 
between K and 53; let 6’ be the Galois group of 53 over K’, and ‘YB’ its 
W-group over K’; clearly we have !03’ = 6-l (6’). As 8’ and its cosets in Q 
are open in Q, 2B’ is open in 2B and has a finite index, equal to that of 8’ 
in 6 and to the degree of K’ over K. If K’ is a Galois extension of K, we 
can identify its Galois group over K with YB/YJJ as well as with @i/6’. 
Conversely, let !-ID be any open subgroup of ‘B3 of finite index in ‘Iu. 
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Then Q, n ?EY is open in 8, and therefore belongs, in the sense of Galois 
theory, to some finite extension K,(c) of K,, contained in 52. Let L be a 
finite Galois extension of K between K(t) and R. Let q’ be in E%’ and 
not in 8,; replacing q’ by cp’-’ if necessary, we may assume that 
Icp’Im=q4” with II >O. Take an integer v >@ such that 9’” induces the 
identity on L; call K” the compositum of L and of the unramified ex- 
tension K,,, of degree nv of K in K,, and let 83” be the W-group of A 
over K”. Take any OEYB”; as o induces the identity on K,,, we have 
IwlpJ=qn”i with some iEZ. Then w(P’-“~ induces the identity on K, and 
on L, hence on K,(c), so that it is in YB3’. Thus 6YIY’ is contained in 9B’. As 
we have seen that the Galois group of K” over K may be identified with 
S%B/~YB”, this shows that ‘53’ belongs to some field K’ between K and K”, 
and, more precisely, that it is the W-group of S3 over K’. Thus we see 
that W-groups have the same formal properties as Galois groups. 

In particular, a cyclic extension L of K of degree n corresponds to 
an open subgroup ‘1u’ of ‘a3 of index n whose factor-group is cyclic and 
may be identified with the Galois group of Lover K, and conversely. If 
x is a character of Q attached to L, it determines a character x o 6 of 93, 
also of order n; conversely, a character of YB is of the form x 0 6 if and 
only if it is of finite order. We will frequently (by abuse of notation) make 
no distinction between a character x of 8 and the corresponding 
character of 93. 

3. In applying the above concepts, the field R will mostly be taken 
of the form Lab, where L is a finite Galois extension of K. In particular, 
we will always denote by W, the W-group of K,, over K. It follows at 
once from prop. 7 and corollary 2 of th. 3, Chap. X11-3, that the image 
6(W,) of W, in the Galois group 2I of K,, over K is the same as the 
image a (K x ) of K x in $3 under the canonical morphism a. Consequently, 
there is a canonical isomorphism mK of K ’ onto W, such that a = 6 0 mK. 
Moreover, it follows from the same results that Itu,(O)l,,= 101, for all 
flEK”. 

Let for instance L be cyclic of degree n over K; as L is contained 
in K,,, it corresponds to an open subgroup r of W,, of index n, and WC 
may identify W,/T with the Galois group g of Lover K; every character 
of g may be regarded as a character of W,, trivial on lY If x is such a 
character of order n, i.e. if it is attached to L(in the sense of Chap. 1X-4) 
then, by the definition of the canonical morphisms a and tnK, x [tnK(0)], 
for any OEK”, is the Hasse invariant h(A)= (x, O), of the cyclic algebra 
A= [L/K; x, fl] over K. 

4. Let K’ be any extension of K of finite degree; we assume that 
Ksep is contained in K;,,. Let W, 53’ be Galois extensions of K and of K’, 
respectively, such that K, c WcH’ cKJ,,. Let $93, ‘93’ be the W-groups 
of R over K and of $3’ over K’, respectively. Then, just as for ordinary 
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Galois groups, there is a restriction morphism of 93’ into ‘Q which we 
again denote by p; obviously Ip(w’)l,=Iw’l,, for all w’E!B’. Such is the 
case, for instance, if R= Kab, si’ = K&,; it is then an immediate conse- 
quence of th. 2, Chap. XII-2 (just as in corollary 1 of that theorem) that 
pOIDK,=tlJ)KONK’,K. 

5. On the other hand, let R, W’ be two Galois extensions of K such 
that K, c $3 c 53’ c K,,,; let BJ), 2B’ be their W-groups over K, and let r 
be the Galois group of R’ over R. Then we can identify YB with $%B’/r, 
and the canonical morphism of YE onto ‘B3 preserves the module. Thus 
H is abelian over K if and only if r contains the closure of the commutator- 
group of YE. 

Now take any finite extension K’ of K, contained in K,,,; let R’ be 
any Galois extension of K between Kg, and Ksep, e.g. Ksep itself. Call Q, 
Q’ the W-groups of R’ over K and over K’, respectively; write Qc, Q” for 
the closures of their commutator-groups; as Q’ is an open subgroup of 
finite index of 52, we may introduce, just as in Chap. X11-5, the transfer 
homomorphism t of Q/L?‘ into S21/QC. As Kab, K& are respectively the 
maximal abelian extensions of K and of K’, contained in R’, the Galois 
groups of A’ over K,, and over Kg, are Qc and 52”, respectively, and we 
may identify W, with Q/!Z and W,. with U/Q”, so that t maps W, into 
W,.. Combining now the transfer theorem (cf. Chap. XII-5 and Appen- 
dix I) with our definitions for the W-groups, one sees at once that the 
theorem in question may be expressed by the formula 

where ,j is the natural injection of K” into K’“. Clearly this implies 
that t is injective and maps W, onto mDR, (K “). 
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Shafarevitch’s theorem 

This theorem gives the structure of the W-group of L,, over K when- 
ever K is a commutative p-field and L a finite Galois extension of K. 
We begin by supplementing the results of Chapter IX with some addi- 
tional observations. 

1. Let assumptions and notations be as in Chap. IX, so that K is an 
arbitrary field, 8 the Galois group of Ksep over K, and all algebras 
over K are understood to be as stated in Chap. IX-I. Let A be a central 
simple algebra of dimension n2 over K. Let L be an extension of K of 
degree n, and f a K-linear isomorphism of L into A. Call I/ the vector- 
space of dimension n over L, with the same underlying space as A, 
defined by (t,x)-+xf’(t) for (EL, XEA. For every UEA, the mapping 
x-ax is an endomorphism F(a) of V, F is then a representation of A 
into End,(V), and, by corollary 5 of prop. 3, Chap. IX-l, its L-linear 
extension F’ to A, is an isomorphism of A, onto End,(V). Let ZEA be 
such that zf(l)=f’(t)z for all MEL; then x+xz is in End,(V) and com- 
mutes with F(a) for all UEA; therefore it is in the center of End,(l’), i.e. 
of the form x+xf’([) with some [EL, so that z=J’(c). In other words, 
f’(L) is its own “commutant” in A, and J’(L”) its own centralizer in A”. 
Let now .f” be another embedding of L into A; let V’, F’ be to f” what v 
F are to f1 As noted in Chap. 1X-2, it follows from prop. 4, Chap. IX-1 
that there is an isomorphism Y of I/ onto I” such that F’= Yp’FY. 
This means that Y is a bijection of A onto A such that Y(xf’(t))= 
Y(x)f”(<) and Y(ux)=a Y(x) for all [gland all x, a in A. Take x= 1, and 
put b=Y(l,); then we see that bEA” and that f”=b-‘fb. In other 
words, two embeddings j; f” can differ only by an inner automorphism 
of A. In particular, let g be the group of all automorphisms of Lover K; 
then, for every a~g, there is b,EA” such that f’(<“)=b;‘f’(13b, for all 
<EL; consequently, the normalizer N of f(L”) in A” is given by N = 
u b,f’(L”), and Niif’(L”) can be identified with g. For any c(, /3 in g, 

