INTERSCIENCE TRACTS IN PURE AND APPLIED MATHEMATICS Editors: L. BERS • R. COUVANT • J.J. STOKER

Number 15, Vol ut
FOUNDATIONS OF DIFFERENTIAL GEOMETRY
By Shoshichi Kobayashi and Katsumi Nomiza

INTERSCIENCE PUBLISHERS
a division of John Wiley \& Sons, New York London

FOUNDATIONS
 OF DIFFERENTIAL GEOMETRY

- VOLUME I

SHOSHICHI KOBAYASHI

University of California, Berkeley, California
and
KATSUMI NOMIZU
Brown University, Providence, Rhode Island

1963
INTERSCIENCE PUBLISHERS a division of John Wiley \& Sons, New Y\& k • London
b
$k>5$
v_{1}
$i>$
n

PREFACE

Differential geometry has a long history as a field of mathematics and yet its rigorous foundation in the realm of contemporary mathematics is relatively new. We have written this book, the first of the two volumes of the Foumdations of Differential Geometry, with the intention of providing a systematic introduction to differential geometry which will also serve as a reference book.

Our primary concern was to make it self-contained as much as possible and to give complete proof of all standard results in the foundation. We hope that this purpose has been achieved with the following arrangements. In chapter I we have given a brief survey of differentiable manifolds, He groups and fibre bundles. The readers who are unfamiliar with thein may learn thi subjects from the books of Chevalley, Montgomert:Zippin, Pontrjagin, and Steenrod, listed in the Biblography, with are our standard references in Chapter I. We have also included a concise account of tensor- algebras and tensor fields, the central theme of which is the notion of derivation of the algebra of tensor fields. In the Appendices, we have given some results from topology, Lie group theory and othirs which we need in the main text. With these preparations, the main text of the book is self-contained.

Chapter II contains the connection theory of Ehresmann and its later development. Results in this chapter are applied to linear and affirie connections in Chapter III and to Riemannian connections in Chapter IV. Many basic results on normal coordinates, convex neighborhoods, distance, completeness and holonomy groups are' proved here completely, including the de Rham decomposition theorem for Riemannian manifolds. "'

In Chapter V, -we introduce the sectional curvature of' a Riemannian manifold and the spaces of constant curvature. A more complete treatment of properties of Riemannian manifolds involving sectional carvature depends on calculus of variations and will be given 畆 Vobme II. We' discuss flat' affine and Riemannian connections in detail.

In Chapter VI, we first discuss transformations and infinitesimal transformations which preverve a given linear connection or a Riemannian metric. We include here various results concerning Ricci tensor, holonomy and infinitesimal isometries. We then'

Copyright © 1963 by Jol兽 Wiley \& Sons, Inc.
All Rights Dyerved:'.

Library of Congress Catriog Card Number: 63-19209 Printed in the united statzs of anmpica
treat the extension of local, transformations and the so-called equivalen ${ }_{c a}$ problem for affine and Riemannian connections. The results in this chapter are closely related to differential geometry of homogeneous spaces in particulary. symmetric spaces) which are planned for Volume-II.
In all the chapters, we have tried\& familiarize the readers with various techniques of computation which are currently in use in differential geometry. These axe: (1) classical tensor calculus with indices; (2) exterior differential calculus of E. Cartan; and (3) formalism of covariant differentiatien $\nabla_{X} Y$, which is the newest among the three We have also illustrated, as we see fit., the methods of using a suitable bundle or working directly in the base space.
The Notes include some historical facts and supplementary results Pertinent to the main content of the present, volume. The Bibliography at the end epptains only those books and papers which we quote throughout the book ,

Theorems, propositions and corollaries are numbered for each section. For example, in each chapter say, Chapter II, Theorem 3.1 is in Section 3. In the rest offthe same chapter; it will be referred to simply as Theorem 3.1. For guotation insubsequent chapters, it is referred to as Therem 31 of Chapter ML.

Ve originally planned to write one volume which would include the content of the present volume as well as the following topics: submanifolds; variations of the length integral; differential geometry of complex and Kählermanifolds; differential geometry of homogeneous spaces; symmetric spaces; characteristic classes. The considerations of time and space have made it desirable to. divide the book in two volumes. The topics mentioned above will therefore be included in Volume II.
In concluding the preface, we should like, to thank Professor L. Bers, who invited. us to undertgke this project, and Interscience Publishers, a division of John Wiley and 'Sons, for their patience and kind cooperation. We are greatly indebted to Dr. A. J. Lohwater, Dr. H. Ozeki, Messrs, A. Howard and E. Ruh for their kind help which resulted in many improvements of both the content and the presentation. We also acknowledge the grants of the National Science Foundation which supported part of the work included in this book.,

Shoshichi Kobayashi Katsumi Nomi zu
8. Normal coordinates. 146

Chapter IV

Riemannian Connections

1. Riemannian metrics

2, Riemannian connections 154
3. Normal coordinates and convex neighborhoods . . . 168
4. Completeness16
5. Holonomy groups 179
6.The decomposition theorem of de Rham 187
7. Affine holonomy groups 193
Chapter V
curvature and Space Forms

1. Algebraic preliminaries 198
2. Sectional curvature 201
3. Spaces of constant curvature 204
4. Flat affine and Riemannian connections 209
chapter VI दi
Trameformations
5. Affine mappings and affine transformations 225
6. Trfinitesimal affine transformations
229
229
7. Isometries and infinitesimal isometrie ${ }^{236}$
8. Holonomy and infinitesimal isometries 248
9. Extension of local isomorphisms. ‘252
Appendices1. Ordinary linear differential equations
10. A connected, lö́cally compact metric space is separable 269
11. Partition of unity 272
12. On an arcwise connected subgroup of a Lie group 275
13. Irreducible subgroups of $O(n)$ 277
14. Green's theorem 281
15. Factorization lemma 284

Notes

1. Connections and holonomy groups 287
2. Complete affine and Riemanniàn connections 291
3. Ricci tensor and scalar curvature 292
4. Spaces of constant positive curvature 294
5. Flat Riemannian manifolds 297
6. Parallel displacement of curvature 300
7. Symmetric spaces 300
8. Linear connections with recurrent curvature 304
9. The automorphiim group of a geometric structure 306
10. Groups of isometries and affine transformations with maximum. dimēnsions 308
11. Conformal transformations of a Riemannian manifold
Summary of Basic Notations 313
Bibliography 315
Index 325

Exceptions

Chapter II : ‘Theorem 11.8 requires Section II-IO.
Chapter lil : Proposition 6.2 requires Section 111-4.
Chapter IV: Corollary 2.4 requires Proposition i.4 in Chapter III.
Chapter IV: 'Theorem 4. I, (4) requires Section III-4 and Proposition 6.2 in Chapter JIJ.
Chapter V: Proposition 2.4 requires Section III-7.
Chapter VI: 'Theorem 3.3 requires Section V.2.
Chapter 1 I : Corollary 5.6 requires Example 4.1 in Chapter V.
Chapter \'1; Corollary 6.4 requires Proposition 2.6 in Chapter IV.
Chapter \} \backslash 1 : Theorem 7. 1 0 requires Section V-2.
subpseudogroup of $\Gamma^{r}\left(\mathbf{R}^{n}\right)$. If we consider only those $f \in \Gamma^{r}\left(\mathbf{R}^{n}\right)$ whose Jacobians are positive everywhere,. we obtain a sub pseudogroup of $\boldsymbol{T}^{r}\left(\mathbf{R}^{n}\right)$. This subpseudogroup, denoted by $\Gamma_{0}^{\top}\left(\mathbf{R}^{n}\right)$, is called the pseudogroup of oriontatian-presercteretransformations of class C^{r} of \mathbf{R}^{n}. Let \mathbf{C}^{n} be the \$ Face of n-tuplef or complex numbers with the usual topology. The pseudogroup of holomotphic (i.e., complex analytic) transformations of \mathbf{C}^{n} can be similarly
 $\mathbf{R}^{2 n}$, when necessary, by mapping ($\left.\boldsymbol{z}^{1}, \ldots, \boldsymbol{z}^{n}\right) \in \mathbf{C}^{n}$ into $\left(\boldsymbol{x}^{\mathbf{1}}\right.$, $\left.x^{n}, y^{1}, \ldots, y^{n}\right) \in \mathbf{R}^{2 n}$, where $z^{j}=x^{j}+i y^{j}$. Under this identification, $\Gamma\left(\mathbf{C}^{n}\right)$ is a , subpseudogrpup of $\Gamma_{\rho}^{\dagger}\left(\mathbf{R}^{8^{n}}\right)$ for any r.
An atlas of a topologzeal space M compatible with a peeudogroup Γ is a family, of pairs (U_{i}, φ_{i}), called charts, such that
(a) Each U_{i} is ap open set of M and $U U_{i}=M$;
(b) Each φ_{i} isra homedmorphism of U_{i} onto an open set of S
(c) Whenever $U_{i} \cap U_{j}$ is non-empty, the mapping $\varphi_{i}{ }^{\circ} \varphi_{i}^{-2}$ of $\dot{\varphi}_{i}^{-1}\left(U_{i}\right.$ A $\left.U_{j}\right)$ onto $\varphi_{j}\left(U_{i} \cap U_{j}\right)$ is an element of Γ.
A complete atlas of M compatible with Γ is an atlas of M compatible with Γ which is not contained in any ther atlas of M compatible with Γ. Every atlas of M comptate with I ' is contained in a unique complete atlas of M compatible with Γ. In fact, given an atlas $\mathrm{A}=\left\{\left(U_{i s} \varphi_{i}\right)\right\}$ of M compatible with Γ, let A be the family of all pairs (U, φ) such that φ is a homeomorphism of an open set U of M onto an open set of S and that

$$
\varphi_{i} \circ \varphi^{-1}: \varphi\left(U \cap U_{i}\right) \rightarrow \varphi_{i}\left(U \cap U_{i}\right)
$$

is an element of $\boldsymbol{\Gamma}$ whenever \boldsymbol{U} a $\boldsymbol{U}_{\boldsymbol{i}}$ is non-empty. Then \boldsymbol{A} is the complete atlas containing A.
If Γ^{\prime} is a subpseudogroup of I^{\prime}, then an atlas of M compatible with Γ^{\prime} is compatible with Γ.
A differentiable manifold of class C^{r} is a Hausdorff space with a fixed complete *atlas compatible with $\Gamma^{r}\left(\mathbf{R}^{n}\right)$. The integer n is called the dimension of the manifold. Any atlas of a Hausdorff space compatible with $\Gamma^{+}\left(\mathbf{R}^{n}\right)$, enlarged to a complete atlas, defines a differentiable structure of class C^{r}. Since $\Gamma^{v}\left(\mathbb{R}^{n}\right) \supset \Gamma^{v}\left(\mathbf{R}^{v}\right)$ for $r<s$, a differentiable structure of class C defines uniquely a differentiable structure of class C^{\top}. A differentiable manifold of class C^{ω} is also called a real analytic manifold. (Throughout the book we shall mostly consider differentiable manifolds of claiss C^{∞}. By
a differentiable manifold or, simply, manifold, we shall mean a 'differentiable manifold of class \mathbf{C}^{∞}.) A complex (analytic) manifold of complex dimension n is a Hausdorff space with a fixed complete atlas compatible with $\Gamma\left(\mathbf{C}^{n}\right) \cdot$ A A n oriented differentiable manifold of class C^{r} is a Hausdorff space with a fixed complete atlas compatible with $W_{0}^{\psi}\left(\mathbf{R}^{n}\right)$. An oriented differentiable structure of class C^{+}gives rise to a differentiable structure of class C^{+}uniquely. Not every differentiable structure of class C^{r} is thus obtained; if it is obtained from an oriented one it is called orientable. An orientable manifold of class Cudmis exactly two orientations if it is connect\&L Leaving the proof of this fact to the reader, we shall only indicate how to reperse the orientation of an oriented manifold. If a family of charts ($\left.U_{i}^{\prime}, \boldsymbol{q}_{i}\right)$ d\&es an oriented manifold, then the, family of charts $\left(U_{i}, \psi_{i}\right)$ defines the manifold with the reversed orientation where ψ_{i} is the composition of φ_{i} with the transformation $\left(x^{1}, x^{2}, \ldots, x^{n}\right) \rightarrow\left(-x^{1}, x^{2}, \ldots, x^{n}\right)$ of \mathbf{R}^{n}. Since $\Gamma\left(\mathbf{C}^{n}\right) \subset \Gamma_{o}^{\eta}\left(\mathbf{R}^{2 n}\right)$, every complex manifold is oriented as a ma\&fold of class C^{+}.

For any structure under consideration (e.g., differentiable. structure of class C^{r}), an allowable chart is a chart which belongs to the fixed complete atlas defining the structure. From now on, by a chart we shall mean an allowable chart. Given an allowable chart $\left(U_{i}, \boldsymbol{\varphi}_{i}\right)$ of. an n-dimensional manifold M of class C^{r}, the system of functions $x^{1} \circ \varphi_{i}, \ldots, \mathrm{x}^{\prime \prime} \circ \varphi_{i}$ defined on U_{i} is called a local coordinate system in U_{i}. We say then that U_{i} is a coordinate neighborhood. For every point p of M; it is possible to find a chart $\left(U_{i}, \varphi_{i}\right)$ such that $\boldsymbol{\varphi}_{\boldsymbol{L}}(p)$ is the origin of \mathbf{R}^{n} and $\boldsymbol{\varphi}_{\alpha}$, is a homeomorphism of U_{i} onto an open set of \mathbf{R}^{n} defined by $\left|x^{n}\right|<a_{1}, \ldots,\left|x^{n}\right|<a$ for some positive number a. U_{i} is then called a cubic neighborhood of p.

In a natural manner \mathbf{R}^{n} is an oriented manifold of class C^{r} for any r; a chart consists of an elementfof $\Gamma_{0}^{r}\left(\mathbf{R}^{n}\right)$ and the domain off. Similarly, \mathbf{C}^{n} is a complex manifold. Any open subset N of a manifold M of class C^{r} is a manifold of class C^{r} in a natural manner; a chart of N is given by $\left(U_{i} \cap A!, \dot{\varphi}_{i}\right)$ where $\left(U_{i}, \varphi_{i}\right)$ is a chart of M and ψ_{i} is the restiction of φ_{i} to $U_{i} \cap N$. Similanly, for complex manifolds.

Given two manifolds \boldsymbol{M} and \boldsymbol{M}^{\prime} of class \boldsymbol{C}^{+}, a mapping $f: M \rightarrow M^{\prime}$ is said to be differentiable of class $C^{k}, k \leqq r$, if, for every chart (U_{i}, φ_{i}) of M and every chart ($\mathrm{V},, \boldsymbol{\psi}_{i}$) of M' such that
$f^{\prime}\left(U_{i}\right) \subset V_{j}$, the mapping $\psi_{j}{ }^{\circ} \circ f \circ \psi_{i}{ }^{1}$ of $\psi_{i}\left(U_{i}\right)$ into $\psi_{i}\left(V_{j}\right)$ is differentiable of class C^{k}. If u^{1}, \ldots, u^{n} is a local coordinate system in U_{t}^{\prime} and $v^{2}, \therefore, v m$ is a local coordinate system in V_{j}, then f may be" expressed by a set of differentiable functions of, class C^{k} :

$$
v^{a^{2}=f^{1}\left(u^{1}, \ldots, u^{n}\right), \ldots, v^{m}=f^{m}\left(u^{2}, \ldots, \dot{u}^{n}\right), \ldots}
$$

By a differentiable mapping or simply, a mapping, we shall mean a mapping of class C^{α}., A differentiable function of class C^{k} on M is a mapping of class C^{k} of $A 4$ into R. The defnition of holomorphic (or complex analytic) mapping or function is similar,
By a differentiable curve of class C^{k} in M, we shall mean differenti-
 namely, the restriction of a differentiable mapping of class C^{r} of an open interval containing $[a, b]$ into M. We shall now define a tangent vector (or simply a pector) at a point p. of M. Let $\tilde{\xi}(\beta)$ be the algebra of differentiable functions of class C^{1} defined in a neighborhood of p. Let $x(t)$ be a curve of class $C^{1}, a \leq t \leq t$, such that $x\left(t_{0}\right)=p$. The vector tangent to the curve $x(t)$, at p is a mapping $X: \mathscr{F}(p) \rightarrow \mathbf{R}$ defined by

$$
X f=(d f(x)(t)) / d t t_{T_{0}} .
$$

In other words,. $X f$ is the "feriviative of f in the direction of the curve $\dot{x}(t)$ tht $t=t_{q}$. The vector X satisfies the fôlowing conditions:
(1) X is a linear mapping of $\mathcal{W}(p)$ into R;
(2) $X(f g)=(X f) g(p)+f(p)(\mathbb{X} \hat{\mathcal{E}}) \quad$ for $f, g \in \mathcal{F}(p)$.

The set of mappings X of $\tilde{F}(p)$ inf R satisfying the preceding two conditions forms a real vector space. We shall show that the set of vectors at p is a vector subspace of dimension n, where n is the dimension of M. Let u^{1}, \ldots, u^{n} be a local coordinate sysţcm in a coordinate neighborhood U of p. For each j, $\left(\partial \partial u^{i}\right)_{p}$ is a mapping of $\mathfrak{y}(p)$ into \mathbf{R} which satisfics conditions (I) and (2) above. We shall show that the set of vectors at ϕ is the vector space with basis $\left(\partial \partial \partial u^{1}\right)_{p}, \ldots,\left\langle\partial / \partial u^{n}\right)_{n}$. Giyen any curve $x(t)$ with $p^{\prime}=x\left(t_{0}\right) ;$ let $u^{i}=x^{\prime}(t), j--1, \cdots, n$, bc its equations in terms of the local coordinate syytem $u_{4}^{1}, \ldots, \mu^{n}$. Then.

$$
(d f(x(t)) d d t)_{t_{0}}=\Sigma_{j}\left(\partial f (\partial w ^ { d }) _ { D } \cdot \left(d x x^{i}(t) d d t_{t_{0}} *{ }^{*}\right.\right.
$$

which proves that every vector at p is a linear combination o $\left(\partial / \partial u^{1}\right)_{m} \ldots,\left(\partial / \partial u^{n}\right),{ }_{n}$. Conversely, given a lincnr combination $\Sigma \xi^{i}\left(\partial / \partial u^{j}\right)_{p}$, consider the curvec defined by

$$
u^{j}=u^{j}(p)+\xi^{j} \eta: j=1, \ldots, 72
$$

Then the vector tangent to this curve at $t=0$ is $\Sigma \xi^{y}\left(\partial / \partial u^{j}\right)_{p}$. To prove the linear independence of $\left\langle\partial / \partial u^{1}\right)_{p} \ldots\left(\partial / \partial u^{n}\right)_{p}$, assume $\Sigma \Sigma^{\prime}\left(\partial / \partial u^{\prime}\right)_{n} \ldots 0 \quad$ Then

$$
0=\Sigma \xi^{j}\left(\partial u^{k} / \partial u^{j}\right)_{n} \xi^{k} \quad \text { fork }-1, \ldots, n
$$

This completes thd prorf, of our assertion. The set of tangent vectors at p, denoted by $T_{p}(\lambda)$ or T_{n}, is called the tangent space of M at p. The n-tuple of numbers ξ^{1}, \ldots.., ξ^{n} will be called the components of the vector $\Sigma \xi^{j}\left(\partial \partial \partial \dot{u}^{j}\right)_{n}$ with respect to the local coordinate system u^{1}, \ldots, u^{n}.

Remark. It is known that if a manifold M is of class C^{*}, then T, ,(M) coincides with the space of $\mathrm{X}: \widetilde{\mathscr{y}}(p) \rightarrow \mathrm{R}$ satisfying conditions (1) and (2) above, where $\tilde{y}(p)$ now denotes the algebra of all C^{∞} functions around p. From now on we shall consider mainly manifolds of class C^{∞} : and mappings of class C^{x}.
' A vector field X on a manifold M is an assignment of a vector $X_{\text {p }}$ to each point p of M. If f is a differentiable function on M, then $X f$ is a function on M defined by $(X f)(p)=X_{p} f$. A vector field X is called differentiable if $X f$ is differentiable for everv differentiable function f. In terms of a local coordinate ssstem u^{1}, \ldots, u^{u}, a vector field X may be expressed by $X \mathscr{y} \xi^{\prime}\left(\partial / \partial u^{j}\right)$, where ξ^{j} are functions defined in the coordinate neighborhood, called the components of X with respect to u^{1}, \ldots, u^{n}, X is differentiable, if and only if its components sy are differentiable.

Let $\mathfrak{X}(M)$ be the set of ${ }^{\prime}$ all differentiable vector fields on M. It' is" a real vector space under the matural addition and scalar multiplication. If X and I' are in $\boldsymbol{X}(.1 I)$, define the bracket $[X, Y]$ as a mapping from the riii g of functions on .II into itself by

$$
[X, Y] f=X(Y f) \quad Y(X f) .
$$

We shall show that $[X, Y]$ is a vector field. In terins of a local coordinate system u^{v}, \ldots, u^{n}, we write

$$
X=\Sigma \xi^{j}\left(\partial / \partial u^{i}\right), \quad Y=\Sigma \dot{\Sigma}^{j}\left(\partial / \partial u^{j}\right)
$$

Then

$$
[X, Y] f=\Sigma_{j, k}\left(\xi^{k}\left(\partial \eta^{j} / \partial u^{k}\right)-\eta^{k}\left(\partial \xi^{j} \partial u^{k}\right)\right)\left(\partial f / \partial u^{j}\right)
$$

This means that $[X, Y]$ is a vector field whose components with respect to u^{1}, \ldots, u^{n} are given by $\boldsymbol{\Sigma}_{*}\left(\xi^{k}\left(\partial \eta^{j} / \partial u^{k}\right)-\eta^{k}\left(\partial \xi^{j} / \partial u^{k}\right)\right)$, $j=1, \ldots, n$. With respect to this bracket operation, $\mathfrak{x}(M)$ is a Lie algebra over the real number fiffd (of infinite dimensions). In particular,, we have Jacobi's id entily:

$$
\begin{gathered}
[[X, Y], Z]+[[Y, Z], X]+X Z, Z], Y]=0 \\
\text { for } X, Y, Z \subset(M),
\end{gathered}
$$

We may also regard $\mathfrak{X}(M)$ as a module over the algebra $\mathfrak{F}(M)$ of differentiable functions on M as follows. Iff is a function and X is a vector field on \boldsymbol{M}, then $\boldsymbol{f} \times \boldsymbol{i s}$ a vector field on M defined by $(f X)_{p}=f(p) X_{p}$ for $p \in M$. Then

$$
\begin{gathered}
{[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X} \\
f, \& \in \mathscr{F}(M), \quad X, Y \in X(M) .
\end{gathered}
$$

For a point p of \boldsymbol{M}, the dual vector space $\mathrm{T}, *(\mathrm{M})$ of the tangent space $T_{p}(M)$ is called the space of covectors at p. An assignment of a covector at each point p is called a 1-form (differential form of degree 1). For each function f on M, the total differential (df), off at \boldsymbol{p} is defined by

$$
\left\langle(d f)_{v}, X\right\rangle=X f \quad \text { for } \mathrm{X} \in \mathrm{~T},(\mathrm{M}),
$$

where (, \rangle denotes the value of the first entry on the second entry as a linear functional on T,(M). If $\boldsymbol{u}_{5}^{\mathbf{1}}, \ldots, \boldsymbol{u}^{\mathrm{n}}$ is a local coordinate system in a neighborhood ofp, then the total differentials $\left(d u^{1}\right)_{p}, \ldots,\left(d u^{n}\right)_{p}$ Form a basis for $T_{p}^{*}(M)$. In fact, they form the dual basis of the basis $\left(\partial / \partial u^{1}\right)_{p}, \ldots,\left(\partial / \partial u^{v}\right)$, for $T_{p}(M)$. In a neighborhood ofp, every l-form ω can be uniquely written as

$$
w=\Sigma_{j} f_{i} d u^{j}
$$

where f, are functions defined in the neighborhood of \boldsymbol{p} and are called the components of w with respect to u^{1}, \ldots, u^{n}. The 1 -form w is called differentiable if f_{j} are differentiable (this condition is independent of the choice of a local coordinate system). We shall only consider differentiable 1 -forms.

A l-form ω can be defined also as an $\mathrm{g}(\mathrm{M})$-linear mapping of the $\mathrm{S}(\mathrm{M})$-module $\mathrm{S}(\mathrm{M})$ into $\mathscr{E}(M)$. The two definitions are related by (cf. Proposition 3.1)

$$
(\omega(X))_{p}=\left\langle\omega_{p}, \quad X_{p}\right\rangle, \quad X \in \mathfrak{X}(M), \quad p \in M
$$

Let $\wedge T_{p}^{*}(M)$ be the exterior algebra over $\boldsymbol{T}, *(\boldsymbol{M})$. An r-form ω is an assignment of an element of degree r in $\wedge T, *(\boldsymbol{M})$ to each point \boldsymbol{p} of \boldsymbol{M}. In terms of a local coordinate system $\boldsymbol{u}^{\mathbf{1}}, \ldots, \boldsymbol{u}^{\boldsymbol{n}}, \boldsymbol{\infty}$ can be expressed uniquely as

$$
\omega=\Sigma_{i_{1}<i_{s}<\cdots<i_{r}} f_{i_{1} \ldots \dot{x}_{\mathrm{r}}} d u_{1}^{i_{1}} \wedge \cdots \wedge d u^{i_{r}}
$$

The r-form ω is called differentiable if the companents $f_{i_{1} \cdots i_{r}}$ are a\&differentiable. By an r-form we shall mean a differentiable r-form. An r-form ω can be defined atso as a skew-symmetric r-linear mapping over $\mathfrak{F}(M)$ of $\mathrm{X}(\mathrm{M}) \times X(M) x \cdot \cdot x Z(M)$ (r times) into. $\mathscr{F}(M)$. The two definitions are related as follows. If $\omega_{1}, \ldots, \mathrm{w}$, are 1 -forms and $X_{1}, \ldots, X_{\mathrm{r}}$ are vector fields, then $\left(\omega_{1} \wedge \cdots \wedge \omega_{r}\right)\left(X_{1}, \ldots, X_{r}\right)$ is $1 / r!$ times the determinant of the matrix $\left(\omega_{j}\left(X_{k}\right)\right)_{j, k=1, \ldots,} r^{\prime}$ of degree r.
We denote by $\mathfrak{D r} \stackrel{H}{=} \boldsymbol{W}(\boldsymbol{M})$ the totality of (differentiable) r forms on \boldsymbol{M} for each $\boldsymbol{r}=0,1, \ldots, n$. Then $\mathfrak{D}^{0}(M)=\mathfrak{F}(M)$. Each $\mathfrak{D}^{r}(M)$ is a real vector space and can be also considered as an $\mathscr{F}(M)$-module: for $f \in \mathscr{F}(M)$ and w $\epsilon \mathfrak{D}^{r}(M)$, $f \omega$ is an r-form defined by $(f \omega)_{p}=f(p) \omega_{p}, p \in M$. We set $\boldsymbol{D}=\mathfrak{D}(M)=$ $\sum_{r=0}^{\mathfrak{n}} \mathfrak{D}^{r}(M)$. With respect to the exterior product, $\mathfrak{D}(M)$ forms an algebra over the real @umber field. Exterior differentiationd can be characterized as follows:
(1) \boldsymbol{d} is an R-linear mapping of $\mathfrak{D}(\boldsymbol{M})$ into itself such that $d\left(\mathfrak{D}^{r}\right) \subset \mathfrak{D}^{r+1} ;$
(2) For a function $f \in \mathfrak{D}^{0}, d f$ is the total differential;
(3) If $\cdot \boldsymbol{\omega} \in \mathcal{D}^{r}$ and $\boldsymbol{\pi} \in \mathcal{D}^{3}$, then

$$
d(\omega \wedge \pi)=d \omega \wedge \pi+(-1)^{ヶ} \omega \wedge d \pi ;
$$

(4) $d^{2}=0$.

In-terms of a local coordinate system, if $\omega=\Sigma_{i_{1}<\cdots<i_{r}} f_{i_{1}} . i_{r} d u^{i_{1}} \wedge$ \cdots. A $d u^{i_{r}}$, then $d \omega=\Sigma_{i_{1}<\cdots<i_{r}} d f_{i_{1} \cdots i_{r}} \wedge d u^{i_{1}}$. . A du $u^{\text {r. }}$.

It will be later necessary to consider differential forms with values in an arbitrary vector space. Let V be an m-dimensional
real vector space. A V-valued r-form ω on M is an assignment to eách point $p \in M$ a skew-symmetric r-linear mapping of T, , (M) $\times \cdots \times T_{p}(M)\left(r\right.$ times) into V. If we take a basis ℓ_{1}, \ldots, e, , for V , we can write θ uniquely as $\omega=\sum_{j=1}^{m} \omega^{j} \cdot e_{j}$, where ω^{j} are usual r-forms on, M. ω is differentiable, by definition, if $(1)^{\prime}$ are all differentiable. The exterior derivative $d(\omega)$ is defined to be $\sum_{j=1}^{m} d \omega^{j} \cdot \mathrm{e}$,, which is a V-valued $(r+1)$-form.

Given a mappingf of a manifold M into another manifold M^{\prime}, the differential at p off is the linear mapping. f_{*} of $\mathrm{T}_{,,(\mathrm{M}) \text { into }}$ $T_{f(j)}\left(M^{\prime}\right)$ de fined as follows. For each $X \bullet T_{p}\left(\vec{M}^{*}\right)$, choose a curve $\mathrm{x}(\mathrm{f})$ in M such that X is the vector tangent to $x(t)$ at $p=x\left(t_{0}\right)$. Then $f_{*}(X)$ is the vector tangent to the curve $f(x(t))$ at $f(p)=$ $f\left(x\left(t_{0}\right)\right)$. It follows immediately that if g is a function differentiable in a neighborhood off (p), then $\left(f_{*}(X)\right) g=X(g \circ f)$. When it is necessary to Specify the point p, we write $\left(f_{*}\right)_{\nu}$. When there is no danger of confusion, we may simply write f instead off,. The transpose of $\left(f_{*}\right)_{p}$ is a linear mapping of $T_{f(p)}^{*}\left(M^{\prime}\right)$ inio $T_{p}^{*}(M)$. For any r-form ω^{\prime} on M^{\prime}, we define an r-form $f^{*} \omega^{\prime}$ on M by

$$
\begin{aligned}
\left(f^{*}\left(\omega^{\prime}\right)\left(X_{1}, \ldots, X_{r}\right)=\right. & \omega^{\prime}\left(f_{*} X_{1}, \ldots, f_{*} X_{r}\right) \\
& X_{1}, \ldots, X_{r} \in T_{p}(M)
\end{aligned}
$$

The exterior differentiation d commutes with $f^{*}: \mathbf{d (f}{ }^{*}\left(\omega^{\prime}\right)=$ $f^{*} \quad\left(d\left(r^{\prime}\right)\right.$.

A mapping f of M into M^{\prime} is said to be of rank r at $p \in M$ if the dimension of $f_{*}\left(T_{p}(M)\right)$ is r. If the rank of f at p is equal lo $n \quad \operatorname{dim} M,\left(f_{*}^{*}\right)_{D}$ is injective and $\operatorname{dim} M \leq \operatorname{dim} M^{\prime}$. If the rank of f at p is equal to $n^{\prime}=\operatorname{dim} M^{\prime},\left(f_{*}\right)_{p}$ is surjective and. $\operatorname{dim} M$) $\operatorname{dim} M^{\prime}$. By the implicit function theorem, we have

Proposition 1.1. Let f be a mapping of M into Al^{\prime} and p a point of 11 .
(1) If $\left(f_{*}\right)_{n}$ is injective, there exist a local coordinate sustem $u^{1}, \ldots u^{n}$ in a ncighborhood U of p nnd a local coordinate system $v^{1}, \ldots, v^{n^{\prime}}$ in a neighborhood of $f(\mathrm{p})$ such that

$$
v^{i}(f(q)) \quad u^{\prime}(q) \quad \text { for } q \in \mathrm{I} \quad \text { and } i=1, \ldots, \quad n .
$$

In particular, f is a hamecmorphism of U onto $f(U)$.
(2) If $\left(f_{*}\right)_{p}$ is surjective, there exist a local coordinnte system u^{1}, \ldots, u^{n} in a neighborhood U of p and a local coordinate system $v^{1}, \ldots, v^{n^{\prime}}$ of $f(p)$ such that

$$
v^{i}(f(q))=u^{i}(q) \quad \text { for } \mathrm{q} \in U \text { and } \mathrm{i}=1, \ldots, \mathrm{n}^{\prime}
$$

In particular, the mapping $f: U \rightarrow \mathrm{M}^{\prime}$ is open.
(3): If $\left(f_{*}\right)_{p}$ is a linear isomorphism of $T_{n}(M)$ onto $T_{f(p)}\left(M^{\prime}\right)$, then f defines a homeomorphism of a neighborhood U ofp onto a neighborhood off (p) and its inverse $f^{1}: \mathrm{V} \rightarrow U$ is also differentiable:

For the proof, see Chevalley [$1, \mathrm{pp} .7 \mathrm{f}-80$].
A mapping \boldsymbol{f} of, M into M^{\prime} is called an immersion if $\left(f_{*}\right)_{D}$ is injective for every point p of M. We say then that M is immersed in M ' by f or that ' M is an immersed submanifold of M '. When an immersion f is injective, it is called an imbedding of M into M^{\prime}. We say then that M (or the image $f(M)$) is an imbedded submanifold (or, simply, a submanifold) of M^{\prime}. A submanifold may or-may not be .a closed subset of, M^{\prime}. The topplogy of a submanifold is in general frier than the relative topology induced from M'. An - open subset M of a manifold M^{\prime}, consideres as a submanifold of M^{\prime} in a natural manner, is cahed an open submanifold of M^{\prime}.

Example 1.1. Let f be a function defined on a manifold M^{\prime}. Let M be the set of paints $p \in M^{\prime}$, such that $f(p)=0$. If $(d f)_{p} \neq 0$ at every point p of M, then it is possible to introduce the structure of a manifold in M so that M is a closed submanifold of M^{\prime}, called the hypersurface defined by the equation $\mathbf{f}=0$. More generally, let M be the. set of common zeros of functions f_{1}, \ldots, f_{r} defined on M^{\prime} If the dimension, say k, of the subspace of $T_{n}^{*}\left(M^{\prime}\right)$ spanned by $\left(d f_{i}\right)_{p x},\left(d f_{f}\right)_{p}$ is independent of $\rho G M$, then M is a closed submanifold of M^{\prime} of dimension $\operatorname{dim} M^{\prime}-\mathrm{k}$.
"A diffeomorohism of a manifold M onto another manifold " M ' is a homeonorphisn ϕ such that both φ and φ^{-1} are differentiable. A diffeomorphism of M onto itself is called a differentiable transformation (or, simply, a transformation) of 39. A transformation φ of M induces an automorphism φ^{*} of the algebra $\mathcal{S}(M)$ of differential forms on \mathcal{A} and in particular, an automorphism of the algebra $\mathfrak{w}(M)$ of functions orr M :

$$
\left(\varphi^{*} f\right)(p)=f(\varphi(p)), \quad f \in \tilde{N}(M), \quad p \in M
$$

It induces also an automorphism φ_{*} of the Lie algebra $T(M)$ of vector fields $b \quad y$

$$
\left(\varphi_{*} X\right)_{v}=\left(\varphi_{*}\right)_{q}\left(X_{q}\right)
$$

where

$$
\varphi(q)=p, \quad X \in \mathfrak{X}(M)
$$

They ate related by

$$
\varphi^{*}\left(\left(\varphi_{*} X\right) f\right)=X\left(\varphi^{*} f\right) \quad \text { for } \boldsymbol{X} \in \mathrm{X}(\mathrm{M}) \text { and } f \in \mathscr{F}(M)
$$

Although any mapping φ of M into M^{\prime} carries a differential form ω^{\prime} on M^{\prime} into a diffe ential form $\varphi^{*}\left(\omega^{\prime}\right)$ on M, φ does not send a vector field on M into a yector field on M^{\prime} in general. We say that a vector field X on M is p related to a vector field X^{\prime} on M^{\prime} if
 respectively, then $[X, Y]$ is φ-related to $\left[X^{\prime}, Y^{\prime}\right]$. d, ψ 期

A distribution S of dimension r on a manifold M is arn wingrment to each point p of M an r-dimensional subspace S_{p} of $T_{g}(M)$. It is called differextiable if every point p has a neighborhood U and differentiable vector felds on U, , say, $X_{1}, \ldots, X, .$, which form a basis of S_{d} at every $q \in U$. The set X_{1}, \ldots, X_{τ} is called a local basis for the distribution S in U. 'A vector tied X is said th belong to S if $X_{p} \in S_{D}$ for all $p \in M$. Finally, S is called involutive if $[X, Y]$ belongs to S whenever two vector fields X and Y belong to S. By a distribution we 'shall always mean ad differentiable distribution.

A connected submanifold N orM is called an integral manifold of the distribution S if $f_{*}\left(T_{0}(N)\right) \Delta S$, for all $p \in N$, where f is the imbedding of N into M . If there is no other integral manifold of S which contains N, N is called a mpximed integral manifold of S. The classical theorem of Frobenius can be 'formulated as follows.

Proposition 1.2. Let S be an inbobutive distribution on a manifold M. Through every point $\mathrm{p} \in M$, there passes a unique maximal integral manifold $N(p)$ of S. Any integral manifold through p is an open puphmanifold of $N(p)$.
4.

For the proof, see Chevalley [1, p. 94]. We also state . N.
Proposition 1.3. Let S be an involutive distributiote e sat maintfold M. Let W be a submanifold of M whose connected compevints are all integral manifolds of S. Let f be a differentiable mapping of a manifold N
into M succe that $f(N) \subset W$. If W satisfies the second 'axiom of count$\overline{a b i l i t y}$, then f is differextiable as a mapping of N into W .

For the proof; set Chevalley [1, p. 95, Proposition 1]. Replace analyticity there by differentiability throughout and observe that \boldsymbol{W} ned not be connected since the differentiability of f is ,a local matter.
We now define the product of two manifolds \mathbf{M} and N of dimension m and \boldsymbol{n}, respectively. If M is defined by an atlas $\mathbf{A}=$ $\left\{\left(U_{i}, \varphi_{i}\right)\right\}$ and $N i$ defined by an atlas $B=\left\{\left(V_{j}, \psi_{j}\right)\right\}$, then the natural diffirentinble structure on the topologicalspace $M \times \mathrm{N}$ is defined by aingitlas $\left\{\left(U_{i} x V_{j}, \varphi_{i} \times \psi_{j}\right)\right\}$, where $\varphi_{i} \times \psi_{j}: U_{i} \times$ $\mathrm{v}, \rightarrow \mathbf{R}^{m+n}=\mathbf{R}^{4} \times \mathbf{R}^{n}$ is defined in a natural manner.. -Note, that this atlas is not complete even if A and \boldsymbol{B} are complete. For every point ($t, 0 \mathrm{l}$ of $M \times N$, the tangent space $T_{t, q, q}(M \times N)$ can be identified with the direct sum $T_{p}(M)+T_{o}(N)$ in a natural manner, Namely, for $\mathcal{G} \in T_{,}(M)$ and $\mathrm{Y} \in T_{0}(N)$, choose curves $x(t)$ and $y(t)$ such that X is tangent to $x(t)$ at $\mathrm{p}=x\left(t_{0}\right)$ and Y is tangent to $y(t)$ at $q=y\left(t_{0}\right)$. Then $(\mathbf{X}, \Sigma) \in T_{p}(M)+T,(\mathbf{N})$ is identified wiat the vector Z a $T_{(\rightarrow, 0)}(M \times N)$ which is tangent to the curve $z(t)=(x(t), y(t))$ at $(p, q)=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$. Let Xc $T_{(p, q)}(M \times M)$ be tie vector tangent to \& e curve $(\mathrm{x}(\mathrm{t}), q)$ in $\mathbf{M} \times \boldsymbol{N}$ at (p, q). Similarly, let $\bar{F} \in T_{(0,0)}(M \times N)$ be the vector tangent to the curve $(p, y(t))$ in $M \times N$ at (p, q). In other words, X is the image of X by the mapping $M \rightarrow M \times N$ which sends $p^{\prime} \in M$ into ($\boldsymbol{p}^{\prime}, \boldsymbol{q}$) and $\overline{\bar{Y}}$ is the image of Y by the mapping $N \rightarrow M \times N$ which sends $q^{\prime} \in N$ into $\left(p, q^{\prime}\right)$. Then ${ }^{\prime} Z=\bar{X}+\bar{Y}$, because, for any function f on $M \times N ; Z f=(d f(x(t), y(t)) / d t)_{t=t_{0}}$ is, by the chain rule, equal to

$$
\left(d f\left(x(t), \chi\left(t_{0}\right)\right) / d t\right)_{t-6}+\left(d f\left(x\left(t_{0}\right), y(t)\right) / d t\right)_{:=t_{0}}=x f+\bar{Y} f
$$

More generally,
Proposinon 144 Widibniz's formula), Let φ be a mapping of the product manifold $M \times N$ into another manifold $\cdot V$. The differential φ_{*} at $(p, q) \in M \times N$ can be expressed as follows. If $Z \in T_{(9,9)}(M \times N)$ corresponds to $(X, Y) \in T_{p}(M)+T(N)$, then

$$
\varphi_{*}(Z)=\varphi_{1 *}(X)+\varphi_{3 *}(\eta),
$$

$\varphi_{1}\left(p^{\prime}\right)=q\left(p^{\prime}, q\right)$ for $\notin \in M$ and $q_{2}\left(q^{\prime}\right)=\varphi\left(p, q^{\prime}\right)$.for \mathfrak{f}. $q^{\prime} \in N$.
Proof. From the definitions of $\bar{X}, \bar{Y}, \varphi_{1}$, and φ_{2}, it follows that $\varphi_{*}(\bar{X})=\varphi_{1 *}(X)$ and $\varphi_{*}(\bar{Y})=\mathrm{g},(\mathrm{Y})$. Hence, $\varphi_{*}(Z)=\varphi_{*}(\dot{X})+$ $\varphi_{*}(\bar{Y})=q_{1 *}(X)+\varphi_{2 *}(Y)$.

Q E D.
Note that if $V=M \times N$ ind q is fhe identity transformation," then the preceding proposition reduces to the formula $Z=X+\vec{Y}$.

Let X be a vector field on a manifold M. A curve $x(t)$ inf M is called an integral curve of X if, for every paraneter value ththe vector $X_{x\left(t_{0}\right)}$ is tangent to the curve $x(t)$ at $t\left(t_{0}\right)$. For any point p_{0}^{\prime} of M, there is a unique integral curve $x(t)$ of X, defined for $|t| \leqslant \varepsilon$ for some $\varepsilon>0$, such that $p_{0}=x(0)$. In fact, let u^{1}, \ldots, u^{n} be a local coordinate system in a neighborhood of p_{0} and let $X=\Sigma \xi(\partial / \partial u)$ in U. Then an integral curve of X is a solution of the following System of ordinary differential equations:

$$
d u^{j} / d t=\xi^{j}\left(u^{1}(t) ;, u^{n}(t)\right)
$$

Our assertion follows from the fundanentalithusem for systems of ordinary differential equatigns (ste Appendfient).
A 1-parameter group of (differetiable) tenytomations of Mis a:

(1) For each $t \in \mathbf{R}, \varphi \in p \rightarrow \varphi_{t}(p)$ is a transformadtion of M;
 Each 1-parameter group of transformations φ_{i} induces antector field X as follows. For every point $p \in M, X_{p}$ is the vector tangent to the curve $x(t)=\varphi_{1}(p)$, called the orbit of p, at $p=\varphi_{0}(p)$. The orbit $\varphi_{t}(p)$ is an integral curve of X starting at p. A local 1 -pazameteq group of local transformations can be defined in the same way, except that $q_{i}(p)$ is defined only for t in a neighborhood of 0 and p in an open set of M. More precisely, let I_{c} be an open interval $(-\varepsilon, \varepsilon)$ and U an open set of $M . \Lambda$ local 1 parameter grap of local transformations defined on $I_{e} \times U$ is a mapping of $\mathcal{I t}^{\prime} X$ into M which satisfies the following conditions:
(1^{\prime}) For each $t \in I_{t}, \varphi_{t}: p \rightarrow \varphi_{t}(p)$ is a diffeomorphism of U onto the open set $q_{t}(T)$ of M;
$\left(2^{\prime}\right)$ If $t, s, t+s \bullet I_{\varepsilon}$ and if $p, \varphi_{s}(p) \in U$, then

$$
\varphi_{t+s}(p)=\varphi_{i}\left(\gamma_{s}(p)\right)
$$

As in the case of a l-parameter group of transformations, $\boldsymbol{\varphi}_{\boldsymbol{t}}$ induces a vector field X defined on \boldsymbol{U}. We now prove the converse.

Proposition 1.5. Let X be a vector field on a manifold M. For each point p_{0} of M, there exist a neighborhood $U 0_{j}^{f} p_{0}$, a positive number ε and a local I-parameter group of local transformations $\varphi_{t}: U \rightarrow M$, $t \in I$, which induces the given X.

We shall say that X generates a local 1-parameter group of local transformations φ_{t} in a neighborhood of p_{0}. If there exists a (global) 1-parameter group of transformations of M which induces X, then we say that X is complete. If $\varphi_{t}(p)$ is defined on $\mathrm{I}, X \mathrm{M}$ for some ε, then X is complete.

Proof. Let $\boldsymbol{u}^{\mathbf{1}}, \ldots, \boldsymbol{u}^{\boldsymbol{n}}$ be a local coordinate system in a neighborhood W of p_{0} such 'that $u^{1}\left(p_{0}\right)=\ldots=u^{n}\left(p_{0}\right)=0$. Let $\mathrm{X}=\boldsymbol{\Sigma} \boldsymbol{\xi}^{\boldsymbol{i}}\left(\boldsymbol{u}^{\mathbf{1}} ; \ldots, u^{n}\right)\left(\partial / \partial u^{i}\right)$ in W. Consider the following system of ordinary linear differential equations :

$$
d f^{i} / d t=\xi^{i}\left(\cdot f^{1}(t), \ldots, \hat{f}^{n}(t)\right), \quad \mathrm{i}=1, \ldots, n
$$

with unknoivn functions $f(t), \therefore$. , $f^{n}(t)$. By the fundamental theorem for systems of ordinary differential equations (see Appendix 1), there exists a unique set of functions $f^{1}(t ; \mathrm{u})$ $f^{n}(t ; u)$, defined for $u=\left(u^{1}, \ldots, u^{n}\right)$ with $\left|u^{j}\right| \because \delta_{1}$ anh' for $|t|<\varepsilon_{1}$, which form a solution of the differential equation for each fixed u and satisfy the initial conditions:

$$
f^{i}(0 ; u)=u^{i}
$$

Set $\varphi_{t}(u)=\left(f^{\prime}(t ; u), \ldots, f^{n}(t ; u)\right)$ for $|t|<\varepsilon_{1}$ and u in $\boldsymbol{r}_{\boldsymbol{i}} I_{\ldots}$ $\left\{u ;\left|u^{i}\right|<\delta\right\}$. If $|t|, \cdot|s|$ and $\mathrm{It}+s \mid$ are all less than ε_{1} and both u and $\dot{\phi}_{s}(u)$ are anit U_{1}, then the functions $g^{i}(t)=f^{i}(t+s ; u)$ are easily seen to be a solution of the differential equation for the initial conditions $g^{i}(0)=f^{i}(s ; u)$. By the uniqueness of the solution, we have $g^{i}(t)=f^{i}\left(t ; \varphi_{s}(u)\right)$. This proves that $m_{1}\left(f_{s}(u)\right)=$ $\varphi_{t}(u)$. Since φ_{0} is thi identity transformation of U_{1}, there exist $\delta ン 0$ and $\varepsilon>0$ such that, for $U=\left\{u ;\left|u^{\imath}\right|<\delta\right\}, \varphi_{t}(U) \subset U_{1}$ if
$|t|<\varepsilon$. Hence, $\varphi_{-t}\left(\varphi_{t}(u)\right)=\varphi_{t}\left(\varphi_{-t}(u)\right)=\varphi_{0}(u)=u$ for every $u \in U$ and $|t|<\varepsilon$. This proves that φ_{i} is a diffeomorphism of U for $|t|<\varepsilon$. Thus, φ_{t} is a local 1-parameter group of local transformations defined on $I_{e} \times U$. From the construction of φ_{i}, it is obvious that φ_{t} induces the given vector field X in U. 'QED.
Remark. In the course of the preceding proof, we showed also that if two local I-parameter groups of local transformations φ_{t} and ψ_{t} defined on $I_{a} \times U$ induce the same vector field on U, they coincide on U.
Proposition 1.6. On a compact manifold \mathbf{M}, every vector feld \mathbf{X} is complete
Proof. For each point $p \in M$, let $U(p)$ be a neighborhood of p and $\varepsilon(p)$ a positive number such that the vector field X generates a local 1-parameter group of local transformations φ_{1} 'on $I_{\varepsilon(p)} \times U(p)$. Since M is compact, the open covering $\{\boldsymbol{U}(p) ; p \in M\}$ has a finite subcovering $\left\{U\left(p_{i}\right) ; i=1, \ldots, k\right\}$. Let' $\varepsilon=$ $\min \left\{\varepsilon\left(p_{1}\right), \ldots, \varepsilon\left(p_{k}\right)\right\}$. It is clear that $\varphi_{t}(p)$ is defined on $I_{\varepsilon} \times M$ and, hence, on $\mathrm{R} \times \mathrm{M}$.

QED.
In what follows, we shall not give explicitly the domain of definition for a given vector field X and the corresponding local 1 -parameter group of local transformations φ_{t}. Each formula; is valid whenever it makes sense, and it is easy to specify, if necessary, the domain of definition for vector. fields or transformations involved.

Proposition 1.7. Let φ bea transformation of M. If -a vector field X generates a local I-parameter group of local transformations φ_{t}, then the vector field $\varphi_{*} X$ generates $\varphi \circ \varphi_{t} \circ \varphi^{-1}$.

Proof. It is clear that $\varphi \circ \varphi_{t} \circ \varphi^{-1}$ is a local 1-parameter group of local transformations. To show that it induces the vector field $\varphi_{*} X$, let p be an arbitwary point of M and $q=\varphi^{-1}(p)$. Since φ_{t} induces X , the vettor $X_{a} \in \mathrm{~T},(\mathrm{M})$ is tangent to the curve $x(t)=\varphi_{t}(q)$ at $4=x(0)$. It follows that the vector

$$
\left(\varphi_{*} X\right)_{p}=\varphi_{*}\left(X_{a}\right) \in T_{p}(M)
$$

is tangent to the curve $y(t)=\varphi \circ \varphi_{t}(q)=\varphi \circ \varphi_{t} \circ \varphi^{-1}(p) . \quad$ QED. Coroanary 1.8. A vector field X is invariant by φ, that is, $\varphi_{*} X=X$, if and only if φ commutes with φ_{t}.

We now give a geometric interpretation of the bracket $[\mathrm{X}, \mathrm{Y}]$ of two vector fields.

Propositton 1.9. Let X and Y be vector fields on M. If X generates a local I-parameter group of local transformations φ_{t}, then

$$
[X, Y]=\lim _{t \rightarrow 0} \frac{1}{t}\left[Y-\left(\varphi_{i}\right)_{*} Y\right]
$$

M ore precisely,

$$
[X, Y]_{p}=\lim _{t \rightarrow 0} \frac{1}{t}\left[Y_{p}-\left(\left(\varphi_{t}\right)_{*} Y\right)_{p}\right], \quad P \in M
$$

The limit on the right hand side is taken with respect to the natural topology of the tangent vector space $T_{p}(M)$. We first prove two lemmas.

Lemмa 1. If $\mathrm{f}(t, p)$; is a function on $\mathrm{I}, \mathrm{x} \boldsymbol{M}$, where I , is an open interval $(-\varepsilon, \varepsilon)$, such that $f(0, p)=0$ for all $p \in M$, then there exists a function $g(t, p)$ on $I_{a} \times M$ such that $f(t, p)=\mathrm{t} \cdot \mathrm{g}(\mathrm{t}, \mathrm{p})$. M oreover, $g(0, p)=f^{\prime}(0, p)$, where $f^{\prime}=\partial f \mid \partial t$, for $p \in M$.

Proof. It is sufficient to define

$$
g(t, p)=\int_{0}^{1} f(t s, p) d s
$$

QED.

Lemma 2. Let X generate φ_{i}. For any function fon M, there exists a function $\mathrm{g}, \mathrm{p})=g(t, p)$ sich that $f \circ \varphi_{1}=f+t \cdot g_{t}$ and $g_{0}=X f$ on M .

The function $g(t, p)$ is defined, for each fixed $p \in M$, in $|t|<\varepsilon$ for some ε.
Proof. Consider $f(t, \not \boldsymbol{p})=f\left(\dot{p}_{t}(\boldsymbol{p})\right)-\mathrm{f}(\mathrm{p})$ and apply Lemma 1. Then $f \circ \varphi_{t}=f+t \cdot g_{t}$. We have

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(p_{t}(p)\right)-f(p)\right]=\lim _{t \rightarrow 0} \frac{1}{t} f(t, p)=\lim _{t \rightarrow 0} g_{t}(p)=g_{0}(p) .
$$

QED.
Proof of Proposition 1.9. Given a function f on $M_{\text {, take a }}$ function g_{t} such. that $f \circ \varphi_{t}=f+t \cdot g_{t}$ and $g_{0}=X f$ (Lemma 2). Set $p(t)=\varphi_{t}^{-1} \cdot(p)$. Then

$$
\left(\left(\varphi_{t}\right)_{*} Y\right)_{\mathfrak{n}} f=\left(Y\left(f \circ \varphi_{t}\right)\right)_{p(t)}=(Y f)_{p(t)}+t \cdot\left(Y g_{t}\right)_{p(t)}
$$

and

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{1}{t}\left[Y-\left(\varphi_{i}\right)_{*} Y\right]_{p} f & =\lim _{t \rightarrow 0} \frac{1}{t}\left[(Y f)_{p}-(Y f)_{p(t)}\right]-\lim _{t \rightarrow 0}\left(Y g_{t}\right)_{p(t)} \\
& =X_{v}(Y f)-Y_{p} g_{0}=[X, Y]_{p} f
\end{aligned}
$$

proving our assertion.
QED.
Corollary 1.10. With the same notations as in Proposition 1.9 we have more generally

$$
\left(\varphi_{s}\right)_{*}[X, Y]=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\varphi_{s}\right)_{*} Y-\left(\varphi_{s+t}\right)_{*} Y\right]
$$

for any value ofs.
Proof. For a fixed value of s, consider the vector field $\left(\varphi_{s}\right) * Y$ and apply Proposition J.9. Then we have

$$
\begin{aligned}
{\left[X,\left(\varphi_{s}\right)_{*} Y\right] } & =\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\varphi_{s}\right)_{*} Y-\left(\varphi_{t}\right)_{*} \circ\left(\varphi_{s}\right)_{*} Y\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\varphi_{s}\right)_{*} Y \quad\left(\varphi_{s+t}\right)_{*} Y\right]
\end{aligned}
$$

since $\varphi_{s} \circ \varphi_{t}=\varphi_{s+t}$. On the other hand, $\left(\varphi_{s}\right)_{*} X=X$ by Corollary 1.8. Since $\left(\varphi_{s}\right)_{*}$ presierves the bracket, we obtain

$$
\left(\varphi_{s}\right)_{*}[X, Y]=\left[X,\left(\varphi_{s}\right)_{*} Y\right] .
$$

QED.
Remark. The conclusion of Corollary 1.10 can be written as

$$
\left(d\left(\left(\varphi_{t}\right)_{*} Y\right) / d t\right)_{t=x}=--\left(\varphi_{s}\right)_{*}[X, Y] .
$$

Corolliry 1.11. Suppose X and Y generate local 1-parameter groups φ_{t} and ψ_{s}, respecitively. Then $\varphi_{t}{ }^{\circ} \psi_{s}=\psi_{s} \circ \varphi_{t}$ for every s and t if and only if $[\mathrm{X}, \mathrm{Y}]=0$.

Proof. If $\gamma_{t} \circ \psi_{s}=\psi_{s} \circ \gamma_{t}$ for every s and t, Y is invariant by every q_{t} by Corollary 1.8. By Proposition 1.9, $[X, Y]=0$. Conversely, if $[\mathrm{X}, Y]=0$, then $d\left(\left(\varphi_{t}\right)_{*} Y\right) / d t=0$ for every t by Corollary 1.10 (sec Remark, above). Therefore, $\left(\varphi_{t}\right)_{*} Y$ is a constantvector at each point p so that Y is invariant by every $\varphi_{i} \cdot \mathrm{By}$ Corollary 1.8 , every ψ_{s} commutes with every φ_{t}.

QED.

2. Tensor algebras

We fix a ground field F which will be the real number field R or the complex number field C in our applications. All vector spaces we consider arc finite dimensional over F unless otherwise stated. We define the tensor product $U \otimes \vee$ of two vector spaces U and V as follows. Let $M(U, \mathrm{~V})$ be the vector space which has the set $U \times \mathrm{V}$ as a basis, i.e., the free vector space generated by the pairs (u, v) where $u \epsilon U$ and $v \in \mathrm{~V}$. Let N be the vector subspace of $M(U, V)$ spanned by elements of the form

$$
\begin{aligned}
\left(u+u^{\prime}, v\right)-(u, v)-\left(u^{\prime}, v\right), & \left(u, v .+v^{\prime}\right)-(u, v)-\left(u, v^{\prime}\right), \\
(r u, v)-r(u, v), & (u, v)-r(u, v)
\end{aligned}
$$

where $u, u^{\prime} \in U, v, v^{\prime} \in V$ and $r \in \mathrm{~F}$. We set $U \otimes \mathrm{~V}=M(U, V) / N$. For every pair (u, v) considered as an element of $\mathrm{M}(U, \mathrm{~V})$, its image by the natural projection $\mathrm{M}(U, \mathrm{~V}) \rightarrow U \otimes \mathrm{~V}$ will be denoted by $u \otimes v$. Define the canonical bilinear mapping φ of $U \times \mathrm{V}$ into $U \otimes \vee$ by

$$
\quad \varphi(u, v)=u \otimes \geqslant \quad \text { for }(u, \mathrm{v}) \in U \times \vee
$$

Let- W be a vector space and $\psi: U, \quad$ x $\vee \rightarrow W$ a bilinear mapping. We say that the couple (W, y) has the universal factorization property for $U \mathbf{U} \times$ if for every vector space $\$$ and every bilinear mapping $f: U \times \vee \rightarrow \mathrm{S}$ there exists a unique linear mapping $g: W \rightarrow S$ such that $f=g \circ \psi$.

Froposition2.1. The couple (U (() V. φ) has the universal factorization property for $U \dot{\times V}$. If a couple (W, ψ) has the universal factorization proper\& for $U \times \vee$, then $(U \otimes V, \varphi)$ and (W, ψ) are isomorphic. in tire sense that there exists a linear isomorphism $\sigma: U \otimes \mathrm{~V} \rightarrow$ W^{*} such that $\psi=\sigma \circ \varphi$.