;ifil b, b, commutes with L”, so that we can write b, b, = b,, A(cI, /J) with 
1(a, P)E L”. Moreover, the b, are linearly independent over L in V; for 
otherwise, taking a maximal subset {b,} of linearly independent ones 
among them, we could write, for any b, not in that set, ba=x b,f’(tn); 
then, writing that ,f’(q) b,= b,f’(q”) for all MEL, we get a contradiction. 
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2. In particular, assume that L is a Galois extension of K, so that g 
is its Galois group; at the same time, simplify notations by identifying L 
with j’(L) by means of ,J Then the h, make up a basis of I/ over L, so that 
A consists of the elements c h, 5, with &EL for all CI. Clearly A is com- 
pletely defined as an algebra by the multiplication laws: 

(1) b, b, = b,, A (4 B), 5b,=b,5” 

for all a, /3 in g and all TV L. Moreover, writing that (b, h,) b, is the same 
as b,(b, b,), one gets 

(2) A(% p, y) A(% w=w, /3 Y) 4P, Y)’ 

Conversely, let L be a Galois extension of K of degree ~1, contained in 
K,,,; 6 being as before, call !?J the Galois group of Ksep over L, so that 
the Galois group of L over K is 9 = S/$j. For any p E 6, write p* for the 
image of p in 9 = S/sj. For any mapping 2 of g x g into Lx, we define an 
$-regular covariant mapping ,/’ of 6 x 6 x Q into Ksep by 

(3) (p,a +f(p 0, z)=A(T*o*-l, 1 9, o*p*-‘)P*; 

this is a factor-set if (and only if) i satisfies (2). It is now easily verified 
that the algebra A defined by means of 1’ by Brauer’s construction 
(as described in the proof of lemma 4, Chap. 1X-3) is precisely as above 
if we call b, the element of A given (in terms of that construction) by the 
covariant mapping (p, a) + a,,, arr*. 

As in S, 1, consider the normalizer N = u 6, L” of Lx in A ’ ; write NC 
for its commutator-group, and r for the transfer homomorphism of 
N/N’ into L”. As the definition of z is invariant with respect to all inner 
automorphisms of N, and as such automorphisms determine the identity 
on N/N’, r must map N/N’ into the subgroup of the elements of Lx which 
are invariant under such automorphisms, i.e. into K ‘. On the other hand, 
regarding r as a morphism of N into L”, and calculating it (according to 
definition) by means of the representatives b, of the cosets of Lx in N, 
one sees at once that, on Lx, z coincides with NLia. 

3. Assumptions being as in 8 2, let K’ be a field between K and L, 
corresponding to a subgroup g’ of g. One verifies at once that an element 
of A commutes with all elements of 1 A. K’ if and only if it is of the form 
2 b, <,, with t, E L and <, = 0 unless rxE g’. Clearly these elements make 
up a subring A’ of A (the “commutant” of K’ in A) which is the algebra 
over K’ defined by means of K’, L and the restriction of 2 to g’x g’ just 
as A was defined above by means of K, L, 1; in particular, it is a central 
simple algebra over K’. 

4. Let K, L, A be again as in 5 2; consider the case where 9 is cyclic; 
if c( is a generator of g, we have g = { 1, GI, . , an- ‘}. For p = a’, we have 
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b,‘<b;=<“, so th a we may take b,=bk for O<i<n- 1. If N and r are t 
as in 9 2, we also see at once that z (b,) = b,“; similarly, for any UE b, Lx, 
we may take 1, a, . , a”-’ as the representatives of the cosets of L” in N, 
and see thus that r(a) = un, hence un~ Kx. In particular, if we put 8= hi, d is 
inK”; it is clear that A is then no other than the cyclic algebra defined in 
prop. 1 I of Chap. 1X-4, i.e. the algebra [L/K; x, O] if x is the character of 
g given by X(cc)=e(l/n). 

Under those same assumptions, we have, for every (EL”, 
t-’ b;’ 5 b,= tam1 ; therefore the image U of Lx under t + ye1 is con- 
tained in NC. Conversely, the image of b, in N/U commutes with the 
image of L” in N/U; as these images generate N/U, N/U is commutative, 
so that U 3 N’. Therefore, in this case, NC is the same as U, i.e. (by 
Hilbert’s theorem) the same as the kernel of the morphism NLie of Lx 
into K”. 

5. As in 4 2, let K be any field, and L a Galois extension of K of 
degree n, with the Galois group g. 

LEMMA A. Let cp he a morphism of’ a group G onto g; let H be its kernel. 
Let o be a morphism qf’ H into Lx ; ussume that we have, ,fbr all LEG and 
all hEH: 

(4) w(g-‘12g)=w(h)‘P’“‘. 

Then there is a central simple algebra A qf’dimension n2 over K, containing 
L, such that (1) cun be extended to u morphism o* qf G into A” satisfjing 

to* (go-‘) c” w*(g)= <‘p(“) 

jbr all gE G and ull <EL. Moreover, these conditions determine A und o* 
uniquely, up to isomorphism; and w*(G) L” is then the normulizer of’ Lx 
in A”. 

For each CIE~, choose g,~ G such that cp(g,) = CI. For any cx, /j in g, 
we can write g, glr=g,, h(cn, p) with h(a, P)E H. Writing that (g, ga) gy is 
the same as g, (gp g,), we get 

Putting A(%, fl)=u [h(cc, p)], we see now, in view of (4). that i. satisfies 
(2) so that we can construct an algebra A = 1 b, L with the multiplication 
laws (1). It is then obvious that the formulas o* (g, h) = h, o(h), for all 
&Eg, hcH, define a morphism o* with the required properties. If A’, LC)‘* 
have the same properties, then, putting /&=cc,‘*(g,), we see that the hi 
satisfy relations similar to (1); from the results of $2, it follows then 
that they are a basis for A’ over L and that A’, w’* differ from A, w* 
only by an isomorphism of A onto A’. 
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6. Now consider the following situation. Let K, L, g be as before; 
let L’ be a Galois extension of K, containing L and contained in Ksep, 
of finite degree d over L. Call I; A the Galois groups of L’ over K and 
over L, respectively, so that g=r/A. Let G be a group, 40’ a morphism of 
G onto c H’ the kernel of cp’, and o’ a morphism of H’ into L’ ’ ; we assume 
that these data satisfy (4) when they are substituted there for G, cp, H, m 
respectively, so that we can apply lemma A to them. This determines an 
algebra A’ of dimension n2 d2 over K. Call $ the canonical morphism of 
r onto g=r/A; put q=$ocp’ and H=cp’-‘(A); cp is a morphism of G 
onto g with the kernel H. To simplify notations, assume that H’ is com- 
mutative, and let H’ be the commutator-group of H; then we can define 
(as in Chap. X11-5) the transfer homomorphism t of H/H’ into H’, and 
regard it as a morphism of H into H’; we have t (g-l kg) = g-’ t(k) g for 
all geG and keH. Now put w=a’o t. We have, for all kE H, keG: 

co(g-’ kg)=o(k)‘P”$ 

for ge H, this implies that o(k) is invariant under q’(H)= d, so that it is 
in L” and that we may replace cp’ by q in the above formula. Therefore 
we can apply lemma A to G, H, q, o; this defines an algebra A of dimen- 
sion n2 over K. The following lemma and its proof are due to Artin 
and Tate (E. Artin and J. Tate, Classfield theory, Harvard 1961, Chap. 
X111-3, th. 6, p. 188): 

LEMMA B. Let A, A’ be as above; then, in the Brauer group B(K), we 
kaue Cl(A)=Cl(A’)d with d=[L’:L]. 