Proof. Let S be any vector space and $f: U \times \vee \rightarrow S$ any bilinear mapping. Since $U_{1} \times \vee$ is a basis for $M(U, \mathrm{~V})$, we can extend f to a unique linear mapping $f^{\prime}: M(U, V) \rightarrow S$. Since f is bilinear, f^{\prime} vanishes on' f. TTherefore, f^{\prime} induces a linear mapping $g: U \otimes \vee \rightarrow \mathrm{~S}$. Obviousvy, $f=\mathrm{g} \circ \varphi$. The uniqueness of such a mapping g follows from the fact that $q(U \mathrm{x} \vee)$ spans $U \otimes \mathrm{~V}$. Let (W, ψ) be a couple having the universal factorization property for $U \times V$. By the universal factorization property of $(U \otimes V, \varphi)$
(resp. of ($W, \psi)$), there exists a unique linear mapping $\sigma: U \otimes V \rightarrow$ W (resp. $\tau: W \rightarrow U \otimes V$) such that $\psi=\sigma \circ \varphi$ (resp. $\varphi=\tau \circ \varphi$). Hence, tp $=\tau \circ \sigma \circ \varphi$ and $\psi=\sigma \circ \tau \circ \psi$. Using the uniqueness of g in the definition of the universal factorization property, we conclude that $\tau \circ \sigma$ and $\sigma \circ \tau$ are the identity transformations of $U \times V$ and W respectively.

QED.
Proposition 2.2. There is a unique isomosphism of $U \otimes V$ onto $V \otimes U$ whick sends $u \otimes v$ into $v \otimes u$ for all $u \in U$ and $v \in V$.
Proof. Let $f: U \times V \rightarrow V \otimes U$ be the bilinear mapping defined by $f(u, v)=v \otimes u$. By Proposition 1.1, there is a unique linear mapping g: $U \otimes V \rightarrow V \otimes U$ such that $g(u \otimes v)=v \otimes u$. Similarly, there is a unique linear mapping g': $V \otimes U \rightarrow U \otimes V$ such that $\mathrm{g}^{\prime}(\mathrm{v} \otimes u)=u \otimes v$. Evidently, $g^{\prime} \circ \mathrm{g}$ and $\mathrm{g} \circ \mathrm{g}^{\prime}$ are the identity transformations of $U \otimes V$ and $V \otimes U$ respectively. Hence, g is the desired isomorphism.

QED.
The proofs of the following two propositions are similar and hence omitted.
'Proposition 2.3. If we regard the ground field \mathbf{F} as a I-dimensional vector space over F , there is a unique isomorphism of $\mathrm{F} \otimes U$ onto U which sends $7 \otimes u$ into ru for all $r \in \mathrm{~F}$ and $u \in U$. Similarly, for $U \otimes \mathrm{~F}$ and U.
Proposition 2.4. There is a unique isomarphism of $(U \otimes V) \otimes W$ onto $U \otimes(V \otimes W)$ which sends $(u \otimes v) \otimes w$ into $u \otimes(v \otimes w)$ for all $u \in U, v \in V$, and $w \in W$.
Therefore, it is meaning@to write $U \otimes V \otimes W$. Given vector spaces U_{1}, \ldots, U_{k}, the tensor product $U_{1} \otimes \cdots \otimes U_{k}$ can be defined inductively. Let $p: U_{i} \times \cdots \times U_{k} \rightarrow U_{1} \otimes \cdots, \otimes U_{k}$ be the multilinear mapping which sends (u_{1}, \ldots, u_{k}) into $u_{1} \otimes \cdots \otimes u_{k}$. Then, as in Froposition 2.1, the couple $\left(U_{1} \otimes\right.$ $\left.\cdots \otimes U_{k}, \varphi\right)$ can be characterized by the universal factorization property for $U_{1} \times \cdots \times U_{m}$

Proposition 2.2 can be also generalized. For any permitation π of $(1, \ldots, k)$, there is a unigue isomorphism of $U_{1} \otimes \cdots \otimes U_{k}$ π of $, \ldots, U_{\pi(1)} \otimes \cdots \otimes U_{\pi(k)}$ which sends $u_{1} \otimes \cdots \otimes u_{i}$ into $u_{\pi(1)} \otimes \cdots \otimes u_{\pi(k)}$.

Propostrion 2.4.1. Givan linear mappings $f_{j}: U_{3} \rightarrow V_{f} j=1,2$, there is a unique linear matpine $f i U_{1} \otimes U_{2} \rightarrow V_{1} \otimes V_{i}$ such that $f\left(u_{1} \otimes u_{2}\right)=f_{1}\left(u_{1}\right) \otimes f_{2}\left(u_{2}\right)$ for all $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$.

Proof. Consider the bilinear mapping $U_{1} \times U_{2} \rightarrow V_{1} \otimes V_{2}$ which sends $\left(u_{1}, u_{2}\right)$ into $f_{1}\left(u_{1}\right) \otimes f_{2}\left(u_{2}\right)$ and apply Proposition 2.1.

QED.
The generalization of Proposition 2.4.1 to the case with more than two mappings is obvious. The mapping f just given will be denoted by $f_{1} \otimes f_{2}$.
Proposition 2.5. if $U_{1}^{\prime}+\dot{U}_{2}$ denotes the direct sum of U_{1} and U_{2}, then'

$$
\begin{array}{ll}
& \left(U_{1}+U_{2}\right) \otimes V=U_{1} \otimes V+U_{2} \otimes V \\
\text { Similarly, } & U \otimes\left(V_{1}+V_{2}\right)=U \otimes V_{1}+U \otimes V_{2}
\end{array}
$$

Proof. Let $i_{1}: U_{1} \rightarrow U_{1}+U_{2}$ and $i_{2}: U_{2} \rightarrow U_{1}+U_{2}$ be the injections. Let $p_{1}: U_{1}+U_{2}^{1} \rightarrow U_{1}^{2}$ and $p_{2}: U_{1}^{2}+U_{2}^{1} \rightarrow U_{2}$ be the projections. Then $p_{1} \circ i_{1}$ and $p_{2} \circ i_{2}$ are the identity transformations of U_{1} and U_{2} respectively. Both $p_{2} \circ i_{1}$ and $p_{1} \circ i_{2}$ are the zero mappings. By Proposition 2.4.1, i_{1} and the identity transformation of V induce a linear mapping $i_{1}: U_{1} \otimes V \rightarrow\left(U_{1}+U_{2}\right) \otimes V$. Similarly, $\boldsymbol{i}_{2}, \boldsymbol{p}_{1}$, and $\bar{\phi}_{2}$ are defined. It follows that $\boldsymbol{\phi}_{1} \circ i_{1}$ and $\dot{p}_{2} \circ I_{2}$ are the identity transformations of $U_{1} \otimes V$ and $U_{2} \otimes V$ respectively and $\bar{\beta}_{2} \circ i_{1}$ and $\bar{\beta}_{1} \circ i_{2}$ are the zero mappings. This proves the first isomorphism. The proof for the second is similar.

By the induction, we obtain

$$
\left(U_{1}+\cdots+U_{k}\right) \otimes V=U_{1} \otimes V+\cdots+U_{k} \otimes V .
$$

Propostrion 2.6. If $u_{u_{1}}, \ldots, u_{m}$ is a basis for U and v_{1}, \ldots, v_{n} is a basis for V, then $\left\{u_{i} \otimes p_{j} ; i=1, \ldots, m ; j=1, \ldots, n\right\}$ is a basis for $U \otimes V$. In particular, $\operatorname{dim} U \otimes V=\operatorname{dim} U \operatorname{dim} V$

Rroot Let U_{i} be the 1 -dimensional subspace of \dot{U} spanned by u_{i} and $V_{\text {, }}$ the 1 -dimensional subspace of V spanned by v_{j}. By Proposition 2,

$$
U \otimes V=\Sigma_{i, j} U_{i} \otimes V_{p}
$$

By Proposition 2.3, each $\boldsymbol{U}_{\boldsymbol{i}} \otimes \boldsymbol{V}_{\boldsymbol{j}}$ is a I-dimensional vector space spanned by $u_{i} \otimes v_{i} . \quad$ QED.

For a vector space U, we denote by \boldsymbol{U}^{*} the dual vector space of U. For $u_{6} U^{U}$ and $u^{*} \sigma U^{*},\left(\boldsymbol{u}, \boldsymbol{u}^{*}\right)^{*}$ denotes the value of the linear functional u^{*} on u.

Proposition 2.7. Let $L\left(U^{*}, \mathrm{~V}\right)$ be the space of linear mappings of U^{*} into V. Then there is a unique isomorphism g of $U \otimes \vee$ onto $L\left(U^{*}, V\right)$ such thait
$(g(u \otimes) v) u^{*}=\left\langle u, u^{*}\right\rangle v \quad$ for all $u \bullet U, \vee \in \mathrm{~V}$ and $u^{*} \in U^{*}$.
Proof. Consider the bilinear mapping $f: U \mathrm{x} \mathrm{V} \rightarrow L\left(U^{*}, \mathrm{~V}\right)$ defined by $(f(u, v)) u^{*}=\left\langle u, u^{*}\right\rangle v$ and apply Proposition 2.1. Then there is a unique linear mapping, $g: U \otimes V \rightarrow L\left(U^{*}, \mathrm{~V}\right)$ such that $(g(u \otimes v)) u^{*}=\left\langle u, u^{*}\right\rangle v$. To prove that ${ }^{*} g$ is an isomorphism, let u_{1}, \ldots, u_{m} be a basis for $U, u_{1,}^{*} \ldots, u_{m}^{*}$ 'the dual basis for U^{*} and $v_{1}, \ldots, \mathrm{v}$, , a basis for V . We shall show that $\left\{g\left(u_{i} \otimes v_{j}\right) ; i=1, \ldots, m ; j=1, \ldots, n\right\}$ is linearly independent. If. $\sum a_{i j} g\left(u_{i} \otimes v_{j}\right)=0$ where $a_{i j} \in \mathrm{~F}$, then

$$
0=\left(\Sigma a_{i j} g\left(u_{i} \otimes v_{j}\right)\right) u_{k}^{*}=\Sigma a_{k j} v_{j}
$$

and, hence, all $a_{i j}$ vanish. Since $\operatorname{dim} U U^{\otimes} V=\operatorname{dim} L\left(U_{\text {QED. }}^{*} \cdot V\right)$, g is an- isomorphism of $U() \vee$ onto $L\left(U^{*}, \mathrm{~V}\right)$.
Proposition 2.8. Given 'two vector spaces U and V , therk is \boldsymbol{a} unique isomorphism g of $U^{*} \otimes \mathrm{~V}^{*}$ onto $(\mathrm{U} \otimes \mathrm{V})^{*}$ such that

$$
\begin{aligned}
& \left(g\left(u^{*} \otimes v^{*}\right)\right)(u \otimes v)=\left\langle u, u^{*}\right\rangle\left\langle v, v^{*}\right\rangle \\
& \quad f o r, a l l u \in U, u^{*} \in U^{*}, v^{*} \in V, v^{*} \epsilon V^{*}
\end{aligned}
$$

Proof. Apply Proposition 2.1 -to the bilinear mapping $f: U^{*} \times \mathrm{v}^{*} \rightarrow(U \otimes V)^{*} \quad$ defined b y $\quad\left(f\left(u^{*}, i^{*}\right)\right)(u \otimes v)=$ $\left\langle u, u^{*}\right\rangle\left\langle v, v^{*}\right\rangle$. To prove that g ist an isomorphism,' take bases for $U, \mathrm{~V}, U^{*}$, and V^{*} and proceed as in the proof of Proposition 2.7.

QED.
We now define various tensor spaces over a fixed vector space V. For a positive integer ${ }^{2} r$, we shall call $\mathbf{T}^{r}=V \otimes \cdots \otimes V(r$ times tensor product) the contravariant tensor space of dearoe r, An element of \mathbf{T}^{\dagger} will be called a contravariant tensor of degree r. If $r=1$, $\mathbf{T}^{\mathbf{1}}$ is nothing. but V . By convention, we agree that $\mathbf{T}^{\text {is }}$ the ground field F itself. Similarly, $\mathbf{T}_{s}=V^{*} \otimes \cdots \otimes V^{*}$ (s times tensor product) is called the covariant tensor space of degree \mathbf{s} andits elements covariant tensors of degree s. 'Then $\mathbf{T}_{1}=V^{*}$ and, $\mathbf{t i b y}$ convention, $\mathbf{T}_{0}=\mathrm{F}$.
We shall give the exp ressions for these tensors with respect to a basis of V : Let $\boldsymbol{e}_{1}, \ldots, \ell_{n}$ be a basis for V and $\boldsymbol{\ell}^{1}, \ldots, \mathrm{e}^{n}$ thic dual
basis for V^{*}. By Proposition 2.6, $\left\{e_{i_{1}} \otimes \cdots \otimes e_{i ;} ; 1 \leqq i_{1}, \ldots\right.$ $\left.i_{r} \leqq \mathrm{n}\right\}$ is a basis for T,. Every contravariant tensor K of degree r can bexpressed uniquely as a linear combination

$$
K=\Sigma_{i_{1} \ldots \ldots i_{i} k^{i_{1} \ldots i_{r}} e_{i_{1}} \otimes \cdots \otimes e_{i-r}}
$$

where $\mathbb{K}_{1} i_{1} i_{r}$ are the components of K with respect to the basis e_{1}, \ldots, e_{n} of V. Similarly, every covariant tensor L of degree s can 4 expressed uniquely as a linear combination

$$
\mathrm{L}=\Sigma_{j_{1}, \ldots, j_{r}} L_{j_{1} \ldots j_{r}}^{p_{1}} \otimes \cdot \cdot \otimes \|_{r}^{j_{r}}
$$

where $L_{j_{1}},,_{j}$, are the components of L.
For a change of basis of V, the components of tensors are subject to the following transformations. Let ℓ_{1}, $1, ., e_{n}$
nsformation two bases of V related by a linear transformation

$$
\bar{e}_{i}=\Sigma_{j} A_{i}^{j} e_{j}, \quad i=1, \ldots, n
$$

The corresponding change of the dual bases in $V *$ is given by

$$
\dot{\tilde{e}^{i}}=\Sigma, B j e^{i}, \quad i=1, \ldots, n
$$

where $\mathrm{B}=\left(B_{j}^{i}\right)$ is the inverse matrix of the matrix $\mathrm{A}=\left(A_{j}^{i}\right)$ so that

$$
\Sigma_{j} A_{j}^{i} B_{k}^{j}=\delta_{k}^{i}
$$

If K is a contravariant tensor of degree r, its components $K^{i,} \cdots$. ${ }^{i}$, and $\bar{K}^{i_{1} \ldots i}$, with respect to $\left\{e_{i}\right\}$ and $\left\{\bar{e}_{i}\right\}$ respectively are related by

$$
\bar{K}_{1}^{i_{1} \ldots i_{r}}=\Sigma_{j_{1}} \cdots,{ }_{j_{r}} A_{j_{1}}^{i_{1}} \cdots A_{j_{r}}^{i_{r}} K_{j}^{j_{1}} \cdots j_{r} .
$$

Similarly, the components of a covariant tensor L of degree sm-e related by.

The verification of these formulas is left to the reader
We define the" (ndixed lensor space of type (r, s), or tensor space of contravariant degree r and, covariant degree s, as the tensor product $\mathbf{T}_{s}^{r}=\mathbf{T}^{r} \otimes \mathbf{T}_{s}=V \otimes+\cdots \otimes \boldsymbol{\theta} \otimes V^{*} \otimes^{\prime} \cdots\left(\otimes V^{*}(V: r\right.$ times, $V^{*}: s$ times). In particulas, $\mathbf{T}_{0}^{r}=\mathbf{T}^{r}, \mathbf{T}_{s}^{0}=\mathbf{T}_{s}^{(\otimes)}$ and $\mathbf{T}_{0}^{0}=\mathbf{F}$. An clement of \mathbf{T}_{s}^{r} is called a tenser, of type (r, s), or tensor of contravariant degreer and covariant degrees. In terms of a basis e,,
the dual basis $\boldsymbol{e}^{\mathbf{1}}, \ldots, \boldsymbol{\ell}^{n}$ of V^{*}, every tensor K of type (r, s) can be expressed uniquely as

$$
K=\Sigma_{i_{1}}, \ldots, i_{r}, j_{1}, \ldots, j, K_{j_{1}}^{i_{1}} \ldots i_{j} i_{5} e_{i_{1}} \otimes, \cdots \otimes e_{i_{r}} \otimes e_{1}^{j_{1}} \otimes \ldots \otimes e^{j_{r}}
$$

where $K_{j_{1}}^{i_{1} \ldots j, j_{1}}$ are called the components of \mathbf{K} with respect to the basis $\mathrm{e}_{1}, \ldots, e_{n}$. For a change of basis $\tilde{e}_{i}=\Sigma_{j} A_{i}^{i_{j}}$, we, have the following transformations of components: (2.1) $\quad K_{j_{1}}^{i_{1} \ldots i_{1}}=\boldsymbol{\Sigma} \boldsymbol{A}_{\boldsymbol{p}_{1}}^{\boldsymbol{p}_{1}} \cdots A_{\boldsymbol{i}_{r}}^{i_{r}} B_{j_{1}}^{m_{1}} \cdots \boldsymbol{B}_{j_{1}}^{m_{2}} K_{m_{1}}^{k_{1} \ldots m_{t}}$.
 $\Sigma_{r, s=0}^{\infty} K_{d}^{r}$, where $K_{s}^{r} \bullet \mathbf{T}_{s}^{\boldsymbol{r}}$ are zero except for a finite number of them. We shall now make T into an associative algebra over F by defining the product of two tensors $\mathbf{K} \boldsymbol{\epsilon} \mathbf{T}_{\boldsymbol{z}}^{\boldsymbol{T}}$ and $L \in \mathbf{T}_{q}^{p}$ as follows. From the universal factorization property of the tensor product, it follows that there exists a unique bilinear mapping of $\mathbf{T}_{s}^{\mathbf{x}}$ \mathbf{T}_{q}^{p} into \mathbf{T}_{s+q}^{r+p} which sends $\left(\nu_{1} \otimes \cdot \ldots \otimes p_{r} \otimes v_{1}^{*} \otimes \ldots \otimes v_{s}^{*}\right.$, $\left.w_{1} \otimes \cdots \otimes w_{p} \otimes w_{1}^{*} \otimes \cdots \otimes w_{q}^{*}\right) \in \mathbf{T}_{s} \times \mathbf{T}_{q}^{p}$ into $v_{1} \otimes \cdots \otimes$ $v_{\mathrm{r}} \otimes w_{1} \otimes \cdots \otimes w_{p} \otimes p_{1}^{*} \otimes \cdots \otimes v_{i}^{*} \otimes w_{1}^{*} \otimes \cdots \otimes w_{q}^{*} \in \mathbf{T}_{s+q}^{*} \boldsymbol{q}$. The image of $(\mathbb{K}, L) \in \mathbf{T}_{\mathbf{B}}^{\boldsymbol{j}} \times \mathbf{T}_{q}^{p}$ by this bilinear mapping will be denoted by $\mathbf{K} \otimes \mathbf{L}$. In terms of components, if \boldsymbol{K} is given by $K_{j_{1}}^{i_{1}} \ldots j_{j}^{i}$, \quad and L is given by $L_{m_{1}}^{k_{1} \ldots m_{m_{2}}}$, then

$$
(K \otimes L))_{j_{1} \ldots j_{n+\infty}}^{i_{1} \ldots j_{1}}=K_{j_{1}}^{i_{1} \ldots j_{i}} L_{j_{+1} \ldots j_{1+\infty}}^{i_{1}} .
$$

We now define the notion of contraction. Let $r, s \geqq 1$. To each ordered pair of integers (i, j) such that $1 \leqq i \leqq r$ and $1 \leqq j \leqq s$, we associate a linear mapping, called the contraction and denoted by C, of $\mathbf{T}_{s}^{\boldsymbol{r}}$ into $\mathbf{T}_{s-1}^{\boldsymbol{r}-1}$ which maps $\overline{\mathrm{p}}_{1} \otimes \cdots \otimes v_{\mathrm{f}} \otimes v_{1}^{*} \otimes \cdots \otimes v_{s}^{*}$ into

$$
\begin{array}{r}
\left\langle v_{i}, v_{j}^{*}\right\rangle \nu_{1} \otimes \cdots \otimes v_{i-1} \otimes v_{i+1} \otimes \cdots \otimes v_{r} \\
\otimes v_{1}^{*} \otimes \cdots \otimes v_{j-1}^{*} \otimes v_{j+1}^{*} \otimes \cdots \otimes v_{s}^{*}
\end{array}
$$

where $v_{1}, \ldots, v_{r} \epsilon \cdot V$ and $v_{1}^{*}, \ldots, v_{i}^{*} \in V^{*}$. The uniqueness and the existence of C follow from the universal factorization property of the tensor product. In terms of components, the contraction C
 CK $\boldsymbol{\epsilon} \mathbf{T}_{s-1}^{\boldsymbol{r}-1}$ whose components, are given
where the superscript \boldsymbol{k} appears at the \boldsymbol{i}-th position and the subscript k appears at the j -th position.

We shall now interpret tensors as multilinear mappings.
Proposition 2.9. $\quad \mathbf{T}_{r}$ is isomorphic, in a natural way, to the vector space of all r -linear mapping's of $\mathbf{V} \times \ldots \times \mathrm{V}$ into F .

Proposition 2. 10. \mathbf{T}^{r} is isomor phic, in a natural way, to the vector space of all r-linear mappings of $\mathrm{V}^{*} \times \cdots \times \mathrm{V} *$ into F .
Proof. We prove only Proposition 2.9. By generalizing Proposition 2.8, we see that $\mathbf{T}_{r}=\mathbf{V}^{*} \otimes \cdots \otimes \mathrm{~V}^{*}$ is the dual vector space of $\mathbf{T}^{r}=\mathrm{V} \otimes \ldots \otimes \mathbf{V}$. On the other hand, it follows from the universal factorization property of the tensor product that the space of linear mappings 'of $\mathbf{T}^{r}=V \otimes \ldots \otimes \mathrm{~V}$ into F is isomorphic to the space of r -linear niappings of $\mathbf{V} \mathbf{x} \cdot{ }^{\circ}$ $x \quad V$ into \mathbf{F}.

QED.
Following the interpretation in Proposition 2.9, we consider a tensor $\boldsymbol{K} \boldsymbol{\epsilon} \mathbf{T}_{r}$ as an r-linear mapping $\mathbf{V} \mathbf{x} \cdots \mathbf{x} \mathbf{V} \rightarrow \mathrm{F}$ and write $K\left(v_{1}, \ldots, v_{r}\right) \epsilon \mathrm{F}$ for $v_{1}, \ldots, v_{r} \epsilon \mathbf{V}$.

Proposition 2.11. \mathbf{T}_{r}^{1} is- isomorphic, in a natural way, to the vector space of all r-linear mappings of $\mathrm{V} \times \cdots \times \mathrm{V}$ into V .
Proof. \mathbf{T}_{r}^{1} is, by definition, $\mathrm{V} \otimes \mathrm{T}$, which is canonically isomorphic with $\mathbf{T}_{r} \otimes \mathrm{~V}$ by Proposition 2.2. By Proposition 2.7, $\mathbf{T}_{r} \otimes \mathbf{V}$ is isomorphic to the space of linear mappings of the dual space of \mathbf{T}_{r}, that is \mathbf{T}^{r}, into V. Again, by the universal factorization property of the tensor product, the space of linear mappings of \mathbf{T}^{r} into V can be identified with the space of r -linear mappings of v x $\cdots \mathrm{x} V$ into V.

QED.
With this interpretation, any tensor \mathbf{K} of type $(1, \mathbf{r})$ is an \mathbf{r}-linear mapping of $\mathbf{V} \mathbf{x} \cdots \mathbf{x} \mathbf{V}$ into \mathbf{V} which maps $\left(v_{1}, \ldots, v_{r}\right)$ into $K\left(v_{1}, \ldots, v_{r}\right) \in \mathbf{V}$. If $e_{1}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}$ is a basis for \mathbf{V}, then $\mathbf{K}=$ $\Sigma K_{j_{1}}^{j_{1}} \ldots j_{r} e_{i} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{r}}$ corresponds to an r-linear mapping of $\mathrm{V} \times, \cdots \mathrm{X} V$ into V such that $K\left(e_{j_{1}}, \ldots, e_{j_{r}}\right)=\Sigma_{i} K_{j_{1}}^{i} \cdot{ }_{\cdot j} \boldsymbol{e}_{i}$.
Similar interpretation can be made for tensors of type (\mathbf{r}, \mathbf{s}) in general, but we shall not go into it.
Example 2.1. If $\boldsymbol{v} \in \boldsymbol{V}$ and $\boldsymbol{v}^{*} \in V^{*}$, then $\boldsymbol{v} \otimes v^{*}$ is a tensor of type (1,1). The contraction C: $\mathbf{T}_{1}^{1} \rightarrow \mathrm{~F}$ maps $\vee \otimes v^{*}$ into $\left\langle v, v^{*}\right\rangle$. In general, a tensor \boldsymbol{K} of type (1, 1) can be regarded as a linear endomorphism of \mathbf{V} and\&e contraction $\mathbf{C K}$ of K is then the trace of the corresponding endomorphism. In fact, if $e_{1}, \ldots ., e_{n}$ is a
basis for V and K has components K_{j}^{i} with respect to this basis, then the cndomorphism corresponding to K sends e_{j} into $\Sigma_{i} K_{j}^{j} e_{i}$, Clearly, the trace of K and the contraction $C K$ of K are both equal to $\Sigma_{i} K_{i}^{i}$.

Example 2.2. An inner product g on a real vector space V is a covariant tensor of degree 2 which satisfies (1) $g(v, v) \rightrightarrows 0$ and $g(v, v)=0$ if and only if $v=0$ (positive definite) and (2) $g\left(v, \mathrm{u}^{\prime}\right)=g\left(v^{\prime}, v\right)$ (symmetric).

Let $\mathrm{T}(\mathrm{U})$ and $\mathrm{T}(\mathrm{V})$ be the tensor algebras over vector spaces U and V . If A is a linear isomorphism of. U onto V, then its transpose A^{*} is a linear isomorphism of V^{*} onto U^{*} and A^{*-1} is a linear isomorphism of U^{*} onto V^{*}. By Proposition 2.4 , we obtain a linear isomorphism $A \otimes A^{*-1}: U \otimes U^{*} \rightarrow V \otimes V^{*}$. In'general, we obtain a linear isomorphism of $\mathrm{T}(\mathrm{U})$ onto $\mathrm{T}(\mathrm{V})$ which maps $\mathbf{T}_{s}^{r}(U)$ onto $\mathbf{T}_{s}^{r}(V)$. This isomorphism, called the extension of A and denoted by the same letter A, is the unique algebra isomorphism $\mathbf{T}(U) \rightarrow \mathrm{T}(\mathrm{V})$ which extends A: $U \rightarrow \mathrm{~V}$; the uniquèness follows from the fact that $\mathrm{T}(\mathrm{U})$ is generated by F, U and U^{*}. It is also easy to see that the extension of A commutes with ewery: contraction C .

Proposition 2.12There is a natural $1: 1$ correspondence between the linear isomorphisms of a iector space U onto another vetor space V and the algehra isomorphisms of $\mathrm{T}(\mathrm{U})$ onto $\mathrm{T}(\mathrm{V})$ which preserve type and commule with contractions.
In particular, the group of automorphisms of V is isomorphic, in a natural zear, with the group of automorphisms of the tensor algebra $\mathrm{T}(V)$ which presserze type and commute with contractions.

Proof. The only thing which has to be proved now is that every algebra isomorphism, say f, of $\mathrm{T}(\mathrm{U})$ onto $\mathrm{T}(V)$ is induced from an isomorphism A of C onto V, provided that f preserves type and commutes with contractions. Since f is type-preserving, it map)s $\mathbf{T}_{n}^{\prime} V^{\prime}-\mathrm{I}^{\prime}$, isomorphically onto $\mathbf{T}_{0}(\mathrm{~V})=V$. Denote the restrict ion of f to l^{\prime} by . L. Since f maps every element of the field F $\mathbf{T}_{10}^{\prime \prime}$ into itself and commutes with every contraction C, we have. for all $u \in l^{\circ}$ and $u^{*} \in l^{* *}$,

$$
\begin{aligned}
\cdot \mathrm{lu}, f u^{*}=f u, f u^{*} & =C\left(f u \otimes f u^{*}\right)=C\left(f\left(u \otimes u^{*}\right)\right) \\
& =f\left(C\left(u \otimes u^{*}\right)\right)=f\left(\left\langle u, u^{*}\right\rangle\right)=\left\langle u, u^{*}\right\rangle .
\end{aligned}
$$

Hence, $f u^{*}=A^{*-1} u^{*}$. The extension of A and f agrees on F, U and $U^{* *}$. Since the tensor algebra $\mathrm{T}(\mathrm{U})$ is generated by F, U and U^{*}, f coincides with the extension of A.

QED.
Let T be the tensor algebra over a vector space I. A linear endomorphism D of T is called a derivation if it satisfies the following conditions :
(a) D is type-preserving, i.e., D maps \mathbf{T}_{s}^{r} into itself;
(b) $D(K \otimes L)=D K \otimes \mathrm{~L}+K \otimes D L$ for all tensors K and L ;
(c) D commutes with every contraction C .

The set of derivations of T forms a vector space. It forms a Lie algebra if we set $\left[D, D^{\prime}\right]=D D^{\prime} \quad D^{\prime} D$ for derivations $\left.l\right)$ and D^{\prime}. Similarly, the set of linear endomorphisms of V forms a lic algebra, Since a derivation D maps $\mathbf{T}_{0}^{1}=I^{\prime}$ into itself by (a), it induces an endomorphism, say B, of V.
Proposition 2.13. The Lie algebra of derivations of $\mathrm{T}(V)$ in isomorphic with the Lie algebra of endomorphisms of V . The isomorphism is given by assigning to each derivation its restriction to V .
Proof. It is clear that $D \rightarrow B$ is a Lie algebra homomorphism. From (b) it follows easily that D maps every clement of F into 0 . Hence, for $v \in \mathrm{~V}$ and $v^{*} \in \mathrm{~V}^{*}$, we have

$$
\begin{aligned}
0=D\left(\left\langle\dot{v}, v^{*}\right)\right. & =D\left(C\left(v \otimes v^{*}\right)\right)-C\left(D\left(v \otimes v^{*}\right)\right) \\
& \left.=C\left(D v \otimes v^{*}+v \otimes D v^{*}\right)=D v, i^{*}\right)+i^{*}, D i^{*}
\end{aligned}
$$

Since $\mathrm{Dv}=\mathrm{Bv}, D v^{*}=B^{*} \tau^{*}$ where B^{*} is thd transpose of B. Since T is generated by F, V and V^{*}, D is uniquely determined its restriction to F, V and V^{*}. It follows that $D>B$ is injective. Conversely, given an endomorphism B of V we define $D a \quad 0$ for a $\epsilon \mathrm{F}, D v=B v$ for $v \in \mathrm{~V}$ and $D v^{*}=-B^{*} i^{*}$ for $r^{*}{ }_{\epsilon} V^{*}$ and, then, extend D to a derivation of T by (b). The existence of D) follows from the uhiversal factorization property of the tensor product.
(QED.
Example 2.3. Let, \boldsymbol{K} be a tensor of type $(1,1)$ and consider it as an cndomorphism of V. Then the automorphism of $\mathbf{T}(I)$ induced by an automocphism A of V maps the tensor K into the tensor $A K A^{-1}$. On the other hand, the derivation of $\mathbf{T}(\Gamma$ induced by an endombrphism B of V maps K into $[B, K]=B K \rightarrow K B$.

3 . Tensor fields

Let $T_{x}=T_{x}(M)$ be the tangent space to a manifold M at a point x and $\mathbf{T}(x)$ the tensor algebra over $T_{x}: \mathbf{T}(x)=\Sigma \mathbf{\Sigma}_{s}^{v}(x)$, where $\mathbf{T}_{s}^{r}(x)$ is the tensor space of type (r, s) over T_{x}. A tensor field of $t y p e(r, s)$ on a subset N of M is an assignment of a tensor $K_{x} \in \mathbf{T}_{s}^{r}(x)$ to each point x of N. In a coordinate neighborhood U with a local coordinate system x^{1}, \ldots, x^{n}, we take $X_{i}=\partial / \partial x^{i}$, $i=1, \ldots, n$, as a 'basis for each tangent space $T_{x}, x \in U$, and $\omega^{i}=d x^{i}, i=1, . .,,_{\text {, }}$ as the dual basis, of T_{x}^{*}. A tensor field K of type (r, s) defined on U is then expressed by

$$
K_{x}=\Sigma K_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{i_{1}}} X_{i_{1}} \otimes \cdots \otimes X_{i_{r}} \otimes \omega^{j_{1}} \otimes \cdots \otimes \omega^{j_{c}}
$$

where $K_{j_{1}}^{i_{1}} \cdots j_{s}^{\prime}$ are functions on U, called t.he components of K with respect to the local coordinate system x^{1}, \ldots, x^{n}. We say that κ is of class C^{k} if its components $K_{j_{1}}^{i_{1}} \ldots j_{s}^{i_{s}}$ are functions of class C^{k}; of course, it has to be verified that this notion is independent of a local coordinate system. This is easily, done by means of the formula (2.1) where the matrix $\left(A_{i}^{i}\right)$ is to be replaced by the Jacobian matrix between two local coordinate systems. From now on, we shall mean by a tensor field that of class $C^{\text {x }}$ unless otherwisc stated.
In section 5, we shall interpret a tensor field as a differentiable cross section of a certain fibre bundle over M. We shall give here another interpretation of tensor fields of type $(0, r)$ and $(1, r)$ from the viewpoint of Propositions 2.9 and 2.11. Let \mathfrak{F} be the algebra of functions (of class C^{∞}) on M and \mathfrak{X} the s-module of vector fields on M.

Proposition 3.1. A tensor field K of type $(0, r)($ resp. type $(1,7)$ on M can be considered as an r-linear mapping of $\mathfrak{X} \mathbf{x} \cdots \mathbf{x} \mathfrak{X}$ into \mathfrak{F} (resp. X) such that

$$
\begin{array}{r}
K\left(f_{1} X_{1}, \ldots, f_{r} X_{r}\right)=f_{1} \cdots f_{r} K\left(X_{1}, \ldots, X_{r}\right) \\
\text { for } f_{i} \in \tilde{F} \text { and } X_{i} \in X .
\end{array}
$$

Conversely, any such mapping can be considered as a tensor field of type $(0, r)($ resp. type $(1, r))$.
Proof. Given a tensor field K of type $(0, r)$ (resp. type ($1, r)$), K_{x} is an r-linear mapping of $T_{x} \mathrm{x} \cdots \mathrm{x} T_{x}$ into R (resp. T_{x})
y proposition 2.9 (resp, Proposition 2.11) and hence ($\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{r}$) $\rightarrow\left(K\left(X_{1}, \ldots, X_{r}\right)\right)_{x}=K_{x}\left(\left(X_{1}\right)_{x}, \ldots,\left(X_{r}\right)_{x}\right)$ is an r-linear mapping of $\mathfrak{X} \times \cdots, \mathfrak{x}$ into \mathfrak{F} (resp. \mathfrak{X}) satisfying the preceding condition. Conversely, let $K: \mathfrak{X} \times \ldots$ x $\mathfrak{X} \rightarrow \mathfrak{F}$ (resp. \mathfrak{X}) be an r-linear mapping over \mathfrak{F}. The essential point of the proof is to show that the value of the function (resp. the vector field) $K\left(X_{1}, \ldots, X_{r}\right)$ at a point x depends only on the-values of X_{i} at x. This will imply that K induces an r-linear mapping of. $\mathrm{T},(\mathrm{M}) \mathrm{x} \ldots \mathrm{x} \mathrm{T},(\mathrm{M})$ into R (resp. $T_{x}(M)$) for each x. We first observe that the mapping K can be localized. Namely, we have

Lemma. If $X_{i}=Y_{i}$ in a neighborhood U of \boldsymbol{x} for $i=1, \ldots, r$, thin wehave

$$
K\left(X_{1}, \ldots, X_{r}\right)=K\left(Y_{1}, \ldots, Y_{r}\right) \text { in } U .
$$

Proof of Lemma. It is sufficient to show that if $X_{1}=0$ in U, then $K\left(X_{1}, \ldots, X_{r}\right)=0$ in U. For anyy ϵU, let f be a differentiable function on M such that $f(y)=0$ and $f=\mathrm{I}$ outside U. Then $X_{1}=f X_{1}$ and $K\left(X_{1}, \ldots, X_{r}\right)=f K\left(X_{1}, \ldots, X_{r}\right)$, which vanishes atp. This proves the lemma.

To complete the proof of Proposition 3.1, it is sufficient to show that if X_{1} vanishes at a point x, so does $K\left(X_{1}, \ldots, X_{r}\right)$. Let $\boldsymbol{x}^{1}, \ldots, x^{n}$ be a coordinate system around x so that $X_{1}=$ $\Sigma_{i} f^{i}\left(\partial / \partial x^{i}\right)$. We may take vector fields Y_{i} and differentiable functions g^{i} on M such that $g^{i}=f^{i}$ and $Y_{i}=\left(\partial / \partial x^{i}\right)$ for $i=1$, in some neighborhood U of x. Then $X_{1}=\Sigma_{i} g^{i} Y_{i}$ in U. By the lemma, $K\left(X_{1}, \ldots, X_{r}\right)=\Sigma_{i} g^{i} \cdot K\left(Y_{i}, X_{2}, \ldots, X_{r}\right)$ in U. Since $g^{i}(x)=f^{i}(x)=0$ for $i=1, \ldots ; n, K\left(X_{1}, \ldots, X_{r}\right)$ vanishes at x.

QED.
Example 3.1. A (positive definite) Riemannian metric on M is a covariant tensor field g of degree' 2 which satisfies (1) $g(X, X) \geqq 0$ for all $\mathrm{X} \in \mathfrak{X}$, and $\mathfrak{g}(\boldsymbol{X}, \mathrm{X})=0$ if and only if $\mathrm{X}=0$ and (2) $g(Y, \mathrm{X})=g(X, \mathrm{Y})$ for all X, YE \mathfrak{X}. In other words, g assigns an inner product in each tangent space $T_{x}(M), \boldsymbol{x} \in \mathrm{M}$ (cf. Example 2.2). In terms of a local coordinate system $x^{\mathrm{I}}, \ldots, x^{n}$, the components of g are given. by $g_{i j}=g\left(\partial / \partial x^{i}, \partial / \partial x^{i}\right)$. It has been customary to write $d s^{2}=\mathbf{\Sigma} g_{i j} d x^{i} d x^{3}$ for g.

Example 3.2, A differential form $\boldsymbol{1}$ of degree r is nothing but a covariant tensor field of degree x which is skew-symmetric:

$$
\varphi\left(X_{\pi(1)}, \ldots, X_{\pi(1)}\right)=\varepsilon(\pi)(1)\left(X_{1}, \ldots, X_{r}\right)
$$

where π is an arbitrarv permutation of $(1,2, \ldots, r)$ and $\varepsilon(\pi)$ is its sign. For any covalant tensor K at x or any covariant tensor field K on M, we define the alternation A as follows:

$$
(A K)\left(X_{1}, \ldots, X_{r}\right)=\frac{1}{r!} \Sigma_{\pi} \varepsilon(\pi) \cdot K\left(X_{\pi(1)}, \ldots, X_{\pi(r)}\right)
$$

where the summation is taken over all permutations π of $(1,2, \ldots$, r). It is casy to verify that . $1 K$ is skew-symmetric for any K and that K is skev-symmetric if and only if $\Lambda K=K$. If (1) and ω^{\prime} are differential forms of degree r and s respectively, then $\sigma^{\prime} . \sigma^{\prime}$ is a covariant tensor fleld of degree r a s and $\left.(1) \wedge \theta^{\prime}=\Lambda(1) ;(1)^{\prime}\right) \cdot$

Example 3.3. 'The spmmetrization, 's can be defined as follows. 'If K is, a covariant tensor, or tensor ficld of degree r_{2} then

$$
(S K)\left(X_{1}, \ldots, X_{i}\right)=\frac{1}{r!} \Sigma_{\pi} K\left(X_{\pi(1)} \ldots, X_{\pi(r)}\right)
$$

For any $K, S K$ is symmetric and $S K=K$ if and only if K is symmetric.

We now proceed to definc the notion of Lie differentiation. Let $\Sigma^{\prime}(M)$ bc the set of tensor ficlds of type (r, s) defined on M and set $\boldsymbol{I}(\boldsymbol{M})=\Sigma_{i, n}^{\infty}{ }_{0} \boldsymbol{I}_{n}^{r}(M)$. Then $\boldsymbol{I}(\boldsymbol{M})$ is an algebra over the real number field R , the multiplication $(\bar{\otimes})$ bting clcfined point ise, i.c., if $K, L \in I(M)$ then $(K \otimes L)_{x}=K_{x} \otimes L_{x}$ for all $x \in M$. If φ is a transformation 'of M, its differential ψ_{*} gives a linear isomorphism of the tangent space $T_{y}{ }_{-1}(M)$ onto the tangent space $T_{r}(M)$. By Proposition 2.12, this linear isomorphism can be extended to an isomorphism of the tensor algebra $\mathbf{T}\left(\gamma^{-1}(x)\right)$ onto the tensor algebra $\mathrm{T}(\mathrm{x})$, which we denote by \dot{F}. Given a tensor field K, we define a tensor field $\tilde{\sim} K$ by

$$
(\tilde{\gamma} K)_{x}=\tilde{\psi}\left(K_{\left.q-1_{(x x}\right)}\right), \quad x \in M
$$

In this way, every transformation q of M induces an algebra automorphism of $\mathfrak{I}(M)$ which preserves type and commutes with contractions.

Let X be a vector field on . II and $\tau_{\text {, a locat }}$ l-parameter group of local transformations generated by X (cf. Proposition 1.5). We
shall define the Lie derivative $L_{r} K 0 f$ a tensor field K with respect to a vector field X asfollows. For the sake of simplicity, we assume that φ_{t} is a global l-parameter group of transformations of M; the reader will have no difficulty in modifying the definition when X is not complete. For each $t, \tilde{\tilde{q}}, \dot{i}$ is an automorphism of the algebra $\mathfrak{I}(M)$. For any tensor field K on M, we set

$$
\left(L_{X} K\right)_{x}=\lim _{t \rightarrow 0} \frac{1}{t}\left[K_{x}-\left(\tilde{p}_{i} K\right)_{x}\right] .
$$

The mapping L_{X} of $\boldsymbol{I}(M)$ into itself which sends K into $L_{X} K$ is called the Lie' differentiation with respect to X. We have

Proposition 3.2. Lie differentiation L_{X} with respect to a rector field X satisfies the following conditions:
(a) L_{X} is a derivation of $Z(M)$, that is, it is linear and satisfies
$L_{X}\left(K \otimes K^{\prime}\right)=\left(L_{X} K\right) \otimes K^{\prime}+K \otimes\left(L_{X} K^{\prime}\right)$ for all $K, K^{\prime} \in \mathcal{I}(\mathbf{M})$;
(b) L_{X} is typepreserving: $L_{X}\left(\boldsymbol{\mathcal { S }}_{s}^{r}(\boldsymbol{M})\right) \subset \mathfrak{I}_{s}^{r}(M)$;
(c) L_{X} commutes with every contraction of a tensor field;
(d) $L_{X} \boldsymbol{f}=X f$ for every function f;
(e) $L_{X} Y=[X, Y]$ fof every vector field Y.

Proof. It is clear that L_{X} is linear. Let φ_{t} be a local l-parameter group of local transformations generated by X. Then

$$
\begin{aligned}
& L_{X}\left(K \otimes K^{\prime}\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left[K \otimes K^{\prime}-\tilde{\tilde{F}}_{1}\left(K \otimes K^{\prime}\right)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[K \otimes K^{\prime}-\left(\tilde{\gamma}_{t} K\right) \otimes\left(\tilde{\mathcal{F}}_{t} K^{\prime}\right)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[K \otimes K^{\prime}-(\tilde{i}, K) \bigcirc K^{\prime}\right] \\
& +\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\tilde{v}_{t} K\right) K^{\prime}-\left(\tilde{r}_{t} K\right) O\left(\tilde{r}_{t} K^{\prime}\right)\right] \\
& =\left(\lim _{t \rightarrow 01} \frac{1}{t}[K-(\tilde{i}, K)]\right) K^{\prime} \\
& +\lim _{t \rightarrow 0}\left(\tilde{r_{t}} K\right) Q\left(\frac{1}{t}\left[K^{\prime}-\left(\hat{p}_{t} K^{\prime}\right)\right]\right) \\
& =\left(L_{X} K\right) \otimes K^{\prime}+K \otimes\left(L_{X} K^{\prime}\right) \text {. }
\end{aligned}
$$

Since $\tilde{\phi}$, preserves type and commutes with contractions, so does L_{X}. If f is a function on M, then
$\left(L_{X} f\right)(x)=\lim _{t \rightarrow 0} \frac{1}{t}\left[f(x)-f\left(\varphi_{t}^{-1} x\right)\right]=-\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(\varphi_{t}^{-1} x\right)-f(x)\right]$. If we observe that $\varphi_{t}^{-1}=\varphi_{-i}$ is a local 1-parameter gfoup of local transformations generated by $-X$, we see that $\mathrm{L}_{x} f=-(-X) f=$ $X f$. Finally (e) is a restatement of Proposition 1.9. QED.

By a derivation of $\mathfrak{I}(\boldsymbol{M})$, we shall mean a mapping of $\mathfrak{I}(M)$ into itself which satisfies conditions (.a), (b) and (cj of Proposition 3.2.

Let S be a tensor field of type (1, I). For each $x \in M, S_{r}$ is a linear endomorphism of the tangent space $T_{x}(M)$. By Proposition 2.13, S_{x} can be uniquely extended to a derivation of the tensor algebra $\mathrm{T}(\mathrm{x})$ over $T_{x}(M)$. For every tensor field K, define SK by $(S K)_{x}=S_{x} K_{x}, \mathrm{x} \in M$. Then S is a derivation of $Z(\mathrm{M})$. We have
Proposition 3.3. Every derivation D of $\mathrm{Z}(\mathrm{M})$ can be decomposed uniquely as follows:

$$
D=L_{X}+S
$$

where X is \boldsymbol{a} vector field and S is a tensor field of type (' $I, 1$).
Proof. Since D is type-preserving, it maps $\mathfrak{F}(M)$ into itself and satisfies' $D(f g)=D f \cdot g+f \cdot D g$ for $f, g \in \mathscr{F}(M)$. It follows that there is a vector field X such that $D \boldsymbol{f}=X f$ for every $f \in \mathscr{F}(M)$. Clearly, $\mathrm{D}-L_{X}$ is a derivation of $\mathrm{Z}(\mathrm{M})$ which is zero on $\mathfrak{F}(M)$. We shall show that any derivation D which is zero on $\mathfrak{F}(M)$ is induced by a tensor field of type $(1,1)$. For any vector field Y, $D Y$ is a vector field and, for any function $f, \mathrm{D}(\mathrm{f} \mathrm{Y})=\mathrm{Df} \cdot Y+$ $f \cdot D Y=f: D Y$ since $D f=0$ by assumption. By Proposition 3.1, there is a unique tensor field S of type $(1,1)$ such that $D Y=S Y$ for every vector field Y. To show that D eaincides with the derivation induced by S; it is sufficient to prove the following
LEMMA. Twa derivations $D_{1}{ }^{\text {i }}$ and D_{2} of $\mathfrak{I}(M)$ coincide if they coincide on $\mathfrak{F}(M)$ and $\mathfrak{X}(M)$.

Proof. We first observe that a derivation D can be localized, that is, if a tensor field K vanishes on an open set U, then $D K$ vanishes on U. In fact, for each $\dot{x} \in U$, letf be a function such that $f(\boldsymbol{x})=0$ and $\mathbf{f}=\mathbf{l}$ outside U. Then $K \doteq \boldsymbol{f} \cdot K$ and hence $D K=D f \cdot K+f \cdot D K$. Since K and f vanish at x , so does $D K$.

It follows that if two tensor fields, K and K^{\prime} coincide on an open set U, then $D K$ and $D K^{\prime}$ coincide on U.

Set $D=D_{1}-D_{2}$. Our problem is now to prove that if a derivation \boldsymbol{D} is zero on $\mathfrak{y}(M)$ and $\mathfrak{X}(M)$, then it is zero on $\mathfrak{I}(M)$. Let K be a tensor field of type (r, s) and x an arbitrary point of M. To show that $D K$ vanishes at x, let V bc a coordinate neighborhood of x with a local coordinate system x^{1}, \ldots, x^{n} and let

$$
K=\Sigma K_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}} X_{i_{1}}(凶) \cdots \otimes X_{i_{r}} \sigma^{j_{1}} \otimes \cdots \otimes \omega^{j_{s}}
$$

where $X_{i}=\partial / \partial x^{i}$ and $\omega^{j}=d x^{j}$. We may extend $K_{1_{1} \ldots j_{s}}^{i_{1} \ldots i_{s}} X_{i}$ and ω^{j} to M and assume that the equality holds in a smaller neighborhood U of x. Since D can be localized, it suffices to show that

$$
D\left(\dot{K}_{j_{1}}^{i_{1} \ldots i_{r}} X_{i_{1}} \otimes \cdots \otimes X_{i_{r}} \otimes\left(\omega^{3_{1}} \circlearrowleft \cdots \otimes()^{j_{3}}\right)=0 .\right.
$$

But this will follow at once if we show that $D_{(1)}=0$ for every l-form ω on M. Let Y be any vector field and $C: I_{1}(M) \rightarrow \tilde{\mathscr{V}}(M)$ the obvious contraction so that $C(Y \bigotimes \omega)=\omega(Y)$ is a function (cf. Example 2.1). Then we have

$$
\begin{aligned}
& 0=D(C(Y \otimes \omega))=C(D(Y \otimes \omega)) \\
& \quad=C(D Y \otimes \omega)+C(Y \otimes D \omega)=C(Y \otimes D \omega)=(D \omega)(Y) .
\end{aligned}
$$

Since this holds for every vector field Y, wc have $D_{0}=0$.
The set of all derivations of $\mathfrak{I}(\boldsymbol{M})$ forms a Lie algebra over R (of infinite dimensions) with respect to the natural addition and multiplication and the bracket operation defined by $\left[D, D^{\prime}\right] K=$ $D\left(D^{\prime} K\right)-D^{\prime}(D K)$. From Proposition 2.13, it follows that the set of all tensor fields S of type $(1,1)$ forms a subalgebra of the Lie algebra of derivations of $\boldsymbol{I}(\boldsymbol{M})$. In the proof of Proposition 3.3, we showed that a derivation of $\boldsymbol{I}(1 \mathcal{M})$ is induced by a tensor field of type $(1,1)$ if and only ifit is zero on $\tilde{x}(M)$. It follows immediately that if D is a derivation of $I(M)$ and S is a tensor field of type $(1,1)$, then $[D, S]$ is zero on $\tilde{\mathscr{V}}(M)$ and, hence, is induced by a tensor field of type (1,1). In other words, the set of tensor fields of type $(1,1)$ is an ideal of the Lie algebra of derivations oj' $\mathcal{I}(M)$. On the other hand, the set Of Lie differentiations $L_{X}, X \in \mathfrak{X}(M)$ forms a subalgebra of the Lie algebra of derivations of $\mathfrak{I}(M)$. This follows from the follow\&g.

PRoposition 3.4. For any vector fields X and Y, we have

$$
L_{[X, Y]}=\left[L_{X}, L_{Y}\right]
$$

Proof. By virtue of Lemma above, it is sufficient to show that $\left[L_{X}, L_{\mathrm{F}}\right]$ has the same effect as $L_{[X, Y]}$ on $\mathfrak{F}(M)$ and $\mathfrak{X}(M)$. For $f \in \mathfrak{y}(M)$, we have

$$
\left[L_{X}, L_{Y}\right] f=X Y f-Y X f=[X, Y] f=L_{\left[X,{ }_{r}\right]} f^{f}
$$

For $Z \in \mathfrak{X}(M)$, we have

$$
\left[L_{X}, L_{\mathbf{1}^{\prime}}\right] Z=[X,[Y, Z]]-[Y,[X, Z]]=[[X, Y], Z]
$$

by the Jacobi identity.
proposition 3.5. Let K be a tensor field of type $(1, r)$ which we interpret as in Proposition 3.1. For any vector field X, we have then

$$
\begin{aligned}
\left(I_{X} K\right)\left(Y_{1}, \ldots, Y_{r}\right)= & {\left[X, K\left(Y_{1}, \ldots, Y_{r}\right)\right] } \\
& -\Sigma_{i=1}^{r} K\left(Y_{1}, \ldots,\left[X, Y_{i}\right], \ldots, Y_{r}\right)
\end{aligned}
$$

Proof. We have

$$
\mathrm{K}\left(Y_{1}, \ldots, Y_{r}\right)=C_{1} \cdot C_{r}\left(Y_{1} \otimes \cdot \otimes Y_{r} \otimes \mathrm{~K}\right)
$$

where C_{1}, \ldots, C_{r} are obvious contractions. Using conditions (a) and (c) of Proposition 3.2, we have, for any derivation D of $\boldsymbol{I}(M)$,

$$
\begin{aligned}
D\left(K\left(Y_{1}, \ldots, Y_{r}\right)\right)=(D K)\left(Y_{1},\right. & \left.\ldots, Y_{r}\right) \\
& +\Sigma_{i} K\left(Y_{1}, \ldots, D Y_{i}, \ldots, Y_{r}\right)
\end{aligned}
$$

If $D=L_{X}$, then (e) of Proposition 3.2 implies Proposition 3.5.
Generalizing Corollary 1.10, we obtain
PRoposition 3.6. Let q_{t} be a local I-parameter group of local transformations generated $b y$ a vector Jield X. For $a n y$ tensor field K, we have

$$
\tilde{\psi}_{s}\left(L_{X} K\right)=-\left(d\left(\tilde{\tilde{f}}_{t} K\right) / d t\right)_{t=\varepsilon}
$$

Proof. By definition,

$$
L_{X} K=\lim _{t \rightarrow 0} \frac{1}{t}\left[K-\tilde{\varphi}_{t} K\right]
$$

Replacing K by $\tilde{\boldsymbol{T}} K$, we obtain

$$
I_{X}\left(\tilde{\xi}_{s} K\right)=\quad \lim _{t \rightarrow 0} \frac{1}{t}\left[\tilde{\psi}_{s} K-\tilde{\hat{F}}_{t} K\right]=-\left(d\left(\tilde{\dot{f}}_{1} K\right) / d t\right)_{1}
$$

Our probtetn is therefore to prove that $\tilde{\theta}_{s}\left(L_{X} K\right)=L_{N}(\tilde{F}, K)$, i.e., $L_{X} K=\tilde{\psi}_{s} \ln L_{X} \cap \tilde{p}_{s}(K)$ for all tensor fields K. It is a straightforward verification to see that $\tilde{\tilde{F}}_{5}^{-1} D_{X} \circ \tilde{\phi}_{8}$ is a derivation of $3(M)$. By Lemma in the proof of Proposition 3.3, it is sufficient to prove that L_{X} and $\tilde{\varphi}_{s}^{-1} \circ L_{X} \circ \tilde{\varphi}_{s}$ coincide on $\tilde{\mathscr{F}}(M)$ and $\mathfrak{X}(M)$. We already noted in the proof of Corollary. 1.10 that they coincide on $\dot{\mathscr{E}}(M)$. The fact that they coincide on $\tilde{\mathscr{y}}(M)$ follows -from the following formulas (cf. §l, Chapter I) :

$$
\begin{gathered}
\varphi^{*}\left(\left(\varphi_{*} X\right) f\right)=X\left(\varphi^{*} f\right) \\
\tilde{\psi}^{-1} f=\varphi^{*} f
\end{gathered}
$$

which hold for any transformation φ of M and from $\left(p_{s}\right)_{*} X=X$ (cf. Corollary 1.8). ,

QED.
Corollary 3.7. I lemsor field K is invariant by φ_{1} for every t if and only if $L_{X} K=0$.

Let $\mathfrak{D}^{r}(M)$ be the pate of differential forms of degree r defined on M, i.e., skew-si inmetric covariant tensor fields of degree r. With respect to the exterior product, $\mathfrak{D}(M)=\sum_{r=0}^{n} \mathfrak{D}^{r}(M)$ forms an algebra 心は, R. A derivation (resp. skew-derivation) of $\mathfrak{D}(M)$ is a linear mapping 0 of $\mathfrak{D}(M)$ into itself which satisfies

$$
D(\omega \wedge \circ \mathrm{~J},)=D_{(1} \wedge \omega^{\prime}+(1) \wedge D \omega^{\prime} \quad \text { for }\left(\omega, \omega^{\prime} \in \mathfrak{D}(M)\right.
$$

(resp. $=D \omega \wedge \omega^{\prime}+(-1)^{r} \omega \wedge D \omega^{\prime} \quad$ for $\left.\omega \in \mathfrak{D}^{r}(M), \omega^{\prime} \in \mathfrak{D}(M)\right)$.
A derivation or, a skew-derivation D-of $\mathfrak{D}(. M)$ is said to be of degree k if it maps $\mathfrak{D}^{r}(M)$ into $\mathfrak{D}^{r+k}(M)$ for every r. The exterior differentiation \boldsymbol{d} is a skew-derivation of degree 1. As a general result on derivations and skew-derivations of $\mathfrak{D}(M)$, we have

Proposition 3.8. (a) If D and D^{\prime} are derizations of degree k and k^{\prime} respectively, then $\left[D, D_{1}^{\prime}\right]$ is a derivation of degree $\mathrm{k}-k^{\prime}$.
(b) If D is a derivation: of degree k and D ' is .a skew-derivation of degree k^{\prime}, then $\left[D, D^{\prime}\right]$ is a\&w-derivation of degree $k-k^{\prime}$.
(c) If D and D^{\prime} are skew-derivations of degree k and k^{\prime} respectively, then $D D^{\prime}+D^{\prime} D$ is a derivation of degree $\mathrm{k}+\mathrm{k}^{\prime}$.
(d) A derivation or a skew-derivation is compl etel \mathbf{y} determined by its ffect on $\mathfrak{D}^{0}(M)=\mathfrak{f}(M)$ and $W(M)$.
Proof. The verification of (a), (b), and (c) is straightforward. The proof of (d) is similar to that of Lemma for Proposition 3.3.

QED.
Proposition 3.9. For. every' 'vector field X, L_{X} is a derivation of degree 0 of $\mathfrak{O}(M)$ which commutes with the exterior differentiation d. Conversely, every derivation of degree 0 of $\mathcal{D}(M)$ which commutes with d is equal to L_{X} for some vector field X.