For each <or, choose grEG such that q’(g<)= t; for all 5, y1 in r, put 

k’(5, vl)=g$gsgq; A’(52 ~1) = 0’ Ck’ (t, rl)l . 

As in the proof of lemma A, Cl(A’) is determined by A’, or, in the language 
of Chap. 1X-3, by the factor-set J” of K determined in terms of Z by the 
formula similar to (3). On the other hand, the definition of the transfer 
gives, for any k E H: 

Choose a full set A4 of representatives of the cosets (A of A inr; for any 
[Er, call ~(0 the representative in M of the coset (A. The elements g,, 
for ,uEM, make up a full set of representatives of the cosets of H in G, 
so that we may use them, as in the proof of lemma A, to construct a 
factor-set defining Cl(A); this is done as follows. Take any two elements 
54 m put c(=P(~), p=~h), Y=,~(~YI)~ S=~-ldk put 



Appendix III: Shafarevitch’s theorem 305 

as these are constant on cosets of A in r, 2 may be regarded as a mapping 
of g x g into L”, and a factor-set f defining Cl(A) is given in terms of 2 
by (3). By the definition of o, we have 

A(55 ?)=w’[e~g,-,‘R,lg,gpgel. 

For any 0~ A, put 

t3’=p8yl-t, 8”=cr8’~-‘=crptq~Y$? 

When 0 runs through A, so do 0’, 0” and 60. In G, we have the following 
(easily verified) group-theoretical identity: 

g,‘g,‘g,g~ge=h’(y,6e)-‘h’(e”, 5rl)h’(Ld 
.g,‘[h’(@‘, t)-‘h’(a,W)]g,,~h’(B’,tj-‘h’@,@. 

For every 5 E r, put 

c(t)=~‘[e~h’(/43, 0) h’V4 U’]. 

Then, taking into account the fact that o’ satisfies (4) we get 

n(t, rl)=c(U c(r) 43K’ A’(53 II)“. 

This proves the lemma; in fact, iff; f’ are as above,ff’-d is the coboundary 
of (p, o)+c(ap-1)“. 

7. From now on, we will take for K a commutative p-field. Also, if G 
is any topological group (e.g. a W-group), we will denote by G’ its topo- 
logical commutator-group, i.e. the closure of its commutator-group in 
the algebraic sense. 

Let A be any central simple algebra over K; if its dimension over K 
is n2, we can write it as Md(D), where D is a division algebra of dimension 
(n/d)2 over K; then Cl(A) is the same as Cl(D), and this, as shown in 
th. 1 of Chap. XII-2 and its corollaries, is of order n/d in the Brauer 
group B(K); in other words, the Hasse invariant h(A) is a root of 1 of 
order n/d, and it is of order n if and only if A is a division algebra. By 
corollary 2 of th. 2, Chap. X11-2, combined with corollary 3 of th. 3, 
Chap. 1X-3, this implies that every separable extension L of K of degree n 
can be embedded in A; in view of 0 1 above, this embedding is unique, 
up to an inner automorphism of A, so that we can apply to K, L and A 
all the results of that 0. In particular, if L is a Galois extension of K with 
the Galois group g, and if N is the normalizer of Lx in A”, the inner 
automorphisms x-a -‘~a, for aE N, induce g on L, and we can thus 
identify N/L” with g. 
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8. A straightforward application of lemma A gives now: 

THEOREM I. Let K he a commutative p:field, La Galois extension of’ K 
of degree n; let W W, be the W-groups of’ L,, over K and over L, respectively. 
Then there is a central simple algebra A of dimension n2 over K, an em- 
bedding of L into A, and an isomorphism w oj the normalizer N of LX in 
A” onto W such that the restriction of w to Lx is the canonical isomorphism 
wL of Lx onto W,, and that, ,fbr every a6 N, the automorphism induced on L 
by x-+a-lxa is the restriction of w(a) to L. 

In fact, in lemma A, substitute W, W, for G, H; for cp, substitute the 
canonical morphism of W onto W/W, when W/WI2 is identified with the 
Galois group of L over K (cf. Appendix II, 9 2); for o, substitute WL’. 
Then (4) follows at once (by “transport of structure”) from the fact that 
wL is “canonically” attached to the pair (L, Lab). Under these circum- 
stances, it is obvious that the morphism co* of lemma A is an isomorphism 
of W onto N; its inverse tu has then the required properties. 

COROLLARY 1. In theorem I, A, L and w are uniquely characterized 
(up to an isomorphism) by the properties stated there. 

Also this is part of lemma A. The algebra A, with a given embedding 
of L into A, will be called the canonical algebra for the pair (K, L); w will 
be called the canonical isomorphism of N onto W 

COROLLARY 2. With A and w as above, write vAjlc for the reduced norm 
in A over K. Then, jor all aE N: 

IvAIK(ah=lw(41~. 
In fact, both sides define morphisms of N into R:; as such, they 

must be equal if they coincide on a subgroup of N of finite index, e.g. 
on Lx. On Lx, v,,, coincides with NLiR (cf. the proof of lemma 4, Chap. 
1X-3) and w with w,; therefore, for a = 5 E Lx, the left-hand side is 1 (IL, 
and the right-hand side is 1w,,(l)1,; in view of Appendix II, 5 3, this 
proves our assertion. 

COROLLARY 3. With A, L, N as above, the transjer homomorphism T of 
N/N’ into Lx is injective and maps N/N’ onto K x ; if it is regarded as a 
morphism of N onto Kx, then, for every aeN, wK[5(a)] is the restriction 
to K,, of the automorphism w(a) of L,, over K. 

This follows at once from the transfer theorem, as reformulated for 
W-groups at the end of Appendix II, $5, when this is combined with the 
above results. 

9. With the same notations as in 5 8, the structure of W will now be 
completely determined by Shafarevitch’s theorem (I. R. Shafarevitch, 
C. R. AC. SC. URSS 53 (1946), 15-16): 
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THEOREM II. Let K, L, n be as in theorem I. Then the canonical algebra 
,for (K, L) is the division algebra with the Hasse invariant e(l/n) over K. 

We will write (K; L) for the Hasse invariant h(A) of A; we have to 
prove (K; L)= e( l/n), and this will imply that A is a division algebra. 
The proof will consist of three steps: 

(a) Let K be as above; let L, L’ be as in $6; call W’, W”, W,, the 
W-groups of L’,, over K, L, L’, respectively; take for w’ the inverse of the 
canonical isomorphism tnDL of L’” onto WI,,; let t be the transfer homo- 
morphism of W”/W”’ into W,,. As in Appendix II, 3 5, we can identify 
W”/W”’ with W,. If then we call w the inverse of the canonical iso- 
morphism wL of LX onto W,= W”/W”‘, the transfer theorem, as restated 
in Appendix II, 5 5, gives cc)=o’o t. We are therefore exactly in the situ- 
ation described in 9 6, and lemma B gives (K; L)=(K; J!J)~ with d= [L’: L]. 

(b) Let K, L, n be as in theorem I; let K’ be any cyclic extension of K 
of degree n, e.g. the unramified one. Call L’ the compositum of L and K’ 
in K sep; put K, = K’n L and d= [L: K,]. Then L’ is of degree d both 
over L and over K’; consequently, by (a), (K; L) and (K; K’) are both 
equal to (K; L’)d. In particular, we see that (K; L) depends only upon ~1, 
and that it is enough to prove our theorem in the cyclic case. 

(c) Take L cyclic over K; take notations as in $4 above; with those 
notations, A is the cyclic algebra [L/K; x, e] with d=z(b,). In view of 
Appendix II, 4 3, we have h(A)=1 [w,(O)]. By corollary 3 of theorem I, 
5 8, w,(B) is the restriction to K,, of the automorphism w(b,) of L,, 
over K; by theorem I, the restriction to L of the latter automorphism, 
and therefore also of the former one, is the one induced on L by the 
automorphism x+b;‘xb, of A, which is tl. This gives h(A)=X(a)= 
e( 1 /n), which completes the proof of Shafarevitch’s theorem. 



Appendix IV 

The Herbrand distribution 

1. We begin by stating some general facts about the Herbrand 
distributions, as defined in Chap. VIII-3 Let again K be a commutative 
p-field. 

LEMMA A. Let R, 52’ be two Galois extensions of K, finite or not, such 
that K ~53~ 53’. Let 6, 67, !?J be the Galois groups of 53 over K, of 53’ 
over K and of 53’ over 53, respectively; let Qi be the canonical morphism of 6’ 
onto 8 = o)‘/$. Let H, H’ be the Herbrand distributions on 8 and on 67, 
respectively. Then, for every locally constant function f on 6, we have 
H(f)=H’(fo@). 

This is obvious. We may express the conclusion by saying that H is 
the image (more precisely, the “direct image”) of H’ under @. 

LEMMA B. Let 52 be a Galois extension of K, finite or not. Let K’ be 
an extension of K of finite degree, contained in 52, with the order of rami- 
fication e and the difjerental exponent d over K. Let 8, 6’ be the Galois 
groups of 53 over K and over K’, respectively; let H, H’ be the Herbrand 
distributions on Q and on 6’. Then, for every locally constant function j 
on 8, equal to 0 outside (si’, we have H’(f) = eH( f) - df (.s), where E is the 
identity in 6. 

This is also obvious. It may be expressed by saying that H’ coincides 
with eH on open and compact subsets of 07, disjoint from E, or more 
briefly that it coincides with eH on 6’ outside E; this fact, together with 
the trivial condition H’( 1) = 0, determines H’ completely in terms of H. 

2. Now let assumptions and notations be as in 4 1 of Appendix II. 
Let H be the Herbrand distribution on 8; as has been shown in the 
proof of lemma 3, Chap. X11-4, it is 0 outside 6,. More precisely: 

LEMMA C. Let K, K,, R, 6, 6, be as in 4 1 of Appendix II. Then the 
support of the Herbrand distribution H on 6 is 6,. 

Take any AE~&, other than the identity; take any open subgroup 6’ 
of 6, not containing ;i; then, by Chap. VIII-3, we have H(B”A)<O for 
all open subgroups 8” of 6’. Now take ;~EB - 6,; then there is a root p 
of 1 of order prime to p such that $#p; call 6’ the open subgroup of 6 
corresponding to K(p). Then ii is not in 8’, and, by Chap. VIII-.?. we 
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have H(B”1’)=0 whenever 1’~B’1 and 6” is an open subgroup of 8’, 
so that H is 0 on @‘A. 

As noted above, it also follows from the definition of H that H(Q) = 0, 
so that, in view of lemma C, H(Q,)= 0. 

Let now ‘B be the W-group of R over K. Clearly there is a unique 
distribution H on ‘22) which coincides with H on 8, and is 0 outside @&. 
This will be called the Herbrand distribution on ‘!IB. As explained in 
Chap. VIII-3, we extend it to a linear form, also denoted by H, on the 
space of locally constant functions on ‘113. 

3. Now we will apply theorems I and II of Appendix III, $4 8-9. As 
in those theorems, we take a Galois extension L of K, of finite degree n; 
we call r/t: W, the W-groups of L,, over K and over L, respectively. We 
call A the canonical algebra for (K, L), N the normalizer of Lx in Ax, 
and ID the canonical isomorphism of N onto 1/1/: We use the isomorphism 
w PI of W onto N to transport to N the Herbrand distribution on w and 
denote again by H this distribution on N. Our purpose is to give an 
explicit formula for H on N. 

As before, we write v~,~ for the reduced norm in A over K; moreover, 
we put II4 =Iv,,, (x)JK for every XCA. In view of corollary 2 of theorem I, 
Appendix III, 9 8, and of lemma C above, the support of H on N is the 
compact subgroup N, of N determined by Ilall= 1, i.e. the kernel of the 
morphism a-+llall of N into Rt. As noted above, we have H(l)=O. 

Let da be the Haar measure on N, normalized so that the measure of 
No is I. The following theorem, in substance, is due to J. Tate and Shankar 
Sen (J. Ind. Math. Sot. 27 (1964) 1972202): 

THEOREM. For any locally constant function f on N, we have: 

(1) 

As both sides of (1) are 0 for .f’= 1, it is enough to prove it for the case 
f’(lA)=O; this will be assumed from now on. The proof will consist of 
several steps : 

(a) Take the “abelian case” where L = K, n = 1, A= K, N= Kx, 
N,= Rx ; as usual, we write R for the maximal compact subring of K, 
and P for its maximal ideal. Clearly it is enough to verify (I) when f is 
the characteristic function of any set X of the form X =( 1-t P”)t with 
Oi ord(1 - 5) <v; then H(X) is given by theorem 5 of Chap. X11-4. At 
the same time, the integrand in (1) is 0 outside X and has on X the 
constant value @ with p = ord (1 - 5). As 1 + P” has the index q”-l(q - 1) 
in R”, this proves (I) in this case. 

(b) Take now the general case, and take a field K’ between K and L, 
corresponding to a subgroup g’ of the Galois group g of L over K; put 
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n’= [L: K’]. Then, so far as A, L, N, K and K’ are concerned, we are in 

the situation considered in 9 3 of Appendix III; if we write N = u h, L” 
and A=x b,L as there, we have seen in that 3 that the “commutant” 
algebra of K’ in A is A’ =c b, L, where the sum is taken over all AE~‘; 
this is a central simple algebra of dimension n” over K’, and the nor- 
malizer of L” in A’ ’ is the subgroup N’= u b, Lx of N, the union being 
taken again over all /ZEg’. In view of our observations in 5 2 of Appen- 
dix II, it is clear that the canonical isomorphism ru of N onto W maps N’ 
onto the W-group W’ of L,, over K’; corollary 1 of theorem I, Appen- 
dix III, 0 8, shows now that A’ is the canonical algebra for (K’, L), and 
that the canonical isomorphism of N’ onto W’ is the restriction m’ of 1~ 
to N’. Consequently, if H’ is the Herbrand distribution on N’, lemma B 
shows that, on N’ and outside l,, H’ coincides with eH, where e is the 
order of ramification of K’ over K. Now call (1’) the formula, similar 
to (l), with H’, A’, N’ substituted for H, A, N. For any f; equal to 0 out- 
side N’ (and at l,, as assumed above), call H,(j), H;(f) the right-hand 
sides of (1) and of (1’) respectively; it will be shown now that H;(j)= 
eHl (f). 