Proof. Observe first that L_{X} commutes 'with the alternation A defined in Example 3.2. This follows immediately from the following formula :

$$
\begin{aligned}
\left(L_{\left.X^{(}\right)}\right)\left(Y_{1}, \ldots, Y_{r}\right)=X & \left(\omega\left(Y_{1}, \ldots, Y_{r}\right)\right) \\
& -\Sigma_{i} \omega\left(Y_{1}, \ldots,\left[X, Y_{i}\right], \ldots, Y_{r}\right)
\end{aligned}
$$

whose proof is the same as that of Proposition 3.5, Hence, $L_{X}(\mathcal{D}(M)) \subset \mathfrak{D}(M)$ and, for any $\omega, \omega^{\prime} \in \mathfrak{D}(M)$, we have

$$
\begin{aligned}
L_{X}\left(\omega \wedge \omega^{\prime}\right) & =L_{X}\left(A\left(\omega \otimes \omega^{\prime}\right)\right)=A\left(L_{X}\left(\omega \otimes \omega^{\prime}\right)\right) \\
& \left.=A\left(L_{X} \omega^{\prime} \boldsymbol{o}^{\prime}\right)+A(\omega) L_{X} \omega^{\prime}\right) \\
& =L_{X} \omega^{\prime} \wedge \omega^{\prime}+{ }^{\prime} \wedge L_{X} \omega^{\prime} .
\end{aligned}
$$

To prove that L_{X} commutes with d, we first observe that, for any ransformation φ of $M, \tilde{\psi} \omega=\left(\varphi^{-1}\right)^{*} \omega$ and, hence, $\tilde{\varphi}$ commutes with d. Let q_{t} be a local I -parameter group of local transformations generated by X. From $d m, d(t)$ and the definition of $L_{X^{\omega}} \omega$ it follows that $L_{X}(d, 0)=d\left(L_{X^{(0)}}\right)$ for every ${ }^{\omega} \cdot \mathfrak{D}(M)$. Conversely, let l) be a derivation of degree 0 of $\mathfrak{D}(M)$ which commutes with d. Since D maps $\mathfrak{Q}^{0}(M)=\mathfrak{y}(M)$ into itself, D is a derivation of $\mathcal{V}(M)$ and there is a vector field X such that $D f=X f$ for every $f \in \tilde{i}(M)$. Set $D^{\prime}=D-L_{\boldsymbol{K}}$. Then D^{\prime} is a derivation of $\mathfrak{D}(M)$ such that $D^{\prime} f=0$ for every $\mathbf{f} \in \tilde{f}(M)$. By virtue of (d) of Proposition 3.8, in order to prove $D^{\prime}=0$, it is sufficient to prove $D^{\prime}(i)=0$ for every 1 -form wis Just as in Lemma for 'Proposition 3.3, D' can be localized and it is' sufficient to show that $D^{\prime} \omega=0$ when ω is of the form fdg where $f, g \in \tilde{y}(M)$ (because
I. DIFFERENTIABLE MANIFOLDS
ω is locally of the form $\Sigma f_{i} d x^{i}$ with respect to a local coordinate system $\left.\boldsymbol{x}^{1}, \ldots, x^{n}\right)$. Let $\boldsymbol{\omega}=$ fdg. From $\mathrm{D}^{\prime} \mathrm{f}=0$ and $D^{\prime}(d g)=$ $\mathrm{d}\left(\mathrm{D}^{\prime} \mathrm{g}\right)=0$, we obtain

$$
D^{\prime}((1))=\left(D^{\prime} f\right) \mathrm{dg}+f \cdot \mathrm{D}^{\prime}(\mathrm{dg})=0
$$

QED.
For each vector field X, we'define a skew-derivation ι_{X}, called the interior Product with respect to X, of degree -1 of $\mathfrak{D}(\stackrel{M}{M})$ such that
(a) $\iota_{X} \mathbf{f}=0$ for every $\mathbf{f} \boldsymbol{\epsilon} \mathfrak{D}^{0}(M)$;
(b) $\iota_{X} \omega=\omega(X)$ for every $\omega \in \mathfrak{D}^{1}(M)$.

By (d) of Proposition 3.8, such a skew-derivation is unique if it exists. To prove its existence, we consider, for each r, the contraction $\mathrm{C}: \mathfrak{I}_{r}^{1}(M) \rightarrow \mathfrak{I}_{r-1}^{0}(M)$ associated with the pair $(1,1)$. Consider every r-form ω as an element of $\mathfrak{I}_{r}^{0}(M)$ and define $\iota_{X} \omega=C(X \otimes \omega)$. In other words,
$\left(\iota_{X} \omega\right)\left(Y_{1}, \ldots, Y_{r-1}\right)=\dot{r} \cdot \omega\left(X, Y_{1}, \ldots, Y_{r-1}\right) \quad$ for $Y_{i} \in \mathrm{X}(\mathrm{M})$.
The verification that ι_{X} thus defined is a skew-derivation of $\mathfrak{D}(M)$ is left. to the reader; $\iota_{X}\left(\omega \wedge \omega^{\prime}\right)=\iota_{X}{ }^{\omega} \wedge \omega^{\prime}+(-1)^{\boldsymbol{f}} \omega{ }^{\wedge} \iota_{X} \omega^{\prime}$, where $\omega \in \mathfrak{D}^{r}(M)$ and $\omega^{\prime} \in \mathfrak{D}^{s}(M)$, follows easily from the following formula :

$$
\begin{aligned}
\left(\omega \wedge \omega^{\prime}\right) & \left(Y_{1}, Y_{2}, \ldots, Y_{r+s}\right) \\
& =\frac{1}{(r+s)!} \Sigma \varepsilon(j ; \mathrm{k}) \omega\left(Y_{j_{1}}, \ldots, Y_{j_{r}}\right) \omega^{\prime}\left(Y_{k_{1}}, \ldots, Y_{k_{s}}\right)
\end{aligned}
$$

"'where the summation is taken over all possible partitions of $(1, \ldots, r+s)$ into $\left(j_{1}, \ldots, j_{r}\right)$ and $\left(k_{1}, \ldots, k_{1}\right)$ and $\varepsilon(j ; k)$ stanids for the sign' of the permutation $(1, \ldots, r+s) \rightarrow\left(j_{1}, \ldots, j_{r}\right.$, $\left.k_{1}, \ldots, k_{2}\right)$.

Since $\left(i_{X}^{2} \omega\right)\left(Y_{1}, \ldots, Y_{r-2}\right)=r(r-1) \because \omega\left(X, X, Y_{1}, \ldots, Y_{r-2}\right)=$ 0 , we have, s

$$
i_{X}^{2}=0
$$

As relations among d, L_{X}, and ι_{X}, we have
Proposition 3.10, (a) $L_{X}=d_{0} \iota_{X}+\iota_{X}$ odfor every vector field X. (b) $\left[L_{X}, \iota_{X}\right]=\iota_{[X, Y]}$ for any vector fields X and Y.

Proof. By (c) of Proposition 3.8, ${ }^{\circ} \iota_{X}+\iota_{X} \circ \mathrm{~d}$ is a d. wation
of degree 0 . It commutes with d because $d^{2}=0$. By Proposition 3.9 , it is equal to the Lie differentiation with respect to some vector ficld. 'To prove that it is actually equal to L_{x}, we have only to show that $L_{X} f=\left(d \circ \iota_{X}+\iota_{X} \circ d\right) f$ for every function f. But this is obvious since $L_{X} f=X f$ and $\left(\mathrm{d}\right.$ " $\left.\iota_{X}+\iota_{x} \cap d\right) f=\iota_{X}(d f)=$ $(d f)(X)=X f$. To pruve the second assertion (b), observe first that $\left[L_{N}, \iota_{r}\right]$ is a skew-derivation of degree -1 and that both [L_{X}, ι_{Y}] and $\iota_{[X, Y]}$ are zero on $\tilde{y}(M)$. By (d) of Proposition 3.8, it is sufficient to show that they have the same effect on every 1 -form ω. As we noted in the proof of Proposition 3.9, we have $\left(L_{\lambda_{N}} \omega\right)(\mathrm{Y})=X(\omega(Y))-\omega([X, \mathrm{Y}])$ which can be proved in the same way as Proposition 3.5. Hence,

$$
\begin{aligned}
{\left[L_{X}, \iota_{Y}\right] \omega } & =L_{X}(\omega(Y))-\iota_{Y}\left(L_{\left.X^{(}\right)}\right)=X(\omega(Y))-\left(L_{X}(\omega)(Y)\right. \\
& =\omega([X, Y])=\iota_{[X, Y]}(\omega .
\end{aligned}
$$

As an application of Proposition 3.10 we shall prove

Proposition 3.11. If $\boldsymbol{\omega}$ is an r-form, then

$(d \omega)\left(X_{0}, X_{1}, \ldots, X_{r}\right)$

$$
=\frac{1}{r+1} \Sigma_{i=0}^{r}(-1)^{i} X_{i}\left(\omega\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{r}\right)\right)
$$

$+\frac{1}{r+1} \Sigma_{0 \leqq i<j \leq r}(-1)^{i+j}(1)\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)$,
where the symbol ^ means that the term is omitted. (The cases $r=1$ and 2 are particularly useful,) If ω is a l-form, then

$$
(d \omega)(X, Y)=\underline{1}(X(\omega(Y))-Y(\omega(X))-\omega([X, Y])\}
$$

$$
X, Y \in \mathfrak{X}(M)
$$

If θ is a 2 -form, then
'

$$
\begin{aligned}
(d \omega)(X, Y, Z) & =\frac{1}{3}(X(\omega(Y, Z))+Y(\omega(Z, X))+Z(\omega(X, Y)) \\
& \left.-\omega\left(\left[X, 1^{\prime}\right], Z\right) \quad \omega([Y, Z], X) \cdots \cdots([Z, X], Y)\right\}
\end{aligned}
$$

$X, Y, Z \in \mathcal{X}(M)$.
Proof. The proof is by induction on r. If $r=0$, then ω is a function and $\operatorname{dom}\left(X_{0}\right)=X_{0}(1)$, which shows that the formula above ${ }^{*}$
is true for $\mathrm{y}=0$. Assume that the formula is true for $r-1$. Let θ be an r-form and, to simplify the notation, set $X=X_{0}$. By (a) of Proposition 3.10,

$$
\begin{aligned}
& (r-1) d e\left(X, \mathrm{x}, \ldots, X_{r} \quad \|_{x} \quad d(1)\left(X_{1}, \ldots, X_{r}\right)\right. \\
& \left(L_{X^{(1)}}\right)\left(X_{1},\right. \\
& \left.X_{r}\right)\left(d \geqslant \wedge_{X^{(1)}}\right)\left(X_{1}, \ldots, X_{r}\right) .
\end{aligned}
$$

As we noted in the proof of Proposition 3.9,

$$
\begin{aligned}
\left(L_{X^{(\omega)}}\right)\left(X_{1}, \ldots X_{r} \quad\right. & \left.X_{(\omega)}\left(X_{1}, \ldots, X_{r}\right)\right) \\
& \ldots \Sigma_{i, 1}^{r} \omega\left(X_{1}, \ldots,\left[X, X_{i}\right], \ldots, X_{r}\right)
\end{aligned}
$$

Since,$f^{\prime \prime}$ is an $(r-1)$-form, we have, by induction assumption,

$$
\begin{aligned}
& \left(d{ }_{X^{(i)}}\left(X_{1}, \ldots, X_{r}\right)=\frac{1}{r} \Sigma_{i=1}^{r}(-1)^{i-1}\right. \\
& \times X_{i}\left(\iota_{x} \omega\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{r}\right)\right. \\
& +\frac{1}{r} \Sigma_{1, i}(-1)^{i+j}\left(\iota_{X} \omega\right)\left(\left[X_{i} ; X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \\
& =\frac{1}{r} \sum_{i-1}^{r}(-1)^{i \cdots 1} X_{i}\left(\omega\left(X, X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{r}\right)\right) \\
& -\frac{1}{r} \sum_{1 ; i j r}(\cdots 1)^{i j} \\
& \text { 久 } \omega\left(\left[X_{i}, X_{j}\right], X, X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{\Gamma}_{j}, \ldots, \hat{X}_{,}\right):
\end{aligned}
$$

Our Proposition follows immediately from these three formulas.
() EI).

- Remark. Formulas in Proposition 3.11 are valid also for vector-space valued forms.

Various derivations allow us to construct new tensor fields from a given tensor field. We shall conclude this section by giving another way: of constructing new tensor fields.
Proposition 3.12. Let A and B temwi fietds of tepe (1, 1). Set

$$
\begin{aligned}
& S(X, Y)= {[A X, B Y] } \\
&-A[B X, A Y] \cdots A B], M] \cdots B A[X, Y] \\
& A[B X, Y] \cdots B[X, A Y] B[A X, Y] \\
& X, Y \in \mathscr{X}(M)
\end{aligned}
$$

Then the mapping $S: X(M) \mathbf{x} \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ is a tensor field of type $(1,2)$ and $S(X, Y)=-S(Y, X)$.

Proof. By a straightforward calculation, we see that S is a bilinear mapping of the $S(M)$-module $X(M) \times X(M)$ into the $\mathrm{B}(\mathrm{M})$-module $\mathrm{X}(\mathrm{M})$. By Proposition 3.1, S is a tensor field of type $(1,2)$. The verification of $S(X, \mathrm{Y})=-S(Y, X)$ is easy.

QED.
We call S the torsion of A and B. The construction of S was discovered by Xijenhuis [1].

4. Lie groups

A Lie group G is a group which is at the same time a differentiable manifold such that the group operation $(\mathrm{a}, \mathrm{b}) \in \mathrm{G} \times \mathrm{G} \rightarrow a b^{-1} \in \mathrm{G}$ is a differentiable mapping of $G \times G$ into G. Since G is locally connected, the connected component of the identity, denoted by G^{0}, is an open subgroup of G. G^{0} is generated by any neighborhood. of the identity e. In particular, it is the sum of at most countably many compact sets and satisfies the second axiom of countability. It follows that G satisfies the second axiom of countability if and only if the factor group G / G^{0} consists of at most countably many elements.

We denote by I ,, (resp. $R_{\text {。 }}$) the left (resp. right) translation of G by an element $a \in G: L_{u} x=a x$ (resp. $\left.R_{a} x=x a\right)$ for every $x \in G$. For $a \in G$, ad a is the inner automorphism of G defined by (ad a) $x=a x a^{1}$ for every $x \in G$.

A vector field X on G is called left invariant (resp. right invariant) if it is invariant by all left translations L,, (resp. right translations $\left.R_{a}\right), a \in C$. A left or right invariant vector field is always differentiable. We define the Lie algebra \mathfrak{g} of G to be the set of all left invariant vector fields on G with the usual addition, scalar multiplication and bracket operation. As a vector space, a is isomorphic with the tangent space $T_{e}(G)$ at the identity, the isomorphism being given by the mapping which sends $X \in \mathfrak{g}$ into X, 'the value of X at ε. Thus g is at Lie subalgebra of dimension $n(n=\operatorname{dim} G)$ of the Lie algebra of 1 ector fields $\mathrm{X}(\mathrm{G})$.
F.very $A \notin g$ ge nerates a (global) 1-parameter group of transformations of G. Indeed, if φ_{t} is a local 1-parameter group of local.
transformations generated by A and. $\varphi_{t} e$ is defined for $|t|<\varepsilon$, then $\varphi_{t} a$ can be defined for $|t|<\varepsilon$ for every $a \in G$ and is equal to $L_{a}\left(\varphi_{i} e\right)$ as φ_{t} commutes with every L_{a} by Corollary 1.8. Since $\varphi_{t} a$ is defined for $t \mid<\varepsilon$ for every a $\epsilon \mathrm{G}, \varphi_{t} a$ is defined for $|t|<\infty$ for 'every a $\in \mathrm{G}$. Set $\mathrm{a}_{1}=\varphi_{t} e$. Then $a_{t+s}=a_{t} a_{s}$ for all $t, s \in \mathrm{R}$. We call a, the I-parameter subgroup of G generated by A. Another characterization of a, is that it is a unique curve in G such that its tangent vector \dot{a}_{t} at a, is equal to $L_{a_{t}} A_{e}$ and that $a_{0}=$ e. In other words, it is a unique solution of the differential equation $a_{t}^{-1} \dot{a}_{t}=\mathrm{A}$, with initial condition $\mathrm{a},=\mathrm{e}$. Denote $\mathrm{a},=\varphi_{1} e$ by $\exp \mathrm{A}$. It follows that $\exp t A=\mathrm{a}$, for all t. The mapping $\mathrm{A} \rightarrow \exp \mathrm{A}$ of \mathfrak{g} into G is called the exponential mapping.

Example 4.1. $G L(n ; \mathrm{R})$ and $\mathfrak{g l}(n ; \mathrm{R})$. Let $G L(n ; \mathrm{R})$ be the group of all real $\mathrm{n} \times \mathrm{n}$ non-singular matrices $\mathrm{A}=\left(a_{j}^{i}\right)$ (the matrix whose i-th row and j-th column entry is a_{j}^{i}); the multiplication is given by

$$
(A B)_{j}^{i}=\sum_{k=1}^{n} a_{k}^{i} b_{j}^{k} \quad \text { for } \mathrm{A}=\left(a_{j}^{i}\right) \text { and } B=\left(b_{j}^{i}\right) .
$$

$\mathrm{GL}(\mathrm{n} ; \mathrm{R})$ can be considered as an open subset and, hence, as an open submanifold of $\mathbf{R}^{n^{2}}$. With respect to this differentiable structure, $G L(n ; R)$ is a Lie group. Its identity component consists of matrices of positive determinant. The set $\mathfrak{g l}(n ; \mathrm{R})$ of all $\mathrm{n} \times \mathrm{n}$ real matrices 'Forms an n^{2}-dimensional Lie algebra with bracket operation defined by $[\mathrm{A}, \mathrm{B}]=\mathrm{AR}-B A$. It is known that the Lie algebra of $G L(n ; \mathrm{R})$ can be identified with $\mathfrak{g l}(n ; \mathrm{R})$ and the exponential mapping $\mathfrak{g l}(n ; \mathrm{R}) \rightarrow G L(n ; \mathrm{R})$ coincides with the usual exponential mapping $\operatorname{cxp} A=\Sigma_{k=0}^{x} A^{k} / k!$

Example 4.2. $O(n)$ and $O(n)$. The group $O(n)$ of all $n \times n$ orthogonal matrices is a compact Lic group. Its identity component, consisting of elements of determinant 1 , is denoted by $S O(n)$. The Lie algebra $O(n)$ of all skew-symmetric n y n matrices can be identified with the Lie algebra of $O(n)$ and the exponential mapping $\mathrm{o}(n) \rightarrow O(n)$ is the usual one. The dimension of $O(n)$ is equal to $n(n-1) / 2$.

By a Lie subgroup of a Lie group G, we shall mean a subgroup H which is at the same time a submanifold of G such that H itself is a Lie group with respect to this differentiable structure. A left invariant vector field on H is determined by its value at ℓ and this tangent vector at ϵ of H determines a left invariant vector field on
G. It follows that the Lie algebra \mathfrak{h} of H can be identified with a sübalgebra of \mathfrak{g}. Conversely, every subalgebra \mathfrak{h} of \mathfrak{a} is the Lie algebra of a unique connected Lie subgroup H of G. This is proved roughly as follows. To each point x of G, we assign the space of alt $A_{x}, A \in \mathfrak{b}$. Then this is an involutive distribution and the maximal" integral submanifold through e of this distribution is the desired group H (cf. Chevalley [1; p. 109, Theorem 1]).
Thus there is a $1: 1$ correspondence between connected Lie subgroups of G and Lie subalgebras of the Lic algebra g. We make a few remarks about nonconnected Lie subgroups. Let H be an arbitrary subgroup of a Lic group G. By providing H with the discrete topology, we may regard H as a O-dimensional Lie subgroup of G. This also means that a subgroup H of G can be regarded as a Lic subgroup of G possibly in many different ways (that is, with respect to different differentiable structures). To remedy this situation, we impose the condition that H / H^{0}, where H^{0} is the identity component of H with respect to its owen topologr, , is countable, or in other words, H satisfies the second axiom of countabilit). (A subgroup, with a discrete topology, of G is a Lie subgroup only if it is countable.) Under this condition, we have the uniqueness of Lie subgroup structure in the following, sense. Let H be a subgroup of a Lie group G. Assume that H has two differentiable structures, denoted by H_{1} and H_{2}, so that it is a Lie subgroup of G. If both H_{1} and H_{2} satisfy the second axiom of countability, the identity mapping of H onto itself is a diffeomorphism of H_{1} 'onto H_{2}. Consider the identity mapping $f: H, \rightarrow H_{2}$. Since the identity component of H_{2} is a maximal integral submanifold of the distribution defined by the Lie algebra of $H_{2}, f: H_{1} \rightarrow H_{2}$ is differentiable by Proposition 1.3. Similary $f^{-1}: H_{2} \rightarrow H_{1}$ is differentiable.
Every automorphism φ of a Lie group G induces an automorphism q_{*} of its Lie algebra \mathfrak{g}; in fact, if $A \in \mathfrak{g}, q_{*} d$ is again a left invariant vector field and $\varphi_{*}[A, B]=\left[\varphi_{*} A, \varphi_{*} B\right]$ for $A, B \in \mathrm{~g}$. In particular, for every $a \in G$, ad a which maps x into $a x a^{-1}$ induces an automorphisni of \mathfrak{g}, denoted also by ad a. The representation $a \rightarrow \operatorname{ad} a$ of G is called the adjoint representation of G in \mathfrak{g}. For every $a \in G$ and $A \in \mathfrak{g}$, we have $(\operatorname{ad} a) A=\left(\mathrm{H},,_{1}\right){ }_{*} \dot{A}$, because $a x a^{-1}=L_{a} R_{u^{-1}} x=R_{u^{-1}} L_{u} x$ and A is left invariant. Let $A, B \in \mathfrak{g}$ and φ_{1} the ${ }_{1}$-parameter group of transformations of G generated by A. Set $a_{t}=\exp t A=q_{i}(e)$. Then $q_{t}(x)=x a_{t}$ for
$x \in G$. By Proposition 1.9, we have

$$
\begin{aligned}
{[B, A] } & =\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\psi_{t}\right)_{*} B-B\right]=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(R_{a_{t}}\right)_{t} B-B\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[\operatorname{ad}\left(a_{t}^{-1}\right) B-B\right] .
\end{aligned}
$$

It follows that if H is an invariant Lie subgroup of G, its Lie algebra \mathfrak{h} is an ideal of \mathfrak{g}, that is, $\mathrm{A} \in \mathfrak{g}$ and $B \in \mathfrak{h}$ imply $[B, A] \in \mathfrak{h}$. Conversely, the connected Lie subgroup H generated by an ideal \mathfrak{h} of \mathfrak{g} is an invariant subgroup of G.
A differential form ω on G is called left invariant if $(L,)^{*}(\nu) \omega$ for every $a \in G$. The vector space \mathfrak{g}^{*} formed by all left invariant I-forms is the, dual space of the Lie algebra \mathfrak{q} : if $A \in \mathbb{g}$ and $\boldsymbol{\omega} \in \mathfrak{g}^{*}$, then the function $\omega(A)$ is constant on G. If ω is ,a left invariant form, then so is $d \omega$, because the exterior differentiation commutes with q^{*}. From Proposition 3.11 we obtain the equation of MaurerCartan:

$$
d \omega(A, B)=-\frac{1}{2} \omega([A, B]) \quad \text { for } \omega \in \mathfrak{g}^{*} \quad \text { and } \quad A, B \in \mathfrak{g} .
$$

The canonical 1 -form θ on G is the left invariant 9 -valued 1 -form uniquely determined by

$$
O(A)=A \quad \text { for } A \in \mathfrak{g} .
$$

Let E_{1}, \ldots, E_{r} be a basis for \mathfrak{g} and set

$$
\theta=\Sigma_{i=1}^{r} \theta^{\prime} E_{i},
$$

Then $\theta^{1}, \ldots, \theta^{r}$ form a basis for the space of left invariant real 1 -forms on G. We set

$$
\left[E_{j}, E_{k}\right]=\sum_{i=1}^{\gamma} c_{j k}^{i} E_{i},
$$

where the $c_{j k}^{i}$'s are called the structure constants of \mathfrak{g} with respect to the basis $E_{1}, \ldots E_{r}$. It can be easily verified that the cquatinn of Maurer-Cartan is given by

$$
d \theta^{i}=-\frac{1}{2} \Sigma_{j, k=1}^{r} c_{j k}^{i} \theta^{j} \wedge \theta^{k}, \quad i=1, \ldots, r
$$

We now considettie transformation groups. We say that a Lic group G is a Lie transformation group on a manifold M or that G acts (differentiably) on M if the following conditions are satisfied :
(1) Every element a of G induces a transformation of M, denoted by $x \rightarrow x a$ where $x \in M$;
(2) (a, x) • G x $M \rightarrow x a \in M$ is a differentiable mapping;
(3) $x(a b)=(x a) b$ for all $a, b \in \mathrm{G}$ and $x \in \mathrm{M}$.

We also write $\boldsymbol{R}_{\boldsymbol{a}} \boldsymbol{x}$ for xa and say that G acts on M on the right. If we write $a x$ and assume $(a b) x=a(b x)$ instead of (3), we say that G acts on M on the left and we use the notation $L_{a} x$ for ax also. Note that $R_{a b}=R_{b} \circ R_{a}$ and $L_{a b}=L_{a} \circ L_{,, .}$From (3) and from the fact that each R_{a} or L_{a} is one-to-one on M, it follows that R_{e} and L_{e} are the identity transformation of M.

We say ${ }^{\text {c }}$ that G acts effectively (resp. freely) on M if $R_{a} x=x$ fir all $\mathrm{x} \in M$ (resp. for some $\mathrm{x} \in M$) implies that $\mathrm{a}=\mathrm{e}$.

If G acts on M on the right, we assign to each element $A \bullet g a$ vector field A^{*} on M as follows. The action of the l-parameter subgroup $a,=\exp t A$ on A4 induces a vector field on M, which will be denoted by A^{*} (cf. $\$ 1$).

Proposition 4.1, Let a Lie group G act on M on the right. The mapping a: $\mathfrak{g} \rightarrow X(M)$ which sends A into $A *$ is a Lie algebra homomorphism. If G acts effectively on M, then a is an isomorphism of \mathfrak{g} into $X(M)$. If G acts freely on M, then, for each non-zero $A \in \mathfrak{g}$, $a(A)$ never vanishes on M.

Proof. First we observe that a can be defined also in the following manner. For, every $x \in M$, let σ_{x} be the mapping $a \in \mathrm{G} \rightarrow x a \in M$. Then. $\left(\sigma_{x}\right) \not A_{e}=(\sigma A)_{x}$. It follows that a is a linear mapping of \mathfrak{g} into $\dot{X}(M)$. To prove that σ commutes with the bracket, let $A, B \bullet \mathfrak{a}, \mathrm{~A}^{*}=\sigma A, B^{*}=\sigma B$ and $\mathrm{a},=\exp t A$. By Proposition 1.9, wc have

$$
\left[A^{*}, B^{*}\right]=\lim _{t \rightarrow 0} \frac{1}{t}\left[B^{*}-R_{a_{t}} B^{*}\right]
$$

From the fact that $R,_{a_{1}^{0}}^{0}$ a,,$_{2 m_{t}^{-1}}(c)=x a_{t}^{-1} c a_{t}$ for $c \in G$, we obtain (denoting the differential of a mapping by the same letter)

$$
\left(R_{u_{t}} B^{*}\right)_{x}=R_{u_{t}} \circ \sigma_{x u_{t}-1} B_{e}=\sigma_{x}\left(\operatorname{ad}\left(a_{t}^{-1}\right) B_{e}\right)
$$

and hence

$$
\begin{aligned}
{\left[A^{*}, B^{*}\right] } & =\lim _{t \rightarrow 0} \frac{1}{t}\left[\sigma_{x} B_{e}-\sigma_{x}\left(\operatorname{ad}_{t}\left(a_{t}^{-1}\right) B_{e}\right)\right] \\
& =\sigma_{x}\left(\lim _{t \rightarrow t} \frac{1}{t}\left[B_{a}-\operatorname{ad}\left(a_{t}^{-1}\right) B_{e}\right]\right) \\
& =\sigma_{x}\left([A, B]_{t}\right)=(\sigma[A, B])_{x}
\end{aligned}
$$

by virtue of the formula for $[A, B]$ in \mathfrak{g} in terms of ad G. We have thus proved that a is a homomorphism of the Lie algebra g into the Lie 'algebra $X(M)$. Suppose that $\sigma A=0$ everywhere on M. This means that the 1 -parameter group of transformations $R_{a_{t}}$ is trivial, that is, $R_{a_{1}}$ is the identity transformation of M for every \boldsymbol{t}. If G is effective on M, this implies that $a_{,}=e$ for every t and hence $\mathrm{A}=0$. To prove the last assertion of our proposition, assume $\boldsymbol{\sigma} A$ vanishes at some point x of M . Then $R_{\boldsymbol{a}_{\boldsymbol{t}}}$ leaves x fixed for every t. If G acts freely on M, this implies that $a_{1}=\mathrm{e}$ for every t and hence $\mathrm{A}=0$.

QED.
Although we defined a Lie group as a group which is a differentiable manifold such that the group operation $(a, b) \rightarrow a b^{-1}$ is differentiable, we may replace differentiability by real analyticity without loss of generality for the following reason. The exponential mapping is one-to-one, near the origin of \boldsymbol{g}, that is, there is an open neighborhood N of 0 in \mathfrak{g} such that \exp is a diffeomorphism of N onto an open neighborhood U of e in G (cf. Chevalley- [1 ; p. 118] or Pontrjagin $[1 ; \S 39]$). Consider the atlas of G which consists of charts, $\left(U a, \varphi_{a}\right), a \in G$, where $\varphi_{a}: U a \rightarrow N$ is the inverse, mapping of $R_{a} \circ \exp : N \rightarrow U a$. (Here, Ua means R ,(U) and N is considered as an open set of $\mathbf{R}^{\boldsymbol{n}}$ by an identification of \mathfrak{g} with $\mathbf{R}^{\boldsymbol{n}}$.) With respect to this atlas, G is a real analytic manifold and the group operation $(a, b) \rightarrow a b^{-1}$ is real analytic (cf. Pontrjagin [1 ; p. 257]). We shall need later the following

Proposititon 4.2. Let G be a Lie group and H a closed subgroup of G. Then the quotient space G / H admits a structure of real analytic manifold. in such a way that the action of G on G / H is real 'analytic, that is, the mapping $G \times G / H \rightarrow G / H$ which maps $(a, b H)$ into $a b H$ is real analytic. In particular, the projection $G \rightarrow G / H$ is real analytic.

For the proof, see Chevalley [1; pp. 109-1 11].
There' is another important class of quotient spaces. Let \boldsymbol{G} be an abstract group acting on a topological space M on the right as a group of homeomorphisms. The action of G is called properly discontinuous if it satisfies the following conditions:
(1) If two points xand x^{\prime} of M are not congruent modulo G (i.e., $R_{a} x \neq x^{\prime}$ for every $a \in G$), then x and x^{\prime} have neighborhoods U and U^{\prime} respectively such that $\boldsymbol{R}_{a}(U) \cap \boldsymbol{U}^{\prime}$ is empty for all $a \in G$;
(2, For cach $x \in\left(i\right.$, the isotropy group $G_{x}=\left\{a \in G ; R_{a} x=x\right\}$ is finite;

$$
(1,1!
$$

(3) Each $x \in I /$ has a neighborhood L_{6} stable by $G_{x x}$ such that $U \cap R_{a}\left(C^{\prime}\right)$ is empty for cvery $a \in G_{i}$ not contained in G_{x}.
Condition (1 implies that the quotient space M / G is Hausdorff. If the action of G is free, then condition (2) is automatically satisfied.

Proposition 4.3. Let G be a properly discontinuous group of differentiable (resp. real analytic) transformations acting freely' on a differentiable (resp. real analytic) manifold M. Then the quotient space M / G has a structure of differentiable (resp. real analytic) manifold such that the projection $\pi: M \rightarrow M / G$ is differentiable (resp. real analytic).

Proof'. Condition (3) implies that every point of M / G has a neighborhood V such that π is a homeomorphism of each connected component of $\pi^{-1}(V)$ ente 1 . Let U be a connected component of $\pi^{-1}(V)$. Choosing V sufficiently small, we may assume that there is an admissible chart (I^{\prime}; q), where ' $q: U \rightarrow \mathbf{R}^{\prime \prime}$, for the manifold M. Introduce a differentiable (resp. real analytic) structure in M / G by taking $\left(\mathrm{I}^{\prime}, \psi\right)$, where ψ is the composite of $\pi^{-1}: V \rightarrow U$ and q, as an admissible chart. The verification of details is left to the reader.

QED.
Remark. A complex analytic analoguc of, Proposition 4.3 can be proved in the same way.

To give useful criteria for properly discontinuous groups, we define a weaker notion of discontinuous groups. The action of an abstract group G on a topological space M is called discontinuous if, for every $x \in M$ and every sequence of elements $\left\{a_{n}\right\}$ of G (where a_{n} arc all mutually distinct), the sequence $\left\{R_{a_{n}} x\right\}$ does not converge to a point in M.

Proposirion 4.4. Every discontinuous group G of isometries, of a metric space $1 /$ is properly discontimuous.

Proof. Observe f\&t that, for each $x \in M$, the orbit $x G=$ $\left\{R_{a} x ; a \in G\right\}$ is closed in M. Given a point x ' outside the orbit $x G$, let r be a positive number such that $2 r$ is less that the distance between x and the orbit $x\left(G^{\prime}\right.$. Aet U^{\prime} and $U^{\prime \prime}$ be the open spheres of radius r and centers r and x^{\prime} respectively. Then $R_{n}(C) \cap U_{S}^{\prime}$ is empty for all $a \in(G$, thus proving condition (1). (iondition (2)
is always satisfied by a discontinuous action. To prove (3), for each $x \in M$, let r be a positive number such that $2 r$ is less than the distance between x and the closed set $x G-\{x\}$. It suffices to take the open sphere of radius r and center x as U.

QED.
Let $(;$ be a topological group and H a closed subgroup of G. Then G, hence, any subgroup of G acts on the quofient space G / H on the left.
Proposition 4.5. Let G be a topological group and H a compact subgroup of G. Then the action of every discrete subgroup D of G on G / H (on the left) is \& continuous.

Proof.,, Assuming that the action of D is not discontinuous, let x and y be points of G / H and $\left\{d_{n}\right\}$ a sequence of distinct elements. of D such that $d_{n} x$ converges toy. Let $p: G \rightarrow G / H$ be the projection and write $x=p(a)$ and $y=p(b)$ where $a, b \in \mathrm{G}$. Let V be a neighborhood of the identity e of G such that $b V V V^{-1} V^{-1} b^{-1}$ contains no element of D other than e. Since $p(b V)$ is a neighborhood of y, there is an integer N such that $d_{n} x \in p(b V)$ for all $\mathrm{n}>N$. Hence, $d_{n} a H=p^{-1}\left(d_{n} x\right) \subset p^{-1}(p(b V))=b V H$ for $n \Rightarrow N$. For each $\mathrm{n}>\hat{N}$, therc exist $v_{n} \in V$ and $h_{n} \in \mathrm{H}$ such that $d_{n} a=b v_{n} h_{\mu}$. Since H is compact, we may assume (by taking a subsequence if necessary) that A, converges to an element $h \in H$ and hence $h_{n}=u_{n} h$ for $n>N$, where $u_{n} \in V$. We have therefore $d_{n}=$ $b i_{n} u_{n} h a^{-1}$ for $n>\mathrm{N}$. Consequently, $d_{i} d_{j}^{-1}$ is in $b V^{\prime} V^{1} V^{-} b^{\prime} h^{1}$ if $i, j>N$. 'This means $d_{i}=\mathrm{d}$, if $i, j \supset N$, contradicting our assumption.

QED.
In applying the theory of Lie transformation groups to differentiai geometry, it is important to show that a certain given group of differentiable transformations of a manifold can be made into a Lie transformation group by introducing a suitable differentiable structure in it. For the proof of the following theorem, we refer the reađer to Montgomery-Zippin [1; p. 208 and p. 212].

Theorem 4.6 Let G be a locally compact effective transformation group of a conitucted manifold M of class $\left.C^{k}, 1 \leqslant k=1\right)$ and let each transformation of G be of class C^{1}. Then G is a Lie group and the mapping $G \times M \rightarrow M$ is of class $C^{\prime \prime}$.

We shall prove the following result, essentially dur to van Dantzig and ran cicr Waerden [1].

тнеовем 4.7. The group G of isometries of a connected, locally compact metric space M is locally compact with respect to the compact-open topology.

Proof. We recall that the 'compact-open topology of G is defined as follows. For any finite number of pairs $\left(K_{i}, U_{i}\right)$ of compact subsets K_{i} and open subsets U_{i} of M, let $W=W\left(K_{1}, \ldots\right.$, $\left.K_{s} ; U_{1}, \ldots, U_{s}\right)=\left\{\varphi \in G ; \varphi\left(K_{i}\right) \subset U_{i}\right.$ for $\left.\mathrm{i}=1, \ldots, s\right\}$. Then the sets W of this form are taken as a base for the open sets of G. Since M is regular and locally compact, the group multiplication $G \times G \rightarrow G$ and the group action $G \times M \rightarrow M$ are continuous (cf. Steenrod [1;p. 19]). The continuity of the mapping $G \rightarrow G$ which sends φ into $\boldsymbol{\varphi}^{-1}$ will 'be proved using the assumption in Theorem 4.7, although it follows from a weaker 'assumption (cf. Arens [1]).

Every connected, locally compact metric space satisfies the second axiom of countability (see Appendix 2). Since M is locally compact and satisfies the second axiom of countability, G satisfies the second axiom of countability. This justifies the use of sequences in proving the local compactness of G (cf. Kelley [1; p. 138]). The proof is divided into several lemmas.

Lemma 1. Let a $\in M$ and let $\varepsilon>0$ be such that $U(a ; \varepsilon)=$ $\{\mathrm{x} \in M ; d(a, x)<\varepsilon\}$ has compact closure (where d is the distance). Denote by V_{a} the open neighborhood $U(a ; \varepsilon / 4)$ of a. Let φ_{n} be a sequence of isomerries such, that. $\varphi_{n}(b)$ converges for some point $b \in V_{a}$. Then there exist a compact set K and an integer N such that $\varphi_{n}\left(V_{a}\right) \subset K$ for every $n>\mathrm{N}$.

Proof. Choose N such that $n>\mathrm{N}$ implies $d\left(\varphi_{n}(b), \varphi_{n}(b)\right)<$ $\varepsilon / 4$. If $x \in V_{a}$ and $n>N$, then we have

$$
\begin{aligned}
& d\left(\varphi_{n}(x), \varphi_{N}(a)\right) \leqq d\left(\varphi_{n}(x), \varphi_{n}\left(b_{;}\right)+d\left(\varphi_{n}(b), \varphi_{N}(b)\right)\right. \\
&+d\left(\varphi_{N}(b), \varphi_{N}(a)\right) \\
&= d(x, b)+d\left(\varphi_{n}(b), \varphi_{N}(b)\right)+d(b, a)<\varepsilon
\end{aligned}
$$

using the fact that φ_{n} and φ_{N}, are isometries. This means that $\varphi_{n}\left(\tilde{V}_{a}\right)$ is contained in $U\left(\varphi_{N}(a) ;\right.$ e $)$. But $U\left(\varphi_{N}(a) ; \varepsilon\right)=\varphi_{N}(U(a ; \varepsilon))$ since φ_{N} is an isometry. Thus the closure-X of $U\left(\varphi_{N}(a) ; \varepsilon\right)=$ $\varphi_{N}(U(a ; \mathrm{E}))$ is compact and $\varphi_{n}\left(V_{a}\right) \subset K$ for $n>N$.

Lemma 2. In the notation of Lemma 1, assume again that $\varphi_{n}(b)$
converges for some b ϵV_{a}. Then there is a subsequence $\varphi_{n_{k}}$ of φ_{n} such that $\varphi_{n_{k}}(x)$ converges for each $x \in V_{a}$.
Proof. Let $\{0$,$\} be a countable set which is dense in V_{a}$. (Such a $\{b$,$\} exists since M$ is separable, By Lemma 1, there is an N such that $\varphi_{n}\left(V_{a}\right)$ is in K for $n>\mathrm{N}$. In particular, $\varphi_{n}\left(b_{1}\right)$ is in K. Choose a subsequence $\varphi_{1, k}$ such that $\varphi_{1, k}\left(b_{1}\right)$ converges. From this subsequence, we choose a subsequence $\varphi_{2, k}$ such that $\varphi_{2, k}\left(b_{2}\right)$ converges, and so on. The diagonal sequence $\varphi_{k, k}\left(b_{n}\right)$ converges for every $\mathrm{n}=1,2, \ldots$ To prove that $\varphi_{k, k}(x)$ converges for every $x \in V_{a}$, we change the notation and may assume that $\varphi_{n}\left(b_{i}\right)$ converges for each $i=1,2, \ldots$ Let $\mathrm{x} \in V_{a}$ and $6>0$. Choose b_{i} such that $\mathrm{d}\left(\mathrm{x}, b_{i}\right)<\delta / 4$. There is an N_{1} such that $d\left(\varphi_{n}\left(b_{i}\right)\right.$, $\left.\varphi_{m}\left(b_{i}\right)\right)<\delta / 4$ for $\mathrm{n}, \mathrm{m}>N_{1}$. Then we have

$$
\begin{aligned}
d\left(\varphi_{n}(x), \varphi_{m}(x)\right) \leqq & d\left(\varphi_{n}(x), \varphi_{n}\left(b_{i}\right)\right)+d\left(\varphi_{n}\left(b_{i}\right), \varphi_{m}\left(b_{i}\right)\right) \\
& +d\left(\varphi_{m}\left(b_{i}\right), \varphi_{m}(x)\right) \\
= & 2 d\left(x, b_{i}\right)+d\left(\varphi_{n}\left(b_{i}\right), \varphi_{m}\left(b_{i}\right)\right)<\delta
\end{aligned}
$$

Thus $\varphi_{n}(x)$ is a Cauchy sequence. On the other hand, Lemma 1 says that $\varphi_{n}(x)$ is in a compact set K for all $n>\mathrm{N}$. Thus $\varphi_{a}(x)$ converges.

Leama 3. Let φ_{n} be a sequence of isometries such, that $\varphi_{n}(a)$ converges for some point a $\in \mathrm{M}$. Then there is a subsequence $\varphi_{n_{k}}$ such that $\varphi_{n_{k}}(x)$ convergesfor each $x \in M$. (The coonectedness-of Mis essentially used here.)
Proof. For each $x \in M$, let $V_{x}=U(x ;$ e/4) such that $U(x ; \varepsilon)$ has compact closure (this $\boldsymbol{\varepsilon}$ may vary--from point to point, but we choose one such ε for each x). We define a chain as a finite sequence of open sets V_{i} such that (1) each V_{i} is of the form V_{x} for some x; (2) V_{1} contains a; (3) V_{i} and V_{i+1} have a common point. We assert that every point y of M is in the last term of some chain. In fact, it is easy to see that the set of such paints y is open and closed. M being connected, the set coincides with M.

This being said, choose a countable set $\left\{b_{i}\right\}$ which is dense in M. For b_{1}, let $V_{1}, V_{2}, \ldots, V_{s}$ be a chain with $6, \in V_{s}$. By assumption $\varphi_{n}(a)$ converges. By Lemma 2, we may choose a subsequence (which we may still denote by φ_{n} by changing the notation) such that $\varphi_{n}(x)$ converges for each $x \in V_{1}$. Since $V_{1} \cap V_{2}$ is non-empty, Lemma 2 allows us to choose a subsequence which converges for
each $x \in V_{2}$, and so on. Thus the original sequence φ_{n} has a subsequence $\varphi_{1, k}$ such that $\varphi_{1, k}\left(b_{1}\right)$ converges. From this, subsequence, we may further choose a subsequence $\varphi_{2, k}$ such that $\varphi_{2, k}\left(b_{2}\right)$ converges. As in the proof of Lemma 2, we obtain, the diagonal subsequence $\varphi_{k, k}$ such that $\varphi_{k, k}\left(b_{n}\right)$ converges for each \boldsymbol{n}., Denote this diagonal subsequence by φ_{n}, by changing the notation. Thus $\varphi_{n}\left(b_{i}\right)$ converges for each 6 ,.

We now want to show that $\varphi_{n}(x)$ converges for each' $x \in M$. In V_{x}, there is some b_{i} so that there exist an N and a compact set K such that $\varphi_{n}\left(V_{x}\right) \subset K$ for $\mathrm{n}>\mathrm{N}$ by Lemma 1. Proceeding as in the second half of the proof for Lemma 2, we can prove that $\varphi_{n} f^{-}(x)$ is a Cauchy sequence. Since $\varphi_{n}(x) \in K$ for $\mathrm{n}>\mathrm{N}$, we: conclude that $\varphi_{n}(x)$ converges.

Lemma 4. A ssume that φ_{n} is a sequence of isometries such that $\varphi_{n}(x)$ converges for each $x \in M$. Define $\varphi(x)=\lim _{n \rightarrow \infty} \varphi_{n}(x)$ for each x. Then φ is an isometry.

Proof. Clearly, $d(\varphi(x), \varphi(y))=d(x, y)$ for any $x, y \in M$. For any a $\in M$, let $a^{\prime}=\varphi(a)$. From $d\left(\varphi_{n}^{-1} \circ \varphi(a)\right.$, a) $=d\left(\varphi(a), \varphi_{n}(a)\right)$, it follows that $\varphi_{n}^{-1}\left(a^{\prime}\right)$ converges to a. By Lemma 3, there is a subsequence $\varphi_{n_{k}}$ such that $\varphi_{n_{k}}^{-1}(y)$ converges for every y $\in M$. Define a mapping ψ by $\psi(y)=\lim _{x \rightarrow \infty} \varphi_{n_{k}}^{-1}(y)$. Then ψ preserves distance, that is, $d(\psi(x), \psi(y))=d(x, y)$ for any $x, y \in M$. From

$$
\begin{aligned}
d(\psi(\varphi(x)), x) & =d\left(\lim _{k \rightarrow \infty} \varphi_{n_{k}}^{-1}(\varphi(x)), x\right)=\lim _{k \rightarrow \infty} d\left(\varphi_{n_{k}}^{-1}(\varphi(x)), x\right) \\
& =\lim _{k \rightarrow \infty} d\left(\varphi(x), \varphi_{n_{k}}(x)\right)=d(\varphi(x), \varphi(x))=0,
\end{aligned}
$$

it follows that $\psi(\varphi(x))=x$ for each $x \in M$. This means that φ maps M onto M. Since ψ preserves distance and maps M onto M, ψ^{-1} exists and is obviously equal to φ. Thus φ is an isometry.

Lemma 5. Let $\varphi_{n} b e$ a sequence of isometries and φ an isometry. If $\varphi_{n}(x)$ converges to $\varphi(x)$ for every $x \in M$, then the convergence is unifopm on every compact subset K of M.

Proof. Let $\delta>0$ be given. For each point a ϵK, chopse an integer N_{a} such that $\mathrm{n}>N_{a}$ implies $d\left(\varphi_{n}(a), \varphi(a)\right)<\delta / 4$. Let $W_{a}=U(a ; \delta / 4)$. Then or any $x \in W_{a}$ and $\mathrm{n}>N_{a}$, we have

$$
\begin{aligned}
d\left(\varphi_{n}(x), \mathrm{y}(\mathrm{x})\right) & \leqq d\left(\varphi_{n}(x), \varphi_{n}(a)\right)+d\left(\varphi_{n}(a), \varphi(a)\right)+d(\varphi(a), \gamma(x)) \\
& <2 d(x, a)+\delta / 4<\delta
\end{aligned}
$$

Now K can be covered by a finite number of $W^{\prime \prime}$'s, say $W_{i}=$ $W_{a}, i=1, \ldots, s$. It follows that if $n \ldots \max _{i}, V_{a}$, , then

$$
d\left(\varphi_{n}(x), \mathscr{f}(x)\right)<\delta \quad \text { foi } \operatorname{cach} x \in K .
$$

Lemma 6. If $\varphi_{n}(x)$ converges to $\gamma(x)$ as in Lemma 5, then. $7_{n}{ }^{1}(x)$ converges to $\psi^{-1}(x)$ for every $\boldsymbol{x} \in M$.

Proof. For any $x \in M$, let $y=\chi^{-1}(x)$. Then

$$
d\left(q_{n}^{-1}(x), \varphi^{-1}(x)\right)=d\left(\varphi_{n}^{-1}(\varphi(y)), y\right)=d\left(\gamma(y), q_{n}(y)\right) \rightarrow 0
$$

We shall now complete the proof of Theorem 4.7. First, observe that $\psi_{n} \rightarrow q$ with respect to the compact-open topology is equivalent to the uniform convergence of φ_{n} to q on every compact subset of M. If $\gamma_{n} \rightarrow \varphi$ in G. (with respect to the compact-open topology),. then Lemma 6 implies that $\varphi_{n}^{-1}(x) \rightarrow \phi^{-1}(x)$ for ever) $\boldsymbol{x} \in M$, and the convergence is uniform 'on every compact subset by Lemma 5 . Thus $\varphi_{n}^{-1} \rightarrow \varphi^{-1}$ in G. This means that the mapping $\mathrm{G} \rightarrow \mathrm{G}$ which maps φ into φ^{-1} is continuous.

To prove that G is locally compact, let a $\in M$ and U an open neighborhood of a with compact closure. We shall show that the neighborhood $\mathrm{W}=\mathrm{W}(\mathrm{a} ; U)=\{\varphi \in \mathrm{G} ; \varphi(a) \in U\}$ of the identity of G has compact closure. Let φ_{n} be a sequence of elements in W. Since $\varphi_{n}(a)$ is contained in the compact set \bar{O}, closure of U, we can choose, by Lemma 3, a subsequence $\varphi_{n_{k}}$ such that $\varphi_{n_{k}}(x)$ converges for every $x \in M$. The mapping φ defined by $\varphi(x)=$ $\lim \varphi_{n_{k}}(x)$ is an isometry of M by Lemma 4. By Lemma 5, $\varphi_{n_{k}} \rightarrow \varphi$ uniformly on every compact subset of M, that is, $\varphi_{n_{k}} \rightarrow \varphi$ in G, proving that W has compact closure.

QED:
Corollary 4.8. Under the assumption of Theorem 4.7, the isotropy subgroup $G_{a}=\{\varphi \in \mathrm{G} ; \varphi(a)=a\}$ of G at a is compact for every $a \in M$.

Proof.: Let φ_{n} be a sequence of elements of G,. Since $q,,(a)=$. for every n , there is a subsequence $\varphi_{n_{k}}$ which converges to an element φ of G_{a} by Lemmas 3, 4, and 5 .

QED.
COroliARy 4.9. If M is a locally compact metric space with a finite number of connected components, the group G of isometries oj' M is locally compact with respect to the compact-open topology.

Proof. Decompose' M into its connected components M_{i}, $M=\bigcup_{i=1}^{s} M_{i}$. Choose a point a, in each M_{i} and an open
neighborhood U_{i} of a, in M_{i} with compact closure. Then $W\left(a_{1}, \ldots, a_{s} ; U_{1}, \ldots, U_{s}\right)=\left\{\varphi, \epsilon G ; \varphi\left(a_{i}\right) \in U_{i}\right.$ for $\left.i=1, \ldots, s\right\}$ is a neighborhood of the identity of G with compact closure,

Q E D
Corollary 4.10. If M is compact in addition to the assumption of Corollary 4.9, then G is compact.

Proof. Let $\mathrm{G}^{*}=\left\{\varphi \in \mathrm{G} ; \varphi\left(M_{i}\right)=M_{i}\right.$ for $\left.i=1, \ldots, s\right\}$, Then G^{*} is a subgroup of G of finite index. In the proof of Corollary 4.9, let $U_{i}=M_{i}$. Then G^{*} is compact. Hence, G is compact.

QED.

5. Fibre bundles

,Let M be a manifold and G a Lie group. A (differentiable) principal fibre bundle over M with group G consists of a manifold' P and an action of G on P satisfying the following conditions:
(1) G acts freely on P on the right; $(u, a) \in P \times G \rightarrow \boldsymbol{u}=$ $R_{a} u \in \mathrm{P}$;
(2) M is the quotient space of P by the equivalence relation induced by $G, M=P / G$, and the canonical projection $\pi: P \rightarrow M$ is differentiable ;
(3) P is locally trivial, that is, every point \boldsymbol{x} of M has a neighborhood U such that $\pi^{-1}(U)$ is isomorphic with $U \times G$ in the sense that there is a diffeomorphism $\psi: \pi^{-1}(U) \rightarrow U \times G$ such that $\psi(u)=(\mathrm{X}(\mathrm{U}), \varphi(u))$ where φ is a mapping of $\pi^{-1}(U)$ into G satisfying $\varphi(u a)=(\varphi(u)) a$ for all $u \in \pi^{-1}(U)$ and $a \in G$.

A principal fibre bundle will be denoted by $P(M, G, \pi)$, $P(M, G)$,or simply P. We call P the total space or the bundle space, M the base space, G the structure group and π the projection. For each $\boldsymbol{x} \in \mathrm{M}, \pi^{-1}(x)$ is a closed submanifold of P , called the fibre over \boldsymbol{x}. If u is a point of $\pi^{-1}(x)$, then $\pi^{-1}(x)$ is the set of points $u a, a \in G_{y}$ and is called the fibre through u. Every fibre is diffeomorphic to G .

Given a Lie group G and a manifold M, G acts fredy on $P=M \times G$ on the right as follows. For each $b \in G_{,}, f_{4}$ maps $(x, a) \in M \times G$ into $(x, a b) \in M \times G$. The principal fibre bundle $P(M, G)$ thus obtained is called trivial,

From local triviality of $P(M, G)$ we see that If W " is a submanifold of M then $\pi^{-1}(W)(W, G)$ is a principal fibre bundle.

We call it the Portion of P over W or the restriction of P to W and denote it by $P \mid W$.

Given a principal fibre bundle $P(\mathrm{M}, \mathrm{G})$, the action of G on P induces a homomorphism $\boldsymbol{\sigma}$ of the Lie algebra g of G into the Lie algebra $\mathfrak{X}(P)$ of vector fields on P by Proposition 4.1. For each $\mathrm{A} \in \mathfrak{g}, \mathrm{A}^{*}=\sigma(A)$ is called‘ the fundamental vector field corresponding to A. Since the action of G sends each fibre into itself, A,* is tangent to the fibre at each $u \in P$. As G acts freely on P, A^{*} never vanishes on $\mathbf{P}(\mathbf{i f} A \neq \mathbf{0})$ by Proposition 4. I. The dimension of each fibre being equal to that of g, the mapping $A \rightarrow(A *)$, of \mathfrak{g} into, $T_{\mathfrak{u}}(P)$ is a linear isomorphism of \mathfrak{g} onto the tangent space at u of the fibre through u. We prove

Proposition 5.1. Let A^{*} be the fundamental vector field corresponding to $A^{\prime} \in \mathfrak{g}$. For each a $\in \mathrm{G},\left(R_{a}\right)_{*} A^{*}$ is the fundamental vector field corresponding to $\left(\right.$ ad $\left.\left(a^{-1}\right)\right) A \in \mathfrak{g}$.

Proof. Since A^{*} is induced by the l-parameter group of transformations $R_{a_{t}}$ where a , $=\exp t A$, the vector field $\left(R_{a}\right)_{*} A^{*}$ is induced by the l-parameter group of transformations $R_{\mathrm{a}} R_{a_{t}} R_{\mathrm{a}^{-1}}=R_{\sigma^{-1} a_{a} a}$ by Proposition 1.7. Our assertion follows from the fact that $a^{-1} a_{t} a$ is the 1-parameter group. generated by $\left(\operatorname{ad}\left(a^{-1}\right)\right) A \in \mathrm{~g}$.

The concept of $f_{\text {und }}$ amental vector fields will prove to be useful in the theory of connections.

In order to relate our intrinsic definition of a principal.fibre bundle to the definition and the construction by means of an open covering, we need the concept of transition functions. By (3) for a principal fibre bundle $P(M, G)$, it is possible to choose an open covering $\left\{U_{\alpha}\right\}$ of M, each $\pi^{-1}\left(U_{\alpha}\right)$ provided ${ }^{-}$with a diffeomorphism $u \rightarrow\left(\tilde{\pi}(u), \varphi_{\alpha}(u)\right)$ of $\pi^{-1}\left(U_{\alpha}\right)$ onto $U_{\alpha} \times G$ such that $\varphi_{\alpha}(u a)=\left(\varphi_{\alpha}(u)\right) a$. If $u \in \pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right)$, then $\varphi_{\beta}(u a)\left(\varphi_{\alpha}(u a)\right)^{-1}=$ $\varphi_{\beta}(u)\left\langle\varphi_{\alpha}(u)\right)^{-1}$, which shows that $\varphi_{\beta}(u)\left\langle\varphi_{\alpha}(u)\right)^{-1}$ depends only on $\pi(u)$ not on u. We can define a mapping $\psi_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \rightarrow G$ by $\psi_{\beta \alpha}(\pi(u))=\varphi_{\beta}(u)\left(\psi_{\alpha}(u)\right)^{-1}$. The family of mappings $\psi_{\beta \alpha}$ are called transition functions of the bundle $P(M, G)$ corresponding to the open covering $\left\{U_{\alpha}\right\}$ of M. It is easy to verify that
(*) $\quad \psi_{\gamma \alpha}(x)=\psi_{\gamma \beta}(x): \psi_{\beta \sigma}(x) \quad$ for $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$
Conversely, we have

Proposition 5.2. Let M be a manifold, $\left\{L_{\alpha}^{+}\right\}$an open covering of \boldsymbol{M} anti G a Lie group. Given a mapping $\psi_{\beta x}: U_{x} \cap U_{B} \rightarrow$ for every nonempt ! ${ }_{C}{ }_{x} \mathrm{n}{ }_{i}{ }_{\beta}$, in such' a way that the relations (*) are satisfied, we cal construct a (differentiable) principal fibre bundle $P(M . G)$ with transition functions $\psi_{j x}$.

Proof. We first observe that the relations (*) imply $\psi_{x y}\left(x_{x}\right)=e$ for every $x \in \dot{U}_{x}$ and $\psi_{x_{i}}(x) \psi_{\beta x}(x)=\mathrm{e}$ for cvery $x \in U_{x} \cap U_{\beta}$ Let $X_{x}=I_{x} \times G$ for each index α and let $\mathrm{X}=U_{x} X_{x}$ he the topological sum of X_{x}; each clement of X is a triple $(x, x$, a) where α is some index, $x \in U_{x}$ and $a \in G$. Since each X_{α} 'is a differentiable manifold and X is a disjoint union of $X_{x}, \stackrel{\alpha}{X}$ is a differentiable manifold in a natural way. We introduce an equivalence relation ρ in X as follows. We say that $(\alpha, x, a) \in\{\alpha\} \times X_{\alpha}$ is equivalent to $(\beta, y, b) \in\{\beta\} \times X_{\beta}$ if and only if $x=y \in U_{x} \cap U_{\beta}$ and $b=$ $\psi_{i x}(x) a$. We remark that (α, x, a) and (α, y, b) are equivalent if and only if $x \pm y$ and $a=b$. Let P be the quotient space of X by this equivalence relation ρ. We first show that G acts frecly en \mathbf{P} on the right and that $P / G=M$. By definition, each c $\in G$ maps the p-equivalence class of (cc, x, a) into the p-equivalence class of ($\mathrm{x}, x, a c$). It is easy to see that this definition is independent of the choice of representative (a, x, a) and that G acts freely on P on the right. The projection $\pi: \mathbf{P} \rightarrow M_{1}$ maps, by definition, the p-equivalence class of (a, x, a) into x; the definition of π is independent of the choice of representative (a, x, a). For $u, v \in P$, $\pi(u)=\pi(v)$ if and only if $\mathrm{v}=\mathrm{UC}$ for some $c \in \mathrm{G}$. In fact, let $(\alpha, x ; a)$ and (β, y, b) be representatives, for u and, v respectively. If $\mathrm{v}=$ UC for some $\mathrm{c} \in \mathrm{G}$, then $y=x$ and hence $\pi(v)=\pi(u)$. Conversely, if $\pi(u)=x=y=\pi(v) \in U_{x} \cap U_{\beta}$, then $v=u c$ where $c=a^{-1} \psi_{\beta x}(x)^{-1} b \in \mathrm{G}$. In order to make P^{-}into a differentiable manifold, we first note that, by the natural mapping $X \rightarrow \mathbf{P}=X / p$, each $X_{\alpha}=U_{\alpha} \times G$ is mapped $1: 1$ onto $\pi^{-1}\left(U_{\alpha}\right):$ We introduce a differentiable structure in P by requiring that $\pi^{-1}\left(U_{\alpha}\right)$ is an open submanifold of P and that the maping $\mathrm{X} \rightarrow P$ induces a diffeomorphism of $X_{\alpha}=U_{\alpha} \mathrm{x} \mathrm{G}$ onto-q-1 $\left(U_{\alpha}\right)$, This is possible since every point of P is contained in $\pi^{-1}\left(U_{\alpha}\right)$ for some α and the identification of (a, x, a) with $\left(\beta, \tilde{x}, \psi_{\beta \alpha}(x) a\right)$ is made by means of differentiable mappings. It is easy to check that the action of G on \mathbf{P} is differentiable and $P(M, G, \pi)$ is a differentiable principal fibre bundle. Finally, the transition functions of P
corresponding to the covering $\left\{U_{\alpha}\right\}$ are precisely the given $\psi_{\beta \boldsymbol{\beta}}$ if we define $\psi_{x}: \pi^{-1}\left(I_{\mathrm{z}}\right) \rightarrow I_{\alpha} \times$. G by $\mathrm{y},(\mathrm{u})=(x, a)$, where $\mathrm{u} \in \pi^{-1}(U)$ is the ρ-equivalence class of (a, x, a). , QED.