Take any s’EA’ x ; by corollary 1 of prop. 6, Chap. 1X-2, and corol- 
lary 3 of th. 3, Chap. I-2, the automorphism y’-+x’y’ of the additive 
group of A’ has the module 

mod,,(Y)= lv,,,,,(x’)I$, 

Similarly, the module of y+x’y in A is 

mod, (x’) = 1 L!~,~()c’)[;. 

But we may also regard A as a left vector-space over the division alge- 
bra A’; as the dimensions of A and A’ over K are 1z2 and n12d with 
d= [K’: K] =n/n’, A has the dimension d over A’. By corollary 2 of 
th. 3, Chap. I-2, we have then mod,(x’)= mod,,(x’)“. This gives 

Iv,4,&‘)l, = I “A’,K’(X’)IK’. 
Therefore the integrands in H,(f’) and H; (,f’) are the same. Put now 
N; = N’n N,. If K, is as before (cf. 5 2) m maps N, onto the Galois 
group 8, of L,, over K,, and similarly it maps N;1 onto the Galois 
group of L,, over the compositum Kb= K’K,; therefore the index of 
N; in N, is equal to the degree of Kb over K,, which is the same as that 
of K’ over K’n K,; this is e, by corollary 4 of th. 7, Chap. I-4. Conse- 
quently, if d’a is the Haar measure on N’, normalized so that the measure 
of NA is 1, we have d’a = e. da on N’. This gives H;(f)= eH, (f), as we 
had asserted. 

(c) In particular, apply (b) to the case K’= L. In view of (a), it shows 
that (1) holds whenever .f’ is 0 outside Lx (and at lA). 
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(d) To prove (1) it is enough to show that both sides coincide on 
each coset of L” in N; we have found in (c) that they do so on Lx itself; 
we still have to verify that they coincide on all other cosets. In other 
words, let h, Lx be any coset of Lx in N, other than Lx ; we have to show 
that (1) holds whenever .f’ is 0 outside h, Lx. Let g’ be the cyclic subgroup 
of g generated by SC; let K’ be the field between K and L, corresponding 
to g’; apply to K’ what has been proved above in (b). We see thus that it 
is enough to verify (1’) for ,f’ equal to 0 outside b, L”. Writing now K, N, 
g instcad of K', N’. g’, WC see that our theorem will be proved if wc 
verify (1) under the additional assumptions that g is cyclic of order 
y1> 1, generated by 2. and that ,f’ is 0 outside the coset h, L”. 

(e) That being now assumed, we are once more in the situation 
described in $4 of Appendix III. Let notations be the same as there; 
NC is then the same as the kernel U of the morphism NLiK of Lx into K” ; 
as we have 1 [IL= JNLIK(& for all <EL”. U is compact. By corollary 3 
of theorem I, Appendix III, 4 8, the transfer T of N into Lx has the kernel 
NC= U and maps N onto K”; the same corollary shows also that, if we 
identify N with W by means of w, and Kx with W, = WIW’ by means of 
wK, T becomes the canonical morphism of W onto W/W’. therefore we 
can apply lemma A of $ I above, and conclude that the direct image 
under z of the Herbrand measure H on W is the Herbrand measure H, 
on K”, as given by (a) above. In other words, for any locally constant 
function F on K ‘, equal to 0 at 1, we have 

(2) H(Fod=H,(F)= - { F(x)./1 -x~,‘d”x. 
R” 

with the Haar measure d”x on K normalized so that the measure of 
Rx is 1. Clearly a locally constant function on N can be written as 
F 0 z if and only if it is constant on the cosets of U. 

We have to prove (1) for those functions .f’ on N which arc 0 out- 
side h, L”. Observe now that both sides of (1) are clearly invariant under 
all inner automorphisms of N, and in particular under any automorphism 
a-t~a~~‘with~~LX.Fora~b,LX,wehavea~’~a=~”,hence~a~~‘=au 
with u= tap’. By Hilbert’s theorem, the kernel U of NLig is the group 
consisting of the elements u = 4”-’ for (E Lx; consequently, on the coset 
b, Lx, the inner automorphisms a+ta t-i, for TV Lx, induce the same 
mappings as the translations a+a u for UE U. Therefore, if ,f’ is 0 outside 
b,L”, both sides of (1) remain unchanged, for any ME U, when one 
replaces f’ by the function a+,f(u u); hence they are still unchanged if 
we replace f’ by a-f(a), where f(a) is the mean value of u+f’(a u) on U 
for the Haar measure on U. Thus our theorem will be proved if we 
verify (1) for such a function ,f i.e. for one which is 0 outside b, Lx and 
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constant under the translations a+au. From now on, let 1’ be such a 
function; as we have seen, it can be written as f’= F 0 z. 

As before, put o=r(b,). As r coincides with NLIK on Lx, it maps the 
cosets b: L” of L” in N, for 0 I i < n, onto the cosets 0’ NLiK ( Lx ) of NLIK (L” ) 
in K”, respectively; as it maps N onto K”, and as its kernel U is con- 
tained in L”, Kx is the disjoint union of these n cosets (a result which is 
substantially contained in corollary 2 of th. 3, Chap. X11-3). In particular, 
a function f’ = F 0 r is 0 outside b, Lx if and only if F is 0 outside 6, NLIK( Lx ). 
To complete our proof, we have to compare the right-hand sides of (1) 
and of (2) for such a pair of functions ,f; F. By corollaries 2 and 3 of 
theorem I, Appendix III, 5 8, we have lr(a)JK=JIu~J for all HEN; therefore 
5-l (R ’ ) = N,, and the direct image of the measure da in (I ) is the measure 
d”x in (2). Now take any aEb,L”; in $4 of Appendix III, we have seen 
that r(a)=u”~K~, and that the ui, for 0~ i< n, may be taken as re- 
presentatives of the cosets of Lx in N and therefore also as a basis of A 
over L; consequently, if {qO, . . , q,- i } is a basis of L over K, the elements 
uiqj, for 01 i,j < n, make up a basis of A over K. In order to evaluate 
the integrand of (1) for ucb,L”, put ~=1/ I,--alI. Then the automorphism 
z+(J,-u)z of the additive group of A has the module ,u”. On the other 
hand, this module may also be expressed by means of corollary ?J of 
th. 3, Chap. I-2, in terms of the determinant of the linear substitution 
determined by that automorphism on the basis {uiqj} ; this determinant 
is easily seen to have the value (I -x)“, with x=a”=z(u). This gives 
p =( 1 - xlK. Therefore, for x = r (a), the integrands in the right-hand sides 
of (1) and of (2) are the same. This concludes the proof. 
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Examples of L-functions 

In this Appendix, we will discuss L-functions when the groundfield 
is either Q or of the form F,(T). 