A homomorphism f of a principal fibre bundle $P^{\prime}\left(M^{\prime}, G^{\prime}\right)$ into another principal fibre bundle $P(M, G)$ consists of a mapping $f^{\prime}: P^{\prime}-\mathrm{P}$ and a homomorphismf': $G^{\prime} \rightarrow \mathrm{G}$ such that $f^{\prime}\left(u^{\prime} a^{\prime}\right)=$ $f^{\prime}\left(u^{\prime}\right) f$ " (a) for all $u^{\prime} \in P^{\prime}$ and $\mathrm{a}^{\prime} \in \mathrm{G}^{\prime}$. For the sake of simplicity, we shall denote f^{\prime}, and $f^{\prime \prime}$ by the same letter f. Every homomorphism $f: \mathbf{P}^{\prime} \rightarrow P$ maps each fibre of P^{\prime} into a fibre of P and hence induces a mapping of M^{\prime} into M, which will be also denoted byf. A homomorphism $f: P^{\prime}\left(M^{\prime}, \mathbf{G}^{\prime}\right) \rightarrow P(M, G)$ is called tin imbedding or injection if $f: P^{\prime} \rightarrow P$ is an imbedding and if $f: G^{\prime} \rightarrow G$ is a monomorphism. If $f: P^{\prime} \rightarrow P$ is an imbedding, then the induced mapping $f: M \rightarrow M$ is also an imbedding: By identifying P^{\prime} with $f\left(P^{\prime}\right), \mathrm{G}^{\prime}$ with $f\left(G^{\prime}\right)$ and M^{\prime} with $f\left(M^{\prime}\right)$; we say that $P^{\prime}\left(M^{\prime}, \mathbf{G}^{\prime}\right)$ is a subbundle of $P(M, G)$. If, moreover, $M^{\prime}=M$ and the induced mapping $f: M^{\prime} \rightarrow M$ is the identity transformation of M, $f: P^{\prime}\left(M^{\prime}, G^{\prime}\right) \rightarrow P(M, G)$ is called a reduction of the structure group G of $P(M, G)$ to G^{\prime}. The subbundle $P^{\prime}\left(M, \mathbf{G}^{\prime}\right)$ is called a reduced bundle. Given $P(M, G)$ and a Lie subgroup G^{\prime} of G , we say ${ }^{\text {a }}$ that the structure group G is reducible to G^{\prime} if there is a reduced bundle $P^{\prime}\left(M, G^{\prime}\right)$. Note that we' do not require in general that G^{\prime} is a closed subgroup of G. This generality is needed in the theory of connections.

Propostrion 5.3. The structure group G of a principal fibre bundle $P(M, G)$ is reducible to a Lie subgroup G ' if and only if there is an open covering $\left\{U_{\alpha}\right\}$ of M with a set of transition functions $\psi_{\beta \boldsymbol{x}}$ which take their values in G^{\prime}
Proof. Suppose first that the structure group G is reducible to G^{\prime} and. let $P^{\prime}\left(M, G^{\prime}\right)$ be \mathbf{a}. reduced bundle. Consider \mathbf{P}^{\prime} as a submanifold of P. Let $\left\{U_{x}\right\}$ be an open covering of \mathbf{M} such that each $\pi^{\prime-1}\left(U_{\alpha}\right)$ (a': the projection of P^{\prime} onto $\left.\mathbf{M}\right)$ is provided with an isomorphism $u \rightarrow\left(\pi^{\prime}(u), \varphi_{\alpha}^{\prime}(u)\right)$ of $\pi^{\prime-1}\left(I_{\alpha},\right)$. onto $U_{\alpha} \times \mathrm{G}^{\prime}$. The corresponding transition functions take their values in G^{\prime}. Now, for the same' covering $\left\{U_{\alpha}\right\}$, we define an isomorphism of $\pi^{-1}\left(U_{\alpha}\right)$ (n: the projection of P onto M) ont $\Omega I_{\alpha} \times$ by extending $\varphi_{\alpha}^{\prime}$ as follows. Every $v \in \pi^{-1}\left(U_{\alpha}\right)$ may be represented in extending $v=u a$ for some $u \in \pi^{\prime-1}\left(U_{\alpha}\right)$ and $a \in G$ and we set $\varphi_{\alpha}(v)=\varphi_{\alpha}^{\prime}(u) a$.

It is easy to see that $\varphi_{\alpha}(v)$ is independent of the choice of representation $\mathrm{v}=$ ua. We see then that $\mathrm{v} \rightarrow\left(\pi(v), \varphi_{\alpha}(v)\right)$ is anisomorphism of $\pi^{-1}\left(U_{\alpha}\right)$ onto $U_{\alpha} \times G$. The corresponding transition functions $\psi_{\beta \alpha}(\dot{x})=\varphi_{\beta}(v)\left(\varphi_{\alpha}(v)\right)^{-1}=\varphi_{\beta}^{\prime}(u)\left(\varphi_{\alpha}^{\prime}(u)\right)^{-1}$ take their values in \mathbf{G}^{\prime}.

Conversely, assume that there is a covering $\left\{U_{\alpha}\right\}$ of M with a set of transition functions $\psi_{\beta \alpha}$ all taking values in a Lie subgroup G' of G. For $U_{\alpha} \cap U_{\beta} \neq \phi, \psi_{\beta \alpha}$ is a differentiable mapping of $U_{\alpha} \cap U_{\beta}$ into a^{\bullet} Lie group G such that $\psi_{\beta \alpha}\left(U_{\alpha} \cap U_{\beta}\right) \subset G_{\dot{\prime}}^{\prime}$ The crucial point is that $\psi_{\beta \alpha}$ is a differentiable mapping of $U_{\alpha} \mathrm{n} \dot{U}_{\beta}$ into G' with respect to, the differentiable. structure of \mathbf{G}^{\prime}., This follows from Proposition 1.3 ; note that a Lie subgroup satisfies the second axiom of countability by definition, cf. \$4. By Proposition 5.2, we can construct 'a principal fibre bundle $P^{\prime}(M, G$ ') from $\left\{U_{\alpha}\right\}$ and $\left\{\psi_{\beta \alpha}\right\}$. Finally, we imbed P^{\prime} into P as follows. Let $f_{\alpha}: \pi^{\prime-1}\left(U_{\alpha}\right) \rightarrow \pi^{-1}\left(U_{\alpha}\right)$ be the composite of the following three mappings:

$$
\pi^{\prime-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times G^{\prime} \rightarrow U_{\alpha} \times G \rightarrow \pi^{-1}\left(U_{\alpha}\right)
$$

It is easy to see that $f_{\alpha}=f_{\beta}$ on $\pi^{\prime-1}\left(U_{\alpha} \cap U_{\beta}\right)$ and that the mapping f: $P^{\prime} \rightarrow P$ thus defined by $\left\{f_{\alpha}\right\}$ is an injection.

Let $P(M, G)$ be Φ rincipak fibre bundle and F a manifold on which G acts on the left: $(\boldsymbol{a}, \boldsymbol{\xi}) \in \mathrm{G} \times F \rightarrow a \xi \in F$. We shall construct a fibre bundle $E(M, F, G, P)$ associated with P with standard fibre F. On the product manifold $P \times F$, we let G act on the right as follows: an element $a \in G$ maps $(u, \xi) \in P \times F$ into (uu, $a^{-1} \boldsymbol{\xi}$) $\in P \times F$. The quotient space of $P \times F$ by this group action is denoted by $E=P \times{ }_{G} F$. A differentiable structure will be introduced in E later and at this moment E is only a set. The tipping $P \times F \rightarrow M$ which maps $(\boldsymbol{u}, \boldsymbol{\xi})$ into $\boldsymbol{\pi}(\boldsymbol{u})$ induces a mapping π_{E}, called the projection, of E onto M. For each $x \in M$; the set $\pi_{E}^{-1}(x)$ is called the fibre of E over x. Every pomt x. of M has a neighborhood U such that $\pi^{-1}(U)$ is isomorphic to $U \times G$. Identifying $\pi^{-1}(U)$ with $U \times G$, we see that the action of G on $\pi^{-1}(U) \times F$ on the right is given by
$(x, a, \xi) \rightarrow\left(x, a b, b^{-1} \xi\right) \quad$ for $(x, a, \xi) \in U \times G \times F$ and $b \in G$.
It follows that the isomorphism $\pi^{-1}(U) \approx U \times G$ induces an isomorphism $\pi_{\boldsymbol{E}}^{-1}(U) \approx U \times F$. We can therefore introduce a
differentiable structure in E by. the requirement that $\pi_{E}^{-1}(U)$ is an open submanifold of E which is diffeomorphic with $U \times F$ under the isomorphism $\pi_{E}^{-1}(U) \approx U^{d}$ W首. The projection π_{E} is then a differentiable mapping of E onto M, W We call E or more precisely $E(M, F, G, P)$ the\&e bundle over the base M, with (standard) fibre F and (structure) group G, which is associated with the principal : fibre bundle P.

Proposition 5.4. Let $P(M, G)$ be a principal fibre bundle and F a manifold on which G acts on the left. Let $\dot{E}(M, F, G, P)$ be the fibre bundle associated with P. For each $u \in P$ and each $\boldsymbol{\xi} \in I$, denote by $\boldsymbol{u \xi}$ the. image of $(u, \xi) \in P \times F$ by the natural projection $P \times F \rightarrow E$. Then each $u \in P$ is a mapping of F onto $F_{x}=\boldsymbol{\pi}_{\boldsymbol{E}}^{-1}(\boldsymbol{x})$ where $\boldsymbol{x}=\boldsymbol{\pi}(u)$ and

$$
(u a) \xi=u(a \xi) \quad \text { for } u \in P, a \in G, \xi \in F
$$

The proof is trivial and is left to the reader."
By an isomorphism of a fibre $F_{\boldsymbol{x}}=\pi_{\boldsymbol{E}}^{-1}(x), x \in M$, onto another fibre F_{y} y $\in M$, we mean a diffeomorphism which can be represented: in the 'form,. $v \circ u^{-1}$, where $\dot{u} \in \pi^{-1}(x)$ ahd $v \in \pi^{-1}(x)$ are considered as mappings of F onto F_{x} and F_{y} respectively. In particular, an automorphism of the fibre F_{z} is a mapping of the form. $v \circ u^{-1}$ with $u, v \in \pi^{-1}(x)$. En this case; $u, u a$ for some $a \in \mathrm{G}$ so that any automorphism of F_{x} can be expressed in the form $u \circ a \circ u^{-1}$ where u is an arbitrarily fixed point of $\pi^{-1}(x)$. The group of automorphisms of F_{x} is hence isomorphic with the structure group G.

Example 5.1. $G(G / H, \mathrm{H})$: Let G be a Lie group and H a closed subgroup of G. We let H act on G on the right as follows. . Every $a \in H$ maps $\boldsymbol{u} \in \mathrm{G}$ into $u a$. We then abtain a differentiable principal fibre bundle $G(G / H, H)$ over the base manifold G / H with structure group H; the local triviality follows from the existence. of a. local cross section., It is proved in Chevalley [1 ; p. 110] that if is the projection of G onto G / H and e is the identity of G, then there is a mapping σ of a neighborhood of $\pi(e)$ in G / H into G such that $\pi \circ \pi$ is the identity transformation of the neighborhood. fee also Steenrod [1; pp. 28-33].

Example 5.2. Bundle of -linear frames: Let M be a manifold of dimension n. A linear frame u at a point $x \in M$ is an ordered basis X_{1}, \ldots, X_{n} of the tangent space $T_{x}(M)$. Let $L(M)$ be the set of
all linear frames u at all points of M and let π be the mapping of' $L(M)$ onto M which maps a linear. frame u at x into x . The general linear group $G L(n ; \mathbf{R})$ acts on $L(M)$ on the. right as follows. If ${ }^{*} a=\left(a_{j}^{i}\right) \in G L(n ; \mathrm{R})$ and $u=\left(X_{1}, \ldots, X_{n}\right)$ is a linear frame at x, then $u a$ is. by definition, the linear frame $\left(Y_{1}, \ldots, Y,\right)$ at x defined by $Y_{i}=\Sigma_{j} a_{i}^{j} X_{j}$. It is clear that $G L(n ; \mathrm{R})$ acts freely on $L(M)$ and $\pi(u)=\pi(v)$ if and only if $\mathrm{v} \approx u a$ for some $a \in G L(n ; \mathrm{R})$. Now in order to introduce a differehtiable structure in $L(\mathcal{M})$, let ($\mathrm{xl}, \ldots, x^{n}$) be a local coordinate system in a coordinate neighborhood U in M. Every frame u at $x \in U$ can be expressed uniquely in the form $u=\left(\mathrm{X}, \ldots, X_{n}\right)$ with $X_{i}=\Sigma_{k} X_{i}^{k}\left(\partial / \partial x^{k}\right)$, where $\left(X_{i}^{\boldsymbol{k}}\right)$ is a non-singular matrix. This shows that $\boldsymbol{\pi}^{\mathbf{- 1}}(U)$ is in 1: 1 correspondence with $U . \mathrm{x} \quad G L(n ; \mathrm{R})$. We can make $L(M)$ into a differentiable manifold by taking $\left(x^{i}\right)$ and $\left(X_{i}^{k}\right)$ as a local coordinate system in $\pi^{-1}(U)$. It is now easy to verify that $L(M)(M$, $G L(n ; \mathrm{R})$) is a principal fibre bundle. We call $L(M)$ the bundle of linear frames over M. In view of Proposition 5.4, a linear frame u at $\boldsymbol{x} \in M$ can be defined as a non-singular linear mapping of \mathbf{R}^{n} onto $T,(M)$. The two definitions are related to each other as follows. Let e_{1}, \ldots, e_{n} be the natural basis for $\mathbf{R}^{n}: e_{1}=(1,0$, $0), \ldots, e_{n}=(0, \ldots, 0,1)$. A linear frame $u=\left(X_{1}, \ldots, X_{n}\right)$ at x can be given as a linear mapping $\mathrm{u}: \mathbf{R}^{n} \rightarrow T,(M)$ such that $u e_{i}=X_{i}$ for $i=1, \ldots, \mathrm{n}$. The action of $G L(n ; \mathrm{R})$ on $L(M)$ can be accordingly interpreted as follows. Consider $a=\left(a_{j}^{i}\right) \in G L(n ; \mathrm{R})$ as a linear transformation of \mathbf{R}^{n} which maps $\boldsymbol{e}_{\boldsymbol{j}}$ into $\Sigma_{i} a_{j}^{q} e_{i}$. Then $u a: \mathbf{R}^{n} \rightarrow T,(M)$ is the composite of the following two mappings:

$$
\mathbf{R}^{n} \xrightarrow{a} \mathbf{R}^{n} \xrightarrow{u} T,(M) .
$$

Example 5.3. Tangent bundle: Let $G L(n ; \mathbf{R})$ act on \mathbf{R}^{n} as above. The tangent bundle $T(M)$ over M is the bundle associated with $\mathrm{L}(\mathrm{M})$ with standard fibre' \mathbf{R}^{n}. It can be easily shown that the fibre of $T(M)$ over $x \in M$ may be considered as $T_{x}(M)$.
Example 5.4. Tensor bundles: Let \mathbf{T}_{s}^{r} be the tensor space of type (Y, s) over the vector space \mathbf{R}^{n} as defined in $\S 2$. The group $G L(n: \mathbf{R})$ can be regarded as a group of linear transformations of the space \mathbf{T}_{s}^{r} by Proposition 2.12. With this standard fibre $\mathbf{T}_{s}{ }^{r}$, we obtain the tensor bundle $T_{s}^{r}(M)$ of type (\mathbf{Y}, s) over M which is associated with $\mathrm{L}(\mathrm{M})$. It is easy to see that the fibre of $T_{s}^{r}(M)$ over $x^{\prime} \in M$ may be considered as the tensor space over $T_{x}(M)$ of type (r, s).

Returning to the general case, let $P(M, G)$ be a principal fibre bundle and Ha closed subgroup of G. In a natur 1 waw, $(i$ acts on the quotient space G / H on the left. Let $E(M, G / H, G, P)$ bc the associated bundle with standard fibre G / H. On the other hand, being a subgroup of G, H acts on P on the right. Let P / H be the quotient space of P by this action of H. Then we have

Proposition 5.5: The bundle $E=P \times_{G}(G / H)$ associated with P with standard fibre G / H can be identified with P / H as follows. An element of E represented by $\left(u, a \boldsymbol{\xi}_{\mathbf{0}}\right) \in P \dot{\times} G / H$ is mapped into the element of P / H represented by ua $\in P$, where $a \in G$ and ξ_{0} is the origin of G / H, i.e., the. coset H.

Consequently, $P(E, H)$ is a principal fibre bundle over the base $E=P / H$ with structure group H. The projection $P \rightarrow E$ maps $u \in P$ into $u \xi_{\mathfrak{0}} \in E$, where u is considered as a mapping of the standard fibre G / H into a fibre of E

Proof. The proof is straightforward, except the local triviality of the bundle $P(E, H)$: This follows from local triviality c.‘ $E(M, G / H, G, P)$ and $G(G / H, H)$ as follows. Let U be an open set of \mathcal{M} such that $\pi_{E}^{-1}(U) \approx U \times G / H$ and let V be an open set of G / H such that $p^{-1}(V) \approx V x H$, where $p: G \rightarrow G / H$ is the projection. Let W be the open set of $\pi_{E}^{-1}(U) \subset E$ which corresponds to $U \times V$ under the identification $\pi_{E}^{-1}(U) \approx U x G / H$. If $\mu: P \rightarrow E=P / H$ is the projection, then $\mu^{-1}(W) \approx W \times H$.

QED.
A cross section of a bundle $E(M, \boldsymbol{F}, G, \vec{P})$ is a mapping $\sigma: M \rightarrow E$ such that $\pi_{E}{ }^{\circ} \sigma$ is the identity transformation of M. For $P(M, G)$ itself, a cross section $\sigma: M \rightarrow P$ exists if and only if P is the trivial bundle M x G (cf. Steenrod $[1$; p. 36]). More generally, we have

Proposition 5.6. The structure group G of $\boldsymbol{P}(M, G)$ is reducible to a closed subgraup H if and only if the associated bundle $E(M, G / H, G, P)$ admits a cross section a: $M \rightarrow E=P / H$.

Proof. Suppose G is reducible to a closed subgroup H and let $Q(M, H)$ be a reduced bundle with injection $f: \mathrm{Q} \rightarrow P$. Let $\mu: P \rightarrow E=P / \dot{H}$ be the projection. If u and v are in the same fibre of Q , then $\mathrm{v}=u \boldsymbol{a}$ for some $\mathrm{a} \in H$ and hence $\mu(f(v))=$ $\mu(f(u) a)=\mu(f(u))$. This means that $\mu \circ f$ is constant on each fibre of Q and induces a mapping $\sigma: M \rightarrow E, \sigma(x)=\mu(f(u))$
where $\boldsymbol{x}=\pi(f(u))$. It is clear that σ is a section of E. Conversely, given a cross section $\sigma: \mathbf{M} \rightarrow \boldsymbol{E}$, let Q be the set of points, $u \in \dot{P}$ such that $\mu(u)=\sigma(\pi(u))$. In other words, Q is the inverse image of $\mathrm{a}(\mathrm{M})$ by the projection $\mu: \mathbf{P} \rightarrow \mathbf{E}=\mathbf{P} / \boldsymbol{H}$. For every $\boldsymbol{x} \in M$, there is $\mathrm{u} \epsilon \mathrm{Q}$ such that $\pi(u)=x$ because $\mu^{-1}(\sigma(x))$ is non-empty. Given u and v in the same fibre of P, if $u \in Q$ then $v \in Q$ when and only when $v=u a$ for some $a \in H$. This follows from the, fact that $\mathrm{p}(\mathrm{u})=\mu(v)$ if and only if $\eta=u a$ for some. $\boldsymbol{a} \in H$. 'It is now easy to verify that Q is a closed submanifold of P and that \mathbf{Q} is a principal fibre bundle $Q(M, H)$ imbedded in $\mathbf{P}(\mathbf{M}, \mathbf{G})$. QED.
Remark. The correspondence between the sections $\boldsymbol{\sigma}: \mathbf{M} \rightarrow$ $\mathbf{E}=\mathbf{P} / \mathbf{H}$ and the submanifolds Q is $1: 1$.
We shall now consider the question of extending a cross section defined on a subset of the base manifold. A mappingfof a subset A of a manifold M into another manifold is called differentiable on \mathbf{A} if for each point $\mathrm{x} \in \mathbf{A}$, there is a differentiable mapping f_{x} of an open neighborhood U_{x} of x in \mathbf{M} into \mathbf{M}^{\prime} such that $f_{\boldsymbol{x}}=\mathrm{f}$ on $U_{x} \mathrm{n}$ A. Iff is the restriction of a differentiable mapping of an open set W containing \mathbf{A} into \mathbf{M}^{\prime}, then f is cleariy differentiable on \mathbf{A}. 'Given a fibre bundle $E(M, F, \mathrm{G}, \mathbf{P})$ and a subset \mathbf{A} of \mathbf{M}, by a cross section on \mathbf{A} we mean a differentiable mapping $\boldsymbol{\sigma}$ of \mathbf{A} into \mathbf{E} such that $\boldsymbol{\pi}_{\boldsymbol{E}} \circ \sigma$ is the identity transformation of \mathbf{A}.
тheorem 5.7. Let $E(M, F, G, P)$ be a fibre bundle 'such that the base manifold M is paracompact and the fibre F is diffeomorphic with a Euclidean spate \mathbf{R}^{m}. Let A be a closed subset (possibly empty) of M. Then every cross section $\sigma: \mathrm{A} \rightarrow E$ defined on A can be extended to a cross section dejned on M. In the particular case where A is empty, there exists a cross section of E defined on M.
Proof. By the very definition of a paracompact space, every open covering of M has a locally finite open refinement. Since M is normal, every locally finite open covering $\left\{U_{i}\right\}$ of hias an open refinement $\left\{V_{i}\right\}$ such that $\bar{\nabla}_{i} \in U_{i}$ for all i (see Appectidix 3).

Lemma 1. A differentiable function defined on a closed, set of \mathbf{R}^{n} can be extended to a differentiable function on \mathbf{R}^{n} (cf: Appendix 3).

Lemma 2. Everj point of M has a neighborhood U such that every section of E dejned on a closed subset contained in U can be extended to U. Proof. Given a point of \mathbf{M}, it suffices to take a coordinate
neighborhood U such that $\pi_{E}^{-1}(\mathbf{U})$ is trivial: $\pi_{E}^{-1}(U) \approx U \times \mathbf{F}$. Since F is diffeomorphic with $\mathbf{R}{ }^{m}$, a section on U can be identified with a set of m, functions f_{1}, \ldots, f_{m} defined on \mathbf{U}. By Lemma 1 , these functionsing be extended to U.

Using Lemina 2, we shall prove Theorem 5.7. Let $\left\{U_{i}\right\}_{i \in I}$ be a locally finitk open covering of \mathbf{M} such that each U_{i} has the property stated in Lemma 2. Let $\left\{V_{i}\right\}$ be an open refinement of $\left\{U_{i}\right\}$ such that $V_{\mathcal{E}} \subset U_{i}$ for all $\mathbf{i} \in I$. For each subset J of the index set I, set $S_{J} \mathcal{S O}_{t} \nabla_{i}$. Let T be the set of paik (τ, J) where $J \subset I$ and $\boldsymbol{\tau}$ is a section of E defined on S_{J} such that $\tau=\sigma$ on $\mathbf{A} \cap S_{J}$. The set T is nonempty; take' U_{i} which meets A and extend the restriction'ofa to A A \vec{V}_{i} to a section on \vec{V}_{i}, which is possible by the property possessed by U_{i}. Introduce an order in \mathbf{T} as follows: $\left(\tau^{\prime}, J^{\prime}\right)<\left(\tau^{\prime \prime}, J^{\prime \prime}\right)$ if $J^{\prime} \subset J^{\prime \prime}$ and $\tau^{\prime}=\tau^{\prime \prime}$ on $S_{J^{\prime}}$. Let (τ, J) be a maximal element (by using Zorn's Lemma). Assume $J \neq I$ and let $i \bullet I \quad J$. On the closed' set $\left(\mathbf{A} \cup S_{J}\right) \cap \bar{\nabla}_{i}$ contained in U_{i}, we have a well defined section $\sigma_{i}: \sigma_{i}=\sigma$ on $A \cap \bar{V}_{i}$ and $\sigma_{i}=\tau$ on $S_{J} \cap \bar{V}_{i}$. Extend σ_{i} to a section τ_{i} on ∇_{i}, which is possible by the property possessed by U_{i}. Let $J^{\prime}=J \cup\{ \}$ and $\boldsymbol{\tau}^{\prime}$ be the section on $S_{J^{\prime}}$ defined by $\boldsymbol{\tau}^{\prime}=\boldsymbol{\tau}$ on S_{J} and $\boldsymbol{\tau}^{\prime}=\tau_{i}$ on \vec{V}_{i}. Then $(\tau, J)<\left(\tau^{\prime}, J^{\prime}\right)$, which contradicts the maximality of (τ, J). Hence, $I=J$ and τ is the desired section.

QED.
The proof given here was taken from Godement [1, p. 15 1].
Example 5.5. Let $\mathbf{L}(\mathbf{M})$ be the bundle of linear frames over an n -dimensional manifold \mathbf{M}. The homogeneous space $\mathbf{G L}(\mathbf{n} ; \mathrm{R})$ / $\mathrm{G}(\mathrm{n})$ is known to be diffeomorphic with a Euclidean space of dimension $\frac{1}{2} n(n+1$,$) by an, argument similar to Chevalley$ [İ" ${ }^{\prime}$. 16]. The fibre bundle $\mathbf{E}=L(M) / O(n)$ with fibre $G L(n ; \mathbf{R}) / O(\mathrm{n})$, associated with $L(\mathrm{M})$, admits a cross section if M is paracompact (by Theorem 5.7). By Proposition 5.6, we see that the structure group of $L(M)$ can be reduced. to the orthogonal group $O(n)$, provided that \mathbf{M} is paracompact.
Example 5.6. More generally, let $\mathbf{P}(\mathbf{M}, \mathrm{G})$ be a principal fibre bundle over a paracompact manifold M with group G which is a connected Lie group. It is known that G is diffeomorphic with a idirect product of any of its maximal compact subgroups H and a' Euclidean space (cf. Iwasawa [1]). By the same reasoning as above, the structure group G can be reduced to H.

Example 5.7. Let $\mathrm{L}(\mathrm{M})$ be the bundle of linear frames over a manifold A4 of dimension n . Let (,) be the natural inner product in \mathbf{R}^{n} for which $e_{1}=(1,0, \ldots, 0), \ldots, e_{n}=(0, ` . ., 0,1)$ are orthonormal and which is invariant by $\mathrm{O}(\mathrm{n})$ by the very definition of $O(n)$. We shall show 'that each reduction of the structure group $G L(n ; R)$ to $O(n)$ gives rise to a Riemannian metric g on M. Let $Q(M, O(n))$ be a reduced subbundle of $L(M)$. When v e regard each $u \in L(M)$ as a linear isomorphism of \mathbf{R}^{n} onto T,(M) where $x=\pi(u)$, each $u \in \mathrm{Q}$ defines an inner- product g in T ,(M) by

$$
g(X, \mathrm{Y})=\left(u^{-1} X, \mathrm{u}-\mathrm{Y}\right) \quad \text { for } X, \mathrm{Y} \in T_{x}(M)
$$

The invariance of (,) by. $O(n)$ implies that $g(X, \mathrm{Y})$ is independent of the choice of $u \in Q$. Conversely, if M is given a Riemannian metric g, let Q be the subset of $L(M)$ consisting of linear frames $\mathrm{u}=\left(X_{1}, \ldots, X_{n}\right)$ which araorthonormal with respect to g If we regard $u \in \mathrm{~L}(\mathrm{M})$ as a linear isomorphism of \mathbf{R}^{n} onto $\mathrm{T},(\mathrm{M})$, then u belongs to Q if and only if $\left(\xi, \xi^{\prime}\right)=g\left(u \xi, u \xi^{\prime}\right)$ for all $\xi, \xi^{\prime} \in \mathbf{R}^{n}$. It is easy to verify that Q forms a reduced subbundle of $\mathrm{L}(\mathrm{M})$ over M with structure group $O(n)$. The bundle Q will be called the bundle of orthonormal frames over M and will be denoted by, $O(M)$. An element, of $O(M)$ is an orthonormal frame. The result here combined with Examole 5.5 implies that every paracompact manifold M admits a Riemannian metric. We shall see later that every Riemannian manifold is 'a metric space and hence paracompact.

To introduce the notion of induced bundle, we prove
Propositron 5.8. Given 'a, principal fibre bundle $P(M, \mathrm{G})$ and a mapping f of a manifold N into M , there is a unique (of course, unique up to an isomorphism) principaljbre bundle $\mathrm{Q}(\mathrm{N}, G)$ with a homomorphism $\mathrm{f}: \mathrm{Q} \rightarrow \mathrm{P}$ which induces $f: \mathrm{N} \rightarrow \mathrm{M}$ and which corresponds to the identity automorphism of G.

The bundle $Q(N, G)$ is called the bundle induced by from $P(M, G)$ or simply the induced bundle; it is sometimes denoted by $f^{-1} P$.

Proof. In the direct product $\mathrm{N} x \mathrm{P}$, consider the subset \mathbf{Q} consisting of $(\mathrm{y}, u) \in N \times \mathrm{P}$ such that $f(y) \pi(u)$. The group G acts on Q by $(\mathrm{y}, u)^{\prime} \rightarrow(y, u) a=(\mathrm{y}, \mathrm{ua})$ for $(y, u) \in \mathbf{Q}$ and $\boldsymbol{a} \in G$. It is easy to see that G acts freely on Q and that \mathbf{Q} is a principal fibre bundle over N with group G and with Projection $\boldsymbol{\pi}_{Q}$ given
by $\pi_{Q}(y, u)=y$. Let Q^{\prime} be another principal fibre bundle over $\stackrel{A}{N}$ with group G and $f^{\prime}: \mathrm{Q}^{\prime} \rightarrow P$ a homomorphism which induces $f: N \rightarrow \mathrm{M}$ and which corresponds to, the identity automorphism of G. Then it is easy to show that the mapping of Q ' onto Q defined by $u^{\prime} \rightarrow\left(\pi_{\dot{\theta}^{\prime}}\left(u^{\prime}\right), f^{\prime}\left(u^{\prime}\right)\right), u^{\prime} \in \mathrm{Q}^{\prime}$, is an isomorphism of the bundle Q' onto Q which induces the identity transformation of N and which corresponds to the identity automorphism of G. QED.

We recall here some results on covering spaces which-will be used later. Given a connected, locally arcwise connected topological space M, a connected space E is called a covering, space over M with projectiqnp: $E \rightarrow M$ if every point x of M has a connected open neighborhood. U such that each connected component of $p^{-1}(U)$ is open in E and is mapped homeomorphically onto U by p . Two covering spaces $p: \mathrm{E} \rightarrow \mathrm{M}$ and $p^{\prime}: \mathrm{E}^{\prime} \rightarrow \mathrm{M}$ are isomorphic if there exists a homeomorphism $f: \mathrm{E} \rightarrow \mathrm{E}^{\prime}$ such that $p^{\prime} \circ \mathbf{f}=p$. A covering space $p: \mathrm{E} \rightarrow \mathrm{M}$ is a universal covering space if E is simply connected. If M is a manifold, every covering space has a. (unique) structure of manifold such that p is differentiable. From now on we shall only consider, covering manifolds.
Proposition 5.9. (1) Given a connected manifold M, there is a unique (unique up to an isomorphism) universal covering manifold, which will be denoted by \tilde{M}.
(2) The universal covering manifold \tilde{M} is a principaljbre bundle over M with group $\pi_{1}(M)$ and projection $\mathrm{p}: \tilde{M} \rightarrow \mathrm{M}$, where $\pi_{1}(M)$ is the first homotopy group of M.
(3) The isomorphism classes of the covering spaces over M are in a $1: 1$ correspondence with the conjugate classes of the subgroups of $\pi_{1}(M)$. The gorrespondence is given as follows. To each subgroup H of $\pi_{1}(M)$, we associate $\mathrm{E}=\tilde{M} / H$. Then th ℓ covering manifold E corresponding to H is a fibre bundle over M with fibre $\pi_{1}(M) / H$ associated with the principal fibre bundle $M\left(M, \pi_{1}(M)\right)$. If H is a normal subgroup of $\pi_{1}(M)$, $\mathrm{E}=M / H$ is a principaljbre bundle with group $\pi_{1}(M) / H$ and is called a regular covering manifold of M.

For the proof, see Steenrod [1, pp. 67-7 1] or Hu [1, pp. 89-97].
The action of $\pi_{1}(M) / H$ on a regular covering manifold $\mathrm{E}=$ \tilde{M} / H is properly discontinuous. Conversely, if E is a connected manifold and G is a properly discontinuous group of transformations acting freely on E, then E is a regular covering manifold of
$M=\mathrm{E} / \mathrm{G}$ as follows immediately from the condition (3) in the definition of properly discontinuous action in $\S 4$.
Example 5.8. Consider \mathbf{R}^{n} as an n-dimensional vector space and let $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{\boldsymbol{n}}$ be any, basis of $\boldsymbol{R}^{\mathbf{n}}$. Let \boldsymbol{G} be the subgroup. of \mathbf{R}^{n} generated by $\xi_{1},,, \boldsymbol{\xi}_{\boldsymbol{*}} \boldsymbol{G}=\left\{\Sigma m_{i} \boldsymbol{\xi}_{i} ; m_{i}\right.$ integers $)$. The action of G on \mathbf{R}^{n} is properly difcontinuous and \mathbf{R}^{n} is the universal covering manifold of \mathbf{R}^{n} / G. The quotient manifold \mathbf{R}^{n} / G is called an n-dimensional traus.

Example 5.9. Let S^{n} be the unit sphiere in \mathbf{R}^{n+1} with center at the origin: $S^{n}=\left\{\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbf{R}^{n+1} ; \Sigma_{i}\left(x^{i}\right)^{2}=1\right)$. Let- G be the group consisting of the identity transformation of S^{n} and the transformation of S^{n} whieh maps $\left(x^{1}, \ldots, x^{n+1}\right)$ into. $\left(-x^{1}\right.$, $-x^{n+1}$). Then $S^{*}, n \geq 2$ is the universal covering manifold. of $\overline{S^{n}} / G$. The quotient matis) S^{n} / G is called the n-dimensional recl projective space.

Theory of Come\&ions

1. Connections in a principal fibre bundle

Let $P(M, G)$ be a principal fibre bundle over 'a manifold M : with group G. For each $u \bullet P$, let $T_{u}(P)$ be the tangent space of \mathbf{P} at u and G_{u} the subspace of $T_{u}(P)$ consisting of vectors tangent to the fibre through u. A connection Γ in \mathbf{P} is an assignment of a subspace $Q_{\boldsymbol{u}}$ of T,,(P) to each $\boldsymbol{u} \boldsymbol{\epsilon} \boldsymbol{P}$ such that
(a) $T_{u}(P)=G_{u}+Q_{u}$ (direct sum);
(b) 'Qua $=\left(R_{a}\right)_{*} Q_{u}$ for every $\hat{u} \in P$ and $\mathbf{a} \in \mathrm{G}$, where R_{a} is the transformation of P induced by a $\in G, R_{a} \mu=$ ua;

* (c) Q_{u} depends differentiably on \boldsymbol{u}.

Condition (b) means that the distribution $u \rightarrow Q_{n}$ is invariant G. We call G_{u} the vertical subspace and Q_{u} the horizontal subspace, of $T_{\mathrm{u}}(P)$. A vector $\mathrm{Xc} \mathrm{T},(\mathrm{P})$ is called vertical (resp. horizontal)' if it lie in G_{u} (resp. Q,). By (a), every vector $X \in T,(\mathbf{P})$ can be uniquely written as
$\therefore \quad X=Y+Z \quad$ where $Y G$ and $Z \in Q_{u}$.
We call Y (resp. Z) the vertical (resp. horizontal) component of X and denote it by $\boldsymbol{\nabla} \boldsymbol{X}$ (resp. $h X$). Condition (c) means, by definition, that if X is a differentiable vector field on P so are $v \mathbb{X}$ and $h X$. (It can be easily verified that this is equivalent to saying that the,, distribution $\boldsymbol{u} \rightarrow \boldsymbol{Q}_{\boldsymbol{u}}$ is differentiable.)

Given a connection I^{\prime} in P, we define, a 1 -form ω on P with. values in the Lie algebra g of G as follows. In $\$ 5$ of Chap\& I, we showed that every $\mathrm{A} \in \mathrm{g}$ induces a vector field \mathbf{A}^{*} on P, called the fundamental vector field corresponding to A, and that $A \rightarrow\left(A^{*}\right)_{M}$ is a linear isomorphism of \boldsymbol{q} onto G_{u} for each $u \in \mathbf{P}$. For each $X \in T_{u}(P)$, we define, $\boldsymbol{\omega}(X)$ to be the unique $\mathbf{A} \cdot \boldsymbol{g}$ such that
$\left(A^{*}\right)$, is equal to the vertical component of X. If is clear that $w(X)=0$ if and only if X is horizontal. The form ω is called the connection form of the given connection I'.

Proposition 1.1. The connection form ω of a connection satisfies the following conditions:
(a') $\&\left(\mathrm{~A}^{*}\right)={ }^{\star} A \quad$ for every $\mathrm{A} \in \mathrm{g}$;
(b') $\left(R_{a}\right)^{*} \omega=$ ad $\left(a^{-1}\right) \omega$, that is, $\omega\left(\left(R_{a}\right)_{*} X\right)=$ ad $\left(a^{-1}\right) \cdot o(X)$ for every a ϵG and every vectorjeld X on P, where ad denotes the representation of G ing. 6 .
Conversely, given a \mathfrak{g}-valued 1-form w on P satisfying conditions (a^{\prime}) and (b '), there is a unique connection Γ in P whose connection form is w .

Proof. Let w be the connection form of a connection. The condition (a^{\prime}) follows immediately from the definition of w. Since every vector field of P can be decomposed into a horizontal vector field and a vertical vector field, it is sufficient to verify (b') in the frliowing two special cases: (1) X is horizontal and (2) a X vertical. If X is horizontal, so is $\left(R_{a}\right)_{*} X$ for every a ϵG by the condition (b) for a 'connection. Thus, both $\omega\left(\left(R_{a}\right)_{*} X\right)$ and $\operatorname{ad}\left(d^{-1}\right) \cdot \boldsymbol{\omega}(X)$ vanish: In the case when X is vertical, we may further assume that X is a fundamental vector field A^{*}. Then $\left(R_{a}\right) * X$ is the fundamental vector field corresponding to ad $\left(a^{-1}\right) \mathrm{A}$ by Proposition 5.1 of Chapter I. Thus we have

$$
\left(R_{a}^{*} \omega\right)_{u}(X)=\omega_{u a}\left(\left(R_{a}\right)_{*} X\right)=\operatorname{ad}\left(a^{-1}\right) A=\operatorname{ad}\left(a^{-1}\right)\left(\omega_{u}(X)\right)
$$

Conversely, given a form' ω satisfying (al) and (b'), we define

$$
Q_{u}=(\mathrm{X} \subset \mathrm{~T},(\mathrm{P}) ; \mathrm{w}(\mathrm{X})=0\}
$$

The verification that $u \rightarrow \mathrm{Q}$,, defines a connection whose connection form is w is easy and is left to the reader.
The projection $\pi: \mathrm{P} \rightarrow M$ induces a linear mapping $\pi: T_{u}(P)$ $\rightarrow T_{x}(M)$ for each $u \in P$, where $x=\pi(u)$. When a connection is given, π maps the horizontal' subspace Q_{u} isomorphically onto $T_{x}(M)$.

The horizontal lift (or simply, the lift) of a vector field X on M is a unique vector field X^{*} on P which is horizontal and which projects onto X , that is, $\pi\left(X_{u}^{*}\right) \approx X_{\pi(u)}$ for every $u \in \mathrm{P}$.

Proposition 1.2. Given a connection in P and a vectorjeld X on M, there is a unique horizontal lift $\mathrm{X} *$ of X . The lift $\mathrm{X} *$ is invariant by \boldsymbol{R}_{a} for every a $\epsilon \mathrm{G}$. Conversely, every horizontal vectorjeld X^{*} on P invariant by G is the lift of a vector-field X on M :

Proof. The existence and uniqueness of X^{*} is clear from the fact that π gives a linear isomorphism of, Q_{u} onto $\mathrm{T}_{, \ldots, \ldots}(\mathrm{M})$. To prove that X^{*} is differentiable if X is differentiable, we take a neighborhood U of any given point x of M such that $\pi^{-1}(U) \approx$ $U \times$ G. Using this isomorphism, we first obtain a differentiable vector field Y on $\pi^{-\mathbf{1}}(U)$ such that $\pi Y=\mathrm{X}$. Then X^{*} is the horizontal component of Y and hence is differentiable. The invariance of X^{*} by G is clear from the invariance of the horizontal subspaces by G,/Finally, let X^{*} be a horizontal vector field on P invariant by G. For every $x \in M$, take a point $u \in P$ such that $\pi(u)=\mathrm{x}$ and define $X_{x}=\pi\left(X_{u}^{*}\right)$. The vector X_{x} is independent of the choice of u such that $\pi(u)=\mathrm{x}$, since if $u^{\prime}=u a$, then $\pi\left(X_{u^{\prime}}^{*}\right)=\pi\left(R_{a} \cdot X_{u}^{*}\right)=\pi\left(X_{u}^{*}\right)$. It is obvious that X^{*} is then the lift of the vector field X.

QED.
Propositton $\quad 1.3$. Let X^{*} and Y^{*} be the horizontal lifts of X and Y respectively. Then.
(1) $X^{*}+Y^{*}$ is the horizontal lift of $X+Y$;
(2) For every function f on $M, f^{*} \cdot X^{*}$ is the horizontal lift of $f X$ where f^{*} is the function on P defined by $\mathrm{f} *=\mathrm{f} \circ \pi$;
(3) The horizontal component of $\left[X^{*}, Y^{*}\right]$ is the horizontal lift of [$X, Y]$.

Proof. The first two assertions are trivial: As for the third, we have

$$
\pi\left(h\left[X^{*}, Y^{*}\right]\right)=\pi\left(\left[X^{*}, Y^{*}\right]\right)=[X, Y]
$$

QED.
Let x^{1}, \ldots, x^{n} be a local coordinate system in a coordinate neighborheod U in M. Let X_{i}^{*} be the horizontal lift in $\pi^{-1}(U)$ of the vector field $X_{i}=\partial / \partial x^{i}$ in Ufor each i. Then $X_{1}^{*}, \ldots, X_{n}^{*}$ form a local basis for. the distribution $u \rightarrow Q_{u}$ in $\pi^{-1}(U)$.

We shall now express a connection form w on P by a family. of forms. each defined in an open subset of the base manifold M. Let $\left\{U_{\alpha}\right\}$ be an open covering of M with a family of isomorphisms $\psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times G$ and the corresponding family of transition functions $\psi_{\alpha \beta}: U_{\alpha} \cap U_{\beta}^{*} \rightarrow G$. For each a, let $\sigma_{\alpha}: U_{\alpha} \rightarrow \mathrm{P}$ be the
cross section on U_{α} defined by $\sigma_{\alpha}(x)=\psi_{\alpha}^{-1}(x$, e $), x \in U_{\alpha}$, where e is the identity of C. Let θ be the (left invartant g vivalued) canonical 1 -form' on G defined in $\S 4$ of Chapter $\mathrm{I}(\mathrm{p} .41$)
For each non-empty $U_{\alpha} \cap U_{\beta}$, define a g-valued 1-form $\theta_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$ by

$$
\theta_{\alpha \beta}=\psi_{\alpha \beta}^{*} \theta .
$$

For each a, define a g-valued 1-form ω_{α} on U_{α} by

$$
\begin{equation*}
\omega_{\alpha}=\sigma_{\alpha}^{*} \omega \tag{x}
\end{equation*}
$$

Proposition 1.4. The forms $\theta_{\alpha \beta}$ and ω_{α} are subject to the conditions:

$$
\omega_{\beta}=\operatorname{ad}\left(\psi_{\alpha \beta}^{-1}\right) \omega_{\alpha}+\theta_{\alpha \beta} \quad \text { on } U_{\psi} \cap U_{\beta} .
$$

Conversely, for every family of \mathbf{g}-valued 1 -forms $\left\{\omega_{\alpha}\right\}$ each dejined on U_{α} and satisfying the preceding conditions, there is a unique connection form $\boldsymbol{\omega}$ on P which gives rise to $\left\{\omega_{\alpha}\right\}$ in the described manner.
Proof. If $U_{\alpha} \cap U_{\beta}$ is non-empty, $\sigma_{\beta}(x)=\sigma_{\alpha}(x) \psi_{\alpha \beta}(x)$ for all $x \in U_{\alpha} \cap U$, . Denote the differentials of $\sigma_{\alpha} \sigma_{\beta}$, and $\psi_{\alpha \beta}$ by the same letters. Then for every vector $X \in T_{a}\left(U_{\alpha} \stackrel{\sim}{\cap}, U_{\beta}\right)$, the vector $\sigma_{\beta}(X) \in T_{u}(P)$, w tre $\mathrm{u}=\sigma_{\beta}(x)$, is the image of $\left(\mathrm{u},(\mathrm{X}), \psi_{\alpha \beta}(X)\right) \epsilon$ $\boldsymbol{T}_{w^{\prime}}(P)+\mathrm{T},(\mathrm{G})$, where $u^{\prime} \overline{\bar{\alpha}} \boldsymbol{\sigma}_{a}(\boldsymbol{x})$ and $\mathrm{a}=\psi_{\alpha \beta}(x)$, under the mapping $P \times G \rightarrow P$. By Proposition 1.4 (Eeibniz's formula) of Chapter I, we have'

$$
\sigma_{\beta}(X)=\sigma_{\alpha}(X) \psi_{\alpha \beta}(x)+\sigma_{\alpha}(x) \psi_{\alpha \beta}(X),
$$

where $\sigma_{\alpha}(X) \psi_{\alpha \beta}(x)$ means $R_{a}\left(\sigma_{\alpha}(X)\right)$ and $\sigma_{\alpha}(x) \psi_{\alpha \beta}(X)$ is the image of $\psi_{\alpha \beta}(X)$ by the differential of $\sigma_{\alpha}(x), \sigma_{\alpha}(x)$ being considered as a mapping of G into P which maps $b \in G$ into $\sigma_{\alpha}(x)$ b. Taking the W素解 of ω on both sides of the, equality, we obtain,

$$
\omega_{\beta}^{\prime}(X)=\operatorname{ad}\left(\psi_{\alpha \beta}(x)^{-1}\right) \omega_{\alpha}(X)+\theta_{\alpha \beta}(X)
$$

Indeed, if $A \in \mathfrak{g}$ is the left invariant vector field on G which is equal to $\psi_{\alpha \beta}(X)$ at $a=\psi_{\alpha \beta}(x)$ so that: $\theta\left(\psi_{\alpha \beta}(X)\right)=A$, then $\sigma_{\alpha}(x) \psi_{\alpha \beta}(X)$ is the value of the fundamental vector field A^{*} at $\mathrm{u}=\sigma_{\alpha}(x) \psi_{\alpha \beta}(x)$ and. hence $\omega\left(\sigma_{\alpha}(x) \psi_{\alpha \beta}(X)\right)=\mathrm{A}:$

The converse can be verified, by following back the process of rebtaining $\left\{\omega_{\alpha}\right\}$ from ω.

QED.

2. Existence and extension of connections

Let $P(M, G)$ be a principal fibre bundle and A a subset of M. We say that a connection is defined; over A if, at every point $u \in P$ with $\boldsymbol{\pi}(u) \in \mathrm{A}$, a subspace Q_{u} " of $T,(\mathrm{P})$ is given in such a way that conditions (a) and (b) for connection (see $\S 1$) are satisfied and Q_{u} depends differentiably on u in the following sense. For every point $x \in \mathrm{~A}$, there exist an ogen neighborhood U and a connection in $P \mid U=\pi^{+2}(U)$ such that the horizontal subspace at every $\mathrm{u} \in \boldsymbol{\pi}^{\mathbf{- 1}}(A)$ is the given space Q ,.

тнеоввм 2.1. Let $\mathrm{P}(\mathrm{M}, \mathrm{G})$ be a principal fibre bundle and A a closed subset of M (A may be empty). If M is paracompact, every connection dejined over A can be extended to a connection in P. In particular, P admits a connection if M is paracompact.
Proof. The proof is a replica of that of Theorem 5.7 in Chap" ter I.'

Lemma 1. A differentiable function defined on a closed subset of \mathbf{R}^{n} can be always extended to a differentiable function on $\mathbf{R}^{\boldsymbol{n}}$ (cf. Appendix 3).

Lemma 2. Every point of M has a neighborhood U such that every connection defined on a closed subset contained in U can be extended to a connection dejined over U.

Proof. Given a point of M, it suffices to take a coordinate neighborhood U such that $\pi^{-1}(U)$ is trivial: $\pi^{-1}(U) \approx U \times G$. On the trivial bundle $U \times G$, a connection form ω is completely determined by its behavior at the points of $U \mathbf{x}$ \{e\} (e: the identity of G) because of the property $R_{a}^{*}(\omega)=$ ad $\left(a^{-1}\right) \omega$. Furthermore, if $\sigma: U \rightarrow U \times G$ is the natural cross section, that is, $\sigma(x)=(\mathrm{x}, \mathrm{e})$ for $x \in U$, then ω is completely determined by the' g -valued l-form $\sigma^{*} \omega$ on U. Indeed, every vector $X \in T_{\sigma(x)}(U \times \mathrm{G})$ can be written uniquely in the form

$$
\dot{X}=Y+Z
$$

where Y is tang\& to, $U \times(\})$ and Z is vertical so that $Y=$ $\sigma_{*}\left(\pi_{*} X\right)$. Hence we have

$$
\omega(X)=\omega\left(\sigma_{*}(\pi * * X)\right)+\omega(Z)^{\omega}=\left(\sigma^{*} \omega\right)\left(\pi_{*} X\right)+\mathrm{A},
$$

where A is a unique element of g such that the corresponding fundamental vector field $A *$ is equal to Z at $\sigma(x)$. Since A depends
only on Z, not on the connection, ω is completely determined by $\boldsymbol{\sigma}^{*} \omega$. The equation above shows that, conversely, every \mathfrak{g} valued l-form on U determines uniquely a connection form on $U x$ G. Thus Lemma 2 is reduced to the extension problem for \mathfrak{g}-valued l-forms on U. If $\{\mathrm{A}$,$\} is a basis for \mathfrak{g}$, then $\omega=\Sigma \omega^{j} A_{j}$ where each ω^{j} is a usual l-form. Thus it is sufficient to consides the extension problem of usual 1 -forms on U. Let x^{1}, \ldots, x^{n} be a local coordinate system in U. Then every l-form on \dot{U} is of the form $\Sigma f_{i} d x^{i}$ where each f_{i} is a function on U. Thus our problem is reduced to the extension problem of functions on U. Lemma 2 now follows from Lemma 1.

By means of Lemma 2, Theorem 2.1 can be proved exactly in tlie same way as Theorem 5.7 of Chapter I. Let $\left\{U_{i}\right\}_{i \in I}$ be a locally finite open covering of M such that each U_{i} has the property stated in Lemma 2. Let $\left\{V_{i}\right\}$ be an open refinement of $\left\{U_{i}\right\}$ such that $\vec{\nabla}_{i} \subset U_{i}$. For each subset J of I, set $S_{J}=\bigcup_{i \in J} \nabla_{i}$.
Let T be the set of pairs (τ, J) where $J \subset I$ and τ is a connection d\&n\&over S_{J} which coincides with the given connection over $A \cap S_{j}$. Introduce an order in T as follows: $\left(\tau^{\prime}, J^{\prime}\right)<\left(\tau^{\prime \prime}, J^{\prime \prime}\right)$ if $J^{\prime} \subset J^{\prime \prime}$ and $\tau^{\prime}=\tau^{\prime \prime}$ on $S_{J^{\prime}}$. Let (τ, J) be a maximal element of T. Then $J=I$ as in the proof of Theorem. 5.7 of Chapter I and τ is a desired connection.

Remark. It is possible to prove Theorem 2.1 using Lemma 2 and a partition of unity $\left\{f_{i}\right\}$ subordinate. to $\left\{V_{i}\right\}$ (cf. Appendix 3). Let ω_{i} be a connection form on $\pi^{-1}\left(U_{i}\right)$ which extends the given connection over $A \cap \nabla_{i}$. Then $\omega=\Sigma_{i} g_{i} \omega_{i}$ is a desired connection form on P, where each $\stackrel{\Sigma}{g}_{i}$ is the function on P defined by $g_{i}=f_{i} \circ \pi$.

3. Parallelism

Given a connection Γ in a principal fibre bundle $P(M, \mathrm{G})$, we shall define the concept of parallel displacement offibres along any given curve τ in the base manifold M.

Let $\tau=x_{t}, a \leqq t \leq b$, be a piecewise differentiable curve of class C^{1} in M. A horizontal lift or simply a lift of τ is a horizontal curve $\tau^{*}=u_{i}, a \doteq t \doteq b$, in P such that $\pi\left(u_{t}\right)=x_{t}$ for $a \leqq t \leqq b$. Here a horizontal curve in P means a. piecewise differentiable curve of class C^{1} whose-tangent vectors are all horizontal.

The notion of lift of a curve corresponds to the notion of lift of a vector field, Inceed, if X^{*} is the lift ofh vector field Xon M, then the integral curve of X^{*} through a point $u_{0} \in P$ is a lift of the integral curve of X through the point $x_{0}=\pi\left(u_{0}\right) \in M$. We now prove

Proposition 3.1. Let $\boldsymbol{\tau}=x_{t}, 0 \leqq t \leq 1$, be a curve of class C^{1} in M. For an arbitrary point u_{0} of P with $\pi\left(u_{0}\right)=x_{0}$, there exists c unique ${ }_{2}$ ift $\pi^{*}=u_{t}$ of τ which starts from u_{0}.

Proof. By local triviality of the bundle, there is a curie v_{i} of class C^{1} in P such that $v_{0}=u_{0}$ and $\pi\left(v_{t}\right)=x_{t}$ for $0 \leqq t=1$. A lift of τ, if it exists, must' be of the form $u_{t}=v_{t} a_{t}$, where a_{t} is a curve in the structure group G Such that $a_{0}=$ e. We shall now look for a curve a, 'in G which makes $u_{t}=v_{t} a_{t}$ a horizontal curve. Just as in the proof of Proposition 1.4, we apply Leibniz's formula (Proposition' 1.4 of Chapter I) to the mapping $P x G \rightarrow P$ which maps (v, a) into, $v a$ and obtain

$$
u_{t}=v_{t} a_{t}+v_{t} a_{t}
$$

where each dotted italic letter denotes the tangent yector at that -point ('e.g., \dot{u}_{t} is the vector tangent to the curve $\tau^{*}=u_{t}$ at the point u,). Let ω be the connection form of I'. Then; as in the proof of Proposition 1.4, we have'

$$
\omega\left(\dot{u}_{t}\right)=\operatorname{ad}\left(a_{t}^{-1}\right) \omega\left(\dot{v}_{t}\right)+a_{t}^{-1} \dot{a}_{t}
$$

where $a_{t}^{-\mathbf{1}} \dot{a}_{t}$ is now a curve in the Lie algebra $\mathfrak{g}=T_{\theta}\left(G^{G}\right)$ of G. The curve'u, is horizontal if and only if $\dot{a}_{t} a_{t}{ }^{1}=-\omega\left(\dot{v}_{t}\right)$ for every t. The construction of u_{t} is thus reduced to the following

Lemma. Let G be a Lie group and g its Lie algebra identified with $T,(G)$. Let $Y_{t}, 0 \leqq t \leqq 1$, be a continuous curve in $T,(G)$. Then there exists in G a unique curve a, of class C^{1} such that $a,=e$ and $\dot{a}_{t} a_{t}^{-1}=\mathbf{Y}$ for $0 \leqq t \leqq 1$.