1. Take k=Q; then, in substance, the determination of the quasi- 
characters of ki/k’ is given by the remarks following lemma 6 of 
Chap. XIII-4 and does not depend upon classfield theory. As shown 
there, every such quasicharacter w  can be uniquely written as w,$, where 
o, is the principal quasicharacter z + Izlt, trivial on Qx x nZ;, and 
where $ is a character of finite order, trivial on Q ’ x R: ; $ is well 
determined by its values on nZp” and has the same conductor as o; 
this conductor is $1 if $ =I= 1. As observed in Chap. VII-7 (see the remarks 
following th. 5), L(s, W) is then the same as L(s + t, $). Consequently it 
will be enough to consider the L-functions attached to characters of 
finite order. 

Let m be an integer 2 1. For each rational integer ~20, prime to m, 
define an idele z, by putting (z,), = 1 for every rational prime p dividing m, 
and (z,), = a at all other places o of Q; for two such integers a, b, we have 
Z = z,zb. Let o be a character of finite order of Q; , trivial on Q ‘, 
$th a conductor dividing m; it is also trivial on RT. For every rational 
integer a>O, put /2(a)=o(z,) if a is prime to m, and n(u)=0 otherwise; 
for all a and b, we have 2 (a b) = 2 (a) A(b). For a prime to m, we can also 
write ,?(u)=cc,(n,), where u,=u-r z, is the idele given by (u,), = u-r when p 
divides m, and (u,),= 1 at all other places. In view of the definition of the 
conductor of o, this shows that n(u) = 1 whenever a = 1 modm, which 
implies that J(u)= A(b) when a and b are prime to m and a = b modm. 
Consequently, 2 defines in an obvious manner a character x of (Z/mZ) ‘. 
We will say that 2 and x are associated with CO. 

Conversely, let x be a character of (Z/mZ) x ; for every integer a > 0, 
put /z(u) =x(E), where si is the image of a in (Z/mZ) ‘, if a is prime to m, 
and ,J (a) =0 otherwise; such a function J. is known as a Dirichlet character 
modulo m. Let u = (u,) be any element of nZ; ; as in the proof of corol- 
lary 1 of th. 3, Chap. X111-4, there is an integer a > 0 such that UEU; i + mZ, 
for every prime p; then a is prime to m and uniquely determined modulo m: 
call Z, the image of a in (Z/mZ)‘. Then u -+ 5, is a morphism of nZ; 
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into (Z/mZ) ‘, and we define a character w  of nZ; (or, what amounts 
to the same, a character w  of Q; , trivial on Q ’ x R;) by putting O(U) = 
x (a,) = 1 (a). Clearly the conductor of o divides m, and /z and x are asso- 
ciated with w  in the sense defined above. With the notations of th. 3, 
Chap. X111-4, we have o = ~0 a, this being in substance nothing else than 
corollary 1 of that theorem. 

With those same notations, the Dirichlet character 1 is called primitive 
if m is the conductor of o; this is so if and only if there is no divisor m’ 
of m, other than m, such that n(a)= 1 whenever a is prime to m and 
a = 1 mod m’. If 2 is not primitive, i.e. if there is such a divisor m’, we can 
define a primitive Dirichlet character modulo m’ by putting ,?‘(a)=0 
when a is not prime to m’ and ;l’(u)=A(b) whenever a is prime to m’, b is 
prime to m, and a E b mod m’. One sees at once that A and ;1’ are associated 
to the same character o of nZ;. 

Now let o be as above; call m its conductor, and let J. be the primitive 
Dirichlet character modulo m associated with o. According to (11) of 
Chap. VII-7, the L-function belonging to cc) is given by 

where the product is taken over all rational primes p, and the sum over 
all integers u>O. In view of prop. 1 of Chap. VII-l and its corollary 1, 
both are absolutely convergent for Re(s)> 1. These are the original 
L-functions introduced by Dirichlet in 1837. 

2. From now on, we will consider fields of the form k =F,(T), with T 
transcendental over F,; we will write cc for the place of k for which 
ITI, > 1 (cf. th. 2 of Chap. III-l). We first give a characterization of such 
fields : 

LEMMA 1. An A-field k, with the field of constants F =F4, is of genus 0 
if and only if it is isomorphic to F(T). 

Take k = F(T): if II is an integer > 0, and if 5~ k ‘, th. 2 of Chap. III-1 
shows that div(t)> -n . co if and only if 4 is a polynomial of degree <n 
in F [T] ; then corollary 2 of th. 2, Chap. VI, applied to the divisor a = n . co 
for IZ large, gives g = 0. Conversely, let k be of genus 0. By corollary 5 of 
th. 2, Chap. VII-5, k has a divisor m of degree 1. By corollary 2 of th. 2, 
Chap. VI, there is tek” such that div(<)>-m; then div(c)+m is a 
positive divisor of degree 1 and therefore of the form u, where v is a place 
of degree 1, and, by the same corollary, there is TE kx , not in F, such 
that div(T)> -v. Then k is an algebraic extension of F(T); if cc is the 
place of F(T) for which (T(, > 1, u is the only place of k above co. In 
Chap. VIII-6, we have extended th. 4 of Chap. III-4 to arbitrary algebraic 
extensions of A-fields (separable or not); we can therefore apply that 
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theorem, or more precisely the part of it contained in its corollary 1, to 
the extension k of F(T). This shows that k-F(T). 

3. From now on, we take k=F,(T); with cc defined as above, k, has 
the prime element T-’ and is the field of formal power-series in T-’ 
with coefficients in F,; k; has the direct product decomposition 
r x Fl x (1 +p,), with r= {T”}nt.z. 

LEMMA 2. We have the direct product decomposition 

k;l =k” xPx(!+p,)xnrz, 

where the product is taken over all the places v + co of k, and P is the sub- 

group {T"l,,Z ofk2. 
The proof is similar to that of lemma 6, Chap. X111-4, and may be 

left to the reader. 

LEMMA 3. Let Q be a quasicharacter of k;, trivial on k x ; let f be its 
conductor, and n the coefficient of CC in f. Then a place v + CC occurs in 
f if and only if o induces on rVx a character co, + 1; we have n22 if and 
only if co induces a non-trivial character on 1 +p, ; we have n =0 if and 
only if w is 1 on 1 +p, and no,(c)= 1 for every CEF,", the product being 
taken over all the places v+ co qf k. 

The first two assertions are obvious. As Fi c kx, we have (D,(C)- r = 
flco,(c) for SF,” ; this gives the last assertion. 

4. As in Chap. X111-4, we conclude from lemma 2 that every quasi- 
character of k; , trivial on k ‘, can be (uniquely) written as O~O, where o, 
is the principal quasicharacter z + 1~1: and where c~ is a character of 
finite order, trivial on k” x r, well determined by its values on 
(l+p,)xnrz.A b s a ove in § 1, it will be enough to consider the L-func- 
tions attached to such characters U. We will write f for the conductor 
of o, n for the coefficient of cc in f, and we put f= n. cc + fo, so that f. 
contains only places US: cc. We call f; fO the degrees of f, f,,, so that 
f =n+ fO. In view of th. 2 of Chap. III-l, there is a manic polynomial di 
of degree f, in F, [T] such that div (@) = f. -f, . cc. 

5. By th. 6 of Chap. VII-7, the L-function L(s, w) attached to w is a 
polynomial P of degree f -2 in u=q-” if o+l, i.e. if f >O: this implies 
that f cannot have the value 1 (a fact easily verified also from lemma 3). 
We will write P as n(l -aiu); in other words, we call l/a,, . . . , l/u,-, 
the roots of P. As o is a character, we have 0-l =W; therefore the func- 
tional equation in th. 6 of Chap. VII-7 shows that the roots of P are also 
El/q, . . . , E,- Jq. In particular, if f = 3, we have a, a, = q; this is known 
as the “Riemann hypothesis” for this case. 