Remark. In the case where $Y_{t}=$ A for all t, the curve a_{t} is nothing but the 1-parameter subgroup of G generated by A. Our differential equation " $a_{t} a_{t}^{-1}=Y$, is hence a generalization of the differkntial equation for I-parameter subgroups.
Proof of Lemma. We may assume that Y_{t} is defined and continuous for all $t,-\infty<t<\infty$. We define a vector ficld X on

G $\times \mathbf{R}$ as follows．The＇value of X at $(a, t) \in G \times B$ is，by defini－ tion，equal to $\left(Y_{t} a,(d / d z)_{t}\right) \in T_{a}(G) \times T_{t}(\mathbf{R})$ ，where z is the natural coordinate system in R．It is clear－that the integral curve of \boldsymbol{X} starting from $(\mathrm{e}, 0)$ is of the form $\left(a_{i}, t\right)$ and a_{i} is the desired curve in G ．The only thing we have to verify is that a_{t} is defined for all $\boldsymbol{t}, 0 \leq t \leqq 1$ ．Let $\varphi_{t} 4 \exp \boldsymbol{i X}$ be a：local 1 －parameter group of local transformations of $G \times R$ generated by X ．For each $(e, s) \in G \times R$ ，there is a positive number $\boldsymbol{O}_{\boldsymbol{j}}$ such that $\varphi_{t}(e ; r)$ is defined for $|r \rightarrow s|<8$ ，and $|t|<\boldsymbol{\theta}_{i}$（Proposition 1.5 of Chapter I）．，＇Since the subset $\{e\} \times[0,1]$ of $G \times R$ is compars we may choose $\delta>0$ such that，for each $r \in[0,1], \varphi_{2}\left(e_{,}, r\right)$ is defined for $|t|<\delta$（cf．Proof of Proposition 1.6 of Chapter I）， Choose $s_{0}, s_{1}, \ldots, s_{k}$ such that $0=s_{0}<s_{1}<\ldots<\boldsymbol{c}_{2}=1$ and $s_{i}-s_{i-1}<\delta$ for every i ．Then $\varphi_{t}(e, 0)=\left(a_{i}, t\right)$ is defined foz $0 \leqq \mathrm{t} \leqq s_{1} ; \varphi_{u}\left(\ell, s_{1}\right)=\left(\mathrm{b},, u+s_{1}\right)$ is defined for $0 \leqq u \leqq s_{i}-s_{1}^{\prime}$ ， where $b_{u} b_{u}^{-1}=Y_{w+t_{1}}$ ，and we define $a_{t}=b_{t-s_{1}} a_{s_{1}}$ for $s_{1} \leqq t \leqq s_{2}$ ；
$; \varphi_{u}\left(e, s_{k-1}\right)=\left(c_{u}, s_{k-1}+u\right)$ is defined for $0 \leqq u \leqq s_{k}-s_{k-1}$ ， where $i_{u} c_{m}^{-1}=Y_{w+s_{k-1}}$ ，and we define $a_{t}=c_{t-s_{k-1}} a_{\varepsilon_{k-1}}$ ，thus

Now using Proposition 3．1，we define the parallet d⿱⿻土一⺝⿱⺈⿻コ一心 of fibres as follows．Let $\tau=x_{1}, 0 \leqq t \leqq 1$ ，be a differentiable curve of class C^{1} on M ．Let u_{0} be an arbitrary point of P with $\pi\left(u_{0}\right)=x_{0}$ ．The unique lift τ^{*} of $\%$ through u_{0} has the end point u_{1} such that $\pi\left(u_{1}\right)=x_{1}$ ．Ry varying r_{9} in the fibre $\pi^{-1}\left(x_{0}\right)$ ，we obtain a mapping of the fibre $\pi^{-1}\left(x_{0}\right)$ onto the fibre $\pi^{-1}\left(x_{1}\right)$ which maps \boldsymbol{u}_{0} into \boldsymbol{u}_{1} ．We denote this mapping by the same letter τ and call it the parallel displacement along the curve \boldsymbol{r} ．The＇fact that $\boldsymbol{r}: \pi^{-1}\left(x_{0}\right) \Rightarrow \pi^{-1}\left(x_{1}\right)$ is actually an isomorphism comes from the following

Prcporyton 3．2．Tire parallel displacement along any curve τ commutes with the action of G on $R_{;} \tau^{\circ} \circ R_{a}=R_{a} \circ x$ for somp $a \in G$ ．

Proof．This follows from the fact that every horizontal curve is mapped into a．horizontal curve by $\boldsymbol{R}_{\boldsymbol{a}}$ ．．$\%$ QED．

The parallel displacement along any piecewise differentiable curve－of class \boldsymbol{C}^{1} can be．defined in an obvious manner．It should be remarked that the parallel displacement along a curve $\boldsymbol{\tau}$ is
independent of a specific parametrization $x_{\boldsymbol{t}}$ ssed in the following sense．Consider two parametrized curves $x_{t}, a \leqq t \leqq b$ ，and y_{s} ， $c \leqq s \leqq d$ ，in M ．The parallel displacement along x_{t} ．and the one along y_{s} coincide if there is a homeomorphism φ of the interval $[a, b]$ onto $[c, d]$ such that $(1) \varphi(a)=c$ and $\varphi(b)=d,(2)$ both φ and φ^{-1} are differentiable of class C^{1} except at a finite number of parameter values，and（3）$y_{q(i)}=x_{t}$ for all $t, a \leqq t \leqq b$ ．
If τ is the curve $x_{t} a \leqslant t \leqq b$ ，we denote by τ^{-1} the curve y_{t} ， $a \leqq t \leqq b_{t}$ defined by $y_{t}=x_{a+b-i}$ ．The following proposition is evident．
Proposidyon 3．3．（a）If τ is a piecevise differentiable curve of class $C^{1} \%$ ，then parallel displacement along τ^{-1} is the inverse of the parallel displacement along τ ．
（b）If it is a curve from x to y jn M and μ is a curve from y to z in M ， the paralld displacement along the composite curve $\mu \cdot \tau$ is the composite of the paralfle displacements τ and μ ．

4．Holonomy groups

Using the notion of parallel displacement，we now define the holonomy group of a given connection Γ in a principal fibre buindle $P(M, G)$ ．For the sake of simplicity we shall mean by a curve a piecewise differentiable carve of class $C^{k}, 1 \leqq k \leqq \infty$ （ k will be fixed throughout $\$ 4$ ）．

For each point \approx of M we denote by $C(x)$ the loop space at x ， that is，the set of all closed curves starting and ending at x ．If τ and μ are elements of $C(x)$ ，the composite curve $\mu \cdot \tau$（ τ followed by μ ）is also an element of $C(x)$ ．As we proved in $\S 3$ ，for each Fef $C(x)$ ，the parallel displacement along τ is an isomorphism of the fibre $\pi^{-4}(t)$ onto itself．The set of all such isomorpbisms of $\pi^{-1}(x)$ onto itidfforms a group by virtue of Proposition 3．3．This group is called the holonomy group of Γ with reference point x ．Let $C^{0}(x)$ be the subset $\mathrm{of} C(x)$ consisting of loops which are homotopic to zero．The subgraup of the holonomy group consisting of the parallel displacements arising from all $\tau \in C^{0}(x)$ is called the restricted holonomy group of $\boldsymbol{\Gamma}$ with reference point x ．The holonomy group and the restricted holonomy group of Γ with reference point \boldsymbol{x} will be denoted by $\boldsymbol{\Phi}(x)$ and $\boldsymbol{\Phi}^{0}(\boldsymbol{x})$ respectively．

It is convenient to realize these groups as subgroups of the , structure group G in the following way. Let u be an arbitrarily fixed point of the fibre $\pi^{-1}(x)$. Each $\tau \epsilon C(x)$ determines an element, say, a, of G such that $\tau(u)=u a$. If a loop $\mu \in C(x)$ determines $\mathrm{b} \in \mathrm{G}$, then the composite $\mu \cdot \tau$ determines $b a$ because $(\dot{\mu} \cdot \tau)(u)=$ $\mu(u a)=(\mu(u)) a=u b a$ by virtue of, Proposition 3.2. The set of elements a $\epsilon \mathrm{G}$ determined by all $\tau \in C(x)$ forms a subgroup of G by Proposition 3.3. This subgroup,.denoted by $\boldsymbol{\Phi}(u)$, is called the holonomy group of Γ with reference point $u \in \mathrm{P}$. The restricted holonomy group $\Phi^{0}(u)$ of Γ with reference point u cañ be defined accordingly. Note that $\Phi(x)$ is a. group of isomorphis' ms of the fibre $\pi^{-1}(x)$ onto itself and $\Phi(u)$ is a subgroup of G. It is_clear that there is a unique isomorphism of $\Phi(x)$ onto $\Phi(u)$ which makes the following diagram commutative :

$$
\begin{gathered}
C(x) \\
\Phi(x) \rightarrow \Phi(u) .
\end{gathered}
$$

- Another way of defining $\Phi(u)$ is the following: When two points u and v of P cap be joined by a horizontal curve, we write $u \sim \mathrm{v}$. This is clearly an equivalence relation. Thin $\Phi(u)$ is equal to the set of $\mathrm{a} \in \mathrm{G}$ such that $u \sim \mathrm{uu}$. Using, the fact that $u \sim \mathrm{v}$ implies $u a \sim \mathrm{vu}$ for any $u, v \in P$ and $a \in G$, it is easy to verify once more that this subset of G forms a subgroup of G.
Proposition 4.1. (a) Ifv $=u a, a \in G$, then $\Phi(v)=\operatorname{ad}\left(a^{-1}\right)(\Phi(u))$, that is, the hqlonomy groups $\Phi(v)$ and $\Phi(u)$ are conjugate in G. Similarly, $\Phi^{0}(v)=\operatorname{ad}\left(a^{-1}\right)\left(\Phi^{0}(u)\right)$.
(b) If two points u and v of P "an be joined by a horizontal curve, then $\Phi(u)=\Phi(v)$ and $\Phi^{0}(u)=\Phi^{0}(v)$.
Proof. (a) Let $b \in \Phi(u)$ so that $u \sim u b$. Then $u a \sim(u b) a$ so that $\mathrm{v} \sim(\mathrm{vu}-\mathrm{I}) b a=v a^{-1} b a$. Thus ad $\left(a^{-1}\right)(b) \in \Phi(\dot{v})$. It follows easily that $\Phi(v)=$ ad, $\left(a^{-1}\right)(\mathrm{O}(\mathrm{u}))$. The proof for $\Phi^{0}(v)=$ ad $\left(a^{-1}\right)\left(\Phi^{0}(u)\right)$ is similar.
(b) The relation $u \sim \mathrm{v}$ implies $\mathrm{ub} \sim v b$ for every $\mathrm{b} \in \mathrm{G}$. Since-the relation \sim is transitive, $u \sim u b$ if and only if $\mathrm{v} \sim v b$, that 1s, $\mathrm{b} \boldsymbol{\epsilon} \Phi(u)$ if and only if $b \in \Phi(v)$. To prove $\Phi^{0}(u)=\Phi^{0}(v)$, let μ^{*} be a horizontal curve in P from u to v. If $b \in \Phi^{0}(\boldsymbol{u})$, then there is a horizontal curve τ^{*} in P from u to ub such that the curve $\pi\left(\tau^{*}\right)$ in M is a loop at $\boldsymbol{\pi}(u)$ homotopic to zero. Then the composite
$\left(R_{b} \mu^{*}\right) \cdot \tau^{*} \cdot \mu^{*-1}$ is a horizontal curve in P from v to $v b$ and its projection into M is a loop at $\pi(v)$ homotbpic to zero. Thus $\mathrm{b} \in \Phi^{0}(u)$. Similarly, if $\mathrm{b} \in \Phi^{0}(v)$, then $b \in \Phi^{0}(u)$. QED.

If M is connected, then for every pair of points u and v of P , there is an element a $\in G$ such that $\eta \sim$ ua. It follows from Proposition 4.1 that if M is connected, the holonomy groups $\Phi(u), u \in \mathrm{P}$, are all conjugate to each other in G and hence isomorphic with each other.
The rest of this section is devoted to the proof of the fact that the holonomy group is a Lie group.

тнeorem 4.2. Let $P(M, \mathrm{G})$ be a principal fibre bundle whose base 'manifold M is connected and puracompact. Let $\Phi(u)$ and $\Phi^{0}(u), u \in P$, be the holonomy group and the restricted holonomy group of a connection Γ with reference point u. Then
(a) $\Phi^{0}(u)$ is a connected Lie subgroup of G ;
(b) $\Phi^{0}(u)$ is a normal subgroup of $\Phi(u)$ and $\Phi(u) / \Phi^{0}(u)$ is countable.

By virtue of this theorem, $\Phi(u)$ is a Lie subgroup of \mathbf{G} whose identity component is $0 f(u)$. e
\therefore Proof. We shall showthat every element of $\Phi^{0}(u)$ can be joined to the identity element by a piecewise differentiable curve of class C^{k} in G which lies in $\Phi^{0}(\boldsymbol{u})$. By the theorem in Appendix 4, it follows then that $\Phi^{0}(u)$ is a connected $\overline{\mathrm{Lie}}$ subgroup of G.

Let a $\epsilon \Phi^{0}(u)$ be obtained by the parallel displacement along a piecewise differentiable loop $\boldsymbol{\tau}$ of class C^{k} which is homotopic to 0 . By the factorization lemma (Appendix 7), τ is (equivalent to) a product of small lassos of the form $\tau_{1}^{-1 \cdot-} \mu \cdot \tau_{1}$, where τ_{1} is a piecewise differentiable curve of class C^{k} from $\mathrm{x}=\pi(u)$ to a point, say, y, and μ is a differentiable loop aty which lies in a coordinate neighborhood of y. It is sufficient to show that the element of $\Phi \Phi^{Q}(u)$ defined by each lasso $\tau_{1}^{-1} \cdot \mu \cdot \tau_{1}$ can bejoined to the identity elemetit. This element is obviously equal to the element of $\Phi^{0}(\mathrm{v})$ defined by the loop μ, where v is the point obtained by,the parallel displacement of walong τ_{1}. It is therefore sufficient to show that the element b $\in \Phi Q(v)$: \&fined by the differentiable loop μ can be joined to the identity, element in $\Phi^{0}(v)$ by a differentiable curve of G which lies in $\Phi^{0}(v)$.
Let $x^{1}, \ldots x^{n}$ be a loçal coordinate system with origin at y
and let μ be defined by $x^{i}=x^{\prime}(t), i=1, \ldots, n . \operatorname{Set} f^{i}(t, s)=s+$ $(1-s) x^{i}(t)$ for $i=1, \ldots, n$ and $0 \leqq t, s \leqq 1$. Then $f(t, s)=$ ($f^{1}(t, s), \cdots, f^{n}(t, s)$) is a differentiable mapping of class C^{k} of $I \boldsymbol{X} I$ into \boldsymbol{M} (where $\boldsymbol{I}=[0,1])$ such thatf $(t, 0)$ is the curve $\boldsymbol{\mu}$ and $f(\mathrm{t}, 1)$ is the trivial curve y. For each fixed s, let $b(s)$ be the element of $\Phi^{0}(v)$ obtained from. the loop $f(\mathrm{t}, s), 0 \leqq t \leqq 1$, so that $\mathrm{b}(0)=b$ and $b(1)=$ identity. The fact that $b(s)$ is of class $\boldsymbol{C}^{\boldsymbol{k}}$ in s (as a mapping of I into G) follows from the following

Lemma. Let $f: I \times I \rightarrow M$ be a differentiable mapping of class C^{k} and $u_{0}(s), 0 \leqq \mathrm{~s} \leqq 1$, a differentiable curve of class C^{k} in P such that $\pi\left(u_{0}(s)\right)=f(0, s)$. For each fixed s, let $u_{1}(s)$ be the point of \boldsymbol{P} obtaithod by the parallel displacement of $u_{0}(s)$ along the curve $f(t, s)$, whase, $0 \leqq t \leqq 1$ and s is fixed. Then the curve $u_{1}(s), 0 \leqq \mathrm{~s} \leqq 1$, is differentiable of class C^{k}.

Proof of Lemma. Let $F: I \times I \rightarrow P$ be a differentiable mapping of class $C^{\boldsymbol{k}}$ such that $\pi(F(t, \mathrm{~s}))=\mathrm{f}(\mathrm{t}, \mathrm{s})$ for all $(\boldsymbol{t}, \mathrm{s}) \in I \mathrm{x}$ I and that $F(0, s)=u_{0}(s)$. Thie existence of such an F follows from local triviality of the bundle \boldsymbol{P}. Set $v_{t}(s)=F(t, s)$. In the proof of Proposition 3.1, we saw that, for each fixed \boldsymbol{s}, there is a curve $\mathrm{a},(\mathrm{s}), 0 \leqq \mathrm{t} \leqq 1$, in G such that $\boldsymbol{a}_{0}(\dot{s})=e$ and that the curve $v_{t}(s) a_{i}(s), 0 \leqq t \leqq 1$, is horizontal. Set $u_{t}(s)=v_{t}(s) a_{t}(s)$. To p prove that $u_{1}(s), 0 \leqq s \leqq 1$, is a differentiable curve of class C^{k}, it is sufficient to show that $\sigma_{i}(s) ; 0 \leqq s \leq 1$, is a differentiable curve of class C^{k} in G. Let a be the cennection form of \mathbf{I}. Set $\mathrm{Y},(\mathrm{s})=-\omega\left(j_{i}(s)\right)$, where $j_{i}(J)$ is the vector tangent to the curve described by $v_{t}(s), 0 \leqq t \leqq 19$ when s is fixed. Then as in the proof of Proposition 3.1, $a_{t}(s)$ is: a solution' of the equation $\dot{a}_{t}(s) a_{t}(s)^{-1}=Y_{t}(s)$. As in the probf of the lemma for Proposition 3.1, we define, for each fixed s , a vector field $X(s)$ on $G \times \mathrm{R}$ so that $\left(a_{t}(s), t\right)$ is the integral curve of the wector field $X(s)$ throulgh the point $(e, 0) \in G \times \mathbf{R}$. The differentiability of $a_{t}(s)$ in s follows fign the fact that each solution of an ordinary linear' differtutial equation with parameter s is differentiable ins as many tinteste the equation is (cf. Appendix-1). This completes the proof of the lemma and hence the proof of (a) of Theorem 42 ,
'We now prove (b). If τ and μ are two loops atix and if μ is homotopic to zero, the composite curve $\tau \cdot \tau^{-1}$ is homotopic to zero. This implies that $\Phi^{0}(\vec{u})$ is a normal subgroup of $\Phi(u)$.

Let $\pi_{1}(M)$ be the first homotopy group of M with reference point x. We define a homomorphism $f: \pi_{1}(M) \rightarrow \Phi(u) / \Phi^{0}(u)$ as follows. For each element α of $\pi_{1}(M)$, let $\boldsymbol{\tau}$ be a continuous loop at x which represents a. We may cover τ by a finite number of coordinate neighborhoods, modify $\boldsymbol{\tau}$ within each neighborhood and obtain a piecewise differentiable loop $\boldsymbol{\tau}_{1}$ of class $\boldsymbol{C}^{\boldsymbol{k}}$ at \boldsymbol{x} which is homotopic to $\boldsymbol{\tau}$. If $\boldsymbol{\tau}_{1}$ and τ_{2} are two such loops, then $\boldsymbol{\tau}_{\mathbf{1}} \cdot \boldsymbol{\tau}_{\mathbf{2}}{ }^{-1}$ is homotopic to zero and defines an element of $\Phi^{0}(\boldsymbol{u})$. Thus, τ_{1} and τ_{2} define the same element of $\Phi(u) / \Phi^{0}(u)$, which is denoted by $f(a)$. Clearly, f is a homomorphism of $\pi_{1}(M)$ onto $\Phi(u) / \Phi^{0}(u)$. Since M is connected and paracompact, it satisfies the second axiom of countbility (Appendix 3). It follows easily that $a,(M)$ is countable.

QED.
Remark: In §3, we defined the parallel @placement along any piecewise differentiable' curve' of class C. In this section, we defined the holonomy group $\boldsymbol{\Phi}(\boldsymbol{u})$ using piecewise differentiable curves of class C^{k}. If we denote'by $\Phi_{k}(u)$ the holonomy group thus obtained from piecewise differentiable curves of class C^{k}, then 'we have obviously $\Phi_{1}(u) \supset \Phi_{2}(u) \supset \cdots \supset \Phi_{\infty}(u)$. We shall prove later in $\$ 7$ that these holonomy groups coincide.

5. Curvature form and structure equation

Let $\mathrm{P}(\mathrm{M}, \boldsymbol{G})$ be a principal fibre bundle and \boldsymbol{p}.a representation of G on a finite dimensional vector space $V ; p(a)$ is a linear transformation of V for each $a \in G$ and $p(a b) \doteq \rho(a) \rho(b)$ for $a, b \in \mathrm{G}$. A pseidotensorial form of degree r on P of $y p e(p, V)$ is a V valued r-form 9 on P such that

i

$$
R_{\omega}^{*} \varphi=\rho\left(a^{-1}\right) \cdot \varphi \quad \text { for } a \in G
$$

Such a form φ is called a insorial form if is horizontal in the sense that $\varphi\left(\boldsymbol{X}_{1}, \therefore, \boldsymbol{X}_{r}\right)=0$ whenever at least one of. the tangent vectors X_{i} of \mathbb{P} is vertical, i.e., tangent to , a fibre.
Example 5.1. If $\rho_{\mathbf{0}}$ is the trivial representation of G on V, that is, $\rho_{0}(a)$ is the identity transformation of V for each $a \in G$, then a tensorial form of degree rof type $\left(\rho_{0}, V\right)$ is nothing but a form φ on P which can be expressed as $\varphi=\pi^{*} \varphi_{M}$ where φ_{M} is a V-valued r-form on the base $\boldsymbol{\mu}$. ${ }^{\text {ato }}$

Example 5.2. Let \mathbf{p} be a representation of G on \mathbf{V} and \mathbf{E} the bundle associated with \mathbf{P} with standard fibre \mathbf{V} on which G acts through \mathbf{p}. A tensorial form φ of degree r of type (\mathbf{p}, \mathbf{V}) can be regarded as an assignment to each $\boldsymbol{x} \in \mathbf{M}$ a multilinear skewsymmetric mapping $\tilde{\varphi}_{x}$ of $\mathbf{T},(\mathbf{M}) \mathbf{x} \cdots \mathbf{x} T_{x}(M)(r$ times $)$ into the vector space $\pi_{E}^{-1}(x)$ which is the fibre of E over x. Namely, we define

$$
\tilde{\varphi}_{x}\left(X_{1}, \ldots, X_{r}\right)=u\left(\varphi\left(X_{1}^{*}, \ldots, X_{r}^{*}\right)\right), \quad X_{i} \in \mathrm{~T} ;(\mathrm{M}) ;^{\prime}
$$

where u is any point of \mathbf{P} with $\pi(u)=x$ and X_{i}^{*} is anyvector at u such that $\pi\left(X_{i}^{*}\right)=X_{i}$ for each $i . \varphi\left(X_{1}^{*}, \ldots, X_{r}^{*}\right)$ is then' an element of the standard fibre \mathbf{V} and \boldsymbol{u} is a linear mapping of \boldsymbol{V} onto $\pi_{E}^{-1}(x)$ so that $u\left(\varphi\left(X_{1}^{*}, \cdots, X_{r}^{*}\right)\right)$ is an element of $\pi_{E}^{-1}(x)$. It can be easily verified that this element is, independent of the choice of u and X_{i}^{*}. Conversely, given a skew-symmetric multilinear mapping $\tilde{\varphi}_{x}: \mathbf{T},(\mathrm{M}) \mathbf{x} \ldots \mathrm{X} T_{x}(M) \rightarrow \pi_{\boldsymbol{E}}^{-1}(x)$ for. each $\boldsymbol{x} \in \mathbf{M}_{\boldsymbol{\prime}}$. a. tensorial form φ of degree r of type (\mathbf{p}, \mathbf{V}) on \mathbf{P} can be defined, by

$$
\varphi\left(X_{1}^{*} ; \ldots, \dot{X}_{r}^{*}\right)=u^{-1}\left(\tilde{\varphi}_{x}\left(\pi\left(X_{1}^{*}\right), \ldots, \pi\left(X_{r}^{*}\right)\right)\right), \quad X_{i}^{*} \in T_{u}(P),
$$

where $x=\pi(u)$. In particular, a tensorial O-form of type (p, V), that is, a function $f: \mathbf{P} \rightarrow \mathbf{V}$ such thatf $(u a)=\boldsymbol{\mu}\left(a^{-\mathbf{1}}\right) f(\boldsymbol{u})$, can be identified with a cross section $\mathbf{M} \rightarrow \mathbf{E}$.
A few special cases of Example 5.2 will be used in Chapter, III.
Let Γ be a connection in $\mathbf{P}(\mathbf{M}, \mathbf{G})$. Let G_{u} and Q_{u} be the vertical and the horizontal subspaces of $T_{u}(P)$, respectively. Let $h: T_{u}(P) \rightarrow Q_{u}$ be the projection.

Próosition 5.1. If φ is a pseudotensorial r-form on P of type ($\rho, V)$, then
(a) The form φh defined $b y(\varphi h)\left(X_{2}, \ldots, X_{r}\right)=\varphi\left(h X_{1}, \ldots, h X_{r}\right)$, $X_{i} \in T_{i}(P)$, is a tensorial form of type (p, V);
(b) $d \varphi$ is a pseudotensorial $(r+1)+$ form of $t y p e(\rho, \mathbf{V})$;
(c) The $(\mathbf{r}+1)$-form $D \varphi$ defined by $D_{\varphi}=(d \varphi) h$ is a tensorial form of type (ρ, V).

Proof, From $R_{a} \circ \mathrm{~h}=\mathrm{h} \circ R_{a}, a \in \mathrm{G}$, it follows that $\varphi \mathrm{h}$ is a pseudotensorial form of type ($\mathrm{p}, \boldsymbol{V}$), It is evident that

$$
(\varphi h)\left(X_{1}, \ldots, X_{r}\right)=0
$$

if one of X_{i} 's is vertical., (b) follows from $R_{a}^{*} \circ d=\mathbf{d} \circ R_{a}^{*}$, a $\cdot \mathbf{G}$. (c) follows from (a) and (b)..

QED.
The form $D_{\varphi}=(d \varphi) h$ is called the exterior covariant derivative of φ and \mathbf{D} is called exterior covariant differentiation.

If \mathbf{p} is the adjoint representation of G in the Lie algebra \mathfrak{g}, a (pseudo) tensorial form of type (p, g) is said to be of type ad G. The connection form\% is a pseudotensorial l-form of type ad G. By Proposition 5.1, Do is a tensorial P-form of type ad G and is called the curvature form of ω,

THEOREM 5.2 (Structure equation). Let ω be a connection form and Ω its curvature form. Then

$$
\begin{aligned}
d \omega(X, Y)=-\frac{1}{2}[\omega(X), \omega(Y)]+\Omega(X, Y) \\
\quad \text { for } X, Y \in \mathrm{~T},(\mathbf{P}), \quad u \in \mathbf{P} .
\end{aligned}
$$

Proof. Every vector of P is a sum of a vertical vector and a.. horizontal vector. Since both sides of the above equality 'are bilinear and skew-symmetric in X and Y, it is sufficient to verify the. equality in the following three special. cases.
(1) X and Y are horizontalf In this case, $\omega(X)=o(Y)=0$ and the equality reduces to the definition of Ω.
(2) X and Y are vertical. Let $X:=\mathrm{A}^{*}$ and $\mathrm{Y}=B^{*}$ at u , where $A, B \in \mathfrak{g}$. Here , \mathbf{A}^{*} and \mathbf{B}^{*} are the fundamental vector fields corresponding to \mathbf{A} and \mathbf{B} respectively. By Proposition 3.11 of Chapter I, we have

$$
\left.\begin{array}{rl}
2 d \omega\left(A^{*}, B^{*}\right) & =A^{*}\left(\omega\left(B^{*}\right)\right)-B^{*}\left(\omega\left(A^{*}\right)\right)-\omega\left(\left[A^{*}, \mathbf{B} *\right]\right) \\
& =-[\mathbf{A}, \mathbf{B}] \mp-\left[\omega\left(A^{*}\right),\right.
\end{array} \omega\left(B^{*}\right)\right], ~ \$
$$

since $\omega\left(A^{*}\right)=\mathbf{A}, \omega\left(B^{*}\right)=\mathbf{B}^{\prime}$ and $\left[A^{*}, B^{*}\right]=[\mathbf{A}, \mathbf{B}]^{*}$. On the other hand, $\Omega\left(A^{*}, B^{*}\right)=\mathbf{0}$.
(3) Xis horizontal and Y is vertical. We extend X to a horizontal vector field on \mathbf{P}, which will be also denoted by X . Let $\mathrm{Y}=\mathbf{A}^{*}$ at u, whed $\boldsymbol{A} \in g$. Since the right hand side of the equality vanishes, it is sufficient to show that $d \omega\left(X, \mathbf{A}^{*}\right)=0$. By Proposition 3.11 of Chapter I, we have

$$
\begin{aligned}
2 d \omega\left(X, \mathbf{A}^{*}\right) & =X\left(\omega\left(A^{*}\right)\right)-A^{*}(\omega(X))-\omega\left(\left[X, \mathbf{A}^{*}\right]\right) \\
& =-\omega\left(\left[X, \mathbf{A}^{*}\right]\right)
\end{aligned}
$$

Now it is sufficient to prove the following

Lemma. If $A *$ is the fundamental vector field corresponding to an velement $\mathrm{A} \in \mathrm{g}$ and X is a horizontal vector field, then $\left[\mathrm{X}, \mathrm{A}^{*}\right]$ is horizontal. Proof of Lemma. The fundamental vector field \bar{A}^{*} is induced by $R_{a_{t}}$, where a, is, the 1-parameter subgroup of G generated by $A \in \mathrm{~g}$. By Proposition 1.9 of Chapter I, we have

$$
[X, A *]=\lim _{t \rightarrow 0} \frac{1}{t}\left[R_{a_{t}}(X)-X\right]
$$

If X is horizontal, so is $\boldsymbol{R}_{a_{i}}(X)$. Thus [X, A*] is horizontal: QED.
Corollary 5.3. If both X and Y are horiwntal vector fields on' P, t h e n

$$
\omega([X, Y])=-2 \Omega(X, Y)
$$

Proof. Apply Proposition' 1.9 of Chapter I to the left hand side of the, structure equation just proved.

QED.
The structure equation (often called "the structure equation pf E. Cartan") is sometimes written, for the sake of simplicity, as follows

$$
\downarrow \omega=-\frac{1}{2}[\omega, \omega]+\Omega
$$

Let e_{1}, \ldots, e_{r} be a basis for the Lie algebra g and $c_{j k}^{i}, i, j, k=$ $1, \ldots, r$, the structure constants of \mathfrak{g} with respect to, $e_{1, \ldots,}, e_{r}$, that is,

$$
\left[e_{j}, e_{k}\right]=\sum_{1} G_{j k}^{i} e_{i j} j, k=1, \ldots, r
$$

Let $\omega=\Sigma_{i} \omega^{i} e_{i}$ and $\Omega=\Sigma_{i} \Omega^{i} \boldsymbol{e}_{i}$. Then the structure equation can be expressed as followsef.

$$
d \omega^{i}=-\frac{1}{2} \Sigma_{j, k} c_{j k}^{i} \omega^{j} \text { A } \omega^{k}+\Omega^{i}, \quad i=1, \ldots, r_{1}
$$

тheorem 5.4 (Bianchi's identity). $D \Omega=0$.
Proof. By the definition of \bar{D}, it suffices, to prove that $d \Omega(X, Y, Z)=0$ whenever X, Y, and Z are all horizontal vectors. We apply the exterior differentiation-d to the structure equation. Then

$$
0=\frac{1}{d} d \omega^{i}=-\frac{1}{2} \Sigma c_{j k}^{i} d \omega^{j} \wedge \omega^{k+\frac{1}{2}} \Sigma c_{j k}^{i} \omega^{j} \wedge d \omega^{k}+d \Omega^{i}
$$

Since $\omega^{i}(X)=0$ whenever X is horizontal, we have

$$
d \Omega^{i}(X, Y, Z)=0
$$

whenever $\boldsymbol{X}, \mathrm{Y}$, and Z are all horizontal.
QED.
proposition 5.5. Let ω be a connection form and φ a tensorial 1form of type ad G. Then

$$
\begin{array}{r}
D \varphi(X, Y)=d \varphi(X, Y)+\frac{1}{2}[\varphi(X), \omega(Y)]+\frac{1}{2}[\omega(X), \varphi(Y)] \\
\text { for } X, Y \in T_{v}(P), u \in P .
\end{array}
$$

Proof. As in the proof of Theorem 5.2, it suffices to consider the three special cases. The 'only non-trivial case is the case where X is vertical and Y is horizontal. Let $\mathrm{X}=A$ at $\dot{\boldsymbol{u}}$, where $\mathrm{A} \boldsymbol{\epsilon}$. We extend Y to a horizontal vector field on \boldsymbol{P}, denoted also by ' Y , which is invariant by $\boldsymbol{R}_{\boldsymbol{a}}, \mathrm{a} \in \mathrm{C}$. (We first extend the vector $\boldsymbol{\pi} \boldsymbol{Y}$ to a vector field on M and then lift it to ahorizontal vector field on P.). Then $\left[A^{*}, Y\right]=0$, As A^{*} is vertical, $D \varphi\left(A^{*}, Y\right)=0$. We . shall show that the right 'hand' side, of the equality 'vanishes. By Proposition 3.11 of Chapter I, we have
$d \varphi\left(A^{*}, Y\right)=\frac{1}{2}\left(A^{*}(\varphi(Y))-Y\left(\varphi\left(A^{*}\right)\right)-\varphi\left(\left[A^{*}, Y\right]\right)=\frac{1}{2} A^{*}(\varphi(Y))\right.$, so that it- suffices show $A^{*}(\varphi(Y))+\left[\omega\left(A^{*}\right), \varphi(Y)\right]=0$ or $A^{*}(\varphi(Y))=-\left[A_{i} \varphi(Y)\right]$. If a, denotes the 1-parameter subgroup of G generated by A, then

$$
\begin{aligned}
A_{u}^{*}(\varphi(Y)) & =\lim _{t \rightarrow 0} \frac{1}{t}\left[\varphi_{u u_{i}}(Y)-\varphi_{u}(Y)\right]=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(R_{a_{t}}^{*} \varphi\right)_{u}(Y)-\varphi_{u}(Y)\right] \\
& \neq \lim _{t \rightarrow 0} \frac{1}{t}\left[\operatorname{ad}\left(a_{t}^{-1}\right)\left(\varphi_{u}(Y)-\varphi_{u}(Y)\right]=-\left[A, \varphi_{u}(Y)\right]\right.
\end{aligned}
$$

since F is inyariant by $\boldsymbol{R}_{a_{i}}$.
QED.

6. Mappings of connections

In $\S 5$ of Chapter I, we considered certain mappings of one principal fibre'bundle into another such as a homomorphism, an injection, and a bundle map. We now study the effects of these mappirge on connections.

Propo thon 6.1. Let $f: P^{\prime}\left(M^{\prime}, G^{\prime}\right) \rightarrow P(M, G)$ be a homomorphism with the corresponding homomorphism $f: G^{\prime} \rightarrow G$ such that the induced mapping $f^{\prime} M^{\prime} \rightarrow M$ is a diffeomorphism of M^{\prime} onto M. Let Γ^{\prime} be a connection in $\mathbf{P}^{\prime}, \omega^{\prime}$ the connection form and $\boldsymbol{\Omega}^{\prime}$ the curvature form of C., Then
(a) There is a unique connection Γ in P such that the horizontal subspaces of Γ^{\prime} are mapped into horizontal subspaces of Γ by f.
(b) If ω and S 2 are the connection form and the curvature form of Γ respectively, then $f^{*} \omega=f \cdot \omega^{\prime}$ and f * $\Omega=f \cdot \Omega^{\prime}$, where $\mathbf{f} \cdot \omega^{\prime}$ or $f \cdot \Omega^{\prime}$ means the g^{\prime}-valued form on P^{\prime} defined by $\left(f \cdot \omega^{\prime}\right)\left(X^{\prime}\right)=f\left(\omega^{\prime}\left(X^{\prime}\right)\right)$ or $\left(f \cdot \Omega^{\prime}\right)\left(\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right)=f\left(\Omega^{\prime}\left(X^{\prime}, Y^{\prime}\right)\right)$, where f on the right hand side is the homomorphism $\mathbf{g}^{i} \rightarrow \mathrm{~g}$ induced by $f: G^{\prime} \rightarrow G$.
(c) If $u^{\prime} \in P^{\prime}$ and $u=f\left(u^{\prime}\right) \in P$, then $f: G^{\prime} \rightarrow G$ maps $\Phi\left(u^{\prime}\right)$ onto $\Phi(u)$ and $\Phi^{0}\left(u^{\prime}\right)$ onto $\Phi^{0}(u)$, where $\Phi(u)$ and $\Phi^{0}(u)$ (ress. $\Phi\left(\boldsymbol{u}^{\prime}\right)$ and $\Phi^{0}\left(u^{\prime}\right)$) are the holonomy group and the restricted holonomy group of Γ (resp. Γ^{\prime}) with reference point iu (resp. u^{\prime}).
Proof. (a) Given a point $u \in P$, choose $u^{\prime} \in P^{\prime}$ arid $a^{\prime \prime} \in G$ such '-that $\mathrm{u}=f\left(u^{\prime}\right) a$. We define the horizontal subspace \boldsymbol{Q}_{u} of $T_{u}(P)$ by $Q_{u}=R_{a} \circ f\left(Q_{u^{\prime}}^{\prime}\right)$, where $Q_{u^{\prime}}$ is the horizontal subspace of T_{u} (P^{\prime}) with respect to I". We shall show that Q_{u} is independent of the choice of u^{\prime} and a . If $\mathrm{u}=f\left(\mathrm{v}^{\prime}\right) b$, where $v^{\prime} \in \mathrm{P}^{\prime}$ and $\mathrm{b} \in \mathrm{G}$, then $v^{\prime}=\mathrm{u}^{\prime} \mathrm{c}^{\prime}$ for some $c^{\prime} \cdot \mathrm{G}^{\prime}$. If we set $\mathrm{c}=f\left(c^{\prime}\right)$, then $\mathrm{u}=$ $f\left(\mathrm{v}^{\prime}\right) \mathrm{b}=f\left(u^{\prime} c^{\prime}\right) b=f\left(u^{\prime}\right) c b$ and hencea $=\mathrm{cb}$. We have $R_{b} \circ f\left(Q_{n^{\prime}}\right)=$ ${ }_{\checkmark} R_{b} \circ f\left(Q_{u^{\prime} c^{\prime}}\right)=R_{b} \circ f \circ R_{c^{\prime}}\left(Q_{u^{\prime}}\right)=R_{b} \circ R_{c} \circ f\left(Q_{u^{\prime}}\right)=R_{a} \circ f\left(Q_{u^{\prime}}\right)$, which proves our assertion. We shall show that the distribution $\mathrm{u} \rightarrow Q_{u}$ is a connection in P. If $\mathbf{u}=f\left(\mathbf{u}^{\prime}\right) \mathrm{a}$, then $\mathrm{ub}=f\left(\mathrm{u}^{\prime}\right) \mathrm{ab}$ and $Q_{u b}=R_{a b} \circ f\left(Q_{u^{\prime}}\right)=R_{b} \circ R_{a} \circ f\left(Q_{u^{\prime}}\right)=R_{b}\left(Q_{u}\right)$, thus proving the invariance of the distribution by G . We shall now prove $\mathrm{T},(\mathrm{P})=$ $Q_{u}+G_{u}$, where G_{u} is the tangent space to the fibre at u. By local triviality of P, it is sufficient to prove that the projection $\pi: \mathrm{P} \rightarrow \mathrm{M}$ induces a linear isomorphism $\pi: Q_{u} \rightarrow T_{n}(M)$ where $x=\pi(u)$. We may assume that $\mathrm{u}=f\left(\mathrm{u}^{\prime}\right)$ since-the distribution $\mathrm{u} \rightarrow Q_{u}$ is invariant by G. In the commutative diagram

the mappings $\pi^{\prime}: Q_{u^{\prime}} \rightarrow T_{x^{\prime}}\left(M^{\prime}\right)$ and $f: T_{x^{\prime}}\left(M^{\prime}\right) \rightarrow T_{x}(M)$ are linear isomorphisms and hence the remaining two mappings must be also linear isomorphisms. The uniqueness of T is evident from its construction.
(b) The equality $f^{*} \omega=f . \omega^{\prime}$ can be rewritten as follows:

$$
\omega\left(f X^{\prime}\right)=f\left(\omega^{\prime}\left(X^{\prime}\right)\right) \quad \text { for } X^{\prime} \dot{\epsilon} \mathcal{T}_{u^{\prime}}\left(P^{\prime}\right) ; \quad u^{\prime} \in \mathrm{P}^{\prime}
$$

It is sufficient to verify the above equality in the two special cases: (1) X^{\prime} is horizontal, and (2) X^{\prime} is vertical, Since $f: P^{\prime} \rightarrow P$ maps every horizontal vector into a liorizontal vector, both sides of the, equality 'vanish if X^{\prime} is horizontal. If X ' is vertical, X ' $=\mathrm{A}$ '* at u^{\prime}, where $A^{\prime} \in \mathrm{g}^{\prime}$. Set $A=f\left(A^{\prime}\right) \in \mathrm{g}$. Since $f\left(u^{\prime} a^{\prime}\right)=f\left(u^{\prime}\right) f\left(a^{\prime}\right)$ for every a' $\in \mathrm{G}^{\prime}$, we have $f\left(\mathrm{X}^{\prime}\right)=\mathrm{A}^{*}$ at $f\left(\mathrm{u}^{\prime}\right)$. Thus

$$
\omega\left(f X^{\prime}\right)=\omega\left(A^{*}\right)=A=f\left(A^{\prime}\right)=f\left(\omega^{\prime}\left(A^{*}\right)\right)=f\left(\omega^{\prime}\left(X^{\prime}\right)\right)
$$

From $f *_{\omega}=f \cdot \omega^{\prime}$, we obtain $d\left(f{ }^{*} \omega\right)=d\left(f \cdot \omega^{\prime}\right)$ and $f *$ do $=$ $f \cdot d \omega$ '. By the structure equation '(Theorem 5.2) :

$$
-\frac{1}{2} f^{*}([\omega, \omega])+f^{*} \Omega=-\frac{1}{2} f\left(\left[\omega^{\prime}, \omega^{\prime}\right]\right)+f \cdot \Omega^{\prime}
$$

we have

$$
-\frac{1}{2}\left[f^{*} \omega, f^{*} \omega\right]+f^{*} \Omega=-\frac{1}{2}\left[f \cdot \omega^{\prime}, f \cdot \omega^{\prime}\right]+f \cdot \Omega^{\prime} .
$$

This implies that $f * \Omega=f, \Omega^{\prime}$.
(c) Let τ be a loop at $x=\pi(u)$. Set $\tau^{\prime}=f^{-1}(\tau)$ so that τ^{\prime} is a loop at $x^{\prime}=\pi^{\prime}\left(u^{\prime}\right) ;$ Let $\tau^{\prime} *$ be the horizontal lift. of τ^{\prime} starting from u^{\prime}. Then $f\left(\tau^{*}\right)$ is the horizontal lift of τ starting from u. The statement (c) is now evident.

QED.
In the situation 'as in Proposition 6.1, we say that f 'maps the connection I" into the connection I'. In particular, in the case where $P^{\prime}\left(M^{\prime}, \mathrm{G}^{\prime}\right)$ is a reduced subbundle of $P(M, G)$ with injection f so that $M^{\prime}=M$ and $f: M^{\prime} \rightarrow M$ is the identity transforniation, we say that the connection Γ in P is reducible to the connection I^{\prime} in P^{\prime}. An autumorphism f of the bundle $P(M, \mathrm{G})$ is called an automorphism of a connection Γ in P if it maps Γ into Γ, and in this case, Γ is said to be invariant by f.
Proposition 6.2. Lett $f: P^{\prime}\left(M^{\prime}, G^{\prime}\right) \rightarrow P(M, G)$ be a homomorphism such that the corresponding homomorphism $f: \mathrm{G}^{\prime} \rightarrow \mathrm{G}$ maps G^{\prime} isomorphically onto G . Let Γ be a connection in P, ω the connection form and Ω the curvature form of Γ. Then
(a) There is a unique connection Γ^{\prime} in P^{\prime} such that the horizontal subspaces of $I^{\prime \prime}$ are mapped into horizontal subspaces of Γ by f.
(b) If ω^{\prime} and Ω^{\prime} are e the connection form and the curvatureform of Γ^{\prime} respectively, then $f{ }^{*} \omega=f \cdot \omega^{\prime}$ andf ${ }^{*} \Omega=f \cdot \Omega^{\prime}$.
(c) If $u^{\prime} \in P^{\prime}$ and $u=\mathbf{f}\left(u^{\prime}\right) \in P$, then the isomorphism $f: \mathrm{G}^{\prime} \rightarrow \mathrm{G}$ maps $\Phi\left(u^{\prime}\right)$ into $\Phi(u)$ and $\Phi^{0}\left(u^{\prime}\right)$ into $\Phi^{0}(u)$.

Proof. We define I" by defining its connection form ω^{\prime}. Set $\omega^{\prime}=f^{-1} \cdot f^{*} \omega$, where $f^{-1}: g \rightarrow g^{\prime}$ 'is the inverse of the isomorphism $f: \mathfrak{g}^{\prime} \rightarrow \mathfrak{g}$ induced from $f: G^{\prime} \rightarrow G$. Let $X^{\prime} \in T_{u^{\prime}}\left(P^{\prime}\right)$ and $a^{\prime} \in G^{\prime}$ and set $X=f X^{\prime}$ and $a=f(a l)$,. Then we have

$$
\begin{aligned}
\omega^{\prime}\left(R_{a^{\prime}} X^{\prime}\right) & =f^{-1}\left(\omega\left(f\left(R_{a} X^{\prime}\right)\right)\right)=f^{-1}\left(\omega\left(R_{a} X\right)\right) \\
& =f^{-1}\left(\operatorname{ad}\left(a^{-1}\right)(\omega(X))\right)=\operatorname{ad}\left(a^{\prime-1}\right)\left(f^{-1}(\omega(X))\right) \\
& =\operatorname{ad}\left(a^{\prime-1}\right)\left(\omega\left(X^{\prime}\right)\right)
\end{aligned}
$$

Let $\mathrm{A}^{\prime} \in \mathrm{g}^{\prime}$ and set $\mathrm{A}=f\left(A^{\prime}\right)$. Let A^{*} and $\mathrm{A}^{\prime} *$ denote the fundamental vector fields corresponding to A and A^{\prime} respectively. Then we have

$$
\omega^{\prime}\left(A^{\prime *}\right)=f^{-1}\left(\omega\left(A^{*}\right)\right)=f-‘(A)=A^{\prime}
$$

This proves that the form ω^{\prime} defines a connection (Proposition 1.1). The verification of other statements is similar to the proof of Proposition 6.1 and is left to the reader.

QED.
In the situation as in Proposition 6.2, we say that I " is induced by f from l^{\prime}. Iff is a bundle map, that is, $\mathrm{G}^{\prime}=\mathrm{G}$ and $f: \mathrm{G}^{\prime} \rightarrow \mathrm{G}$ is ${ }^{\prime}$ the identity automorphism, then $\omega^{\prime}=f^{*} \omega$. In particular, given a bundle $P(M, \mathrm{G})$ and a mapping $f: M^{\prime} \rightarrow \mathrm{M}$, every connection in P induces a connection. in the induced bundle $f^{-1} P$.

For any principal fibre bundles $P(M, G)$ and $Q(M, H)$, $\mathrm{P} \times \mathrm{Q}$ is aprincipalfibre bundleover $M \times$ Mwithgroup $\mathrm{G} \times H$. Let $P+Q$ be the restriction of $P \times Q$ to the diagonal $A M$ of $M \times M$. Since $A M$ and M are diffeomorphic with each other in a natural way, we consider $P+Q$ as a principal fibre bundle over M with group $\mathrm{G} \times \boldsymbol{H}$. The restriction of the projection $\mathrm{P} \times$ $\mathrm{Q} \rightarrow \mathrm{P}$ to $\mathrm{P}+\mathrm{Q}$, denoted by f_{P}, is a homomorphism with the corresponding natural homomorphism $f_{G}: G \times H \rightarrow$ G. Similarly, for $f_{Q}: P+Q \rightarrow \mathrm{Q}$ and $f_{H}: G \times H \rightarrow H$.

Proposition 6.3. Let Γ_{P} and Γ_{Q} be connections in $\boldsymbol{P}(\boldsymbol{M}, \boldsymbol{Q})$ and $\mathrm{Q}(\mathrm{M}, \mathrm{H})$ respectively. Then
(a) There is a unique connection Γ in $P+Q$ such that the homomorphisms $f_{P}: \mathrm{P}+\mathrm{Q} \rightarrow \mathrm{P}$ and $f_{Q}: \mathrm{P}+\mathrm{Q} \rightarrow \mathrm{Q}$ maps Γ into Γ_{P} and Γ_{Q} respectively.
(b) If ω, ω_{P} and ω_{0} are the connection forms and Ω, Ω_{P}; and Ω_{Q} are the curvature forms of Γ, Γ_{P}, and Γ_{Q} respectioely, then

$$
\omega=f_{P}^{*} \omega_{P}+f_{Q}^{*} \omega_{Q}, \quad \Omega=f{ }_{P}^{*} \Omega_{P}+f_{Q}^{*} \Omega_{Q}
$$

(c) Let $u \in P, v \in Q$, and $(u, v) \in F+Q$. Then the holonomy group $\Phi(u, v)$ of $I^{\prime}\left(r e s p\right.$. the restricted holonomy group $\Phi^{0}(u, v)$ of $\left.\Gamma\right)$ is a . subgroup of $\Phi(u) \times \Phi(v)$ (resp. $\left.\Phi^{0}(u) \times \Phi^{0}(v)\right)$. The homomorphism $' f_{G}: \mathrm{G} \times \mathrm{H} \rightarrow \mathrm{G}\left(\right.$ resp $\left.. f_{H}: \mathrm{G} \times \mathrm{H} \rightarrow \mathrm{H}\right)$ maps $\Phi(u, \mathrm{v})$ onto $\Phi(u)$ (resp. onto $\Phi(v)$) and $\Phi^{0}\left(u_{i}, ~ v\right)$ onto $\Phi^{0}(u)$ (resp. onto $\Phi^{0}(v)$), where $\Phi(u)$ and $\Phi^{0}(u)$ (resp. $\Phi(v)$ and $\Phi^{0}(V)$ are the holonomy group and the restricted holonomy group of Γ_{P}, (resp. I' $\left.Q\right)$.

The proof is similar to those of Propositions 6.1 and.6.2 and is left to the reader.

Proposition 6.4. Let $\mathrm{Q}(\mathrm{M}, \mathrm{H})$ be a subbundle of $\boldsymbol{P}(M, G)$, where \boldsymbol{H} is a Lie subgroup of G. Assume that the Lie algebra g of \boldsymbol{G} admits a subspace m such that $g=m+\mathfrak{h}$ (direct sum) and ad $(H)(m)=$ in, where \mathfrak{b} is the Lie algebra of H. For every connection form ω in P, the \mathfrak{b} component ω^{\prime} of ω restricted to Q is a connection form in Q

Proof. Let $A \in \mathfrak{h}$ and A^{*} the fundamental vector field corresponding to A . Then $\omega^{\prime}\left(A^{*}\right)$ is the b-component of $\omega\left(A^{*}\right) \Longrightarrow A$. Hence, $\omega^{\prime}\left(A^{*}\right)=$ A. Let φ be the m-component of ω restricted to Q. Let $\boldsymbol{X} \boldsymbol{\epsilon} \boldsymbol{T}_{\boldsymbol{v}}(\mathrm{Q})$ and $\mathrm{a} \boldsymbol{\epsilon} \mathrm{H}$. Then

$$
\begin{gathered}
\omega\left(R_{a} X\right)=\omega^{\prime}\left(R_{a} X\right)+\varphi\left(R_{a} X\right) \\
\operatorname{ad}\left(a^{-1}\right)(\mathrm{o}(X))=\operatorname{ad}\left(a^{-1}\right)\left(\omega^{\prime}(X)\right)+\operatorname{ad}\left(a^{-1}\right)(\varphi(X))
\end{gathered}
$$

The left-hand sides of the preceding two equalities coincide. Comparing the \&components of the, right hand sides; we obtain $\omega^{\prime}\left(R_{a} X\right)=$ ad $\left(a^{-1}\right)\left(\omega^{\prime}(X)\right)$. Observe that we used the fact that ad $\left(a^{-1}\right)(\varphi(X))$ is in m .

QED.
Remark. The connection -defined' by ω in P is reducible to a connection in the subbundle Q if and only if the restriction of ω to Q is b -valued. Under the assumption in Proposition 6.4, this means $\boldsymbol{\omega}^{\prime}=\boldsymbol{\omega}$ on Q

The Reduction theorem
Unless otherwise, stated, a curve will mean a piecewise differentiable curve of class C". The holonomy group $\Phi_{\infty}\left(u_{0}\right)$ will be denoted by $\boldsymbol{\Phi}\left(u_{0}\right)$.

We first establish
theorem 7.1 (Reduction theorem). Let $\mathrm{P}(\mathrm{M}, \mathrm{G})$ be a principal fibre bundle with a connection I^{\prime}, where M is connected and paracompact. Let \dot{u}_{0} be an arbitrary point of P. Denote by $P\left(u_{0}\right)$ the set of points in P
which can be joined to u_{0} by a horizontal curve. Then
(1) $P\left(u_{0}\right)$ is a reduced bundle with structure group $\Phi\left(u_{0}\right)$.
(2) The connection Γ is reducible to a connection in $P\left(u_{0}\right)$.

Proof. (1) We first prove
Lemma 1. Let Q be a subset of $\boldsymbol{P}(M ; \mathrm{G})$ and H a Lie subgroup $\mathbf{O f}$ G. Assume: (1) the projection. $\pi: P \xrightarrow{P} M$-maps Q onto M; (2) Q is stable by H, i.e., $R_{a}(Q)=Q$ for êach a $\in H$; (3) if $u, v \in \mathrm{Q}$ and $\pi(u)=$ $\pi(v)$; then there is an element a $\dot{\epsilon} H$ such that $\mathrm{v}=u a$, and (4) every point x of M has a neighborhood U and a cross section $\sigma: U \rightarrow \mathrm{P}$ such that $\mathrm{a}(\mathrm{U}) \subset \mathrm{Q}$. Then $\mathrm{C}(M ; H)$ is a reduced subbundle of $\mathrm{P}(\mathrm{M}, G)$.
Proof of 'Lemma 1. For each u $\in \pi^{-1}(U)$, let $x=\pi(u)$ and $\mathrm{a} \epsilon \mathrm{G}$ the element determined by $u=a(x) a$. Define an isomorphism $\psi: \pi^{-1}(U) \rightarrow U \mathrm{x} \cdot G$ by setting $\mathrm{y}(\mathrm{u})=(\mathrm{x}, \mathrm{a})$. It is easy to see that ψ maps $\mathrm{Q} \cap \pi^{-1}(U) 1: 1$ onto $U \times H$. Introduce a differentiable structure in Q in such a way that $\psi: Q \cap \pi^{-1}(U) \rightarrow U \times H$ becomes a diffeomorphism; using Proposition 1.3 of Chapter I as in the proof of Proposition 5.3 of Chapter I, we see that Q becomes a differentiable manifold. It is now evident that Q is a principal fibre bundle-over M with group H and that Q is a subbundle of P.
Gcing back to the proof of the, first assertion of Theorem 7.1; we see that, M being paracompact, the holonomy group $\Phi\left(u_{0}\right)$ is a Lie subgroup of G (Theorem 4.2) and that the subset $P\left(u_{0}\right)$ and the group $\Phi\left(u_{0}\right)$ satisfy conditions (1), (2), and (3) of Lemma 1 (cf. the- second definition of $\Phi\left(u_{0}\right)$ given before Proposition 4.1 and also Proposition 4.1 (b)). To verify condition (4) of Lemma 1, let $\mathrm{xl}, \ldots, x^{n}$ be a local coordinate system around x such that x is the origin $(0, \ldots, 0)$ with respect to this coordinate system. Let U be a cubical neighborhood of x defined by $\left|x^{i}\right|<\delta$. Given any pointy ϵU, let τ_{y} be the segment from x tog with respect to the.,? coordinate system x^{1}, \ldots, x^{n}. Fix a point $u \in \mathrm{Q}$ such that $\pi(u)=x_{0}$ Let $\sigma(y)$ be the point of P obtained by the parallel displacement of u along τ_{y}. Then $\sigma: U \rightarrow$ Pis a cross section such that $\sigma(U) \subset Q$. Now (1) of Theorem 7.1 follows from Temma, 1.
(2) This is an immediate consequence of the following

Lemma 2. Let $Q(M, \mathrm{H})$ be , subbundle of $P(\boldsymbol{M} ; \boldsymbol{O})$ and Γ a connection in P. If, for every $u \in Q$, the horizontal subuppace of $T_{u}(P)$ is tangent to Q, then Γ is reducible to a connection in Q.
"Proof of Lemma 2. We define a connection I " in Q as follows. The horizontal subspace of $T_{u}(Q), u \in \mathrm{Q}$, with respect to I " is by definition the horizontal subspace of T^{\prime},(P) with respect to I^{\prime}. It is obvious that Γ is reducible to Γ^{\prime}.

QED.
We shall call $\mathrm{P}(u)$ the holonomy bundle through u, It is evident . that $P(u)=P(v)$ if and only if u and v can be joined by a horizontal curve. Since the rela ion- introduced in $\S 4(u \sim \mathrm{v}$ if u and v can be joined by a horizontal curve) is an equivalence reation, we have, for every pair of points u and v of P , either $P_{i}(u)=\mathrm{P}(\mathrm{v})$ or $\mathrm{P}(\mathrm{u}) \cap \mathrm{P}(\mathrm{v})=$ empty. In other words, P is decomposed into the disjoint union of the holonomy bundles. Since every $\mathrm{a} \epsilon \mathrm{G}$ maps each horizontal curve, into 'a horizontal curve, $R_{a}^{\prime}(P(u))=\mathrm{P}($ ua $)$ and $R_{a}: P(u) \rightarrow P(u a)$ is an isomorphism with the corresponding isomorphism ad $\left(a^{-1}\right): \Phi(u) \rightarrow \Phi(u a)$ of the structure groups. It is easy to "see that, given any u and v , there is an element $\mathrm{a} \epsilon G$ such that $P(v)=P(u a)$. Thus the holonomy bundles $P(u), u \in P$, are all isomorphic with each other.
Using Theorem 7.1, we prove that the holonomy groups $\Phi_{k}(u)$, $1 \leqq k \leqq$ co, coincide as was pointed out in Remark of \$4. This result is due to Nomizu and Ozeki [2].

тheorem 7.2. All the holonomy groups $\Phi_{k}(u), 1 \leqq \mathrm{k} \leqq \infty$, coincide.