22 Wed, Basic Number Theory 
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Actually the ” Riemann hypothesis” is generally true. This means, 
in the first place, that, if k is any A-field of characteristic p > 1, with the 
field of constants F,, all the roots of the polynomial P in th. 4 of Chap. VII-6 
have the absolute value 4 -*; in view of th. 10 of Chap. X111-10, the same 
is true of all the roots of P for L(s, w)= P(q-“) whenever w  is a character 
of finite order of k: /k ’ ; for an elementary proof (depending only upon 
the theorem of Riemann-Roth as given in Chap. VI, but not upon any 
deeper results in algebraic geometry), the reader may be referred to 
E. Bombieri, Sc!minaire Bourbaki no 430 @tin 1973). 

6. We will write 6(F) for the degree of any polynomial F in F, [7’]. 
Notations being as in $4 3-4, let Y be a multiple of @ in F, [T], other 
than 0. If F is any manic polynomial, prime to Y in F,[T], we define 
an idele zF as follows: put (z,), = 1 for every place v + co occurring in 
div( Y), and also for u = 00 ; at all other places v of k, put (zF)” = F. For 
two such polynomials F, F’, we have zFF, =zFzF,. For every manic 
polynomial F, put I(F) = o (z,) if F is prime to Y, and 1 (F) = 0 otherwise. 
For F prime to Y, this can also be written as L (F) = o (u,), where uF = F- ’ zF 
is the idele given by (u,),= F-’ when u= GO or when v occurs in div(Y), 
and (u,), = 1 at all other places. This shows that 2 (F) = w, (F)- ’ whenever 
F-1 modY; for F=T’+c~T’-~+...+c~, with 8=6(F), this can also 
be written as , 

since o,(T) = 1. We will say that ;1 is defined modulo Y and that it is 
associated with co. 

Conversely, assume that Y is given in F,[T], that I is a C-valued 
function on the manic polynomials in F, [T], and that o, is a character 
of the group 1 +p,, with the following properties: (a) l(F)=0 if and only 
if F is not prime to Y; (b) A(FF’)=l(F)A(F’) for all F, F’; (c) A(F)= 
o (T-6’F’F)-1 whenever F E 1 mod Y. Take any idele u in (1 +p,) x nq: ; 
thzre is a manic polynomial F, uniquely determined modulo Y, such that 
FE~;l+Y~Uforallu=l=co.Putthen 

Then o is a character of (1 +p,) x nr:, inducing w, on 1 +p, ; if @ 
belongs as before (Q 4) to the conductor of co, it divides Y; moreover, II is 
the function, defined modulo Y, which is associated to w  in the sense 
explained above. We will call 2 primitive if @ = Y, i.e. if there is no divisor 
Y’ of Y, of degree < 6(Y), such that the condition (c) is satisfied when- 
ever F is prime to Y and = 1 mod Y’. 

7. Now, 8 being given, and notations being as before, let L be the 
primitive function, defined modulo @, which is associated with ~1. Then, 
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in formula (11) of Chap. VII-7, the factor corresponding to a place 
v*cc is 

(1-2(7r)q-“~‘“‘)-i 

if rt is the prime polynomial defining the place u. As to the factor cor- 
responding to the place co, it can be written as (1 -A, q-“)-I if we put 
A, =0 or 1 according as o is ramified or not at 00. Therefore the L-func- 
tion defined by o is given by 

L(s)=(l -&q-s)-’ n(l -/2(7c)q-“6(“))-1 

f-2 
=(1-2&s)-’ J$(F)q-“~‘F’= n (l-aiq-s) 

i=l 

where the product is taken over all the prime polynomials and the sum 
over all the manic polynomials in F, [T], and the cli are as defined in 0 5. 

If we take the coefficient of q-” (the “trace“) in both sides, we get the 
“trace formula” 

(1) - 1, -,; i(T+c)= 2 cl;. 
4 i=l 

The left-hand side of (1) will be denoted by S(1); for special choices of A, 
it is an important number-theoretical constant. As we shall see, this is 
already so for f= 3; in that case, as we have seen in 4 5, the functional 
equation implies CQ cl, =q and therefore lS(n)l’ = q. In the general case, 
one can apply the “Riemann hypothesis” (5 5), which gives: 

(2) 

8. Without restricting ourselves to the case k= F,(T), we will prove 
the following elementary lemma, which will give us another significant 
property of the sums S(L): 

LEMMA 4. Let k be any A-field of characteristic p> 1, with the field of 
constants F,. Let w be any quasicharacter of ki/k”, with the conductor f. 
Put q’=q”, k’=kF,., w’=ooN& Let L(s)= P(q-“) be the L-function 
L(s, o), and L’(s)= P’(q’-“) the L-function similarly attached to k’ and w’. 
Then: 

v-1 

(3) P’(u”)= n P(&“u), 
i=O 

where E is a primitive v-th root of 1 in C. Moreover, the conductor of CO’ 
is z(f), with z as in Chap. VIII-4. 

We will prove (3) by making use of (1 l), Chap. VII-7, and comparing 
the contributions of a place v of k to the right-hand side and of the places 
w of k’ above u to the left-hand side (as in the proof of the much deeper 

22 
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th. 10 of Chap. X111-10). Let v be a place of k of degree d, so that qv=qd; 
put 6 = (d, v) and D = d v/6. If w is a place of k’ above v, we have kk = k, F,, , 
q, = qD; kk is the unramified extension of k, of degree v/6; by corollary 1 
of th. 4, Chap. 1114, there are 6 such places w; by corollary 3 of the same 
theorem, we have w; = o,oN~~,~,. Using prop. 1 and prop. 3 of 
Chap. VIII-l, one sees at once that w has the same coefficient in the con- 
ductor of Q’ as u in that of cc,; this proves the final assertion in the lemma; 
in particular, unless o, is unramilied, the contributions of v and w to 
both sides of (3) are 1. Assume now that cc), is unramilied; as in Chap. VII-7, 
put 2, = o, (rc,), where 71, is a prime element of k,; then rc, is also a prime 
element of kw, and we have c&(n,)=1~‘“. Put u= q-‘, u’= q’-“= u”. The 
contribution of the place u to P(u) is (1 -&t/-l, so that its contribution 
to the right-hand side of (3) is 

V-l 

iFO(l -;1”E%d)-r=(l -A;‘%D)-6. 

As the contribution of w to the left-hand side of (3) is 

and as there are 6 such places, this proves the lemma. This proof remains 
valid even if 01 is a principal quasicharacter Q*; in that case, it is to be 
understood that L(S), L’(s) are then no other than ik (S + t), iaS (s + t). For 
o= 1, our lemma may be regarded as a special case (a trivial one) of 
th. 10, Chap. X111-10. 

We can also formulate our lemma by saying that, if P has the zeros 
; ‘, P’ has the zeros M; “. In particular, we can apply this to formula (1) 

zf $7. Let k=F (T) w @ A be as in $7. put q’=q” k’=F .(T), o’= 
~0N,c,ik, and tail 1” the piimitive function, defined module’ @, which 
is associated with w’ in the sense of Q 6. Then, for every manic polynomial 
F’ in F,.[T], we have n’(F’)=l(NkpikF’). In view of this, of (2) and of 
lemma 4, we get now : 

J--z 
(4) S(A’)= -/I,- 1 A[N,r,,(T+c’)]= C a;. 

C’EF,, i=l 

In particular, this gives, for f=3: 

(5) S(A.‘)=S@)“. 

9. We will now consider some special cases; we begin with the cases 
where f= 3 and all the places occurring in f are of degree 1. 

If v is a place of k of degree 1, other than co, it belongs to a prime 
polynomial no= T-a; then we write u=(a). Replacing, if necessary, 
T by (txT+P)/(yT+6), with suitable values of a, j3, y, 6 in F,, we can 
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transform any three places of k of degree 1 into co, (0), (1). Therefore, 
if f is as we have said, we may assume that it is 3 . co or 2 . co +(0) or 
a +(O)+(l). 

(a) Take f = co + (0) +(l). For u = (0), w;’ determines a character 
x0 + 1 on rVx /(l +p,) = Fl ; similarly, for v =(l), w;’ determines a character 
x1 + 1 on F:; lemma 3 shows that x0x1 + 1. We have @= T(T - 1). 
If we put x0(O) =x1 (O)=O, then, for every manic polynomial F, we have 
i(F) = x0 (F (0)) x1 (F (1)). The corresponding L-function is L(s) = 
1 -S(A) q-‘, with 

SW= - c XO(C)XlU +c). 
CEF, 

(b) Take f=2. co +(O). For u=(O), m;’ determines a character x+ 1 
onF,” ;forv= co,co~‘determinesacharacter + + 1 on(l +p,)/(l +pi)=F,. 
Put x(0)=0. For F=TS+clTd-l+...+~g, we have A(F)=x(c,)$(c,). 
This gives L(s) = 1 -S(n) q-“, with 

SW= - c x(4$(4. 
CEF, 

(c) Take f = 3 co ; then @= 1; cu determines a character (I)~ on 
(1 +p,)/(l +pi), which must be of the form 

o,(1+c,T-‘+c,T-2+~~~)=0,(1+C~T-~)w,(l+c~T-~) 

=f(c1)-’ I/&-‘, 

where obviously $ must be a non-trivial character of the additive group 
F,. This is a character if and only if we have, for all x, y in F,: 

f(x+y)=f(x)f(y)~(xy)-‘. 

When that is so, one says that f’ is a “character of the second degree” 
of F,; if the characteristic p is not 2, this is so if and only if f is of the form 
x-+$(ax-x2/2) with UEF,. For F=T6+c1T6-‘+..-+cC6, we have 
W)=f(cJ $(c2). This g ives L(s) = 1 -S(L) q-‘, with 

S(l) = - 1 f(c). 
CEF, 

These formulas show that S(1) is a “Gaussian sum“ in case (b), 
a “Jacobi sum” in case (a) (cf. A. Weil, Bull. A.M.S. 55 (1949), p. 497); 
the relation (5) for such sums is known as the theorem of Hasse-Daven- 
port. In all three cases, we have IS(n)/ = q*. The sums S(A) in cases (b) 
and (c) occur prominently among the “local constant factors” (sometimes 
also known as “root-numbers“) in the functional equations of L-functions; 
the relation (5) for these cases plays a significant role in representation- 
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theory (cf. e.g. A. Weil, Dirichlet series and automorphic forms, Lecture 
Notes no. 189, Springer 1971, p. 154). 

The only remaining cases, for j”=3, are those for which f is either 
of the form v, with u of degree 3, or of the form v+ w, with v of degree 2 
and w  of degree 1 (one may then assume w= co). We leave the explicit 
determination of the corresponding L-functions to the reader. Replacing 
k by k’ = kF,,, with q’ = q3 resp. q2, one gels as L’(s) a function of the type 
described in (a). 

10. Examples with f >3 can be obtained by taking n>2 and 
f = n . cc + c ui, where the ui are distinct places, other than co, of respec- 
tive degrees d,. For each i, let zi be the prime polynomial defining ui, 
and call li a root of zi in an algebraic closure of F,. Call xi the character 
determined by 0-l on rG/(l +p,,)=F,(ti) ‘, and put xi(0)=O. Then, for 
F=Td+~lTa-l+~~~+~g, we have 

I(F)=w,(l+C,T-‘+“‘+CaT-6)-1 flXi(F(ti)). 
I 

Conversely, this defines an L-function whenever o, and the xi are non- 
trivial. The main result about the corresponding sums is the one given 
by (2), i.e. by the “Riemann hypothesis”. 

For n=2, we have seen in §9(b) that 02,’ must be of the form $(c,), 
where $ is a non-trivial character of the additive group F,. This gives: 

(6) 

11. For instance, take f = 2 . 00 -I- v, where v is of degree 2, and p +2; 
then we may assume that u is defined by rc = T2 -A, with A in Fl and not 
in (F,“)2; let a, cx’ be the two roots of n. As q is odd, F, has one (and only 
one) character x of order 2; put x (0) = 0. Then, for F as before, we may take 

This gives : 

SW= - c $(c)x(c2-4= - 1 $(x)+ c $(x)= -2X$(x), 
CEF, X.5X X+X XSX 

where X is the set of those XEF~ for which x2 -A is in (F,“)2. Take 
B, C in F, such that 4 BC = A; then x is in X if and only if it can be written 
as Bu+ CU-’ with UEF,“, and in that case it can be so written in two 
ways. Therefore: 

S(A)= --&b(Bu+Cu-‘). 

This is known as a “Kloosterman sum”; (6) gives IS(/2)1<2q*. 

12. More general examples can be constructed by means of the 
following lemma: 
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LEMMA 5. Let $ be a non-trivial character of the additive group F,. 
Let F be a polynomial of degree n in F, [Xl, with F (O)=O. Then there is a 
character co, of 1 +p,, of orderp, of conductor (TPN) with some N<n+ 1, 
such that ~~(1 +cT-l)=$(F(c)) for all CEF,. 

It is clearly enough to prove this for F =aX”, n>O, aEF,“. Take 
indeterminates X,, X, , . . . and U; consider the ring of formal power- 
series in U, with coefficients in Q [Xi, X,, . . .]; in that ring, put 

V= 2 X, U”. We can write: 
n=l 

dV 
~log(l+v)=(l+v)-‘iLi= f p, u-1, 

n=l 

with ~EZ[X~, . . . . X,] for all n 2 1; we have 

p,(X,,O, . ..) O)=(-l)“-‘x;. 

Put W= f Y,U” with other indeterminates Y,, and write 
,I= 1 

(1+ V)(l+ W)= 1+ f Z,,U” 
,I= 1 

with the Z,, in Z [Xi, Y,, X,, Y,, . ..I. We have 

JW 1, . . ..Z.,)=~:,(X,, . . ..X.,)+wl, . . . . y,). 

Consequently, if K is any field, we can define a morphism Sz of the multi- 
plicative group of the power-series 1 + ci U + c2 U2 + ... with coefficients 
in K, into the additive group of K, by putting 

with aEKX, so that sZ( 1+ c U) = acl. To prove the lemma, it is now 
enough to take K=F,, U=T-‘, o,=$~s). 

Combining this with the formulas of 910 and with the Riemann 
hypothesis, we get 

1,; ~(F(c))lilni(c+%i)l~4’(n-l+~di) 
4 

whenever F is a polynomial of degree n>O. 
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