Proof. It. is sufficient to show that $\Phi_{1}(u)=\Phi_{\infty}(u)$. We denote $\Phi_{\infty}(u)$ by $\Phi(u)$ and the holonomy bundle, through u by $P(u)$. We know by Theorem 7.1 that $P(u)$ is a subbundle of P with $\Phi(u)$ as its structure group. Define a distribution $S_{o n} P$ by setting

$$
S_{u}=T_{u}(P(u)) \quad \text { for } u \in \mathrm{P}
$$

Since the holonomy bundles have the same dimension, say k, S is a k-dimensional distribution. We first prove

Lemma 1. (1) S is differentiable and involutive.
(2) For each $u \in P, P(u)$ is the maximal integral manifold of S through u.
Proof of Lemma 1. ($:$ j We set

$$
S_{u}=S_{u}^{\prime}+S_{u}^{\prime \prime} ; \quad u \in \mathrm{P}
$$

where S_{u}^{\prime} is horizontal and ' $\mathcal{S}^{\prime \prime}$. vertical. The distribution S^{\prime} is differentiable by the very definition of a connection. To prove the
differentiability of S, it suffices to show that of $S^{\prime \prime}$. For each $u \in P$, let U be a neighborhood of $\boldsymbol{x}=\mathrm{n}(\mathrm{u})$ with a cross section $\sigma: U \rightarrow$ $\mathrm{P}(\mathrm{u})$ such that $\sigma(x)=u$. (Such a cross section was constructed in the proof of The \&em 7.1.) Let $\boldsymbol{A}_{1}, \ldots, A_{r}$ be a basis of the Lie. algebra $\mathrm{g}(\mathrm{u})$ of $\Phi(u)$. We shall define vector fields A_{1}, \ldots, A_{r} on $\pi^{-1}(U)$ which form 'a basis of $S^{\prime \prime}$ at every point of $\pi^{-1}(U)$. Let $\mathrm{v} \in \pi^{-1}(U)$. Then there is a unique $a \in \mathrm{G}$ such that $v=\boldsymbol{\sigma}(\pi(a)) a$. Since ad $\left(a^{-1}\right): \Phi(u) \rightarrow \Phi(v)$ is an isomorphism, ad $\left(a^{-1}\right)(\mathrm{A}),, i=$ $1, \ldots, r$,are elements of $g(v)$ and form a basis for $g(v)$. We set

$$
\left(\tilde{A}_{i}\right)_{0}=\left(\operatorname{ad}\left(a^{-1}\right)\left(A_{i}\right)\right)_{0}^{*}, \quad i=1, \quad \ldots, \quad \Gamma
$$

where $\left(\operatorname{ad}\left(a^{-1}\right)\left(A_{i}\right) *\right.$ is the fundamental vector field. on P corresponding to $\operatorname{ad}\left(a^{-1}\right)\left(A_{i}\right) \subset g(v) \subset g ; i=1, \ldots, r$. It is easy to see that $\tilde{A}_{\mathrm{i}}, \ldots, \tilde{A}_{r}$ are-differentiable and form a basis of S " on $\pi^{-1}(U)$.
For each point $u, P(u)$ is an integral manifold of S, since for. every $v \in P(u)$, we have $T_{0}(P(u))=T_{v}(P(v))=S_{v}$. This implies that S is involutive.
(2) Let $W(u)$ be the maximal integral manifold of S through u (cf. Proposition. $\mathbf{L} 2$ of Chapter I). Then $P(u)$ is an open submanifold of $W(u)$. We prove that $P(\boldsymbol{u})=W(u)$. Let v be an arbitrary point of $W(u)$ and let $u(t), 0 \leqq t \leqq 1$, be a curve in $W(u)$ such that $u(0)=u$ and $u(1)=v$. Let t_{1} be the supremum oft, such that $0 \leqq \leq t_{0}$ implies $u(t) \in \mathrm{P}(\mathrm{u})$. Since $P(u)$, is open in

- $\mathrm{W}(\mathrm{i}), \boldsymbol{t}_{1}$ is positive, We show that $u\left(t_{1}\right)$ lies in $\mathrm{P}(\mathrm{u})$; since $\mathrm{P}(\mathrm{U})$ is open'in $\boldsymbol{W}(u)$, this will imfpy that $t_{1}=1$, proving that $\boldsymbol{u}(1)=\mathrm{v}$ lies in $P(u)$. The point $u\left(t_{1}\right)$ is in $P\left(u\left(t_{1}\right)\right)$ and $P\left(u\left(t_{1}\right)\right)$ is open in $W\left(u\left(t_{1}\right)\right)$. There exists $\varepsilon>0$. 'such that $t_{1}-\varepsilon<t<t_{1}+\varepsilon$ implies $u(t) \in P\left(u\left(t_{1}\right)\right)$. Eet t be any value such that $t_{1}-\varepsilon<t<t_{1}$. By definition of t_{1} we have $u(t) \in \mathrm{P}(\mathrm{u})$. On the other hand, $\mathrm{u}(\mathrm{t}) \in P\left(u\left(t_{1}\right)\right)$. Thisimplies that $P(u)=P\left(u\left(t_{1}\right)\right)$ so that $u\left(t_{1}\right) \cdot P(u)$ as we wanted to show. 'We have thereby proved that $P(u)$ is actually the maximal integral manifold of S through u.
Lemma 2. Let S be an involutive, C^{∞}-distribution on a C^{∞}-manifold. Suppose $x_{i}, 0 \leq 1$, is a piecewise C^{1}-curve whose tang* dectors \dot{x}_{t} beling to S. the entire curve x_{t} lies in the maximal integral manifold W of S throughthe point x_{0}.
Proof of Lemma 2. We may assume that x_{t} is a Cl-curve. Take a local coordinate system x^{1}, \ldots, x^{n} around the point x_{0} such that .
$\partial / \partial x^{1}, \ldots \partial / \partial x^{k}, k=\operatorname{dim} S$, form a local basis for S (cf. Chevalley [I, p. 92]). For small values of t, say, $0 \leqq t \leqq \varepsilon, x_{t}$ can be expressed by $x^{i}=x^{i}(t), 1 \leqq \mathrm{i} \leqq n$, and its tangent vectors are given by $\Sigma_{i}\left(d x^{i} / d t\right)\left(\partial / \partial x^{i}\right)$. By assumption, we have $d x^{i} / d t=0$ for $k+1 \leqq i \leqq n$.'Thus, $x^{\prime}(t)=x^{\prime}(0)$ for $k+1 \leqq i \leqq n$ so that $x_{t}, 0 \leqq t \leqq \varepsilon$, lies in the slice through x_{0} and hence in W. The standard continuation argument concludes the proof of Lemma 2.

We are now in position to complete the proof of Theorem 7.2. Let a be any element of $\boldsymbol{\Phi}_{\mathbf{1}}(\boldsymbol{u})$. This means that \boldsymbol{u} and $\boldsymbol{u} \boldsymbol{a}$ can be joined by a piecewise O-horizontal curve $\boldsymbol{u}_{\boldsymbol{t}}, 0 \leqq t \leqq 1$, in P. The tangent vector \dot{u}_{i} at each point obviously lies in $S_{u_{t}}$. By Lemma 2, the entire curve \boldsymbol{u}_{f} lies in the maximal integral manifold $\boldsymbol{W}(\boldsymbol{u})$ of S through \boldsymbol{u}. By Lemma 1, the entire curve $\boldsymbol{u}_{\boldsymbol{t}}$ lies in $P(u)$. In particular, $u a$ is a point of $\mathbf{P}(\mathbf{u})$. Since $P(u)$ is a subbundle with structure group $\Phi(u), a$ belongs to $\Phi(u)$.

QED.
Corollary 7.3. The restricted holonomy groups $\Phi_{k}^{0}(u), 1 \leqq k \leqq$ ∞, coincide.
Proof. $\Phi_{k}^{0}(u)$ is the connected component of the identity of $\Phi_{k}(u)$ for every k (cf. Theorem 4.2 and its proof). $\mathrm{NO}_{\boldsymbol{W}}$, Corollary 7.3 follows from Theorem 7.2.

Remark. In the case where $P(M, G)$ is a real analytic principal bundle with an analytic connection, we can still define the holonomy group $\Phi_{\omega}(u)$ by using only piecewise analytic horizontal curves. The argument used in proving Theorem 7.2 and Corollary 7.3 shows that $\Phi_{\omega}(u)=\Phi_{1}(u)$ and $\Phi_{\omega}^{0}(u)=\Phi_{1}^{0}(u)$.

Given a connection I' in a principal fibre bundle $P(M, G)$, we shall define the notion of parallel displacement in the associated fibre bundle $E(M, F, G, P)$ with standard fibre F. For each $\mathbf{w} \in E$, the horizontal subspace Q_{w} and the vertical subspace F_{w} of $T_{w}(E)$ ark defined as follows. The vertical subspace F_{v} is by definition the tangent space to the fibre of E at w. To define Q, we recall that we have the natural projection $P \times F \rightarrow E=$ $P x_{G}$. Choose a point $(\boldsymbol{u}, \boldsymbol{\xi}) \in P \times F$ which is mapped into w . We fix this $\boldsymbol{\xi} \in F$ and consider the mapping $P \rightarrow E$ which maps $v \in P$ into $v \boldsymbol{\xi} \epsilon E$. Then the horizontal subspace Q_{w} is, by definition, the image of the horizontal subspace $Q_{u} \subset T,(P)$ by this mapping $P \rightarrow E$. We see easily that Q_{w} is independent of the choice of
$(\mathrm{u}, \xi) \cdot \mathrm{P} \times \mathrm{F}$. We leave to the reader the proof that $T_{w}(E)=$ $F_{w}+Q_{w}$ (direct sum). A curve in E is horizontal if its tangent vector is horizontal at each point. Given a curve $\boldsymbol{\tau}$ in M, a (horizontal). lift τ^{*} of τ is a horizontal curve in E such that $\boldsymbol{\pi}_{E}\left(\tau^{*}\right)=\tau$. Given a curve $\tau=x_{t}, 0 \leqq t \leqq 1$, and a point w_{0} such that $\pi_{\boldsymbol{k}}\left(w_{0}\right)=x_{0}$, there is a unique lift $\tau^{*}=w_{t}$ starting from w, . To prove the existence of τ^{*}, we choose a point $\left(u_{0}, \xi\right)$ in $\mathrm{P} \times \mathrm{F}$ such that $u_{0} \xi=w_{0}$. Let u_{t} be the lift of $\tau=x_{t}$ starting from u_{0}. Then $w_{t}=u_{t} \xi$ is a lift of $\boldsymbol{\tau}$ starting from w_{0}. The uniqueness of τ^{*} reduces to the uniqueness of a solution of a system of ordinary linear differential equations satisfying a given initial condition just as in the. case of a lift in a principal fibre bundle. A cross section σ of E defined on an open subset U of M is called parallel if the image of $\mathrm{T},(\mathrm{M})$ by a is horizontal for each $x \in U$, that is, for any curve $\tau=x_{t}, 0 \leqq \mathrm{t} \leqq 1$, the parallel displacement of $\sigma\left(x_{0}\right)$ along τ gives $\sigma\left(x_{1}\right)$.

Propositión 7.4. Let $\mathrm{P}(\mathrm{M}, G)$ be a principal fibre bundle and $\mathrm{E}(\mathrm{M}, \mathrm{G} / \mathrm{H}, \mathrm{G}, \mathrm{P})$ the associated bundle with standard fibre G / H, where His a closed subgroup of G . Let a : $M \rightarrow \mathrm{E}$ be a cross section and $\mathrm{Q}(M, \mathrm{H})$ the reduced subbundle of $\mathrm{P}(\mathrm{M}, \mathrm{G})$ corresponding to a (cf. Proposition 5.6 of Chapter I). Then a connection Γ in P is reducible to a connection I" in Q if and only if σ is-parallel with respect to Γ.

Proof. If We. identify E with P / H (cf: Proposition 5.5 of Chapter I), then $\sigma(M)$ coincides with. the image of Q by the natural projection $\mu: P \rightarrow \mathrm{E}=P \mid \boldsymbol{H}$; in other words,, if $u \in \mathrm{Q}$ and $x=\pi(u)$, then $\mathrm{a}(\mathrm{x})=\mu(u) \quad\left(\mathrm{cf}_{*}\right.$ Proposition 5.6 of Chapter I). Suppose I' is reducible to a connection I" in Q. We note that if ξ is the origin (i.e., the coset H) of G/H, then $u \xi=\mu(u)$ for every $\mathrm{u} \in \mathrm{P}$ and hence if $u_{t}, 0 \leqq t \leqq 1$, is horizontal in P , so is $\mu\left(u_{t}\right)$ in E . Given a curve $x_{t}, 0 \leqq t \leq 1$, in M, choose $u_{0} \in \mathrm{Q}$ with $\pi\left(u_{0}\right)=x_{0}$ so that $\sigma\left(x_{0}\right)=\mu\left(u_{0}\right)$. Let u_{t} be the lift to P of x_{t} starting fnom u_{0} (with respect to I'), so that $\mu\left(u_{t}\right)$ is the lift of x_{i} to E starting from $\sigma\left(x_{0}\right)$. Since Γ is reducible to I ", we have $u_{i} \in \boldsymbol{Q}$ and hence $\mu\left(u_{t}\right)=\sigma\left(x_{t}\right)$ for all t. Conversely, assume that. σ is parallel (with respect to Γ). Given any curve $x_{\iota}, 0 \leqq t \leqq 1$, in M and any point u_{0} of Q with $\pi\left(u_{0}\right)=x_{0}$, let u_{t} be the lift of x_{t} to P starting from u_{0}. Since a is parallel, $\mu\left(u_{t}\right)=\sigma\left(x_{t}\right)$ and hence $u_{t} \in \mathrm{Q}$ for all t. This shows that every horizontal vector at $u_{0} \in \mathrm{Q}$ (with respect to I^{\prime}) is
tangent to Q . By Proposition 7.2, Γ is reducible to a connection in Q.

QED.

8. Holonomy theorem

We first prove the following result of Ambrose and Singer [1] by applying Theorem 7.1.

тheorem 8.1. Let $P(M, \mathrm{G})$ be a principal fibre bundle, wkere M is connected and paracompact. Let Γ be a connection in P, Ω the curvature form, $\Phi(u)$ the holonomy group witk reference point $u \in P$ and $P(u)$. the holonomy bundle through u of Γ. Then the Lie algebra of $\bar{\Phi}(u)$ is equal to the subspace of \mathfrak{g}, Lie algebra of G, spanned bv all elements of the form $\Omega_{v}(X, Y)$, where $\vee \bullet \mathrm{P}(\mathrm{u})$ and X and Y are arbitrary horizontal vectors at o.

Proof. By virtue of Theorem 7. 1, we may, assume that $P(u)=$ P, i.e., $\Phi(u)=G$. Let g^{\prime} be the subspace of g spanned by all elements-of the form $\Omega_{v}(X, Y)$, where $\mathrm{v} \in \mathrm{P}(\mathrm{u})=\mathrm{P}$ and X and Y are arbitrary horizontal vectors at v. The su'bspace \boldsymbol{g}^{\prime} is actually an ideal of \mathfrak{g}, because Ω is a tensorial form of type ad G (cf. $\S 5$) and hence \mathfrak{g}^{\prime} is invariant by ad G. We shall prove that $\mathfrak{g}^{\prime}=\mathfrak{g}$.

At each point $\mathrm{v} \in \dot{P}$, let S_{v} be the subspace of $\mathrm{T}_{,>}>(\mathrm{P})$ spanned by the horizontal subspace Q_{v} and by the subspace $\mathfrak{g}_{v}^{\prime}=\left\{A_{*}^{*} ; A \epsilon \mathfrak{g}^{\prime}\right\}$, where $A "$ is the fundamental vector field on P corresponding to A. The distribution S has dimension $n+r$, where $n=\operatorname{dim} M$ and $r=\operatorname{dim} \mathfrak{g}^{\prime}$. We shall prove that S is differentiable and involutive. Let v be an arbitrary point of P and U a, coordinate neighborhood of $y=\pi(v) \in M$ such that $\pi^{-1}(U)$ is isomorphic with $U \times G$. Let X_{1}, \ldots, X_{n} be differentiable vector fields on U which are linearly independent everywhere on U and $X_{i}^{*}, ~ . ~ ., ~ X_{n}^{*}$ the horizontal lifts of X_{1}, \ldots, X_{n}. Let A, \ldots, A_{r} be a basis for \mathfrak{g}^{\prime} and $A_{1}^{*}, \ldots, A_{r}^{*}$ the corresponding fundamental vector fields.‘ It is clear that $X_{1}^{*} ; \ldots, X_{n}^{*}, A_{1}^{*}, \ldots, A_{r}^{*}$ form a local basis for S. To prove that S is involutive, it suffices to verify that the bracket of any two of these vector fields belongs to S. This is clear for $\left[A_{i}^{*}, A_{j}^{*}\right]$, since $\left[A_{i}, \mathrm{~A},\right] \epsilon^{*} \mathrm{~g}^{\prime}$ and $\left.\left[A_{i}, \mathrm{~A},\right]^{*}=[\mathrm{A}), A_{j}^{*}\right]$. By the lemma for Theorem $5.2,\left[A_{i}^{*}, X_{j}^{*}\right]$ is horizontal; actually, $\left[A_{i}^{*}, X_{j}^{*}\right]=0$ as X_{j}^{*} is invariant by R_{a} for each a $\in \mathrm{G}$. Finally, set $\mathrm{A}=\omega\left(\left[X_{i}^{*}, X_{j}^{*}\right]\right) \in \mathrm{gh} \boldsymbol{\mathrm { W }}$ ere ω is. the connection form of I'. B Corollary 5.3, $\mathrm{A}=\omega\left(\left[X_{i,}^{*}, X_{j}^{*}\right]\right)=-2 \omega\left(X_{i}^{*}, X_{j}^{*}\right) \in \mathrm{g}^{\prime}$. Since the vertical component of $\left[X_{i}^{*}, X_{j}^{*}\right]$ at $\mathrm{v} \in \mathrm{P}$ is equal. to $A_{v}^{*} \in S_{v}$,
$\left[X_{i}^{*}, X_{j}^{*}\right]$ belongs to S . This proves our assertion that S is involutive.

Let P_{0} be the maximal integral manifold of S through u. By Lemma 2 in the proof of Theorem 7.2, we have $P_{0}=\mathbf{P}$. Therefore,

$$
\operatorname{dim} g=\operatorname{dim} P-n=\operatorname{dim} P_{0}-n=\operatorname{dim} \mathfrak{g}^{\prime}
$$

This implies $\boldsymbol{g}=\mathbf{g}^{\prime}$.
QED.
Next we prove
Theorem 8.2. Let $P(M, G)$ be a principal fibre bundle, where P is connected and M is paracompact. If $\operatorname{dim} \mathbf{M} \geqq \mathbf{2}$, there exists a connection in P such that all the holonomy bundles $P(u), u \in P$, coincide with P.

Proof. Let u_{0} be an arbitrary point of P and x^{1}, \ldots, x^{n} a local coordinate system with origin $x_{0}=\pi\left(u_{0}\right)$. Let U and V be neighborhoods of x_{0} defined by $\left|x^{i}\right|<a$ and $\left|x^{i}\right|<\beta$ respectively, where $0<\beta<\alpha$. Taking a sufficiently small, we may assume that $P \mid U=\pi^{\mathbf{- 1}}(U)$ is isomorphic with the trivial bundle $U \times \mathrm{G}$. We shall construct a connection I " in $\mathrm{P} \mid U$ such that the holonomy group of the bundle $\mathrm{P} \mid \mathrm{V}$ coincides with the identity component of C . We shall then extend Γ^{\prime} to a connection I^{\prime} in P in such a way that I' coincides with I" on $\mathrm{P} \mid \bar{V}$ (cf. Theorem 2.1).

Let A_{1}, \ldots, A, be a basis for the Lie algebra g of G. Choose real numbers α_{1}, \ldots, a, such that $0<\alpha_{1}<$ as $<\cdots<\mathrm{a},<\beta$ and let $f_{i}(t), \mathrm{i}=1, \ldots, r$, be differentiable functions in $-\mathrm{a}-\varepsilon<t<$ $\mathrm{a}+\varepsilon$ such that $f_{i}(0)=0$ for every i and $f_{i}\left(\alpha_{j}\right)=\boldsymbol{\delta}_{i j}$ (Kronecker's symbol). On $\pi^{-1}(U)=U \times \mathrm{C}$, we can define a connection form ω by requiring that

$$
\omega_{(x, e)}\left(\partial / \partial x^{1}\right)=\sum_{j=1}^{r} f_{j}\left(x^{2}\right) A_{j}
$$

and that

$$
\omega_{(x, e)}\left(\partial / \partial x^{i}\right)=0 \quad \text { for } \mathrm{i}=2,3, \ldots, \mathrm{n}
$$

(Note that,' by virtue of the property $R_{a}^{*} \omega=\operatorname{ad}\left(a^{-1}\right)(\omega)$, the preceding conditions determine the values of ω at every point (x, a) of $U \times \mathrm{G}$.)

Fixing $\mathrm{t}, 0<\mathrm{t}<\beta$, and $\alpha_{k}, 1 \leqq k \leqq r$, for the moment, consider the rectangle. on the $x^{1} x^{2}$-plane in V formed by the line segments τ_{1} from $(0,0)$ to $(0, a),, \tau_{2}$ from $\left(0, \alpha_{k}\right)$ to $\left(t, \alpha_{k}\right), \tau_{3}$ from $\left(t, \alpha_{k}\right)$ to $(\mathrm{t}, 0)$ and τ_{4} from ($\left.\mathrm{t}, 0\right)$ to $(0,0)$. (Here and in the
following argument, the x^{3} to \&coordinates of all the points remain 0 and are hence omitted.) In $\pi^{-1}(V)=V \times G$, we determine the horizontal lift of $\boldsymbol{\tau}=\boldsymbol{\tau}_{\mathbf{4}}, \boldsymbol{\tau}_{\mathbf{3}}, \boldsymbol{\tau}_{\mathbf{2}}, \boldsymbol{\tau}_{\mathbf{1}}$ starting from the point $(0,0 ; \mathrm{e})$. The lift τ_{1}^{*} of τ_{1} starting from $(0,0 ; \ell)$ is clearly $(0, s ; e)$, $0 \leqq s \leqq \alpha_{k}$, since its tangent vectors $\partial / \partial x^{2}$ are horizontal. The lift $\boldsymbol{\tau}_{2}^{*}$ of $\boldsymbol{\tau}_{\mathbf{2}}$ starting from the end point ($0, \mathrm{a}$, ; e) of $\boldsymbol{\tau}_{1}^{*}$ is of the form ($\mathrm{s}, \mathrm{a}, ; \mathrm{c}$,), $0 \leqq \boldsymbol{s} \leqq \mathrm{t}$, where $\boldsymbol{c}_{\boldsymbol{s}}$ is a suitable curve with $\boldsymbol{c}_{0}=$ e in G. Its tangent vector is of the form $\left(\partial / \partial x^{1}\right)_{\left(8, \alpha_{k}\right)}+\dot{c}_{8}$, By a similar computation to that for Proposition 3.1, we have

$$
\begin{aligned}
& \omega\left(\left(\partial / \partial x^{1}\right)_{\left(8, \alpha_{k}\right)}+\dot{c}_{s}\right)=\operatorname{ad}\left(c_{8}^{-1}\right) \omega\left(\left(\partial / \partial x^{1}\right)\right)_{\left(8, \alpha_{k} ; e\right)}+c_{s}^{-1} \cdot \dot{c}_{s} \\
& \quad=\operatorname{ad}\left(c_{8}^{-1}\right)\left(\sum_{j=1}^{t} f_{j}\left(\alpha_{k}\right) A_{j}\right)+c_{s}^{-1} \cdot \dot{c}_{s}=\operatorname{ad}\left(c_{8}^{-1}\right) A_{k}+c_{s}^{-1} \cdot \dot{c}_{s}
\end{aligned}
$$

Therefore we have $\boldsymbol{c}_{\boldsymbol{i}} \cdot \boldsymbol{c}_{s}^{-1}=-\mathrm{A}$, that, is, $\boldsymbol{c}_{z}=\exp \left(-s A_{k}\right)$. The end point of $\boldsymbol{\tau}_{2}^{*}$ is hence $\left(\mathrm{t}, \mathrm{a}, ; \exp \left(-t A_{k}\right)\right)$. The lift τ_{k}^{*}, of $\boldsymbol{\tau}_{3}$ starting from (t, a,; exp $\left.\left(-t A_{k}\right)\right)$ is $\left(t, \alpha_{k}-s ; \exp \left(-t A_{k}\right)\right), 0 \leqq$ $s \leqq \alpha_{k}$. Finally, the lift τ_{4}^{*} of τ_{4} starting from the end point ($\mathrm{t}, 0$; $\left.\exp \left(-t A_{k}\right)\right)$ of $\boldsymbol{\tau}_{3}^{*}$ is $\left(\mathrm{t}-\mathrm{s}, 0 ; \exp \left(-t A_{k}\right)\right), 0 \leqq s^{\prime} \mathrm{t}$, since $\partial / \partial x^{1}$ is horizontal at the points with $x^{2}=0$. This shows that the end point of the lift $\boldsymbol{\tau}^{*}$ of $\boldsymbol{\tau}$ is $\left(0,0 ; \exp \left(-t A_{k}\right)\right)$, proving that $\exp \left(-t A_{k}\right)$ is an element of the holonomy group-of $\boldsymbol{\pi}^{\mathbf{1}}(V)$ with reference point $(0,0$; e). Since this is the case for every t, we see that A, is in the Lie algebra of the holonomy group. The result being valid for any A, , we see that the holonomy group of the connection in $\pi^{-1}(V)$ coincides with the identity component of G.

Let Γ be a connection in P which coincides with Γ^{\prime} on $\pi^{\mathbf{- 1}}(\bar{V})$. Since the holonomy group $\Phi\left(u_{0}\right)$ of Γ obviously contains the identity component of G, the holonomy bundle $P\left(u_{0}\right)$ of Γ has the same dimension as P and hence is open in P. Since P is a disjoint union of holonomy bundles each of which is open, the connectedness of P implies that $\mathrm{P}=P\left(u_{0}\right)$.

QED.
Corollary 8.3. Any connected Lie group G can be realized as the hplonomy group of a certain connection in a trivial bundle $P=M \times G$, where M is an arbitrary:differentiable manifold with $\operatorname{dim} M \geqq 2$.

Theorem 8.2 was proved for linear connections by Hano and Ozcki [1] and then in the general case by Nomizu [5], both by making use of Theorem 8.1. The above proof which is more direct is due to E. Ruh (unpublished).

9. Flat connections

Let $P=M \times G$ be a trivial principal fibre bundle. For each a $\in G$, the set $\mathrm{M} x\{a\}$ is a submanifold of P. In particular, $\mathrm{M} X\{e\}$ is a subbundle of P , where e is the identity of G . The canonical flat connection in P is defined by taking the tangent space to $M \mathrm{X}$ \{af at $u=(\mathrm{x}, \mathrm{a}) \in \mathrm{M} \times \mathrm{G}$ as the horizontal subspace at u. In other words, a connection in Pis the canonical flat connection if and only if it is reducible to a unique connection in $M \times\{e\}$. Let θ be the canonical l-form on G (cf. $\S 4$ of Chapter I). Let $f: M X G \rightarrow G$ be the natural projection and set

$$
\omega \quad=f^{*} \theta
$$

It is easy to verify that ω is the connection form of the canonical flat connection in P. The Maurer-Cartan equation of θ implies that the canonical flat connection has zero curvature:

$$
\begin{aligned}
\mathrm{d}^{\mathrm{d} o}=d\left(f^{*} \theta\right) & =f^{*}(d \theta)=f^{*}\left(-\frac{1}{2}[\theta, \theta]\right) \\
& =-\frac{1}{2}\left[f^{*} \theta, f^{*} \theta\right]=-\frac{1}{2}[\omega, \omega] .
\end{aligned}
$$

A connection in any principal fibre bundle $P(M, G)$ is called flat if every point x of M has a neighborhood U such that the induced connection in $\boldsymbol{P} \mid U=\pi^{-1}(U)$ is isomorphic with-1 the canonical flat connection in $\mathbb{U} \times G$; More Precisely, here is an isomorphism y: $\pi^{-1}(U) \rightarrow U \times G$ which maps the horizontal subspace at each $u \epsilon \pi^{-1}(U)$ upon the horizontal subspace at $\psi(u)$ of the canonical fatt connection in $U \times G$
тнеorem 9.1. A connection in $P(M, G)$ is flat if and only if the curvatureform vanishes identically.
Proof. The necessity is obvious. Assume that the curvatare form vanishes identically. For each "point \boldsymbol{x} 'of M, let \mathcal{U} be a simply connected open neighborhood of x and consider the induced 'connection in $\mathrm{P} \mid U=7 \mathrm{r}-1(\mathrm{U})$. By Theorems'4.2.' and 8.1, the holonomy group of the induced connection in $P \mid L \mathcal{C}$ consists of the 'identity only. Applying the Reduction The\&em (Theorem 7. 1), we see that the induced connection in $P \mid U$ is isomorphic with the canonical flat connection in $U \times G$.

QED.
Corollary 9.2. Let I' be a connection in $\boldsymbol{P}(\boldsymbol{M}, \mathrm{G})$ such that the curvature vanishes identically. If M is paracompact and simply connected,
then P is isomorphic with the trivial bundle $M \times G$ and Γ is isomorphic with the canonical flat connection in $\mathrm{M} \times \mathrm{G}$.

We shall study the case where M is not necessarily simply connected. Let I' be a flat connection in $P(M, \mathrm{G})$, where M is connected and paracompact. Let $u_{0} \in \mathrm{P}$ and $\mathrm{M}^{*}=P\left(u_{0}\right)$, the holonomy bundle through $\mathrm{u}, ; M^{*}$ is a principal fibre bundle over M whose structure, group is the holonomy group $\Phi\left(u_{0}\right)$. Sirce $\Phi\left(u_{0}\right)$ is discrete by Theorems 4.2 and 8.1 and since M^{*} is connected, M^{*} is a covering space of M . Set $x_{0}=\pi\left(u_{0}\right), x_{0} \in M$. Every closed curve of M starting from x_{0} defines, by means of the parallel* displacement along it, an element of $\Phi\left(u_{0}\right)$. Since the restricted holonomy group is trivial by Theorems 4.2 and 8.1 , any two closed curyes at x_{0} representing the same element of the first homotopy.group $\pi_{1}\left(M, x_{0}\right)$ give rise to the same element of $\Phi\left(u_{0}\right)$. Thus we obtain a homomorphism of $\pi_{1}\left(M, x_{0}\right)$ onto $\Phi\left(u_{0}\right)$. Let N be a normal subgroup of $\Phi\left(u_{0}\right)$ and set $\mathrm{M}^{\prime}=M^{*} \mid N$. Then M^{\prime} is a principal fibre bundle over M with structure group $\Phi\left(u_{0}\right) / N$. In particular, M^{\prime} is a covering space of M. Let $P^{\prime}\left(M^{\prime}, \mathrm{G}\right)$ be the principal fibre bundle induced from $P(M, G)$ by the covering projection $M^{\prime} \rightarrow M$. Let $f: P^{\prime} \rightarrow P$ be the natural homomorphism (cf. Proposition' 5.8 of Chapter I):

ProposiTton 9.3: There exists a unique connection Γ^{\prime} in $P^{\prime}\left(M^{\prime}, G\right)$ which is mapped intol' by the homomorphism $f: \mathrm{P}^{\prime} \rightarrow \mathrm{P}$. The connection Γ^{\prime} is fat. If u_{0}^{\prime} is a point of P^{\prime} such that $f\left(u_{0}^{\prime}\right)=u_{0}$, then the hol onomy group $\Phi\left(u_{0}^{\prime}\right)$ of Γ^{\prime} with reference point ' ${ }_{u}^{\prime}{ }_{0}^{\prime}$ is isomorphically mapped onto N by f.

Proof. The' first statement 'is 'contained in Proposition 6.2. By the same proposition, the curvature form of Γ^{\prime} vanishes identically and Γ^{\prime} is flat. We recall that P^{\prime} is the subset of $M^{\prime} \times P$ defined as follows (cf. Praposition 5.8 of Chapter I):

$$
\quad \mathbf{P}=\left\{\left(x^{\prime}, u\right) \in M^{\prime} \times P ; \mu\left(x^{\prime}\right)=\pi(u)\right\},
$$

where $\mu: M^{\prime} \rightarrow M$ is the covering projection. The projection $\pi^{\prime}: P^{\prime} \rightarrow \mathrm{M}^{\prime}$ 'is giveniby $\pi^{\prime}\left(x^{\prime}, \mathrm{u}\right)=\mathrm{x}$ ' and the homomorphism $f: P^{\prime} \rightarrow P$ is given by $f\left(x^{\prime}, u\right)=u$ so that the corresponding homomorphism $f: G \rightarrow G$ of the structure groups is the identity automorphism. To prove that f maps $\Phi\left(u_{0}^{\prime}\right)$ isomorphically onto
N, il is therefore sufficient to prove $\Phi\left(u_{0}^{\prime}\right)=N$. Write

$$
u_{0}^{\prime}=\left(x_{10}^{\prime}, u_{0}\right) \in \mathrm{P}^{\prime} \subset M^{\prime} \times \mathbf{P} .
$$

Since $\mu\left(x_{0}^{\prime}\right)=\pi\left(u_{0}\right)$, there exists an element a $\in \Phi\left(u_{0}\right)$ such that

$$
x_{0}^{\prime}=v\left(u_{0} a\right),
$$

where $v: I^{*}=P\left(u_{0}\right) \rightarrow M^{\prime}=P\left(u_{0}\right) / N$ is the covering projection. Let $\tau=u_{t}^{\prime}, 0 \mid 1$, be a horizontal curve in P^{\prime} such that $\pi^{\prime}\left(u_{0}^{\prime}\right)=\pi^{\prime}\left(u_{1}^{\prime}\right)$. For cach l, we set

$$
u_{t}^{\prime}=\left(x_{t}^{\prime}, u_{t}\right) \in \mathrm{P}^{\prime} \subset \mathrm{M}^{\prime} \times P
$$

Then the curve $u_{i}, 0, t 1$, is horizontal in P and hence is contained in $M^{*}=P\left(u_{0}\right)$. Since $\mu\left(x_{t}^{\prime}\right)=\pi\left(u_{t}\right)=\mu \circ v\left(u_{t}\right)$ and $x_{11}^{\prime}=v\left(u_{0} a\right)$, we have $x_{t}^{\prime}=v^{\prime}\left(u_{t} a\right)$ for $0 \leq t \leq 1$. We have

$$
v\left(u_{1} a\right)=x_{1}^{\prime}=\pi^{\prime}\left(u_{1}^{\prime}\right)=\pi^{\prime}\left(u_{0}^{\prime}\right)=x_{0}^{\prime}=\nu\left(u_{0} a\right) .
$$

and, consequently,

$$
v\left(u_{1}\right)=v\left(u_{0}\right),
$$

which means that $u_{1}=u_{0} b$ for some $b \in \mathrm{~N}$. This shows that $\Phi\left(u_{0}^{\prime}\right) \subset N$. Convcrscly, let 6 bc any element of N. Let $u_{t}, 0 \leqq t \leqq$ 1 , bc a horizontal curve in P such that $u_{1}=u_{0} b$. Define a horizontal curve $u_{t}^{\prime}, 0 \leq t-1$, in P^{\prime} by

$$
u_{t}^{\prime}=\left(x_{t}^{\prime}, u_{t}\right),
$$

where $x_{t}^{\prime}=v\left(u_{t} a\right)$. Then $u_{1}^{\prime}=u_{0}^{\prime} b$, showing that $6 € \Phi\left(u_{0}^{\prime}\right)$. QED.

10. Local and infinitesimal holonomy groups

Let ${ }^{1}$ be a connection in a principal fibre bundle $P(M, G)$, where M is connected and paracompact. For every connected open subset U of M, let Γ_{I}, be the connection in $P \mid U=\pi^{-1}(U)$ induced from Γ. For each $u \bullet \pi^{-1}(U)$, we denote by $\Phi^{0}(u, U)$ and $P(u, U)$ the restricted-holonomy group with reference point u and the holonomy bundle through u of the connection Γ_{i}, respectively. $P(u, U)$ consists of points v of $\pi^{-1}(U)$ which can be joined to u by a horizontal curve in $\pi^{-1}(U)$.
The local holonomy group $\Phi^{*}(u)$ with reference point u of Γ^{5} is defined to 'be the intersection $\bigcap \Phi^{0}(u, U)$, where U runs through
all connected open neighborhoods of the point $x=\pi(u)$. If $\left\{U_{k}\right\}$ is a sequence 'of connected open neighborhoods of x such that $U_{k} \supset \sigma_{k+1}$ and $\bigcap_{k=1}^{\infty} U_{k}=\{\mathrm{x}\}$, then we have obviously $\Phi^{0}\left(u, U_{1}\right) \supset$ $\Phi^{0}\left(u, U_{2}\right) \supset \cdots \supset \Phi^{0}\left(u, U_{k}\right) \supset \ldots$. Since, for every open neighborhood U of x, there exists an integer k such that $U_{k} \subset C$, we have $\Phi^{*}(u)=\overbrace{-1}^{\infty} \Phi^{0}\left(u, U_{k}\right)$. Since each group $\Phi^{0}\left(u, U_{k}\right)$ is a connected Lie subgroup of G (Theorem 4.2), it follows that $\operatorname{dim} \Phi^{0}\left(u, U_{k}\right)$ is constant for sufficiently large k and hence that $\Phi^{*}(u)=\Phi^{0}\left(u, U_{k}\right)$ for such k. The following proposition is now obvious.

Propositton 10.1. The local holonomy groups have the following propeties
(1) $\Phi^{*}(u)$ is a connected Lie subgroup of G which is contained in the restricted holonomy group $\Phi^{0}(u)$;
(2) Every point $x=\pi(u)$ has a connected open neighborhood U such that $\Phi^{*}(u)=\Phi^{0}(u, V)$ for ary connected open neighborhood V of x contained in U;
(3) If U is such a neighborhood of $x=\pi(u)$, then $\Phi^{*}(u) \supseteqq \Phi^{*}(v)$ for every $v \in P(u, \mathrm{U})$;
(4) For every a ϵG, we have $\Phi^{*}(u a)=$ ad $\left(a^{-1}\right)\left(\Phi^{*}(u)\right)$;
(5) For every integer m, the set $\left\{\mathrm{n}(\mathrm{u}) \in M\right.$; $\left.\operatorname{dim} \Phi^{*}(u) \leq m\right\}$ is open.

As to (5), we remark that $\operatorname{dim} \Phi^{*}(u)$ is constant on each fibre of P by (4) and thus can be considered as an integer valued function on M. Then (5) means that this integer valued function is upper semicontinuous.

Theorem 10.2. Let $\mathrm{g}(\mathrm{u})$ and $g^{*}(u)$ be the Lie algebras of $\Phi^{0}(u)$ and $\Phi^{*}(u)$ respectively. Then $\Phi^{0}(u)$ is generated by all $\Phi^{*}(v), v \in P(u)$, and $g(u) i_{\text {s }}$ spanned by all $\mathrm{g}^{*}(\mathrm{v}), \mathrm{v} \cdot \mathrm{P}(\mathrm{u})$.
Proof. If $\mathrm{v} \in P(u)$, then $\Phi^{0}(u)=\Phi^{0}(v) \supset \Phi^{*}(v)$ and $g(u)=$ $\mathrm{g}(\mathrm{v}) \supset \mathrm{g} *(\mathrm{v})$. By Theorem 8.1, $\mathrm{g}(\mathrm{u})$ is spanned by all elements of the form $\Omega_{v}\left(X^{*}, \mathrm{Y}^{*}\right)$ where $\mathrm{v} \in \mathrm{P}(\mathrm{u})$ and X^{*} and Y^{*} arc horizontal. vectors at v . Since $\Omega_{v}\left(X^{*}, \mathrm{Y}^{*}\right)$ is contained in the Lie algebra of $\Phi^{0}(v, V)$ for every connected open neighborhood V of $\pi(v)$, it is contained in $\mathrm{g}^{*}(\mathrm{v})$. Consequently,* $\mathrm{g}(\mathrm{u})$ is spanned by all $\mathrm{g}^{*}(\mathrm{v})$
where $v \in P(u)$. The first assertion now follows from the following lemma.

Lemma. If the Lie algebra g af a connected Lie group G is generated by a family of subspaces $\left\{m_{\lambda}\right\}$, then every element of G can be written as a product exp $X_{1} \cdot \exp X_{2} \ldots \ldots \exp X_{k}$, where each X_{i} is contained in some $\mathfrak{m}_{\boldsymbol{i}}$.

Proof of Lemma. The set' H of all elements of G of the above form is clearly a subgroup which is arcwise connected ; indeed, every element of H can be joined to the identity by a differentiable curve which lies in H. By the theorem of Freudenthal-KuranishiYamabe (proved in Appendix 4), H is a connected Lie subgroup of G. Its Lie algebra contains all \mathfrak{m}_{λ} and thus coincides with g.
Hence, $H=G$.
(u)

Theorem 10.3. If $\operatorname{dim} \Phi^{*}(u)$ is constant on P , then $\Phi^{0}(u)=$ $\Phi^{*}(u)$ for every u in P .
Proof. By (3) of Proposition 10.1, $x=\pi(u)$ has an open neighborhood U such that $\Phi^{*}(u) \supset \Phi^{*}(v)$ for each v in $P(u, U)$. Since $\operatorname{dim} \Phi^{*}(u)=\operatorname{dim} \Phi^{*}(v)$, we have $\Phi^{*}(u)=\Phi^{*}(v)$. Bv the standard continuation argument, we see that, if $\mathrm{v} \in P(u)$, $\Phi^{*}(u)=\Phi^{*}(v)$. By Theorem 10.2, we have $\Phi^{v}(u)=Q_{Q}^{*}(u)$.

We now define the infinitesimal holonomy group at each point u of. P by means of the curvature form and study its relationship to the local holonomy group. We first define a series of subspaces $\mathrm{m},(\mathrm{u})$ of \mathfrak{g} by induction on k . Let $\mathrm{m}_{0}(u)$ be the subspace of \mathfrak{g} spanned by all elements of the form $\Omega_{u}(X, \mathrm{Y})$, where X and Y are horizontal vectors at u. We consider a g-valued function f on P of the form

$$
\left(I_{k}\right) \quad f=V_{k} \cdots V_{1}(\Omega(X, Y))
$$

where $\dot{X ;} ; V_{1}, \ldots, V_{k}$ are arbitrary horizontal vector fields on P. Let $\mathrm{m},(\mathrm{u})$ be the subspace of \mathfrak{g} spanned by $\mathfrak{m}_{k-1}(u)$ and, by the values at u of all functions f of the form $\left(I_{k}\right)$. We then set $g(u)$ to be the union of all $\mathrm{m}_{k}(u), \mathrm{k}=0,1,2$,

Proposition 10.4. The subspace $\mathrm{g}^{\prime}(\mathrm{u})$ of g is a subalgebra of $\mathrm{g}^{*}(\mathrm{u})$.
The connected Lie subgroup $\Phi^{\prime}(u)$ of G generated by $g^{\prime}(\dot{u})$ is called the infinitesimal holonomy group at u .

Proof. We show that $\mathrm{m},(\mathrm{u}) \subset \mathfrak{g}^{*}(u)$ by induction on k . The case $k=0$ is obvious. Assume that $m_{k-1}(u) \subset g^{*}(u)$ for every point u. It is sufficient to show that, for every horizontal vector field X and for every function f of the form $\left(I_{k-1}\right)$, we have $X_{u} f \in \mathrm{~g} *(\mathrm{u})$. Let $u_{t},|t|<\varepsilon$ for some $\varepsilon>0$, be the integral curve of X with $u_{0}=u$. Since u_{t} is horizontal, we have $g^{*}\left(u_{t}\right) \subset g^{*}(u)$ by (3) of Proposition 10.1. Therefore, $f\left(u_{t}\right) \in \mathfrak{m}_{k-1}\left(u_{t}\right) \subset \mathfrak{g}^{*}\left(u_{t}\right) \subset$ $g^{*}(u)$. On the other hand, $X_{u} f=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(u_{t}\right)--f(u)\right]$ so that $X_{u} f$ is in $\mathfrak{g}^{*}(u)$. Consequently, $\mathfrak{g}^{\prime}(u)$ is contained in $\mathfrak{g}^{*}(u)$.

To prove that $\mathfrak{g}^{\prime}(u)$ is a subalgebra of \mathfrak{g}, we need the following two lemmas.

Lemma 1: Let-f be a g-valued function of type ad G on P . Then (1) For any vector field X on P, we have $v(X)_{u} \cdot f=--\left[\omega_{u}(X), f(u i)\right]$, where $v(X)$ dènotes the vertical component of X.
(2) For any horizontal vector fields X and Y on P. we have

$$
v\left([X, Y]_{u}\right) \cdot f=2\left[\Omega_{u}(X, Y), f(u)\right]
$$

(3) If X and Y are vector fields on P which are invariant by all R_{a}, $a \in \mathrm{G}$, then $\Omega(X, Y)$ and $X f$ are functions of type ad G .

Proof of Lemma 1. (1) Let $A=\omega_{u}(X) \in \mathrm{g}$ and $\mathrm{a}_{1}=\exp t A$. Then

$$
\begin{aligned}
v(X)_{u} \cdot f=A_{u}^{*} f & =\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(u a_{t}\right)-\mathrm{f}(u)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[\operatorname{ad}\left(a_{t}^{-1}\right)\left(f^{\prime}(u)\right)-f(u)\right] \\
& =-[A, f(u)]=-\left[\omega_{u}(X), f(u)\right] .
\end{aligned}
$$

(2) By virtue of the structure equation (Theorem 5.2), we have

$$
\begin{aligned}
2 \Omega_{u}(X, Y) & =2(d \omega)_{u}(X, Y) \\
& =X_{u}(\omega(Y))-Y_{u}(\omega(X))-\omega_{u}([X, Y]) \\
& =-\omega_{u}([X, Y])
\end{aligned}
$$

Replacing X by $[\mathrm{X}, \mathrm{Y}]$ in (1), we obtain (2).
(3) Since Ω is of type ad G (cf. $\$ 5$ of Chapter II), we have

$$
\Omega_{u a}\left(R_{a} X, R_{a} Y\right)=\operatorname{ad}\left(a^{-1}\right)\left(\Omega_{u}(X, Y)\right)
$$

which shows that $\Omega(X, Y)$ is of type ad G, if $\mathrm{X}=R_{a} X$ and $\mathrm{Y}=$ $R_{a} Y$. We have also

$$
\begin{aligned}
(X f)_{u a} & =X_{u a} f=\left\langle R_{a} X_{u}\right) f=X_{u}\left(f \circ R_{a}\right) \\
& =\operatorname{ad}\left(a^{-1}\right)\left(X_{u} f\right)=\operatorname{ad}\left(a^{-1}\right)(X f)_{u},
\end{aligned}
$$

iff is of type ad G and X is invariant by R ,. This completes the proof of Lemma 1 .

Let $X_{i}=\partial / \partial x^{i}$, where x^{1}, \ldots, x^{n} is a local coordinate system. in a neighborhood U of $x=\pi(u)$. Let X_{i}^{*} be the horizontal lift of X_{i}, Consider a g-valued function f of the form

$$
\begin{equation*}
f=X_{j_{k}}^{*} \cdots X_{j_{1}}^{*}\left(\Omega\left(X_{i}^{*}, X_{i}^{*}\right)\right) \tag{k}
\end{equation*}
$$

where $\mathrm{i}, 1, j_{1}, \ldots, j_{k}$ are taken freely from $1, \ldots, n$.
Lemma 2. 'For each, $k, \mathfrak{m}_{k}(u)$ is spanned $b y \boldsymbol{m}_{k-1}(u)$ and $b y$ the values at u of $\grave{a} l l$ functions f of the form (II,).

Proof of Lemma 2. The proof is by induction on k. The case $k=0$ is obvious. Every horizontal vector field in $\pi^{-1}(U)$ is a linear combination of $X_{1}^{*}, \ldots, X_{n}^{*}$ with real valued functions as coefficients. It follows that every function f of the form $\left(I_{k}\right)$ is a linear combination of functions of the form (II,), $s \leqq k$, with real valued functions as coefficients, in a neighborhood of u. It is now clear that, if the assertion holds for $k-1$, it holds for k.

We now prove that $\mathfrak{g}^{\prime}(u)$ is a subalgebra of \mathfrak{g} by establishing the relation $[\mathrm{m},(\mathrm{u}), \mathrm{m},(\mathrm{u})] \subseteq \mathrm{m}_{k+s+2}(u)$ for all pairs of integers k and s. In view of Lemma 2 , it is sufficient to prove that, for every function f of the form (I,) and every function g of the form (II,), the function $[f, g](u)=[f(u), g(u)]$ is a linear combination of functions of the form (I , $), r \leqq \mathrm{k}+s+2$, with real valued functions as coefficients. The proof is by induction on s.

Let $s=0$ and let $\mathrm{f}(\mathrm{u})=\Omega_{u}(X, \mathrm{Y})$, where Xand Y are forizontal vector fields.. Since g is of type ad G, we have, by (2) of Lemma 1,

$$
\underline{\rho}\left[\Omega_{u}(X, Y), g(u)\right]=v([X, Y])_{u} \cdot g
$$

On the other hand, we have

$$
\begin{aligned}
v([X, Y])_{u} \cdot \mathrm{~g} & =[X, Y]_{u} \cdot g-h([X, Y])_{u} \cdot g \\
& =X_{u}(Y g)-Y_{u}(X g)-h([X, Y])_{u} . g
\end{aligned}
$$

where $h[X, Y]$ denotes the horizontal component of $[X, Y]$. The functions $X(\mathrm{Yg})$ and $Y(X g)$ are of the form $\left(I_{k+2}\right)$ and the function $h([\mathrm{X}, \mathrm{Y}]) \mathrm{g}$ is of the form $\left(I_{k+1}\right)$. This proves our assertion for $s=0$ and for an arbitrary k.

Suppose now that our assertion holds for $s=1$ and every k. Every function of the form $\left(I_{s}\right)$ can be written as $X f$, where f is a function of the form $\left(I_{s-1}\right)$ and \boldsymbol{X} is a horizontal vector field. Let g be an arbitrary function of the form $\left(I I_{k}\right)$. Then

$$
\left[X_{u} f, g(u)\right]=X_{u}([f, g])-\left[f(u), X_{u} g\right]
$$

The function $[f, \mathrm{Xg}]$ is a linear, combination of functions of the form (I,), $r \leqq \mathrm{k}+\boldsymbol{s}+1$, by the inductive assumption. The function $X[f, g]$ is a linear combination of functions of the form $\left(I_{r}\right), r \leqq s+k+2$, also by the inductive assumption. Thus, the fufiction $[X f, g]$ is a linear combination of functions of the form $\left(I_{r}\right), r \leqq s+k+2$

QED.
$\bar{P}_{\text {roposition }} 10.5$. The infinitesimal holonomy groups have the following properties:
(1) $\Phi^{\prime}(u)$ is a connected Lie subgroup of the local holonomy group $\Phi^{*}(u)$;
(2) $\Phi^{\prime}(u a)=$ ad $\left(a^{-1}\right)\left(\Phi^{\prime}(u)\right)$ and $\mathfrak{g}^{\prime}(u a)=\operatorname{ad}\left(a^{-1}\right)\left(\mathfrak{g}^{\prime}(u)\right)$;
(3) For each integer m, the set $\left\{\pi(u) \in M\right.$; $\left.\operatorname{dim} \Phi^{\prime}(u) \geqq m\right\}$ is open;
(4j If $\Phi^{\prime}(u)=\Phi^{*}(u)$ at a point u, then there exists a connected open neighborhood U of $\mathrm{x}=\pi(u)$ such that $\Phi^{\prime}(v)=\Phi^{*}(v)=\Phi^{\prime}(u)=$ $\Phi^{*}(u)$ for every $v \in P(u, U)$.

Proof. (1) is evident from Proposition 10.4. (2) follows from
Lemma' 1. For each k, we have $\boldsymbol{m}_{k}(u a)=\operatorname{ad}\left(a^{-1}\right)(m,(u))$;
Proof of Lemma 1. The proof is by induction on k. The case $\mathrm{k}=0$ is a consequence of the fact that Ω is of type ad G. Suppose the assertion holds for $k-1$. By (3) of Lemma 1 for Proposition 10.4, every function of the form $\left(I I_{k}\right)$ is of type ad G. Our lemma now follows from Lemma 2 for Proposition 10.4.
(2) means that $\Phi^{\prime}(u)$ can be considered as a function on M. (3)' is a consequence of the fact that, if the values of a finite number of functions of the form $\left(I_{k}\right)$ are linearly independent at a point u, then they are linearly independent at every point of a neighborhood of u. Note that (3) means that $\operatorname{dim} \Phi^{\prime}(u)$, considered as a function on M, is lower semicontinuous. To prove (4), assume
$\Phi^{\prime}(u)=\Phi^{*}(u)$ at a point u. Since $\operatorname{dim} \Phi^{\prime}(u)$ is lower semicontinuous and $\operatorname{dim} \Phi^{*}(u)$ is upper semicontinuous [cf. (5) of Proposition 10.11, the point $x=\pi(u)$ has a neighborhood U such that

$$
\begin{array}{r}
\operatorname{dim} \Phi^{\prime}(v) \geqq \operatorname{dim} \Phi^{\prime}(u) \text { and } \operatorname{dim}^{\prime} @ *(\mathrm{v}) \leqq \operatorname{dim} \Phi^{*}(u) \\
\text { for } v \in \pi^{-1}(U) .
\end{array}
$$

On the other hand, $\Phi^{*}(v) \supset \Phi^{\prime}(v)$ for every $v \in \pi^{-1}(U)$. Hence,

$$
\operatorname{dim} \Phi^{*}(v)=\operatorname{dim} \Phi^{\prime}(v)=\operatorname{dim} \Phi^{*}(u)=\operatorname{dim} \Phi^{\prime}(u)
$$

and, consequently, $\Phi^{*}(v)=\Phi^{\prime}(i)$ for every $i \in \pi^{-1}(U)$. Applying Theorem 10.3 to $P \mid U$, we see that $\Phi^{0}(u, U)=\Phi^{*}(u)$ and $\Phi^{0}(v, U)=\Phi^{*}(z)$. If $u \in P(u, U)$, then $\Phi^{0}(u, U)=\Phi^{0}(i$, I') so that $\Phi^{*}(u)=\Phi^{*}(v)$. •

QED.
'Г HEOREM 10.6. If ctim $\Phi^{\prime}(i)$ is constant in a neighborhood of u in P, then $\Phi^{\prime}(u)=\Phi^{*}(u)$.

Proof. We first prove the existence of an open neighborhood U of $x=\pi(u)$ such that $a^{\prime}(u)=a^{\prime}\left(z^{\prime}\right)$ for every $v \in P(u, \mathrm{U})$. Let f_{1}, \ldots, f_{s} be a finite number of functions of the form (II,) such that $f_{1}(u), \ldots, f_{s}(u)$ form a basis of $\eta^{\prime}(u)$. At every point v of a small neighborhood of $u, f_{1}\left(v^{\prime}\right), \ldots, f_{s}^{\prime}\left(v^{\prime}\right)$ arc linearly independent and, by the assumption, they form a basis of $\mathfrak{g}^{\prime}(v)$. Since f_{1}, \ldots, f_{s} are of type ad $G, f_{1}(v a), \ldots, f_{1}(v a)$ fbrm a basis of $\mathfrak{g}^{\prime}(v a)=$ ad $\left(a^{-1}\right)\left(\mathfrak{g}^{\prime}(v)\right)$. This means that there exists a neighborhood U of $x=\pi(u)$ such that $f_{1}\left(v^{\prime}\right), \ldots, f_{s}(v)$ form a basis of $\mathrm{g}^{\prime}(\mathrm{u})$ for every point $v \in \pi^{-1}(U)$. Now, let v be an arbitrary point of $P(u, U)$ and let $u_{t}, 0 \leq 1$, be a horizontal curve from u to v in $\pi^{-1}(U)$ so that $\mathrm{u}=u_{0}^{\prime}$ and $\mathrm{v}=u_{1}$. We may assume that u_{t} is differentiable; the case where u_{t} is piecewise differentiable follows easily. Set $g_{i}(t)=f_{i}\left(\ddot{u}_{t}\right), i=1, \ldots, s$, and $\mathrm{X}=\dot{u}_{t}$. Since X is horizontal, we have

$$
\left(d g_{i} / d t\right)_{t}=\left(X f_{i}\right)\left(u_{t}\right) \in \mathfrak{g}^{\prime}\left(u_{t}\right), \quad i=1, \ldots, s
$$

Since $g_{\mathbf{1}}(t), \ldots, g_{s}(t)$ form \mathfrak{a} basis for $\mathfrak{g}^{\prime}\left(u_{t}\right), d g_{i} / d t$ can be expressed by

$$
\left(d g_{i} / d t\right)_{t}=\sum_{j=1}^{s} A_{i j}(t) g_{j}(t)
$$

where $A_{i j}(t)$ are continuous functions of t . By the lemma for Proposition 3.1, there exists a unique curve $\left(a_{i j}(t)\right)_{i, j=1}, \ldots \ldots$ in
$G L(s ; \mathrm{R})$ such that

$$
d a_{i j} / d t=\sum_{k=1}^{s} A_{i k} a_{k j} \text { and } a_{i j}(0)=\delta_{i j}
$$

(Note that $\left(A_{i j}(t)\right) \in \mathfrak{g l}(s ; \mathrm{R})$ corresponds to $Y_{t} \in \mathrm{~T},(\mathrm{G})$ in the lemma for Proposition 3.1.) Let $\left(b_{i j}(t)\right)$ be the inverse matrix of $\left(a_{i j}(t)\right)$ so that

$$
d b_{i j} / d t=-\Sigma_{k=1}^{s} b_{i k} A_{k j}
$$

Then

$$
\begin{aligned}
\frac{d}{d t}\left(\Sigma_{j=1}^{s} b_{i j} g_{j}\right) & =\Sigma_{j=1}^{s}\left(\frac{d b_{i j}}{d t}\right) g_{j}+\Sigma_{k=1}^{s} b_{i k}\left(\frac{d g_{k}}{d t}\right) \\
& =\Sigma_{j=1}^{s}\left(\frac{d b_{i j}}{d t}+\Sigma_{k=1}^{s} b_{i k} A_{k j}\right) g_{j}=0
\end{aligned}
$$

Since $b_{i j}(0)=\delta_{i j}$, we have

$$
\sum_{j=1}^{s} b_{i j}(t) g_{j}(t)=g_{,}(0)
$$

This means that $g^{\prime}\left(u_{t}\right)=g^{\prime}(u)$ and, in particular, $g^{\prime}(\mathrm{y})=\mathrm{g}^{\prime}(\mathrm{u})$.
Taking U sufficiently small, we may assume that

$$
\mathrm{g}^{*}(u) \supset \mathrm{g}^{*}(v) \supset \mathrm{g}^{\prime}(v) \supset \mathrm{m}_{0}(v) \quad \text { for every } \mathrm{v} \in \mathrm{P}(\mathrm{u}, U)
$$

By Theorem 8.1, the Lie algebra of $\Phi^{0}(u, U)$ is spanned by all $\mathfrak{m}_{0}(v), v \in P(u, U)$. A fortiori, $\mathrm{g}^{*}(\mathrm{u})$ is spanned by all $\mathrm{g}^{\prime}(\mathrm{u})$, $\mathrm{v} \in P(u, \mathrm{U})$. Since--g' $(\mathrm{v})=\mathrm{g}^{\prime}(\mathrm{u})$ for every $\mathrm{v} \in P(u, U)$ as we have just shown, we may conclude that $\mathrm{g}^{*}(\mathrm{u})=\mathrm{g}^{\prime}(\mathrm{u})$ and $\Phi^{*}(u)=$ $\Phi^{\prime}(u)$.

QED.
Corollary 10.7. If $\operatorname{dim} \Phi^{\prime}(u)$ is constant on P , then $\Phi^{0}(u)=$ $\Phi^{*}(u)=\Phi^{\prime}(u)$.

Proof. This follows from Theorems 10.3 and 10.6.
QED.
Theorem 10.8. For a real analytic connection in a real analytic principal jibre bundle P, we have $\Phi^{0}(u)=\Phi^{*}(u)=\Phi^{\prime}(u)$ for every $u \in P$ 。

Proof. We may assume that $P=P(u)$ and, in particular, P is connected. It suffices to show that $\operatorname{dim} \Phi^{\prime}(u)$ is locally constant; it then follows that $\operatorname{dim} \Phi^{\prime}(u)$ is constant on P and, by Corollary $10 . \phi^{7}$, that $\Phi^{0}(u)=\Phi^{*}(u)=\Phi^{\prime}(u)$ for every $u \in \mathrm{P}$. Let x^{1}, \ldots, x^{n} be a real analytic local coordinate system with origin $x=\mathrm{n}(\mathrm{u})$. Let U be a coordinate neighborhood of x given by $\Sigma_{i}\left(x^{i}\right)^{2}<a^{2}$ for some a >0. We want to show that $\operatorname{dim} \Phi^{\prime}(u)$ is constant on $\pi^{-1}(U)$. Let $X_{i}=\partial / \partial x^{i}$ and let X_{i}^{*} be the horizontal lift of X_{i}.

For any set of numbers $\left(a^{1}, \ldots, a^{n}\right)$ with $\Sigma_{i}\left(a^{i}\right)^{2}=1$, consider the vector field $X=\Sigma_{i} a^{i} X_{i}$ on U. Let x_{t} be the ray given by $x^{i}(t)=a^{i} t$ and let u_{t} be the horizontal lift of x_{t} such that $u=u_{0}$. We prove that $g^{\prime}(u)=g^{\prime}\left(u_{t}\right)$ for every t with $|t|<a$.

Consider all the functions f of the form (II,), $k \geqq 0$,

$$
\mathrm{f}=X_{j_{k}}^{*} \cdots X_{j_{1}}^{*}\left(\Omega\left(X_{i}^{*}, X_{i}^{*}\right)\right)
$$

defined on $\pi^{-1}(U)$. We $\dot{\operatorname{set}} \mathrm{h}(\mathrm{t})=\mathrm{f}\left(u_{t}\right)$. Then the functions $h(\mathrm{t})$ are analytic functions oft. For each $\boldsymbol{t}_{\mathbf{0}}$ with $\left|\boldsymbol{t}_{\mathbf{0}}\right|<a$, there exists $\delta>0$ such that all the functions $\mathrm{h}(\mathrm{t})$ can be expanded in a common neighborhood $\left|t-t_{0}\right|<\delta$ in the Taylor series:

$$
\begin{aligned}
h(t) & =\Sigma_{m=0}^{\infty} \frac{1}{m!}\left(t-t_{0}\right)^{m} h^{(m)}\left(t_{0}\right) \\
h\left(t_{0}\right) & =\Sigma_{m=0}^{\infty} \frac{1}{m!}\left(t_{0}-t\right)^{m} h^{(m)}(t)
\end{aligned}
$$

If X^{*} is the horizontal lift of X , then we can write $\mathrm{h}^{\prime}(\mathrm{t})=X_{u_{t}}^{*} f$, $\boldsymbol{h}^{\prime \prime}(\boldsymbol{t})=X_{u_{t}}^{*}\left(X^{*} f\right)$ and so on. The fact that there exists such a δ common to all $\mathrm{h}(\mathrm{t})$ follows from the lemma we prove below. Now, if $\left|t-t_{0}\right|<8$, then all $h^{(m)}(t)$ belong to $g^{\prime}\left(u_{t_{0}}\right)$. The first power series shows that $\mathfrak{g}^{\prime}\left(u_{t}\right)$ is contained in $\mathfrak{g}^{\prime}\left(u_{t_{0}}\right)$. Similarly, the second power series shows that $\mathfrak{g}^{\prime}\left(u_{t_{0}}\right)$ is contained in $\mathfrak{g}^{\prime}\left(u_{t}\right)$. This means that $\mathfrak{g}^{\prime}\left(u_{t}\right)=\mathfrak{g}^{\prime}\left(u_{t_{0}}\right)$ for $\left|t-t_{0}\right|<\delta$. The standard continuation argument shows that $\mathrm{g}^{\prime}\left(u_{t}\right)=\mathrm{g}$ ' (u) for every t with $|t|<\mathrm{a}$, proving our theorem.

цемma. In a real analytic manifold, let x_{t} be the integral curve of a real analytic vector field X such that $x_{0}=\mathrm{x}$, where $X_{x} \neq 0$. F or any real analytic function g and for. a jinite number of real analytic vector fields X_{1}, \ldots, X_{s}, consider all the functions of the form

$$
\begin{gathered}
f(x)=\left(X_{i_{k}} \because \cup X_{j_{1}} g\right)(x) \\
h(t)=\mathrm{f} \quad\left(x_{t}\right)
\end{gathered}
$$

where j_{1}, \ldots, j_{k} are taken freely from $1,2, \ldots$, s. Then there exists $\delta>0$ such that the functions $h(t)$ can be expanded into power series in a common neighborhood $|t|<\delta$ asfollows: $\mathrm{h}(\mathrm{t})=\sum_{m=0}^{\infty} \frac{t^{m}}{m!} h^{(m)}(0)$.

Proof. Since $X_{x} \neq$, 0 , we may take a local coordinate system x^{1}, \ldots, x^{n} such that $\mathrm{X}=\partial / \partial x^{1}$ and $x_{t}=(\mathrm{t}, 0, \ldots, 0)$ in a neighborhood of x. The preceding expansions of $h(t)$ are nothing but the expansions of $f(\mathrm{x})$ into power series of x^{1}. Each X_{i} is of the form $X_{i}=\Sigma_{j} f_{i j} \cdot \partial / \partial \dot{x}^{j}$. Since f and $f_{i j}$ are all real analytic, they can be expanded into power series of $\left(x^{1}, \ldots, x^{n}\right)$ in a common neighborhood $\left|x^{i}\right|<a$ for some a >0. Our lemma then follows from the fact that if f_{1} and f_{2} are real analytic functions which can be expanded into power series of $x^{1}, . . ., x^{n}$ in a neighborhood $\left|x^{i}\right|<a$, then the functions $f_{1} f_{2}$ and $\partial f_{1} / \partial x^{j}$ can be expanded into power series in the same neighborhood. QED.

The results in this section are due to Ozeki [1].

11. Invariant connections

Before we treat general invariant connections, we present an important special case.

Theorem 11.1. Let G be a connected 'Liegroup and H a closed subgroup. of G. Let g and \mathfrak{h} be the Lie algebras of G and H respectively.
(1) If there exists a subspace \mathfrak{m} of g such that $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ (direct sum) and ad $(\mathrm{H}) \mathrm{m}=\mathrm{m}$, then the h -component ω of the canonical l-form θ of $G(c f . \S 4$ of Chapter I) with respect to the decomposition $g=\mathfrak{h}+m$ defines a connection in the bundle $G(G / H, H)$ which is invariant by the left translations of G ;
(2) Conversely, any connection in $G(G / H, H)$ invariant by the left translations of G (if it exists) determines such a decomposition $g=\mathfrak{h}+m$ and is obtainable in the manner described in (1);
(3) The curvature form Ω of the invariant connection defined by ω in (1) is given by

$$
\left.\Omega(X, Y)=-\frac{1}{2}[X, Y]_{\mathfrak{h}} \quad \text { (h-component of }-\frac{1}{2}[X, Y] \in \mathrm{g}\right)
$$ where X and Y are arbitrary left invariant vector fields on G belonging to m;

(4) Let $g(e)$ be the Lie algebra of the holonomy group $\Phi(e)$ with reference point e (identity element) of the invariant connection defined in (1). Then $\mathrm{g}(\mathrm{e})$ is spanned by all elements of the form $[X, Y]_{\mathrm{b}}, X, Y \in \mathfrak{m}$.

Proof. (1) The proof is straightforward and is similar to that of Proposition 6.4. Under the identification $g \approx T,(G)$, the subspace m corresponds to the horizontal subspace at e .
(2) Let ω be a connection form on $G(G / H, H)$ invariant by the left translations of G. Let m be the set of left invariant vector fields on G such that $\omega(X)=0$. It is easy to verify that $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ is a desired decomposition.
(3) A left invariant vector field is horizontal if and only if it is an element of \mathfrak{m}. Now, (3) follows from Corollary 5.3.
(4) 'Let \mathfrak{g}_{1} be the subspace of \mathfrak{g} spanned by the set $\left\{\Omega_{e}(X, Y)\right.$; $X, Y E m\}$. Let g_{2} be the subspace of g spanned by the set $\left\{\Omega_{u}(X, Y) ; X, \mathrm{Y} \in \mathrm{m}\right.$ and $\left.\mathrm{u} \in \mathrm{G}\right\}$. By Theorem 81, we $\}$, have $\mathfrak{g}_{1} \subset \mathrm{~g}(\mathrm{e}) \subset \mathrm{g}$, . On the other hand, we have $\mathrm{g}_{1}=\mathrm{g}_{2}$ as $\Omega_{u}(X, \mathrm{Y})=$ $\Omega_{e}(X, \mathrm{Y})$ for any X, YE m and $u \in \mathrm{G}$. Now, (4) follows from (3).

QED.
Remark. (1) can be considered as a particular case of Proposition 6.4. Let $\mathrm{P}=(\mathrm{G} / \mathrm{H}) \times \mathrm{G}$ be the trivial bundle over G / H with group G . We imbed the bundle $G(G / H, \mathrm{H})$ into P by the mapping f defined by

$$
f(u)=(\pi(u), u), \quad u \in G
$$

where $\pi: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}$ is the natural projection. Let φ be the form defining the canonical flat connection (cf. §9) of P. Its \mathfrak{b}-component, restricted to the subbundle $G(G / H, \mathrm{H})$, defines a connection (Proposition 6.4) and agrees with the form ω in (1).

Going back to the general case, we first prove the' following proposition which is basic in many applications.

Proposition 11.2 . Let φ_{t} be a l-parameter group of automorphisms of a principal fibre bundle $P(M, \mathrm{G})$ and X the vector field on P induced by φ_{i}. Let Γ be a connection in P invariant by φ_{i}. For an arbitrary point u_{0} of P , we define curves u_{t}, x_{t}, v_{t} and a, as follows:

$$
\begin{aligned}
& u_{t}=\varphi_{t}\left(u_{0}\right), \quad x_{t}=\pi\left(u_{t}\right) \\
& v_{t}=\text { the horizontal lift of } x_{t} \text { such that } v_{0}=u_{0} \\
& u_{t}=v_{t} a_{i}
\end{aligned}
$$

Then a_{t} is the l-parameter subgroup of G generated by $A=\omega_{u_{0}}(X)$, w were ω is the connection form of Γ.

Proof. As in the proof of Proposition 3.1, we have

$$
\omega\left(\dot{u}_{t}\right)=\left(\operatorname{ad}\left(a_{t}^{-1}\right)\right) \omega\left(\dot{v}_{t}\right)+a_{t}^{-1} \dot{a}_{t}
$$

Since v_{t} is horizontal, we have $\omega\left(\dot{u}_{t}\right)=a_{t}^{-1} \dot{a}_{t}$. On the other hand,

We have $\dot{u}_{t}=\varphi_{t}\left(X_{u_{0}}\right)$ and hence $\omega\left(\dot{u}_{t}\right)=\omega\left(X_{u_{0}}\right)=\mathrm{A}$, since the connection form (1) is invariant.by φ_{t}. Thus we obtain $a_{t}^{-1} \dot{a}_{t}=$ A.

QED.
Let K be a Lie group acting on a principal fibre bundle $P(M, \mathrm{G})$ as a group of automorphisms. Let u_{0} be an arbitrary point of P which we choose as a reference point. Every element of K induces a transformation of M in a natural manner. The set J of all elements of K which fix the point $x_{0}=\pi\left(u_{0}\right)$ of M forms a closed subgroup of K , called the isotropy subgroup of K at x_{0}. We define a homomorphism $\lambda: J \rightarrow G$ as follows. For each $j \in J$, $j u_{0}$ is a point in the same fibre as u_{0} and .hence is of the form $j u_{0}=u_{0} a$ with some a $\in \mathrm{G}$. We define $\lambda(j)=a$. If $\mathrm{j}, \mathrm{j}, \in J$, then

$$
\begin{aligned}
u_{0} \lambda\left(j j^{\prime}\right)=\left(j j^{\prime}\right) u_{0}=j\left(u_{0} \lambda\left(j^{\prime}\right)\right) & =\left(j u_{0}\right) \lambda\left(\mathrm{j}^{\prime}\right) \\
& =\left(u_{0} \hat{\lambda}(j)\right) \hat{\lambda}\left(j^{\prime}\right)=u_{0}\left(\hat{\lambda}(j) \hat{\lambda}\left(j^{\prime}\right)\right)
\end{aligned}
$$

Hence, $\lambda\left(j j^{\prime}\right)=\lambda(j) \lambda\left(j^{\prime}\right)$, which shows that $\lambda: J \rightarrow G$ is a homomorphism. It is also easy to check that λ is differentiable. The induced Lie algebra homomorphism $\mathfrak{j} \rightarrow \mathfrak{g}$ will be also denoted by the same λ. Note that λ depends on the choice of u_{0}; the reference point u_{0} is chosen once for all and is fixed throughout this section.
proposition 11.3. Let K be a group of automorphisms of $P(M, G)$ and. Γ a 'connection in P invariant by K . We define a linear mapping $\Lambda: f \rightarrow \mathfrak{g} b y$

$$
\Lambda(X)=\omega_{u_{0}}(\tilde{X}), \quad X \in \mathbb{I}
$$

where \tilde{X} is the vector field on P induced $b \nu X$. Then
(1) $\Lambda(X)=\lambda(X)$ for $X \epsilon ;$;
(2) $\Lambda(\operatorname{ad}(\mathrm{j})(\mathrm{X}))=\operatorname{ad}(\mathrm{n}(\mathrm{j}))(\mathrm{A}(\mathrm{X}))$ for $j \in \mathrm{~J}$ and $X \in \mathcal{F}$,
where ad (j) is the adjoint representation of J in F and ad ($\mathrm{i} .(\mathrm{j}))$ is that of Gin g .

Note that the geometric meaning of $\Lambda(X)$ is given by Proposition 11 . 2

Proof. (1) We apply Proposition 11.2 to the 1-parameter subgroup φ_{t} of K generated by X. If $X \in \mathrm{i}$, then the curve $x_{t}=$ $\pi\left(\varphi_{t}\left(u_{0}\right)\right)$ reduces to a single point $X_{0}=\pi\left(u_{0}\right)$. Hence we have $\varphi_{t}\left(u_{0}\right)=u_{0} \lambda\left(\varphi_{t}\right)$. Comparing the tangent vectors of the orbits $\varphi_{t}\left(u_{0}\right)$ and $u_{0} \hat{\lambda}\left(\varphi_{t}\right)$ at u_{0}, we obtain $\Lambda(X)=\lambda(X)$.
(2) Let $\mathrm{X} \bullet \mathfrak{f}$ and $\mathrm{j} \boldsymbol{\epsilon} J$. We set $\mathrm{Y}=$ ad (j)(X). Then Ygenerates the I-parameter subgroup $j \varphi_{t} j^{-1}$ which maps u_{0} into $j \varphi_{t} j^{-1}\left(u_{0}\right)=$ $j \varphi_{t}\left(u_{0} \lambda\left(j^{-1}\right)\right)=j\left(R_{\lambda\left(j^{-1}\right)} \varphi_{t} u_{0}\right)$. It follows that $\tilde{Y}_{u_{0}}=j\left(R_{\lambda\left(j^{-1}\right)} \tilde{X}_{u_{0}}\right)$. Since the connection form ω is invariant by j, we have

$$
\begin{aligned}
& \omega_{u_{0}}(\tilde{Y})=\omega_{u_{0}}\left(j\left(R_{\lambda\left(j^{-1}\right)} \tilde{X}_{u_{0}}\right)\right)=\omega_{j^{-1} u_{0}}\left(R_{\lambda\left(j^{-1}\right)} \tilde{X}_{u_{0}}\right) \\
& =\operatorname{ad}(\lambda(j))\left(\omega_{u_{0}}\left(\tilde{X}_{u_{0}}\right)\right)=\operatorname{ad}(\lambda(j))(\Lambda(X))
\end{aligned}
$$

Proposition 11.4. With the notation of Proposition 11.3, the curvature form Ω of Γ satisfies the following condition:

$$
2 \Omega_{u_{0}}(\tilde{X}, \tilde{Y})=[\mathrm{A}(\mathrm{X}), \mathrm{A}(\mathrm{Y})]-\Lambda([X, \mathrm{Y}]) \quad \text { for } X, Y \in \mathfrak{l}
$$

Proof. From the structure equation (Theorem 5.2) and Proposition 3.11 of Chapter I, we obtain

$$
\begin{aligned}
2 \Omega(\tilde{X}, \tilde{Y}) & =2 d \omega(\tilde{X}, \tilde{Y})+[\omega(\tilde{X}), \omega(\tilde{Y})] \\
& =\tilde{X}(\omega(\tilde{Y}))-\tilde{Y}(\omega(\tilde{X}))-\omega([\tilde{X}, \tilde{Y}])+[\omega(\tilde{X}), \omega(\tilde{Y})]
\end{aligned}
$$

Since ω is invariant by K, we have by (c) of Proposition 3.2 of Chapter I (cf. also Proposition 3.5 of Chapter I)

$$
\begin{aligned}
& \tilde{X}(\omega(\tilde{Y}))-\omega([\tilde{X}, \tilde{Y}])=\left(L_{X} \omega\right)(\tilde{Y})=0, \\
& \tilde{Y}(\omega(\tilde{X}))-\omega([\tilde{Y}, \tilde{X}])=\left(L_{\mathrm{P}} \omega\right)(\tilde{X})=0 .
\end{aligned}
$$

On the other hand, $\mathrm{X} \rightarrow \tilde{X}$ being a Lie algebra homomorphism, we have

$$
\omega_{u_{0}}([\tilde{X}, \tilde{Y}])=\Lambda([X, Y])
$$

Thus we obtain

$$
\begin{aligned}
2 \Omega_{u_{0}}(\tilde{X}, \tilde{Y}) & =\left[\omega_{u_{0}}(\tilde{X}), \omega_{u_{0}}(\tilde{Y})\right]-\Lambda([X, Y]) \\
& =[\Lambda(X), \Lambda(Y)]-\Lambda([X, Y])
\end{aligned}
$$

QED.
We say that K acts fibre-transitively on P if, for any two fibres of P, there is an element of K which maps one fibre into the other, that is, if the action of K on the base M is transitive. If J is the isotropy subgroup of K at $x_{0}=\pi\left(u_{0}\right)$ as above, then M is the homogeneous space K / J.

The following result is due to Wang [1].
theorem 11.5. If a connected Lie group K is a fibre-transitive automorphism group of a bundleP (M, G) and if J is the isotropy subgroup of
K at $x_{0}=\pi\left(u_{0}\right)$, then there is $a^{\prime} 1: 1$ correspondence between the set of K invariant connections in P and the set of linear mappings $\mathrm{A}: \rightarrow \mathbf{g}$ which satisfies the two conditions in Proposition 11.3; the correspondence is given by

$$
\Lambda(X)=\omega_{u_{0}}(\tilde{X}) \quad \text { for } X \in \mathcal{I}
$$

where \tilde{X} is the vector field on P induced by X.
Proof. In view of Proposition 11.3, it is sufficient to show that, for every $A: \mathfrak{l} \rightarrow \mathrm{g}$ satisfying (1) and (2) of Proposition 11.3, there is a K-invariant connection form ω on P such that $\mathrm{A}(\mathrm{X})=$ $\omega_{u_{0}}(\tilde{X})$ for $X \in$. Let $X^{*} \in T_{u}(P)$. Since K is fibre-transitive, we can write

$$
\begin{gathered}
u_{0}=\mathrm{kua}=\mathrm{k} \circ R_{a} u \\
\mathrm{k} \circ R_{a} X^{*}=\tilde{X}_{u_{0}}+A_{u_{0}}^{*}
\end{gathered}
$$

where $k \in K, a \in G, X \in \mathrm{k}$ and A^{*} is the fundamental vector field corresponding to $\mathrm{A} \bullet \mathrm{g}$. We then set

$$
\omega\left(X^{*}\right)=\operatorname{ad}(a)(\Lambda(X)+\mathrm{A})
$$

We first prove that- $\omega\left(X^{*}\right)$ is independent of the choice of X and A. Let

$$
\tilde{X}_{u_{0}}+A_{u_{0}}^{*}=\tilde{Y}_{u_{0}}+B_{u_{0}}^{*}, \quad \text { where } Y \in \mathcal{F} \text { and } B \in \mathfrak{g}
$$

so that $\tilde{X}_{u_{0}}-\tilde{Y}_{u_{0}}=B_{u_{0}}^{*}-A_{u_{0}}^{*}$. From the definition of $\lambda: \mathfrak{i} \rightarrow \mathfrak{g}$, it follows that $\lambda(X-\mathrm{Y})=B-\mathrm{A}$. By condition (1) of Proposition 11.3, we have $\lambda(X-\mathrm{Y})=\Lambda(X-\mathrm{Y})=\mathrm{A}(\mathrm{X})-\mathrm{A}(\mathrm{Y})$. Hence, $\mathrm{A}(\mathrm{X})+\mathrm{A}=\mathrm{A}(\mathrm{Y})+B$.

We next prove that $\omega\left(X^{*}\right)$ is independent of the choice of k and a. Let

$$
u_{\theta}=\mathrm{kua}=k_{1} u a_{1} \quad\left(k_{1} \in K \mathrm{annd} \quad a_{1} \in G\right)
$$

so that $k_{1} k^{-1} u_{0}=u_{0} a_{1}^{-1} a$ and $k_{1} k^{-1} \in \mathrm{~J}$. We set $\mathrm{j}=k_{1} k^{-1}$. Then $\lambda(j)=a_{1}^{-1} a$. We have

$$
\begin{aligned}
k_{1} \circ R_{a_{1}} X^{*} & =j k \circ R_{a \lambda\left(j^{-1}\right)} X^{*} \\
& =j \circ R_{\lambda\left(j^{-1}\right)}\left(k \circ R_{a} X^{*}\right)=j \circ R_{\lambda\left(j^{-1}\right)}\left(\tilde{X}_{u_{0}}+A_{u_{0}}^{*}\right)
\end{aligned}
$$

By Proposition 1.7 of Chapter I, we have

$$
j \circ R_{\lambda\left(j^{-1}\right)}\left(\tilde{X}_{u_{0}}\right)=j\left(\tilde{X}_{u_{0} \lambda\left(j^{-1}\right)}\right)=\tilde{Z}_{u_{0}}, \quad \text { where } Z=\operatorname{ad}(\mathrm{j})(\mathrm{X})
$$

$$
j \circ R_{\lambda\left(j^{-1}\right)}\left(A_{u_{0}}^{*}\right)=R_{\lambda\left(j^{-1}\right)}\left(j A_{u_{0}}^{*}\right)=R_{\lambda\left(j^{-1}\right)} A_{j_{u_{0}}}^{*}=R_{\lambda\left(j^{-1}\right)} A_{u_{0} \lambda(j)}^{*}=C_{u_{0}}^{*},
$$

where $C=\operatorname{ad}(\lambda(j))(A)$. Hence we have

$$
\begin{aligned}
k_{1} & \circ R_{a_{1}} X^{*}=\tilde{Z}_{u_{0}}+C_{u_{0}}^{*} \\
\operatorname{ad}\left(a_{1}\right)(\Lambda(Z)+C) & =\operatorname{ad}\left(a_{1}\right)(\Lambda(\operatorname{ad}(\mathrm{j})(\mathrm{X}))+\operatorname{ad}(\lambda(j)) A) \\
& =\operatorname{ad}\left(a_{1}\right)[\operatorname{ad}(\lambda(j))(\Lambda(X)+\mathrm{A})] \\
& =\operatorname{ad}(a)(\mathrm{A}(\mathrm{X})+\mathrm{A}) .
\end{aligned}
$$

This proves our assertion that $\omega\left(X^{*}\right)$ depends only on X^{*}.
We now prove that ω is a connection form. Let $X^{*} \in \mathrm{~T},(\mathrm{P})$ and $u_{0}=$ kua as above. Let b be an arbitrary element of G. We set

$$
\mathrm{Y} *=R_{b} X^{*} \in T_{v}(P), \quad \text { where } \mathrm{v}=\mathrm{ub}
$$

so that $u_{0}=k u b\left(b^{-1} a\right)=k v\left(b^{-1} a\right)$. We then have

$$
\mathrm{k} \circ R_{b^{-1} a} Y^{*}=\mathrm{k} \circ R_{b^{-1} a} R_{b} X^{*}=\mathrm{k} \circ R_{a} X^{*}=\left(\tilde{X}_{u_{0}}+A_{u_{0}}^{*}\right)
$$

and hence
$\omega\left(R_{b} X^{*}\right)=\omega\left(Y^{*}\right)=\operatorname{ad}\left(b^{-1} a\right)\left(\Lambda(X)+\mathrm{Aj}=\operatorname{ad}\left(b^{-1}\right)\left(\omega\left(X^{*}\right)\right)\right.$, which shows that ω satisfies condition (b^{\prime}) of Proposition 1.1. Now, let A be any element of \mathfrak{g} and let $u_{0}=$ kua. Then
$\mathrm{k} \circ R_{u}\left(A_{u}^{*}\right)=R_{a} \circ k\left(A_{u}^{*}\right)=R_{a}\left(A_{k u}^{*}\right)=B_{u_{0}}^{*}, \quad$ where $B=\operatorname{ad}\left(a^{-1}\right)(\mathrm{A})$.
Hence we have

$$
\omega\left(A_{u}^{*}\right)=\operatorname{ad}(\mathrm{a})(\mathrm{B})=\mathrm{A},
$$

which shows that ω satisfies condition (a') of Proposition 1.1.
To prove that ω is differentiable, let u_{1} be an arbitrary point of P and let $u_{0}=k_{1} u_{1} a_{1}$. Consider the fibie bundle $K(M, J)$, where $M=K / J$. Let $\sigma: U \rightarrow K$ be a local cross section of this bundle defined in a neighborhood U of $\pi\left(u_{1}\right)$ such that $\sigma\left(\pi\left(u_{1}\right)\right)=k_{k}$. For each $u \in \pi^{-1}(U)$, we define $\mathrm{k} \in \mathrm{K}$ and $a \in G$ by

$$
\mathrm{k}=\sigma(\pi(u)) \text { and } u_{0}=\text { kua. }
$$

Then both k and a depend differentiably on u. We decompose the vector space \neq into a direct sum of subspaces: $\mathfrak{f}=\mathfrak{j}+\mathrm{m}$. For an
arbitrary $\mathrm{X}^{*} \bullet T_{u}(P)$, we set

$$
k \circ R_{a}\left(X^{*}\right)=\tilde{X}_{u_{0}}+A_{u_{0}}^{*}, \quad \text { where } X \in \mathfrak{m}
$$

Then both X and A are uniquely determined and depend differentiably on X^{*}. Thus $\omega\left(X^{*}\right)=$ ad $(a)(\Lambda(X)+\mathrm{A})$ depends differentiably on X^{*}.

Finally, we prove that ω is invariant by K. Let $\mathrm{X}^{*} \in T_{u}(P)$ and $u_{0}=$ kup. Let k_{1} be an arbitrary element of K. Then $k_{1} X^{*} € T_{k_{1} u}(P)$ and $u_{0}=k k_{1}^{-1}\left(k_{1} u\right) a$. Hence,

$$
k k_{1}^{-1} \circ R_{a}\left(k_{1} X^{*}\right)=\mathrm{k} \circ R_{a}\left(X^{*}\right)
$$

From the construction of ω, we see immediately that $\omega\left(k_{1} X^{*}\right)=$
$\omega\left(X^{*}\right)$. $\omega\left(X^{*}\right)$.

In the case where K is fibre-transitive on P, the curvature form Ω, which is a tensorial form of type ad G (cf. \$5) and is invariant by K, is completely determined by the values $\Omega_{u_{0}}(\tilde{X}, Y), \tilde{X}, \mathrm{Y} \in \mathfrak{Z}$. Proposition 11.4 expresses $\Omega_{u_{a}}(\tilde{X}, \tilde{Y})$ in terms of A. As,, a consequence of Proposition 11.4 and Theorem 11.5, we obtain

Corollary 11.6. The K-invariant connection in P defined by Λ is flat if and only if $\Lambda: f \rightarrow g$ is a Lie algebra homomorphism.

Proof. A connection is flat if and only if its curvature form vanishes identically (Theorem 9.1).

QED.
Theorem 11.7. A ssume in Theorem 11.5 that \neq admits a subspace m such that $\mathrm{f}=\mathrm{i}+\mathrm{m}$ (direct sum) and $\operatorname{ad}(\mathrm{J})(\mathrm{m})=\mathrm{m}$, where $\operatorname{ad} \backslash(\mathrm{J})$ is the adjoint representation of J in \mathfrak{f}. Then
(1) There is a 1:1 correspondence between the set of K -invariant connections in \mathbf{P} and the Set of linear mappings $\mathrm{A},,,: \mathrm{m} \rightarrow \mathrm{g}$ such that

$$
\Lambda_{\mathrm{m}}(\operatorname{ad}(j)(X))=\operatorname{ad}(\lambda(j))\left(\Lambda_{\mathrm{m}}(X)\right) \quad \text { for } X \in \mathrm{~m} \quad \text { and } j \in J
$$

the correspondence is given via Theorem 11.5 by

$$
\dot{\Lambda}(X)= \begin{cases}\lambda(X) & \text { if } X \epsilon \mathfrak{1} \\ \mathrm{R}_{,},(\mathrm{X}) & \text { if } X \in \mathrm{~m}\end{cases}
$$

(2) The curvature form Ω of the K-invariant connection dejined by A,, satisfies the following condition

$$
2 \Omega_{u_{0}}(\tilde{X}, \tilde{Y})=\left[\Lambda_{\mathrm{m}}(X), \Lambda_{\mathrm{m}}(Y)\right]-\Lambda_{\mathfrak{m}}\left([X, Y]_{\mathfrak{m}}\right)-\underset{\text { for } X, Y(Y \in \mathrm{~m}}{\lambda\left([X, Y]_{\dot{i}}\right)}
$$

where $[X, Y]_{\mathrm{m}}$ (resp. $[X, Y]_{\mathrm{j}}$) denotes the m-component (resp. j -component) of $[X, Y] \in \mathbf{f}$.

Proof. Let $\tilde{\Lambda}: \mathfrak{f} \rightarrow \mathfrak{g}$ be a linear mapping satisfying (1) and (2) of Proposition 11.3. Let A , be the restriction of A to m . It is easy to see that $\mathrm{A} \rightarrow \Lambda_{\mathrm{m}}$ gives a desired correspondence. The statement (2) is a consequence of Proposition 11.4.

QED.
In Theorem 11.7, the K-invariant connection in P defined by $\mathrm{A},=0$ is called the canonical connection (with respect to the decomposition $\overline{\mathcal{F}}=\mathrm{i}+\mathrm{m}$).
Remark. (1) and (3) of Theorem 11.1 follow from Theorem 11.7 if we set $P(M, \mathrm{G})=G(G / H, \mathrm{H})$ and $K=\mathrm{G}$; the invariant connection in Theorem 11.1 is the canonical connection just defined.
Finally, we determine the Lie algebra of the holonomy group of a K-invariant connection.
theorem 11.8. With the same assumptions and notation as in Theorem 11.5, the Lie algebra $\mathfrak{g}\left(u_{0}\right)$ of the holonomy group $\boldsymbol{\Phi}\left(u_{0}\right)$ of the K -invariant connection defned by $\mathrm{A}: \mathfrak{f} \rightarrow \mathfrak{g}$ is given by

$$
m_{0}+\left[\Lambda(t), m_{0}\right]+\left[\Lambda(t),\left[\Lambda(t), m_{0}\right]\right]+\cdot \cdot \cdot
$$

where m_{0} is the subspace of \mathfrak{g} spanned by

$$
\{[\Lambda(X), \Lambda(Y)]-\Lambda([X, Y]) ; X, Y \in f\}
$$

Proof. Since K is fibre-transitive on P, the restricted holonomy group $\Phi^{0}\left(u_{0}\right)$ coincides with the infinitesimal holonomy group $\Phi^{\prime}\left(u_{0}\right)$ by virtue of Corollary 10.7. We define a series of subspaces $\mathfrak{m}_{k}, k=0,1,2, \ldots$, of \mathfrak{g} as follows:

$$
\begin{gathered}
m_{1}=\mathfrak{m}_{0}+\left[\Lambda\left(f^{\prime}\right), m_{0}\right] ;: \\
m_{2}=m_{0}+\left[\Lambda(\mathfrak{f}), m_{0}\right]+\left[\Lambda(t)^{\eta},\left[\Lambda(t), m_{0}\right]\right]
\end{gathered}
$$

and so on. We defined in $\S 10$ an increasing sequence of subspaces $\mathfrak{m}_{k}\left(u_{0}\right), k=0,1,2, \ldots$, of g. Since.the union of these subspaces $\mathfrak{m}_{k}\left(u_{0}\right)$ is the Lie algebra $\mathfrak{g}^{\prime}\left(u_{0}\right)$ of the infinitesimal holonomy group $\Phi^{\prime}\left(u_{0}\right)$, it is sufficient to prove that $\mathfrak{m}_{k}=\mathfrak{m}_{k}\left(u_{0}\right)$ for $\mathrm{k}=0,1,2, \ldots$
By Proposition 11.4, the subspace \mathfrak{m}_{0} is'spanned by $\left\{\Omega_{w_{0}}(\tilde{X}, \tilde{Y})\right.$; X, Y \in f $\}$. Since $\Omega_{u_{0}}(\tilde{X}, \tilde{Y})=\Omega_{u_{0}}(h \tilde{X}, h \tilde{Y})$, where $h X_{X}$ and $h \tilde{Y}^{2}$
denote the hdrizontal components of \tilde{X} and \tilde{Y} respectively, \mathfrak{m}_{0} coincides with $\mathfrak{m}_{0}\left(u_{0}\right)$.

We need the following lemmas.
Lemma 1. If Y is a horizontal vector field on P and 8 is the vector freld on P induced by an element X off, then $[\tilde{X}, \tilde{Y}]$ is horizontal.

Proof of Lemma 1. By (c) of Proposition 3.2 of Chapter I (cf. also Proposition 3.5 of Chapter I), we have

$$
\tilde{X}(\omega(Y))=\left(L_{X} \omega\right)(Y)+\omega([\tilde{X}, Y])
$$

Since $\omega(Y)=0$ and $L_{\tilde{X}} \omega=0$, we have $\omega([\tilde{X}, \mathrm{Y}])=0$.
Lemma 2. Let $V, W, Y_{,}, \ldots, Y_{r}$ be arbitrary horizontal vector fields on P and let \tilde{X} be the vector field on P induced by an element X of $\dot{\boldsymbol{1}}$.
Then

$$
\tilde{X}_{u_{0}}\left(Y_{r} \cdots Y_{1}(\Omega(V, W))\right) \in \mathfrak{m}_{r}\left(u_{0}\right) .
$$

Proof of Lemma 2. We have

$$
\begin{aligned}
\tilde{X}_{u_{0}}\left(Y_{r} \cdots\right. & \left.Y_{1}(\Omega(V, W))\right) \\
& \equiv\left(Y_{r}\right)_{u_{0}}\left(\tilde{X} Y_{r-1} \cdots Y_{1}(\Omega(V, W))\right) \quad \bmod \mathfrak{m}_{r}\left(u_{0}\right)
\end{aligned}
$$

since $\left[\tilde{X}, Y_{r}\right]$ is horizontal by Lemma 1 and $\left[\tilde{X}, Y_{r}\right]_{u_{0}}\left(Y_{r-1} \cdots\right.$ $\left.Y_{1}(\Omega(V, \mathrm{~W}))\right)$ is in $\mathrm{m}_{r}\left(u_{0}\right)$. Repeating this process, we obtain

$$
\begin{aligned}
\tilde{X}_{u_{0}}\left(Y_{r}\right. & \cdots \\
& \left.Y_{1}(\Omega(V, W))\right) \\
& \equiv\left(Y_{r}\right)_{u_{0}}\left(Y_{r-1} \cdots Y_{1} \tilde{X}(\Omega(V, W))\right) \quad \bmod \mathfrak{m}_{r}\left(u_{0}\right)
\end{aligned}
$$

By the same argument as in the proof of Lemma 1, we have

$$
\tilde{X}(\Omega(V, W))=\left(L_{\tilde{X}} \Omega\right)(V, W)+\Omega([\tilde{X}, V], W)+\Omega(V,[\tilde{X}, W]) .
$$

Since $L_{R} \Omega=0$, we have

$$
\begin{aligned}
\left(Y_{r}\right)_{u_{0}}\left(Y_{r-1}\right. & \left.\cdots Y_{1} \tilde{X}(\Omega(V, W))\right) \\
= & \left(Y_{r}\right)_{u_{0}}\left(Y_{r-1} \cdots Y_{1}(\Omega([\tilde{X}, V], W))\right) \\
& \quad+\left(Y_{r}\right)_{u_{0}}\left(Y_{r-1} \cdots Y_{1}(\Omega(V,[\tilde{X}, W]))\right)
\end{aligned}
$$

The two terms on the right hand side belong to $\mathfrak{m}_{s}\left(u_{0}\right)$ as $[\tilde{X}, V]$ and $[\tilde{X}, \mathrm{~W}]$ are horizontal by Lemma 1 . This completes the proof of Lemma 2.

Let $X_{i}=\partial / \partial x^{i}$, where x^{1}, \ldots, x^{n} is a local coordinate system in a neighborhood of $x_{0}=\pi\left(u_{0}\right)$. Let X_{i}^{*} be the horizontal lift of
X_{i}. Let

$$
f=X_{j_{r}}^{*} \cdots X_{j_{1}}^{*}\left(\Omega\left(X_{i}^{*}, X_{l}^{*}\right)\right)
$$

be a function of the form $\left(I I_{r}\right)$ as defined in §10. If $h \tilde{X}$ and $v \tilde{X}$ denote the horizontal and the vertical components of \hat{X} respectively, then Lemma 1 for Proposition 10.4 implies

$$
(h \tilde{X})_{u_{0}} f=-(v \tilde{X})_{u_{0}} f+\tilde{X}_{u_{0}} f=\left[\omega_{u_{0}}(\tilde{X}), f\left(u_{0}\right)\right]+\tilde{X}_{u_{0}} f .
$$ Since $\tilde{X}_{u_{0}} f \in \mathfrak{m}_{r}\left(u_{0}\right)$ by Lemma 2 and since $\omega_{u_{0}}(\tilde{X})=\mathrm{A}(X)$, we have

$$
(h \tilde{X})_{u_{0}} f \equiv\left[\Lambda(X), f\left(u_{0}\right)\right] \quad \bmod \quad m_{L_{r}}\left(u_{0}\right)
$$

Assuming that $\mathfrak{m}_{r}=\mathfrak{m}_{r}\left(u_{0}\right)$ for all $r<s$, we shall show that $\mathfrak{m}_{s}=\mathfrak{m}_{s}\left(u_{0}\right)$. Since K is fibre-transitive on P, every horizontal vector at u_{0} is of the form $(h \tilde{X})_{u_{0}}$ for some Xc $\mathfrak{\neq}$. Hence, $\mathfrak{m}_{s}\left(u_{0}\right)$ is spanned by $\mathfrak{m}_{s-1}\left(u_{0}\right)$ and the set of all $(h \tilde{X})_{u_{0}} f$, where $\mathrm{X} \in \mathfrak{£}$ and j is a function of the form $\left(I I_{s-1}\right)$. On the other hand, \mathfrak{m}_{s} is spanned by $\mathfrak{m}_{s-1}=\mathfrak{m}_{s-1}\left(u_{0}\right)$ and by $\left[\Lambda(\mathfrak{f}), \mathfrak{m}_{s-1}\right]=\left[\Lambda(\mathfrak{f}), \mathfrak{m}_{s-1}\left(u_{0}\right)\right] \cdot$ In other words, \mathfrak{m}_{s} is spanned by $\mathfrak{m}_{s-1}=\mathfrak{m}_{s-1}\left(u_{0}\right)$ and the set of all $\left[\mathrm{A}(\mathrm{X}), \mathrm{f}\left(u_{0}\right)\right]$, where $\mathrm{X} \in \mathfrak{f}$ and f is a function of the form $\left(I I_{s-1}\right)$. Our assertion $\mathfrak{m}_{s}=\mathfrak{m}_{s}\left(u_{0}\right)$ follows from the congruence $(h \vec{X})_{u_{0}} f \equiv$ $\left[\Lambda(X), f\left(u_{0}\right)\right] \bmod m_{s-1}\left(u_{0}\right)$.

QED.
Remark. (4) of Theorem 11.1 is a corollary to Theorem 11.8 (cf. Remark made after the proof of Theorem 11.7).

CHAPTER
III

Linear and Affine Connections

1. Connections in a vector bundle

: Let F be either the real number field \mathbf{R} or the complex number field C, \mathbf{F}^{m} the vector space of all m-tuples of elements of F and $G L(m ; \mathrm{F})$ the group of all $m \mathrm{x} \mathrm{m}$ non-singular matrices with entries from F. The group $G L(m ; \mathrm{F})$ acts on \mathbf{F}^{m} on 'the left in a.natural manner; if $a=\left(a_{j}^{i}\right) \in G L\left(m ;\right.$ F) and $\xi=\left(\xi^{1}, \ldots, \ldots, \xi^{m}\right) \in \mathbf{F}^{m}$, then $a \xi=\left(\Sigma_{j} a_{j}^{1} \xi^{j}, \ldots, \Sigma_{j} a_{j}^{m} \xi^{j}\right) \in \mathrm{F}^{\prime \prime}$.
Let $P(M, \mathrm{G})$ be-a principal fibre bundle and ρ a representation of G into $G L(m ; \mathrm{F})$. Let $E\left(M, \mathbf{F}^{m} ; G, P\right)$ be the associated bundle with standard fibre \mathbf{F}^{m} on which G acts through ρ. We call E a real or complex vector bundle over M according as $\mathrm{F}=\mathrm{R}$ or $\mathrm{F}=\mathrm{C}$. Each fibre $\pi_{\boldsymbol{E}}^{-1}(x), x \in M$, of: E has the structure of a vector space such that every $u \in P$ with. $\pi(u)=\boldsymbol{x}$, considered as a mapping of L. $\mathbf{T}^{m} \rightarrow \mathbb{T}^{m}$ onto $\pi_{E}^{-1}(x)$, is a linear isomorphism of \mathbf{F}^{m} onto $\pi_{E}^{-1}(x)$. Let IS be the set of cross sections $\varphi: M \rightarrow E$; it forms a vector space over F (of infinite dimensions. if $m \geqq 1$) with addition and scalar multiplication defined by

$$
\begin{aligned}
1 L \varphi+\varphi)(x)=p(x)+\psi(x), & \varphi, \psi \in S, & x \in M, \\
(\lambda \varphi)(x)=\lambda(\varphi(x)), & \varphi \in S, \lambda \in \mathbf{F}, & x \in M .
\end{aligned}
$$

We may also consider S as a module over the algebra of F-valued functions; if λ is an F -valued function on M, then

$$
(\lambda \varphi)(x)=\lambda(x) \cdot \mathrm{y}(\mathrm{x}), \quad \varphi \in S, \quad i \in M
$$

Let Γ be a connectionin P. We recall how Γ defined the notion of parallel displacement of fibres of E in $\S 7$ of Chapter II. If $\tau=x_{t}$, a $\leqq t \leqq b$, is a curve in M and $\tau^{*}=u_{t}$ is a horizontal
lift of $\boldsymbol{\tau}$ to P, then, for each'fixed $\boldsymbol{\xi} \bullet \mathbf{F}^{m}$, the curve $\boldsymbol{\tau}^{\prime}=u_{t} \boldsymbol{\xi}$ is, by definition, a horizontal lift of \boldsymbol{T} to E.

Let φ be a section of E defined on $\boldsymbol{\tau}=\boldsymbol{x}_{\boldsymbol{t}}$ so that $\boldsymbol{\pi}_{\boldsymbol{E}} \circ \varphi\left(\boldsymbol{x}_{\boldsymbol{t}}\right)=\boldsymbol{x}_{\boldsymbol{t}}$ for all t. Let \dot{x}_{i} be the vector tangent to τ at x_{i}. Then, for each fixed t , the covariant derivative $\nabla_{t_{t}} \varphi$ of φ in the direction of (or with respect to) \dot{x}_{t} is defined by

$$
\nabla_{t_{t}} \varphi=\lim _{h \rightarrow 0} \frac{1}{h}\left[\tau_{t}^{t+h}\left(\varphi\left(x_{t+h}\right)\right)-\varphi\left(x_{t}\right)\right],
$$

where $\tau_{t}^{t+h}: \pi_{E}^{-1}\left(x_{t+h}\right) \rightarrow \pi_{E}^{-1}\left(x_{t}\right)$ denotes the parallel displacement of the fibre $\pi_{E}^{-1}\left(x_{t+h}\right)$ along τ from x_{t+h} to x_{i}. Thus, $\nabla_{t_{t}} \varphi \in$ $\pi_{E}^{-1}\left(x_{t}\right)$ for every t and defines a cross section of E along τ. The cross section φ is parallel, that is, the curve $\varphi\left(x_{t}\right)$ in E is horizontal, if and only if $\nabla_{t_{t}} \varphi=0$ for all t. The following formulas are evident. If φ and ψ are cross sections of E defined on $\tau=\boldsymbol{x}_{i}$, then

$$
\nabla_{i_{t}}(\varphi+\psi)=\nabla_{\dot{x}_{t}} \varphi+\nabla_{\dot{x}_{t}} \psi
$$

If λ is an F -valued function defined on τ, then

$$
\nabla_{\dot{x}_{l}}(\lambda \varphi)=\lambda\left(x_{t}\right) \cdot \nabla_{\dot{x}_{t}} \varphi+\left(\dot{x}_{t} \lambda\right) \cdot \varphi\left(x_{t}\right) .
$$

The last formula follows immediately from

$$
\tau_{t}^{t+h}\left(\lambda\left(x_{t!h}\right) \cdot \varphi\left(x_{t+h}\right)\right)=\lambda\left(x_{t+h}\right) \cdot \tau_{t}^{t+h}\left(\varphi\left(x_{t+h}\right)\right)
$$

Let $\mathrm{X} \in \mathrm{T},(\mathrm{M})$ and φ a cross section of E defined in a neighborhood of x. Then the covariant derivative $\nabla_{X} \varphi$ of φ in the direction of X is defined as follows. Let $\tau=x_{i},-\varepsilon \leqq t \leqq \varepsilon$, be a curve such that $\mathrm{X}=\dot{x}_{0}$. Then set

$$
\nabla_{X} \varphi=\nabla_{x_{0}} \varphi
$$

It is easy to see that $\nabla_{X} \varphi$ is independent of the choice of τ, A cross section φ of E defined on an open subset U of A4 is parallel if and only if $\mathrm{V}_{\mathrm{x}} \varphi=0$ for all $\mathrm{X} \in T_{x}(U), \mathrm{x} \in U$.

Proposition 1.1. Let $X, Y \in \mathrm{~T},(\mathrm{M})$ and let φ and ψ be cross sections of E defined in a neighborhood of x. Then
(1) $\nabla_{X+Y} \varphi=\nabla_{X} \varphi+\nabla_{Y} \varphi$;
(2) $\nabla_{X}(\varphi+\psi)=\nabla_{X} \varphi+\nabla_{X} \psi$;
(3) $\nabla_{\lambda_{X} \varphi} \varphi=1 \cdot \nabla_{X} \varphi$, where $\lambda \in F$;
(4) $\nabla_{X}(\lambda \varphi)=\lambda(x) \cdot \nabla_{X} \varphi+(X \lambda) \cdot \varphi(x)$, where λ is an F -valued function defined in a neighborhood of x.

Proof. We proved (2) and (4). (3) is obvious. Finally, (1) will follow immediately from the following alternative definition of covariant differentiation.
Suppose that a cross section φ of E is defined on an open subset U of M. As in Example 5.2 of Chapter II, we associate with ψ an \mathbf{F}^{m}-valued function \mathbf{f} on $\pi^{-1}(U)$ as follows :

$$
f(v)=v^{-1}(\varphi(\pi(v))), \quad v \in \pi^{-1}(U)
$$

Given $X \in T_{x}(M)$, let $\mathrm{X}^{*} \in \mathrm{~T},(\mathrm{P})$ be a horizontal lift of X. Since f is an \mathbf{F}^{m}-valued function, $X^{*} f$ is an element of \mathbf{F}^{m} and $\boldsymbol{u}\left(X^{*} f\right)$ is an element of the fibre $\pi_{E}^{-1}(\mathrm{x})$. We have

Lemma. $\quad \nabla_{\lambda} \varphi=u\left(X^{*} f\right)$.
Proof of Lemma., Let $\tau=x_{t},-\varepsilon \leqq t \leqq \varepsilon$, be a curve such that $\mathrm{X}=\dot{x}_{0}$. Let $\tau^{*}=u_{t}$ be a horizontal lift of τ such that $u_{0}=u$ so that $\mathrm{X}^{*}=\dot{u}_{0}$. Then we have

$$
X^{*} f=\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(u_{h}\right)-f(u)\right]=\lim _{h \rightarrow 0} \frac{1}{h}\left[u_{h}^{-1}\left(\varphi\left(x_{h}\right)\right)-u^{-1}(\varphi(x))\right]
$$

and

$$
u\left(X^{*} f\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left[u \circ u_{h}^{-1}\left(\varphi\left(x_{h}\right)\right)-\varphi(x)\right] .
$$

In order to prove the lemma, it is sufficient to prove

$$
\tau_{0}^{h}\left(\varphi\left(x_{\hbar}\right)\right)=u \circ u_{h}^{-1}\left(\varphi\left(x_{h}\right)\right) .
$$

Set $\boldsymbol{\xi}=\boldsymbol{u}_{h}^{-1}\left(\varphi\left(x_{h}\right)\right)$. Then $u_{t} \boldsymbol{\xi}$ is a horizontal curve in E. Since $u_{h} \xi=\varphi\left(x_{h}\right), \varphi\left(x_{h}\right)$ is the element of E obtained, by the parallel displacement of $u_{0} \xi=u \circ u_{h}^{-1}\left(\varphi\left(x_{h}\right)\right)$ along τ from x_{0} to x_{h}. This implies $\tau_{0}^{h}\left(\varphi\left(x_{h}\right)\right)=u \circ u_{h}^{-1}\left(\varphi\left(x_{h}\right)\right)$, thus completing the proof of the lemma.

Now, (1) of Proposition 1.1 follows from the lemma and the fact that, if $X, Y \in \mathrm{~T},(\mathrm{M})$ and $X^{*}, Y^{*} \in T_{u}(P)$ are horizontal lifts of X and Y respectively, then $\mathrm{X}^{*}+\mathrm{Y}^{*}$ is a horizontal lift of $X+\mathrm{Y}$.

QED.
If φ is a cross section of E defined on M and X is a vector held on M, then the covariant derivative $\Gamma_{X} \varphi$ of ψ in the direction of (or with respect to) X is defined by

$$
\left(\nabla_{X} \varphi\right)(x)=\nabla_{X_{x}} \varphi
$$

Then, as an immediate consequence of Proposition 1.1, we have
metric in $E \mid U_{i}=\pi_{E}^{-1}\left(U_{i}\right)$. Set $g=\Sigma_{i} s_{i} h^{i}$, that is,

$$
g\left(\Xi_{1}, \Xi_{2}\right)=\Sigma_{i} s_{i}(x) h^{i}\left(\Xi_{1}, \Xi_{2}\right) \quad \text { for } \quad \Xi_{1}, \Xi_{2} \in \pi_{E}^{-1}(x), \quad x \in M
$$

Proposition $\quad 1.2$. Let X and Y be vector fields on M, φ and ψ cross sections of E on M and λ an F-valuedfunction on M. Then
(1) $\nabla_{X+Y} \varphi=\nabla_{X} \varphi+\nabla_{Y} \varphi$;
(2) $\nabla_{X}(\varphi+\psi)=\nabla_{X} \varphi+\nabla_{X} \psi$;
(3) $\nabla_{\lambda X} \varphi=\lambda \cdot \nabla_{X} \varphi$;
(4) $\nabla_{X}(\lambda \varphi)=\lambda \cdot \nabla_{X} \varphi+(X \hat{\lambda}) \varphi$.

Let X be a vector field on M and X^{*} the horizontal lift of X to P. Then covariant differentiation ∇_{X} corresponds to Lie differentiation L_{X}, in the following sense. In Example 5.2 of Chapter II, we saw that there is a $1: l$ correspondence between the set of cross sections $\varphi: M \rightarrow E$ and the set of \mathbf{F}^{m}-valued functionsfon P such that $f(u a)=a^{-1}(f(u)), a \in \mathrm{G}\left(a^{-1}\right.$ means $\left.\rho\left(a^{-1}\right) \in G L(m ; \mathrm{F})\right)$. The-correspondence is given by $\mathrm{f}(\mathrm{u})=u^{-\mathbf{1}}(\varphi(\pi(u))), u \in P$. We then have

Proposition 1.3. If $\varphi: M \rightarrow E$ is a cross section and $f: P \rightarrow F^{m}$ is the corresponding function, then $X^{*} f$ is the function corresponding to the cross section $\mathrm{V}_{X} \varphi$.

Proof. This is an immediate consequence of the lemma for Proposition 1.1.

QED.
A fibre metric g in a vector bundle E is an assignment, to each $x \in M$, of an inner product g_{x} in the fibre $\pi_{E^{-1}}(x)$, which is differentiable in x in the sense that, if φ and ψ are differentiable cross sections of E, then- $g_{x}(\varphi(x), \psi(x))$ depends differentiably on x. When E is a complex vector bundle, the inner product is understood to be hermitian:

$$
g_{x}\left(\Xi_{1}, \Xi_{2}\right)=g_{x} \overline{\left(\Xi_{2}, \Xi_{1}\right)} \quad \text { for } \quad \Xi_{1}, \Xi_{2} \in \pi_{E}^{-1}(x)
$$

proposition 1.4. If M is paracompact, every vector bundle E over M admits a jübre metric.

Proof. This follows from Theorem 5.7 of Chapter I just as the existence of a Riemannian metric on a paracompact manifold. We shall give here another proof using a partition of unity. Let $\left\{U_{i}\right\}_{i \in I}$ be a locally finite open covering of M such that $\pi_{E}^{-1}\left(U_{i}\right)$ is isomorphic with $U_{i} \times \mathbf{F}^{m}$ for each i. Let $\left\{s_{i}\right\}$ be a partition of unity subordinate to $\left\{U_{i}\right\}$ (cf. Appendix 3). Let h^{i} be a fibre

Since $\left\{U_{i}\right\}$ is locally finite and s_{i} vanishes outside $U_{i} ; \mathrm{g}$ is a well defined fibre metric.

QED.
Given a fibre metric g in a vector bundle $E\left(M, \mathbf{F}^{m}, \mathrm{G}, P\right)$, we construct a reduced Subbundle $Q(M, H)$ of $P(M, G)$ as follows. In the standard fibre \mathbf{F}^{n} of E, we consider the canonical inner product (,) defined by

$$
\begin{aligned}
& (\xi, \eta)=\Sigma_{i} \xi^{i} \eta^{i} \text { for } \xi=\left(\xi^{1}, \ldots, \xi^{m}\right), \eta=\left(\eta^{1}, \ldots, \eta^{m}\right) \in \mathbf{R}^{m} \\
& (\xi, \eta)=\Sigma_{i} \xi^{i} \bar{\eta}^{i} \text { for } \xi=\left(\xi^{1}, \ldots, \xi^{m}\right) ; \eta=\left(\eta^{1}, \ldots, \eta^{m}\right) \in \mathrm{C}^{\prime}
\end{aligned}
$$

Let Q 'be the set of $u \in P$ such that $g(u(\xi), u(\eta))=(\xi, \eta)$ for $\boldsymbol{\xi}, \eta \in \mathbf{F}^{m}$. Then Q is a closed submanifold of P. It is 'easy to verify that Q is a reduced subbundle of P whose structure group H is given by

$$
\begin{array}{ll}
H=\{a \in G ; p(a) \in O(m)\} & \text { if } \mathrm{F}=\mathrm{R} \\
H=\{a \in G ; \rho(a) \in U(m)\} & \text { if } \mathbf{F}=\mathbf{C}
\end{array}
$$

where ρ is the representation of G in $G L(m ; \mathrm{F})$.
Given a fibre metric g in E, a connection in P is called a metric connection if the parallel displacement of fibres of E preserves the fibre metric g. More precisely, for every curve $\tau=x_{t}, 0 \leqq t \leqq 1$, of M, the parallel displacement $\pi_{E}^{-1}\left(x_{0}\right) \rightarrow \pi_{E}^{-1}\left(x_{1}\right)$ along τ is isometric.

Proposition 1.5. Let g be ..a fibre $m \& c$ in a vector bundle $E\left(M, \mathbf{F}^{m}, G, P\right)$ and $Q(\dot{M}, \dot{H})$ the reduced subbundle of $P(M, G)$ defined by g. A connection I ' in P is reducible to a connection Γ^{\prime} in Q if and only. if Γ is a metric connection.

Proof. Let $\tau=x_{i}, 0 \leqq t \leqq 1$, be a curve in M. Let $\xi, \eta \in \mathbf{F}^{m}$ and $u_{0} \in Q$ with $\pi\left(u_{0}\right)=x_{0}$. Let $\tau^{*}=u_{t}$ be the horizontal lift of τ to P starting from u_{0} so that both $\tau^{\prime}=u_{t}(\xi)$ and $\tau^{\prime \prime}=u_{t}(\eta)$ are horizontal lifts of τ to E. If Γ is reducible to a connection I " in Ω, then $u_{t} \in \mathrm{Q}$ for all t. Hence,

$$
g\left(u_{0}(\xi), u_{0}(\eta)\right)=(\xi, \eta)=g\left(u_{t}(\xi), u_{t}(\eta)\right)
$$

proving that I ' is a metric connection. Conversely, if Γ is a metric
connection, then

$$
g\left(u_{t}(\xi), u_{t}(\eta)\right)=g\left(u_{0}(\xi), u_{0}(\eta)\right)=(\xi, \eta)
$$

Hence, $u_{t} \in \mathrm{Q}$. This means that Γ is reducible to a connection in Q by Proposition 7.2 of Chapter II.

QED.
Proposition 1.5, together with Theorem 2.1 of Chapter II, implies that, given a fibre metric g in a vector bundle E over a paracompact manifold K, there is a metric connection in P .

Let $E\left(M, \mathbf{F}^{m},(\mathbb{H}, \mathrm{P})\right.$ be a vector bundle such that $\mathrm{G}=$ $G L(m ; \mathbf{F})$. Let $E_{i}^{j} \in \mathfrak{g l}(m ; F)$, Lie algebra of $\mathrm{GL}(\mathrm{m} ; \mathrm{F})$, be the $\mathrm{mx} \mathrm{m} m$ matrix such that the entry at the i-th column and the j-th row is 1 and other entries are all zero. Then $\left\{E_{i}^{j} ; i, j=1, \ldots\right.$, $\mathrm{m}\}$ form a basis 'of the Lie algebra $\mathfrak{g l}(m ; F)$. Let ω and Ω be the connection form and the curvature form of a connection Γ in P. Set

$$
\omega=\Sigma_{i, j} \omega_{j}^{i} E_{i}^{j}, \quad \Omega=\Sigma_{i, j} \Omega_{j}^{i} E_{i}^{j}
$$

It is easy to verify that the structure equation of the connection I' (cf. $\$ 5$ of Chapter II) can be expressed by

$$
d \omega_{j}^{i}=-\Sigma_{k} \omega_{k}^{i} \wedge \omega_{j}^{k}+\Omega_{j}^{i}, i, j=1, \ldots, m
$$

Let g be a fibre metric in ${ }^{\prime} E$ and Q the reduced subbundle of P defined by g. If Γ is a metric connection, then the restriction of ω to Q defines a connection in Q by Proposition 6.1 of Chapter II and Proposition 1.5. In particular, both ω and Ω, restricted'to Q, take their values in the Lie algebra $o(m)$ or $u(m)$ according as $\mathbf{F}=\mathrm{R}$ or $\mathrm{F}=\mathrm{C}$. In other words, both $\left(\omega_{j}^{2}\right)$ and $\left(\Omega_{j}^{i}\right)$, restricted to Q, are skew-symmetric or skew-hermitian according as $\mathrm{F}=\mathrm{R}$ or $\mathbf{F}=\mathbf{C}$.

2. Linear connections

Throughout this section, we shall denote the bundle of linear frames $L(M)$ by P and the general linear group $G L(n ; \mathrm{R})$, $n:=\operatorname{dim} M$, by G.

The canonical form 0 of P is the \mathbf{R}^{n}-valued l-form on P defined by

$$
\theta(X)=u^{-1}(\pi(X)) \quad \text { for } X \in T_{u}(P)
$$

where u is considered as a linear mapping of \mathbf{R}^{n} onto $T_{\pi(u)}(M)$ (cf. Example 5.2 of Chapter I).

Proposition2.1. The canonical form θ of P is a tensorial 1 -form of type ($\mathrm{GL}(\mathrm{n} ; \mathrm{R}), \mathrm{R}$ "). It corresponds to the identity transformation of the tangent space $\mathrm{T},(\mathrm{M})$ at each $\boldsymbol{x} \in \mathrm{M}$ in the sense of Example 5.2 of Chapter II.

Proof. If X is a vertical vector at $u \in \mathrm{P}$, then $\pi(X)=0$ and hence $0(\mathrm{X})=0$. If Xis any vector at $u \in \mathrm{P}$ and a is any element of $\mathrm{G}=G L(n ; \mathrm{R})$, then $R_{a} X$ is a vector at ua $\in \mathrm{P}$. Hence,

$$
\begin{aligned}
\left(R_{a}^{*} \theta\right)(X)=\theta\left(R_{a} X\right) & =(u a)^{-1}\left(\pi\left(R_{a} X\right)\right) \\
& =a^{-1} u^{-1}(\pi(X))=a^{-1}(\theta(X))
\end{aligned}
$$

thus proving our first assertion. 'The 'second assertion is clear.
QED.
A connection in the bundle of linear' frames P over M is called a lirear connection of M . Given a linear connection Γ of M, we associate with each $\boldsymbol{\xi} \in \mathbf{R}^{n}$ a horizontal vector field $B(\boldsymbol{\xi})$ on P as follows. For each $u \in \mathrm{P},(B(\xi))_{u}$ is the unique horizontal vector at u such that $\pi\left((B(\xi))_{u}\right)=u(\xi)$. We call $B(\xi)$ the standard horizontal vector field corresponding to ξ. Unlike the fundamental vector fields, the standard horizontal vector fields. depend on the choice of connections.
proposition 2.2.. The standard horizontal vector fields have the following properties:
(1) If θ is the canonical form of P, then $\theta(B(\xi))=\xi$ for $\xi \in \mathbf{R}^{n}$;
(2) $R_{a}(B(\xi))=B\left(a^{-1} \xi\right)$ for $a \in \mathrm{G}$ and $\xi \in \mathbf{R}^{n}$;
(3) If $\xi \neq 0$, then $\mathrm{B}(\xi)$ 'never vanishes.

Proof. (1) is obvious. (2) follows from the fact that if X is a horizontal vector at u, then $\mathrm{R},(\mathrm{X})$ is a horizontal vector at u and $\pi\left(R_{a}(X)\right)=\pi(X)$. To prove (3), assume that $(B(\xi))_{u}=0$ at some point $u \in \mathrm{P}$. Then $u(\xi)=\pi\left((B(\xi))_{u}\right)=0$. Since $u: \mathbf{R}^{n} \rightarrow \mathrm{~T}_{,, \ldots,,(\mathrm{M})}$ is a.linear isomorphism, $\xi=0$.

QED.
Remark. The conditions $\theta(B(\xi))=\xi$ and $\omega(B(\xi))=0$ (where ω is the connection form) completely determine $B(\xi)$ for each $\xi \in \mathbf{R}^{n}$.

Proposition2.3. If A^{*} is the fundamental vector field corresponding to $A \in \mathfrak{g}$ and if $B(\xi)$ is the standard horizontal vector field corresponding

to $\xi \in \mathbf{R}^{n}$, then

$$
\left[A^{*}, B(\xi)\right]=B(A \xi)
$$

 $\mathrm{n} \times \hat{n}$ matrices) which acts on \mathbf{R}^{n}.
Proof. Let a_{t} be the 1-parameter subgroup of G generated by A, $a_{,}=\exp t A$. By Proposition 1.9 of Chapter I and (2) of Proposition 2.2,
$\left[A^{*}, B(\xi)\right]=\lim _{t \rightarrow 0} \frac{1}{t}\left[B(\xi)-R_{a_{i}}(B(\xi))\right]=\lim _{t \rightarrow 0} \frac{1}{t}\left[B(\xi)-B\left(a_{t}^{-1} \xi\right)\right]$.
Since $\boldsymbol{\xi} \rightarrow(B(\xi))_{u}$ is a linear isomorphism of \mathbf{R}^{n} onto the horizontal subspace Q_{u} (cf. (3) of Proposition 2.2), we have

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left[B(\xi)-B\left(a_{t}^{-1} \xi\right)\right]=B\left(\lim _{t \rightarrow 0} \frac{1}{t}\left(\xi-a_{t}^{-1} \xi\right)\right)=B(A \xi)
$$

QED.
We define the torsion form Θ of a linear connection Γ by

$$
\Theta=D \theta \quad \text { (exterior, covariant differential of } \theta \text {). }
$$

By Proposition 5.1 of Chapter II and Proposition 2.1, Θ is a tensorial P-form on P of type ($\mathrm{GL}\left(\mathrm{n} ; \mathrm{R}\right.$), \mathbf{R}^{n}).
тheorem 2.4 (Structure equations). Let ω, Θ, and Ω be the connection form, the torsion form and the curvature form of a linear connection Γ of M. Then

1st Structure equation:

$$
d \theta(X, Y)=-\frac{1}{2}(\omega(X) \cdot \theta(Y)-\omega(Y) \cdot \theta(X))+\Theta(X, Y)
$$

2nd structure equation :

$$
d \omega(X, Y)=-\frac{1}{2}[\omega(X), \omega(Y)]+\Omega(X, \mathrm{Y})
$$

where $X, Y \in T$, (P) and $u \in \mathrm{P}$.
Proof. The second structure equation was proved in Theorem 5.2 of Chapter II (see also $\S 1$). The proof of the first structure equation is similar to that of Theorem 5.2 of Chapter II. There are three cases which have to be verified and the only nontrivial case is the one where X is vertical and Y is horizontal. Choose $\mathrm{A} \in \mathfrak{g}$ and $\boldsymbol{\xi} \in \mathbf{R}^{n}$ such that $\mathrm{X}=A_{u}^{*}$ and $\mathrm{Y}=B(\xi)_{u}$.

Then $\Theta(X, \mathrm{Y})=0, o(\mathrm{Y}), \theta(X)=0$ and $\mathrm{o}(\mathrm{X}), \theta(Y)=$ $\omega\left(A^{*}\right) \cdot \theta(B(\xi))=A \xi$, since $\omega\left(A^{*}\right)=\mathrm{A}$ and $\theta(B(\xi))=\xi$. On the other hand, $2 d \theta(X, Y)=A^{*}(\theta(B(\xi)))-B(\xi)\left(\theta\left(A^{*}\right)\right)-\theta\left(\left[A^{*}\right.\right.$, $B(\xi)])=-\theta\left(\left[A^{*}, B(\xi)\right]\right)=-\theta(B(A \xi))=-A \xi$ by Proposition 2.3. This proves the first structure equation.

QED.
With respect to the natural basis e,, $\ldots, \boldsymbol{e}_{n}$ of \mathbf{R}^{n}, we write

$$
\theta=\Sigma_{i} \theta^{i} e_{i}, \quad \Theta=\Sigma_{i} \Theta^{i} e_{i} .
$$

As in $\$ 1$, with respect to the basis E_{i}^{j} of $\mathfrak{g l}(\boldsymbol{n} ; \mathrm{R})$, we write

$$
\mathrm{w}=\Sigma_{i, j} \omega_{j}^{i} E_{i}^{j}, \Omega=\Sigma_{i, 3} \Omega_{j}^{i} E_{i}^{j} .
$$

Then the structure equations can be written as

$$
\begin{array}{ll}
\text { (1) } d \theta^{i}=-\Sigma_{j} \omega_{j}^{i} \wedge \theta^{j}+\Theta^{i}, & \mathrm{i}=1, \ldots, n, \\
\text { (2) } d \omega_{j}^{i}=-\Sigma_{k} \omega_{k}^{i} A \omega_{j}^{k}+\Omega_{j}^{i}, & \mathrm{i}, j=1, \ldots, \mathrm{~A} .
\end{array}
$$

Considering θ as a vector valued form and ω as a matrix valued form, we also write the structure equations in the following simplified form :

$$
\begin{array}{ll}
\left(1^{\prime}\right) & d e=-\omega \wedge \theta+\Theta \\
\left(2^{\prime}\right) & d \omega=-\omega \wedge \omega+\Omega .
\end{array}
$$

In the next section, we shall give an interpretation of the torsion form and the first structure equation from the viewpoint of affine connections.

тнвorem 2.5 (Bianchi's identities), For a linear connection, we have 1st identity: $D \Theta=\Omega \mathrm{A} 8$, that is,
$3 D \Theta(X, Y, Z)=\Omega(X, Y) \theta(Z)+\Omega(Y, Z) \theta(X)+\Omega(Z, X) \theta(Y)$, where $X, Y, Z \in T,(P)$.
2nd identity: $D \Omega=0$.
Proof. The second identity was proved, in Theorem 5.4 of Chapter II. The proof of the first identity is similar to that of Theorem 5.4. If we'apply the exterior differentiation d to the first structure equation $d \theta=-\omega A \theta+\Theta$, then we obtain

$$
0=-d w \quad A \theta+w A d \theta+d \Theta .
$$

Denote by $h X$ the horizontal component of X . Then $\omega(h X)=0$, $\theta(h X)=\mathrm{e}(\mathrm{X})$ and $d \omega(h X, h Y)=\Omega(X, Y)$. Hence,

$$
\begin{aligned}
D \Theta(X, Y, Z) & =d \Theta(h X \dot{X}, h Y, h Z) \\
& =(d \omega \text { A } \theta)(h X, h Y, h Z)=(\Omega \text { A } 0)(X, Y, Z) .
\end{aligned}
$$

Let B_{1}, \ldots, B_{n} be the standard horizontal vector fields corresponding to the natural basis e_{1}, \ldots, e_{n} of \mathbf{R}^{n} and $\left\{E_{i}^{j *}\right\}$ the fundamental vector fields corresponding to the basis $\left\{E_{i}^{j}\right\}$ of $\mathfrak{g l}(n ; \mathrm{R})$. It is easy to verify that $\left\{B_{i}, E_{i}^{i *}\right\}$ and $\left\{\theta^{i}, \omega_{j}^{i}\right\}$ are dual to each other in the sense that

$$
\begin{gathered}
\theta^{k}\left(B_{i}\right)=\delta_{i}^{k} ; \theta^{k}\left(E_{i}^{j}\right)=0, \\
\omega_{l}^{k}\left(B_{i}\right)=0, \quad \omega_{l}^{k}\left(E_{i}^{*}\right)=\delta_{i}^{k} \delta_{l}^{j} .
\end{gathered}
$$

proposition 2.6. The $n^{2}+\mathrm{n}$ vector fields $\left\{B,, E_{i}^{j *} ; \mathrm{i}, j, \mathrm{k}=\right.$ $1, \ldots, n\}$ define an absolute parallelism in I^{\prime}, that is, the $n^{2}+n$ vectors $\left\{\left(B_{k}\right)_{u *}\left(E_{i}^{j *}\right)\right.$, , form a basis of $\mathrm{T}(\mathrm{P})$ for every $u \in \mathrm{P}$.

Proof. Since the dimension" of P is $n^{2}+n$, it is sufficient to prove that the above $n^{2}+n$ vectors are linearly independent. Since $\mathrm{A} \rightarrow A_{u}^{*}$ is la linear isomorphism of g onto the vertical subspace of $T_{u}(P)$ (cf. $\S 5$ of Chapter I), $\left\{E_{i}^{*}\right\}$ are linearly independent at every point of P. By (3) of Proposition 2.2, $\left\{B_{k}\right\}$ are linearly independent at every point of P. Since $\left\{B_{k}\right\}$ are horizontal and $\left\{E_{i}^{j *}\right\}$ are vertical, $\left\{B_{k}, E_{i}^{j *}\right\}$ are linearly independent at every point of ${ }^{\text {P }}$. Q E D ,
Let $T_{s}^{\tau}(M)$ be the tensor bundle over M of type (r, s) (cf. Example 5.4 of Chapter I). It is a vector bundle with standard fiber \mathbf{T}_{s}^{r} (tensor space over \mathbf{R}^{n} of type (r, s) associated with the bundle P of linear frames. A tensor field K of type (r, s) is a cross section of the tensor bundle $T_{s}^{\tau}(M)$. In $\$ 1$, we defined covariant derivatives of a cross section in a vector bundle in general. As in $\$ 1$, we can define covariant derivatives of K in the following three cases :
(1) $\nabla_{\hat{x}_{t}} K$, when K is defined along a curve $\tau=x_{t}$ of M ;
(2) $\nabla_{X} K$, when $\mathrm{X} \in T_{x}(M)$ and K is defined in a neighborhood ofx;
(3) $\nabla_{X} K$, when X is a vector field on M and K is a tensor field on M.

For the sake of simplicity, we state the following proposition in case (3) only, although it is valid in cases (1) and (2) with obvious changes.

Proposition 2.7. Let $Z(M)$ be the algebra of tensor fields on M. Let X and Y be vectorjelds on M. Then the covariant differentiation has 'the following properties:
(1) $\mathrm{v},: \mathfrak{I}(\boldsymbol{M}) \rightarrow 2(\mathrm{M})$ is a type preserving derivation;
(2) ∇_{X} commutes with every contraction;
(3) $\nabla_{X} f=X f$ for every function f on M ;
(4) $\nabla_{X+Y}=\nabla_{X}+\nabla_{Y}$;
(5) $\nabla_{f X}^{X+} K=f \cdot \nabla_{X} K$ for every function f on M and $K \in \mathfrak{I}(M)$.

Proof. Let $\tau=x_{t}, 0: \leqq t \leqq 1$, be a curve in M. Let $\mathbf{T}\left(x_{t}\right)$ be the tensor algebra over $T_{x_{t}}(M), \mathbf{T}\left(x_{t}\right)=\Sigma \mathbf{T}_{s}^{r}\left(x_{t}\right)$ (cf. $\S 3$ of Chapter I). The parallel displacement along τ gives an isomorphism of the algebra $\mathbf{T}\left(x_{0}\right)$ onto the algebra $\mathbf{T}\left(x_{1}\right)$ which preserves type and commutes with every contraction. From the definition of covariant differentiation given in $\S 1$, we obtain (1) and (2) by an argument similar to the proof of Proposition 3.2 of Chapter I. (3), (4) and (5) were proved in Proposition 1.2.

QED.
By the lemma for Proposition 3.3 of Chapter I, the operation of ∇_{X} on $Z(M)$ is completely determined by its operation on the algebra of functions $\mathscr{F}(M)$ and the module of vector fields $\mathrm{X}(\mathrm{M})$. Since $\nabla_{X} f=\mathrm{Xf}$ for every $f \in \mathscr{F}(M)$, the operation of ∇_{X} on $\mathrm{Z}(\mathrm{M})$ is determined by its operation on $\mathfrak{X}(M)$. As an immediate corollary to Proposition 1.2; we have
Proposition 2.8. If X, Y and Z are vector fields on M, then
(1) $\nabla_{X}(Y+Z)=\nabla_{X} Y+\nabla_{X} Z$;
(2) $\nabla_{X+Y} Z=\nabla_{X} Z+\nabla_{Y} Z$;
(3) $\nabla_{f X} Y=f \cdot \nabla_{X} Y$ for every $f \in \mathscr{F}(M)$;
(4) $\nabla_{X}(f Y)=f \cdot \nabla_{X} Y+(X f) Y$ for every $f \in \mathfrak{F}(M)$.

We shall prove later in $\S 7$ that any mapping $\mathfrak{X}(M) \times 3(\mathrm{M}) \rightarrow$ $\mathrm{X}(\mathrm{M})$, denoted by $(\mathrm{X}, \mathrm{Y}) \rightarrow \nabla_{X} Y$, satisfying the four conditions above is actually. the covariant derivative with respect to a certain linear connection.
The proof of the 'following proposition, due to Kostant [1], is similar to that of Proposition 3.3 of Chapter I and hence is left to the reader.

Proposition 2.9. Let M be a manifold with a linear connection. Every derivation D (preserving type and commuting with contractions) of the algebra $Z(M)$ of tensor fields into the tensor algebra $\mathbf{T}(\mathbf{x})$ at $\boldsymbol{x} \in \mathrm{M}$ can be uniquely decomposed as follows :

$$
D=\nabla_{x}+S
$$

where $X \in T,(M)$ and S is a linear endomorphism of $T,(M)$.
Observe that, in contrast to Lie differentiation $L_{\boldsymbol{X}}$ with respect to a vector field, covariant differentiation $\mathrm{V}_{\mathbf{x}}$ makes sense when X is a vector at a point of M.

Given a tensor field K of type (r, s), the covariant differential VK of K is a tensor field of type $(r, s+1)$ defined as follows. As in Proposition 2.11 of Chapter I, we consider a tensor of type (r, s) at a point $\boldsymbol{x} \in \mathrm{M}$ as a multilinear mapping of $\mathrm{T},(\mathrm{M}) \mathrm{x} \cdots \mathrm{x}$ $\mathrm{T},(\mathrm{M})$ (s times product) into $\mathbf{T}_{0}^{\mathbf{Y}}(x)$ (space of contravariant tensors of degree r at \boldsymbol{x}). We set
$\left(\mathrm{WV}, ; \ldots, X_{s} ; \mathrm{X}\right)=\left(\nabla_{X} K\right)\left(X_{1}, \ldots, \dot{X}_{s}\right) ; \quad X, X_{i} \in \mathrm{~T},(\mathrm{M})$.
Proposition $^{2.10}$. If K is a tensor field of type (r, s), then

$$
\begin{aligned}
(\nabla K)\left(X_{1}, \ldots, X_{g} ; X\right)=\nabla_{X}(& \left.K\left(X_{1}, \ldots, X_{s}\right)\right) \\
& -\Sigma_{i=1}^{s} K\left(X_{1}, \ldots, \nabla_{X} X_{i}, \ldots, X_{s}\right)
\end{aligned}
$$

where $X, X_{i} \in \mathfrak{X}(M)$.
Proof., This follows from the fact that $\nabla_{\boldsymbol{X}}$ is a derivation commuting with every contraction. The proof is similar to that of Proposition 3.5 of Chapter I and is left to the reader. QED.

A tensor field K on M, considered as a cross section of a tensor bundle, is parallel if and only if $\nabla_{X} K=0$ for all $X \in T$,(M) and $\boldsymbol{x} \in \mathrm{M}$ (cf. §1). Hence we have
Proposition 2.11. A tensor field K on M is parallel if and only if $\nabla K=0$.

The second covariant differential $\nabla^{2} K$ of a tensor field K of type (r, s) is defined to be $V(V K)$, which is a tensor field of type $(r, s+2)$.

We set

$$
\left(\nabla^{2} K\right)(; X ; \mathrm{Y})=\left(\nabla_{Y}(\nabla K)\right)(; X), \quad \text { where } X, Y \bullet \mathrm{~T},(\mathrm{M})
$$

that is, if we regard K as a multilinear mapping of $T,(M) \times$ $\times \mathrm{T},(\mathrm{M})$ (s times product) into $T_{0}^{\boldsymbol{r}}(x)$, then

$$
\left(\nabla^{2} K\right)\left(X_{1}, \ldots, X_{s} ; X ; Y\right)=\left(\nabla_{Y}(\nabla K)\right)\left(X_{1}, \ldots, X_{s} ; X\right)
$$

- Similarly to Proposition 2.10 , we have

Proposition 2.12. For any tensor field K and for any vector fields X and Y, we have

$$
\left(\nabla^{2} K\right)(; X ; Y)=\nabla_{Y}\left(\nabla_{X} K\right)-\nabla_{\nabla_{P} X} K
$$

In general, the m-th covariant differential $\nabla^{m} K$ is defined inductively to be $\nabla\left(\nabla^{m-1} K\right)$. We use thenotation $\left(\nabla^{m} K\right)\left(; X_{1} ; \therefore\right.$; $\left.X_{m-1} ; X_{m}\right)$ for $\left(\nabla_{X_{m}}\left(\nabla^{m-1} K\right)\right)\left(; X_{1} ; \ldots ; X_{m-1}\right)$.

3. Affine connections

A linear connection of a manifold M defines, for each curve $\boldsymbol{\tau}=\boldsymbol{x}_{\boldsymbol{t}}, 0 \leqq t \leqq 1$, of M , the parallel displacement of the tangent space $T_{x_{0}}(M)$ onto the tangent space $T_{x_{1}}(M)$; these tangent 'spaces are regarded as vector spaces and the parallel displacement is a linear isomorphism between them.' We shall now consider each tangent space $T,(M)$ as an affine space, called the tangent affine space at x. From the viewpoint of fibre undles, this means that we enlarge the bundle of linear frames the bundle of affine frames, as we shall nọw explain.

Let \mathbf{R}^{n} be the vector space of n tuples of real numbers as before. When we regard \mathbf{R}^{n} 'as an affine space, we denote it by A ". Similarly, the tangent space of M at x, regarded as an affine space, will be denoted by $A_{\alpha}(M)$ and will be called he tangent, affine space. The group $A(n ; \mathrm{R})$ of, affine transformations of A^{n} is represented by the group of all matrices of the form

$$
\tilde{a}=\left(\begin{array}{ll}
a & \xi \\
0 & 1
\end{array}\right)
$$

where $a=\left(a_{i}^{\dot{j}}\right) \in G L(n ; \mathrm{R})$ and $\boldsymbol{\xi}=\left(\boldsymbol{\xi}^{i}\right), \boldsymbol{\xi} \in \mathbf{R}^{n}$, is a column vector. The element $\tilde{\pi}$ maps a -point η of A^{n} into $a \eta+\xi$. We have the following sequence:

$$
\mathbf{0} \longrightarrow \mathbf{R}^{n} \xrightarrow{\alpha} A(n ; \mathrm{R}) \xrightarrow{\beta} \mathrm{GL}(\mathrm{n} ; \mathbf{R}) \longrightarrow 1,
$$

where $\boldsymbol{\alpha}$ is an isomorphism of the vector group \mathbf{R}^{n} into $A(n ; \mathrm{R})$ which maps $\boldsymbol{\xi} \in \mathbf{R}^{n}$ into $\left(\begin{array}{ll}I_{n} & \boldsymbol{\xi} \\ 0 & 1\end{array}\right) \epsilon A(n ; \mathrm{R})\left(I_{n}=\right.$ identity of $G L(n ; \mathrm{R})$) and β is a homomorphism of $A(n ; \mathrm{R})$ onto $G L(n ; \mathrm{R})$ which maps $\left(\begin{array}{ll}a & \boldsymbol{\xi} \\ 0 & 1\end{array}\right) \in A(n ; \mathrm{R})$ into a $\epsilon G L(n ; \mathrm{R})$. The sequence is exact in the sense that the kernel of each homomorphism is equal to the image of the preceding one. It is a splitting-exact sequence in the sense that there is a homomorphism y: $G \boldsymbol{L}(n ; \mathrm{R}) \rightarrow A(n ; \mathrm{R})$ such that $\beta \circ \gamma$ is the identity automorphism of $G L(n ; \mathrm{R})$; indeed, we define γ by $\gamma(a)=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \in A(n ; \mathrm{R})$, a $\in G L(n ; \mathrm{R})$. The group $A(n ; \mathrm{R})$ is a semidirect product of \mathbf{R}^{n} and $G L(n ; \mathrm{R})$, that is, for every $\tilde{a} \epsilon A(n ; \mathrm{R})$, there is a unique pair $(\mathrm{a}, \xi) \in G L(n ; \mathrm{R}) \times \mathbf{R}^{n}$ such that $\tilde{a}=\alpha(\xi) \cdot \gamma(a)$.

An affine frame of a manifold M at x consists of a point $p \in A_{x}(M)$ and‘ a linear frame $\left(X,, \ldots, X_{n}\right)$ at x; it will be denoted by $\left(p ; X_{1}, \ldots, X_{n}\right)$ Let 0 be the origin of \mathbf{R}^{n} and (e,, ..., e,) the natural 'basis for \mathbf{R}^{n}. We shall call ($\left.o ; e_{1}, \ldots, \mathrm{e},\right)$ the -canonical frame of A^{n}. Every affine frame $\left(~ p ; X, \ldots, X_{n}\right)$ at x can be identified with an affine transformation $\tilde{u}: A^{n} \rightarrow A_{x}(M)$ which maps $\left(0 ; e_{1}, \ldots\right.$, e, into $\left(p ; X_{1}, \ldots, X_{n}\right)$, because $\left(\varphi ; X_{1}\right.$, $\left(X_{n}\right) \leftrightarrow \tilde{u}$ gives a $1: 1$ correspondence between the set of affine frames at x and the' set of affine transformations of $A^{n} \&$ to $A_{x}(M)$. We denote by $A(M)$ the set of all affine frames of M and define the projection $\tilde{\pi}: A(M) \rightarrow M$ by setting $\tilde{\pi}(\tilde{u})=\mathrm{x}$ for every affine frame \tilde{u} at x . We shall show that $A(M)$ is a principal fibre bundle over M with group $A(n ; \mathbf{R})$ and' shâll call $A(M)$ the bundle of affine frames over M. We c\&fine an action of $A(n ; \mathrm{R})$. on $A(M)$ by $(\tilde{u}, \tilde{a}) \rightarrow \tilde{u} \tilde{a}, \tilde{u} \in A(M)$ and $\tilde{a} \in A(n ; \mathrm{R})$, where $\tilde{u} \tilde{a}$ is the composite of the affine transformations $\mathrm{a}: A^{n} \rightarrow A^{n}$ and $\tilde{u}: A^{n} \rightarrow$ $A_{x}(M)$. It can be proved easily (cf. Example 5.2 of Chapter I) that $A(n ; \mathrm{R})$ acts freely on $A(M)$ on the right and that $A(M)$ is a principal fibre bundle over M with group $A(n ; \mathrm{R})$.

Let $L(M)$ be the bundle of linear frames over M. Corresponding to the homomorphisms $\beta: A(n ; \mathrm{R}) \rightarrow G L(n ; \mathbf{R})$ and $\mathrm{y}: G L(n ; \mathrm{R}) \rightarrow A(n ; \mathrm{R})$, we have homomorphisms $\beta: A(M) \rightarrow$ $\mathrm{L}(\mathrm{M})$ and $\gamma: L(M) \rightarrow A(M)$. Namely, $\beta: A(M) \rightarrow L(M)$ maps $\left(p ; X_{1}, \ldots, X_{n}\right)$ into $\left(X_{1}, \ldots, X_{n}\right)$ and $\dot{\gamma}: L(M) \rightarrow A(M)$ maps
$\left(X_{1}, \ldots, X_{n}\right)$ into $\left(o_{x} ; X_{1}, \ldots, X_{n}\right)$, where $o_{x} \in A_{x}(M)$ is the point corresponding to the origin of $T_{x}(M)$. In particular, $\mathrm{L}(\mathrm{M})$ can be considered as a subbundle of $\lambda(M)$. Evidently, $\beta \circ \gamma$ is the identity transformation of $\mathrm{L}(\mathrm{M})$.
A generalized affine connection of M is a connection in the bundle $A(M)$ of affine frames over M. We shall study the relationship between generalizid affine connections and linear connections. We denote by \mathbf{R}^{n} the Lie algebra of the vector group \mathbf{R}^{n}. Corresponding to the splitting exact sequence $\mathbf{0} \rightarrow \mathbf{R}^{n} \rightarrow A(n ; \mathbf{R}) \rightarrow$ $G L(n ; \mathbf{R}) \rightarrow \mathbf{1}$ of groups, we have the following spliting exact sequence of Lie algebras:

Therefore,

$$
0 \rightarrow \mathbf{R}^{n} \rightarrow \mathfrak{a}(n ; \mathbf{R}) \rightarrow \operatorname{gl}(n ; \mathbf{R}) \rightarrow 0 .
$$

$$
\mathfrak{a}(n ; \mathbf{R})=\mathfrak{g}(n ; \mathbf{R})+\mathbf{R}^{n}(\text { semidirect sum }):
$$

Let $\tilde{\omega}$ be the connection form of a geheralized affine connection of M. Then $\cdot \gamma^{*} \tilde{\omega}$ is an $a(n ; \mathbf{R})$-valued I-form on $\mathrm{L}(\mathrm{M})$. Let

$$
\gamma^{*} \tilde{\omega}=\omega+\varphi
$$

be the decomposition corresponding to $\mathfrak{a}(n ; \mathbf{R})=\mathfrak{g l}(n ; \mathbf{R})+\mathbf{R}^{n}$, so that ω is a gil $n ; \mathbf{R})$-valued I-form on $L(M)$ and φ is an $\mathbf{R}^{n_{+}}$ valued I-form on $L(M)$. By Proposition 6.4 of Chapter II, ω defines a connection in $L(M)$. On the other hand, we see easily that φ is a tensorial l-form on $L(M)$ of type ($G L(n ; \mathbf{R}), \mathbf{R}^{n}$) (cf. $\S 5$ of Chapter II) and hence corresponds to a tensor, field of type $(1,1)$ of M as $\exp l_{\text {ained }}$ in. Example 5.2 of Chapter II.
Proposition 3.1. Let $\tilde{\omega}$ be the connection form of a generalized affine connection Γ of M and let

$$
\gamma^{*} \tilde{\omega}=\omega+\dot{\varphi},
$$

where ω is $\operatorname{gl}(n ; \mathbf{R})$-valued and φ is \mathbf{R}^{n}-valued. Let Γ be the linear connection of M defined by ω and let K be the tensor field of type $(1,1)$ of M defined $b y$. Then
(1) The correspondence between the set of generalized affine connections of M and the set of pairs consisting of a linear connection of M and a tensor freld of type $(1,1)$ of M given by $\Gamma \rightarrow(\Gamma, K)$ is $1: 1$.
(2) The homomorphism $\beta: A(M) \rightarrow L(M)$ maps $\tilde{\Gamma}$ into Γ (cf. §6

Proof. ‘(1) It is sufficient to prove that, given a pair (I', K), 'there is $\tilde{\Gamma}$ which gives rise to (I', K). Let ω be the connection form 'of Γ and φ the tensorial l-form on $L(M)$ of type $\left(G L(n ; \mathrm{R}), \mathbf{R}^{n}\right)$ corresponding to K . Given a vector $\hat{X} \in T_{\tilde{u}}(A(M))$, choose Xc $T_{u}(L(M))$ and $\tilde{a} \in A(n ; . \mathrm{R})$ such that $\tilde{u}=u \tilde{a}$ and $8-R_{\tilde{a}}(X)$ is vertical, There is an element $\mathrm{A} \boldsymbol{\in} \mathfrak{a}(n ; \mathrm{R})$ such that

$$
\tilde{X}=R_{\tilde{u}}(X)+A_{u}^{*}
$$

where $A *$ is the fundamental vector corresponding to A.' We define $\tilde{\omega}$ by

$$
\tilde{\omega}(\tilde{X})=\operatorname{ad}\left(\tilde{a}^{-1}\right)(\omega(X)+\varphi(X))+\tilde{A}
$$

It is straightforward to verify that $\tilde{\omega}$ defines the desired connection \uparrow.
(2) Let $\hat{X} \in T_{\tilde{u}}(A(M))$. We set $\tilde{u}=\beta(\tilde{u})$ and $X=\beta(\tilde{X})$ so that $X \in T_{n}(\mathcal{L}(M)$). since $\beta: \mathrm{A}(\mathrm{M}) \rightarrow \mathbf{t}(\mathrm{M})$. is. the homomorphism associated-*\&h' the homomorphism $\beta,: A(n ; \mathbf{R}) \rightarrow G L(n ; \mathbf{R})=$ $A(n ; \mathbf{R}) / \mathbf{R}^{n}, L(M)$ can be identified with $A(M) / \mathbf{R}^{n}$ and $\beta: A(M)-L(M)$ can be considered as the natural projection $A(M) \rightarrow A(M) / \mathbb{R}^{n}$. Since $X=\beta(X)=\beta(\tilde{X})$, there exist $\tilde{a} \in \mathbf{R}^{n} \subset A(n ; \mathbf{R})$ and $A \in \mathbf{R}^{n} \subset \mathfrak{a}(n ; \mathrm{R})$ such that $\tilde{u}=u \tilde{a}$ and $\tilde{X}=R_{\tilde{a}}(X)+A_{*}^{*}$. Assume that \tilde{X} is horizontal with respect to $\tilde{\Gamma}$ so that $0=\tilde{\omega}(\tilde{X})=\tilde{\omega}\left(R_{\tilde{a}}(X)\right)+\tilde{\omega}\left(A_{u}^{*}\right)=$ ad $\left(\tilde{a}^{-1}\right)(\tilde{\omega}(X))+\mathcal{A}$. Hence, $\dot{\Phi}(X)=$ ad $(\&)(A)$ and $\omega(X)+\varphi(X)=$ ad (d) (A). Since both $\varphi(X)$ and ad $(\tilde{a})(A)$ are in \mathbf{R}^{n} and $\omega(X)$ is in $g(n ; R)$, we have $\omega(X)=0$. This proves that if \boldsymbol{X} is horizontal with respect to $\hat{\mathbf{F}}$, then $\beta(X)$ is horizontal with respect to Γ.

QED.
Proposition 3.2. In Proposition 3.1, let Ω and Ω be the curoature forms of $\bar{\Gamma}$ and Γ respect\& \&. Then

$$
\gamma^{*} \Omega=\Omega+D_{\varphi},
$$

where D is the exterior covariant differentiation with respect to Γ.
Proof. Let $X, Y \in T_{w}(L(M))$. To proye that $\left(\gamma^{*} \hat{Q}\right)(X, X)=$ $\Omega(X, Y)+D q(X, Y)$, it is sufficient to consider the following two cases: (1) at least one of X and Y is yertical., (2) both X and Y are horizontal with respect to Γ^{\prime} In the case (1), both sides vanish. 'In the case (2), $\omega(X)=\omega(\dot{Y})=0$ and hence $\tilde{\omega}(X)=$ $\varphi(X)$ and $\tilde{\omega}(Y)=\varphi(Y)$. From the structure equation of Γ, we
have

$$
\begin{aligned}
d \tilde{\omega}(X, Y) & =-\frac{1}{2}[\tilde{\omega}(X), c(Y)]+\tilde{\Omega}(X, Y) \\
& =-\frac{1}{2}[\varphi(X), \varphi(Y)]+\tilde{\Omega}(X, Y) .
\end{aligned}
$$

(Here, considering $L(M)$ as a subbundle of $\mathrm{A}(\mathrm{M})$, we identified $\mathrm{y}(\mathrm{X})$ with X.) On the other hand, $\gamma^{*} d \tilde{\omega}=d \omega+d \varphi$ and hence $\mathrm{d} \&(\mathrm{X}, \mathrm{Y})=d \omega(X, \mathrm{Y})+d \varphi(X, \mathrm{Y})$. Since \mathbf{R}^{n} is abelian, $[\varphi(X)$, $\varphi(Y)]=0$. Hence, $d \omega(X, Y)+d \varphi(X, Y)=\Omega(X, Y)$. Since both X and Y are horizontal, $D \omega(X, Y)+D \varphi(X, Y)=\Omega(X, Y)$.

QED.
Consider again the structure equation of a generalized affine connection $\tilde{\Gamma}$:

$$
d \tilde{\omega}=-\frac{1}{2}[\tilde{\omega}, \tilde{\omega}]+\Omega .
$$

By restricting both sides of the equation to $\mathrm{L}(\mathrm{M})$ and by comparing the $\mathfrak{g l}(n ; \mathbf{R})$-components and. the \mathbf{R}^{n}-components we obtain

$$
\begin{gathered}
d \varphi(X, Y)=-\frac{1}{2}([\omega(X), \varphi(Y)]-[\omega(Y), \varphi(X)])+D \varphi(X, Y), \\
d \omega(X, Y)=-\frac{1}{2}[\omega(X), \omega(Y)]+\Omega(X, Y), \quad X, Y \in T_{u}(L(M)) .
\end{gathered}
$$

Just as in §2, we write

$$
\begin{aligned}
& d \varphi=-\omega \wedge \varphi+D \varphi \\
& d \omega=-\omega \wedge \omega+\Omega
\end{aligned}
$$

A generalized affine connection $\widetilde{\Gamma}$ is called an affine connection if, with the notation of Proposition 3.1, the \mathbf{R}^{n}-valued 1 -form φ is the canonical form θ defined in $\S 2$. In other words, $\tilde{\Gamma}$ is an affine connection if the tensor field K corresponding to φ is the field of identity transformations. of tangent spaces of M. As an immediate consequence of Proposition 3.1, we have
THEOREM 3.3. The homomorphism $\beta: \mathrm{A}(\mathrm{M}) \rightarrow \mathrm{L}(\mathrm{M})$ maps every affine connection Γ of M into a linear connection Γ of M. Moreover, $\Gamma \rightarrow \Gamma$ gives a $1: 1$ correspondence between the set of affine connections $\tilde{\Gamma}$ of M and the set of linear connections Γ of M.
Traditionally, the words "linear connection"? and "affine connection" have been used interchangeably. This is justified by Theorem 3.3. Although we shall not break with this tradition, we
shall make a logical distinction between a linear connection and an affine connection whenever necessary; a linear connection of M is a connection in $\mathrm{L}(\mathrm{M})$ and an affine connection is a connection in $\mathrm{A}(\mathrm{M})$.

From Proposition 3.2, we obtain
Proposition $\quad 3.4$. Let Θ and Ω be the torsion form and the curvature form of a linear connection Γ of M. Let $\bar{\Omega}$ be the curvature form-of the corresponding affine connection. Then

$$
\gamma^{*} \widetilde{\Omega}=\Theta+\Omega
$$

where y: $L(M) \rightarrow \mathrm{A}(\mathrm{M})$ is the natural injection.
Replacing φ by the canonical form θ in the formulas:

$$
d \varphi=-\omega \wedge \varphi+D \varphi, \quad d \omega=-\omega \wedge \omega+\Omega
$$

we rediscover the structure equations of a linear connection proved in Theorem 2.4.

Let $\Phi(\tilde{u})$ be the holonomy group of an affine connection $\tilde{\Gamma}$ of \boldsymbol{M} with reference point-u' $\in A(M)$. Let $\Psi(u)$ be the holonomy group of the corresponding linear connection I ' of M with reference point $u=\beta(\tilde{u}) \in \mathrm{L}(\mathrm{M})$. We shall call $\Phi(\tilde{u})$ the affine holonomy group of $\tilde{\Gamma}$ or Γ and $Y(\mathrm{u})$ the linear holonomy group (or homogeneous holonomy group) of $\tilde{\Gamma}$ or Γ. The restricted affine and linear holonomy groups $\Phi^{0}(\tilde{u})$ and $\Psi^{0}(u)$ are-defined accordingly. From Proposition 6.1 of Chapter II, we obtain

Proposition 3.5. The homomorphism $\beta: A(n ; \mathbf{R}) \rightarrow G L(n ; \mathrm{R})$ maps $\Phi(\tilde{u})$ onto $Y(u)$ and $\Phi^{0}(\tilde{u})$ onto $Y^{\prime} ?(u)$.

4. Developments

We shall study in this section the parallel displacement arising from an affine connection of a manifold M. Let $\tau=x_{t}, 0 \leqq t \leqq 1$, be a curve.in M. The affine parallel displacement along τ is an affine transformation of the affine tangent space. at \boldsymbol{x}_{0}. Onto the affine tangent space at x_{1} defined by the given connection in $A(M)$. It is a special case of the parallelism in an associated bundle which is, in our case, the affine tangent bundle whose fibres are $A,(M), \boldsymbol{x} \in \mathrm{M}$. We shall denote this affine parallelism by $\tilde{\boldsymbol{\tau}}$.

The total space (i.e., the bundle space) of the affine .tangent bundle over M is naturally homeomorphic with that of the tangent (vector) bundle over M; the distinction between the two is that the affine tangent bundle is associated with $A(M)$ whereas the tangent (vector) bundle is associated with $L(M)$. A cross section of the affine tangent bundle is called a point feld. There is a natural 1: 1 correspondence between the set of point fields and the set of vector fields.

Let $\tilde{\tau}_{s}^{t}$ be the affine parallel displacement along the curve τ from x_{t} to x_{s}. In particular, $\tilde{\tau}_{0}^{t}$ is the parallel displacement $A_{x_{i}}(M)-\mathrm{A},(\mathrm{M})$ along τ (in the reversed direction) from x_{t} to x_{0}. Let p be a point field defined along τ so that $p_{x_{t}}$ is an element of $A_{x_{t}}(M)$ for each t. Then $\tilde{\tau}_{0}^{t}\left(p_{x_{t}}^{\prime}\right)$ 'describes a curve in $A,(\dot{M})$. We Identify the curve $\tau=x_{t}$ with the trivial point field along τ, that is, the point field corresponding to the zero vector field along τ. Then the development of the curve τ in M into the affine tangent space $A_{x_{0}}(M)$ is the curve $\tilde{\tau}_{0}^{t}\left(x_{t}\right)$ in $\mathrm{A},(\mathrm{M})$.

The following proposition allows us to obtain the development of a curve by means of the linear parallel displacement, that is, the parallel displacement defined by the corresponding linear connection.

Proposition 4.1. Given a curve $\tau=x_{t}, 0 \leqq t \leqq 1$, in M, set $Y_{t}=\tau_{0}^{t}\left(\dot{x}_{t}\right)$, where τ_{0}^{t} is the linear parallel displacement along τ from x_{t} to x_{0} and \dot{x}_{t} is the vector tangent lo τ at x_{i}. Let $\mathrm{C}_{1}, 0 \leqq \mathrm{t} \leqq 1$, be the curve in $A_{x_{0}}(M)$ starting from the origin (that is, $C_{0}=x_{0}$) such that C_{t} is parallel (in the affine space A, (M) in the usual sense) to Y_{t} for every t. Then C_{t} is the development of τ into $A_{x_{0}}(M)$.

Proof. Let u_{0} be any point in $L(M)$ such that $\pi\left(u_{0}\right)=x_{0}$ and u_{t} the horizontal lift of $x_{\boldsymbol{t}}$ in $\mathrm{L}(\mathrm{M})$ with respect to the linear connection. Let \tilde{u}_{t} be the horizontal lift of x_{t} in $A(M)$ with respect to the affine connection such that $\tilde{u}_{0}=u_{0}$. Since the homomorphism $\beta: A(M) \rightarrow L(M)=A(M) / \mathbf{R}^{n}$ (cf. $\left.\S 3\right)$ maps \tilde{u}_{t} into u_{t}, there is a curve \tilde{a}_{t} in $\mathbf{R}^{n} \subset \mathrm{~A}(\mathrm{n} ; \mathrm{R})$ such that $\tilde{u}_{t}=u_{t} \tilde{a}_{t}$ and that \tilde{a}_{0} is the ǐdentity. As in the proof of Proposition 3.1 of Chapter II, we shall find a necessary and sufficient condition for \tilde{a}_{t} in order that \tilde{u}_{t} be horizontal with respect to the affine connection. From

$$
\dot{\tilde{u}}_{t}=\dot{u}_{t} \tilde{a}_{t}+u_{t} \dot{\tilde{a}}_{t}
$$

which follows from Leibniz's formula as in the proof of Proposition 3.1 of Chapter II, we obtain

$$
\begin{aligned}
\tilde{\omega}\left(\dot{\vec{u}}_{t}\right) & =\operatorname{ad}\left(\tilde{a}_{t}^{-1}\right)\left(\tilde{\omega}\left(\dot{u}_{t}\right)\right)+\tilde{a}_{t}^{-1} \dot{\tilde{a}}_{t} \\
& =\operatorname{ad}\left(\tilde{a}_{t}^{-1}\right)\left(\omega\left(\dot{u}_{t}\right)+\theta\left(\dot{u}_{t}\right)\right)+\tilde{a}_{t}^{-1} \dot{\tilde{a}}_{t}=\operatorname{ad}\left(\tilde{a}_{l}^{-1}\right)\left(\theta\left(\dot{u}_{t}\right)\right)+\tilde{a}_{t}^{-1} \dot{\tilde{a}}_{t}
\end{aligned}
$$

where $\tilde{\omega}$ and ω are the connection forms of the affine and the linear connections respectively. Thus \tilde{u}_{t} is, horizontal if and only if $\theta\left(\dot{u}_{t}\right)=-\dot{\tilde{a}}_{t} \tilde{a}_{t}^{-1}$. Hence,

$$
Y_{t}=\tau_{0}^{t}\left(\dot{x}_{t}\right)=u_{0}\left(u_{t}^{-1}\left(\dot{x}_{t}\right)\right)=u_{0}\left(\theta\left(\dot{u}_{t}\right)\right)
$$

$$
=-u_{0}\left(\dot{\tilde{a}}_{t} \tilde{a}_{t}^{-1}\right)=-u_{0}\left(d \tilde{a}_{t} / d t\right)
$$

On the other hand, we have

$$
C_{t}=\tilde{\tau}_{0}^{t}\left(x_{t}\right)=u_{0}\left(\tilde{u}_{t}^{-1}\left(x_{t}\right)\right)=u_{0}\left(\tilde{a}_{t}^{-1}\left(u_{t}^{-1}\left(x_{t}\right)\right)\right)=u_{0}\left(\tilde{a}_{t}^{-1}(0)\right)
$$

Hence,

$$
d C_{t} / d t=-u_{0}\left(d \tilde{a}_{t} / d t\right)=Y_{t}
$$

QED.
Corollary 4.2 The development of a curve $\boldsymbol{\tau}=x_{t}, 0 \leqq \mathrm{t} \leqq 1$, into $A_{x_{0}}(M)$ is a line segment if and only if the vector fields \dot{x}_{t} along $\tau=x_{t}$ is parallel.

Proof. In Proposition 4.1, C_{t} is a line segment if and only if Y_{t} is independent oft. On the other hand, Y_{t} is independent of t if and only if \dot{x}_{t} is a parallel vector field along τ.

Q E D.

5. Curvature and torsion tensors.

We have already defined the torsion form Θ and the curvature form Ω of a linear connection. We now define the torsion tensor field (or simply, torsion) T and the curvature tensor field (or 'simply, curvature) R. We set

$$
\mathrm{T}(\mathrm{X}, Y)=u\left(2 \Theta\left(X^{*}, Y^{*}\right)\right) \quad \text { for } \mathrm{X}, \mathrm{Y} \in T_{\alpha}(M)
$$

where u is any point of $\mathrm{L}(\mathrm{M})$ with $\mathrm{n}(\mathrm{u})=\boldsymbol{x}$ and X^{*} and \dot{Y}^{*} are vectors of $L(M)$ at u with $\pi\left(X^{*}\right)=\mathrm{X}$ and $\pi\left(Y_{*}^{*}\right)=Y$. We already know-that $\mathrm{T}(\mathrm{X}, \mathrm{Y})$ isindependent of the choice of u, X^{*}, and Y^{*} (cf. Example 5.2 of Chapter II); this fact can be easily verified directly also. Thus, at every point \boldsymbol{x} of M, Tdefines a skew symmetric bilinear mapping $T,(M) \times T,(M) \rightarrow T,(M)$. In
other words, Tis a tensor field of type $(1,2)$ such that $T(X, Y)=$ - $\mathrm{T}(\mathrm{Y}, \mathrm{X})$. We shall call $T(X, Y)$ the torsion translation in $\mathrm{T},(\mathrm{M})$ determined by X and Y. Similarly, we set

$$
\mathrm{R}(\mathrm{X}, Y) Z=u\left(\left(2 \Omega\left(X^{*}, Y^{*}\right)\right)\left(u^{-1} Z\right) \quad \text { for } X, Y, Z \in T_{x}(M)\right.
$$

where u, ' X^{*} and Y^{*} are chosen as above. Then $R(X, Y) Z$ depends only on X, Y and Z, not on u, X^{*} and ' Y^{*}. In the above definition, $\left(2 \Omega\left(X^{*}, Y^{*}\right)\right)\left(u^{-1} Z\right)$ denotes the image of $u^{-1} Z \in \mathbf{R}^{n}$ by the linear endomorphism $2 \Omega\left(X^{*}, Y^{*}\right) \in \mathfrak{g l}(n ; \mathrm{R})$ of \mathbf{R}^{n}. Thus, $R(X ; Y)$ is an endomorphism of $T_{x}(M)$ and is called the curvature transformation of $T_{x}(M)$ determined by X and Y . It follows that R is a tensor field of type $(1,3)$ such that $R(X, Y)=$ $-R(Y, X)$.
theorem 5.1. In terms of coyariant differentiation, the torsion T and the curvature R can be expressed as follows: .
and,

$$
\mathrm{T}(\mathrm{X}, \mathrm{Y})=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

$$
R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z
$$

where X, Y and Z are vecto fields on M.
Proof. Let $\mathrm{X}^{*}, \mathrm{Y}^{*}$ and Z^{*} be the horizontal lifts of X, Y and Z, respectively. We first prove

Lemma $\left(\nabla_{X} Y\right)_{x}=u\left(X_{u}^{*}\left(\theta\left(Y^{*}\right)\right)\right)$, where $\pi(u)=\mathrm{x}$.
Proof of Lemma. In the lemma for Proposition 1.1, we proved that $\left(\nabla_{X} Y\right)_{x}=u\left(X_{u}^{*} f\right)$, where f is an \mathbf{R}^{n}-valued function defined by $f(u)^{i}=u^{-1}\left(Y_{x}\right)$. Hence, $f(U)=\theta\left(Y_{u}^{*}\right)$ for $u \in \mathrm{~L}(\mathrm{M})$. This completes the proof of the lemma.

We have therefore

$$
\begin{aligned}
T\left(X_{x}, Y_{x}\right) & =u\left(2 \Theta\left(X_{u}^{*}, Y_{u}^{*}\right)\right) \\
\mathrm{I} \quad & =u\left(X_{u}^{*}\left(\theta\left(Y^{*}\right)\right)-Y_{u}^{*}\left(\theta\left(X^{*}\right)\right)-\theta\left(\left[X^{*}, Y^{*}\right]_{u}\right)\right. \\
& =\left(\nabla_{X H}\right)_{x}-\left(\nabla_{Y} X\right)_{x}-[X, Y]_{x},
\end{aligned}
$$

since $\pi\left(\left[X^{*}, Y_{*}^{*}\right]\right)=[X, Y]$.
3. To prove the second equality, we-set $f=\theta\left(Z^{*}\right)$. so that f is an \mathbf{R}^{n}-valued function on $L(M)$ of type $\left(G L(n ; R), \mathbf{R}^{n}\right)$. We have
then

$$
\left(\left[\nabla_{X}, \quad \nabla_{\dot{Y}}\right] Z-\nabla_{[X, Y]} Z\right)_{x}
$$

$$
=u\left(X_{u}^{*}\left(Y^{*} f\right)-Y_{u}^{*}\left(X^{*} f\right)-\left(h\left[X^{*}, Y^{*}\right]\right)_{u} f\right)=u\left(\left(v\left[X^{*}, Y^{*}\right]\right)_{u} f\right)
$$

where h (resp. v) denotes the horizontal(resp. vertical) component. Let A be an element of $\operatorname{gl}(n ; \mathrm{R})$ such that $A_{u}^{*}=\left(v\left[X^{*}, Y^{*}\right]\right)_{u}$, where A^{*} is the fundamental vector field' corresponding to A. Then by Corollary 5.3 of Chapter II, we have

$$
2 \Omega\left(X_{u}^{*}, \quad Y_{u}^{*}\right)=-\omega\left(\left[X^{*}, \quad Y^{*}\right]_{u}\right)=-\dot{A}
$$

On the other hand, if a_{t} is the 1-parameter subgroup of $G L(n ; \mathrm{R})$ generated by A, then

$$
\begin{aligned}
A_{u}^{*} f & =\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(u a_{t}\right)-f(u)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[a_{t}^{-1}(f(u))-f(u)\right] \\
& =-A(f(u))
\end{aligned}
$$

where $\mathbf{A}(f(u))$ denotes the result of the. linear transformation $\mathbf{A}: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}^{n}$ applied to $f(\boldsymbol{u}) \in \mathbf{R}^{\boldsymbol{n}}$. Therefore, we have

$$
\begin{array}{r}
\left(\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z\right)_{x}=u\left(\left(v\left[X^{*}, Y^{*}\right]\right)_{u} f\right)=u(-A(f(u))) \\
\quad=u\left(2 \Omega\left(X_{u}^{*}, Y_{u}^{*}\right)(f(u))\right)=u\left(2 \Omega\left(X_{u}^{*}, Y_{u}^{*}\right)\left(u^{-1} Z\right)\right)=R(X, Y) Z
\end{array}
$$

Proposition 5.2. Let $X, Y, Z, W \in T_{x}(M)$ and $u \in L(M)$ with $\pi(u)=\mathrm{x}$. Let X^{*}, Y^{*}, Z^{*} and W^{*} be the standard horizontal vector fields on $\mathrm{L}(\mathrm{M})$ corresponding to $u^{-1} X, u^{-1} Y, u_{1}^{-1} Z$ and ${ }^{-1} \mathrm{~W}$ respectively, so that $\pi\left(X_{u}^{*}\right)=X, \pi\left(Y_{u}^{*}\right)=Y, \pi\left(Z_{u}^{*}\right)=Z_{\text {and }} \pi\left(W_{u}^{*}\right)=$ W. Then

$$
\left(\nabla_{x} T\right)(Y, Z)^{\curvearrowleft}=u\left(X_{u}^{*}\left(2 \Theta\left(Y^{*}, Z^{*}\right)\right)\right)
$$

and

$$
\left(\left(\nabla_{x} R\right)(Y, Z)\right) W=u\left(\left(X_{u}^{*}\left(2 \Omega\left(Y^{*} ; Z^{*}\right)\right)\right)\left(u^{-1} W\right)\right)
$$

Proof. We shall prove only the first formula. 'The proof of the second formula is similar to that of the first., We consider the torsion \mathbf{T} as a cross section of the tensor bundle $\mathbf{T}:(\mathrm{M})$ whose standard fibre is the tensor space \mathbf{T}_{2}^{1} of type $(1,2)$ over \mathbf{R}^{n}. Let f be the $\mathrm{T} \&$ valued function on $L(M)$ corresponding to the
torsion T as in Example 5.2 of Chapter II so that, if we set $\eta=u^{-1} Y$ and $\zeta=u^{-1} Z$, then

$$
f_{u}(\eta, \zeta)=u^{-1}(T(X, \mathbf{Z}))=\Theta\left(Y_{u}^{*}, \mathbf{Z} ;\right)
$$

By Proposition 1.3, $X_{u}^{*} f$ corresponds to $\nabla_{X} T$. Hence,

$$
\begin{aligned}
u^{-1}\left(\left(\nabla_{X} T\right)(Y, Z)\right) & =\left(X_{u}^{*} f\right)(\eta, \zeta) \\
\quad=X_{u}^{*}(f(\eta, \zeta)) & =X_{u}^{*}\left(2 \Theta\left(Y^{*}, Z^{*}\right)\right)
\end{aligned}
$$

thus proving our assertion.
QED.
Using Proposition 5.2, we shall express the Bianchi's identities (Theorem 2.5) in terms of T, \boldsymbol{R} and their covarıant derivatives.

Theorem 5.3. Let T and .R be \#he torsion and the curvature. of a linear connection of M. Then, for $X, Y, Z \in T_{x}(M)$, we have Bianchi's 1st identity:

$$
\subseteq\{R(X, Y) Z\}=\Im\left\{T(T(X, Y), Z)+\left(\nabla_{X} T\right)(Y, Z)\right\}
$$

Bianchi's 2nd identity:

$$
G\left\{\left(\nabla_{X} R\right)(Y, Z)+R(T(X, Y), Z)\right\}=0
$$

where \mathfrak{G} denotes the cyclic sum with respect to X, Y and Z.
In particular, if $\mathrm{T}=0$, then
Bianchi's 1st identity': $\subseteq\{R(X, Y) Z\}=0$;
Bianchi's 2nd identity:. . $\left.\Theta_{\{ }\left(\nabla_{X} R\right)(Y, Z)\right\}=0$.
Proof. 'Let \boldsymbol{u} be any point of $\mathbf{L (M)}$ such that $\pi(u)=x$. We lift \boldsymbol{X} to a horizontal vector at \boldsymbol{u} and then extend it to a standard horizontal vector field X^{*} on $\mathbf{L}(\mathbf{M})$ as in Proposition 5.2. Similarly, we define Y^{*} and Z^{*}..We shall derive the first identity from

$$
D \Theta \doteq \Omega \wedge \theta(\text { Theorem } 2.5)
$$

We have

$$
\begin{aligned}
6(\Omega \quad A \theta)\left(X_{u}^{*}, Y_{u}^{*}, Z_{u}^{*}\right) & =\Theta\left\{2 \Omega\left(X_{u}^{*}, Y_{u}^{*}\right) \theta\left(Z_{u}^{*}\right)\right\} \\
& =\Theta\left\{u^{-1}(R(X, Y) Z)\right\}
\end{aligned}
$$

On the other hand, by Proposition 3.11 of Chapter I, we have $6 D \Theta\left(X_{w}^{*}, Y_{u}^{*}, Z_{u}^{*}\right)=6 d \Theta\left(X_{u}^{*}, Y_{u}^{*}, Z_{u}^{*}\right)$

$$
=G\left\{X_{u}^{*}\left(2 \Theta\left(Y^{*}, Z^{*}\right)\right)-2 \Theta\left(\left[X^{*}, Y^{*}\right]_{u}, Z_{u}^{*}\right)\right\}
$$

By Praposition 5.2, $X_{u}^{*}\left(2 \Theta\left(Y^{*}, Z^{*}\right)\right)=u^{-1}\left(\left(\nabla_{X} T\right)(Y, Z)\right)$. It is therefore sufficient to prove that

$$
-2 \Theta\left(\left[X^{*}, Y^{*}\right]_{u}, Z_{u}^{*}\right)=u^{-1}(T(T(X, Y), Z)) .
$$

We observe first that

$$
\begin{aligned}
\pi\left(\left[X^{*}, Y^{*}\right]_{u}\right) & \left.=u\left(\theta\left[X^{*}, Y^{*}\right]_{u}\right)\right)=-u\left(2 d \theta\left(X_{u}^{*}, Y_{u}^{*}\right)\right) \\
& =-u\left(2 \Theta\left(X_{u}^{*}, Y_{u}^{*}\right)\right)=-\mathrm{T}(X, Y)
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
-2 \Theta\left(\left[X^{*}, Y^{*}\right]_{u}, Z_{u}^{*}\right) & =-u^{-1}\left(T\left(\pi\left[X^{*}, Y^{*}\right]_{u}, Z\right)\right) \\
& =\text { u-y T(} T(X, \mathrm{Y}), Z)) .
\end{aligned}
$$

We shall derive the second identity from

$$
D \Omega=0 \quad(\text { Theorem } 2.5)
$$

We have

$$
\begin{aligned}
0 & =3 D \Omega\left(X_{u}^{*}, Y_{u}^{*}, Z_{u}^{*}\right) \\
& =\subseteq\left\{X_{u}^{*}\left(\Omega\left(Y^{*}, Z^{*}\right)\right)-\Omega\left(\left[X^{*}, Y^{*}\right]_{u}, Z_{u}^{*}\right)\right\}
\end{aligned}
$$

On the other hand, by Proposition 5.2; we have

$$
X_{u}^{*}\left(\Omega\left(Y^{*}, Z^{*}\right)\right)=\frac{1}{2} u^{-1}\left(\left(\nabla_{X} R\right)(Y, \quad Z)\right)
$$

As in the proof of the first identity, we have

$$
-\Omega\left(\left[X^{*}, Y^{*}\right]_{u}, Z_{u}^{*}\right)=\frac{1}{2} u^{-1}(R(T,(X, Y), Z),
$$

The second identity follows from these three formulas.
Remark. Theorem 5.3 can be proved from the formulas in Theorem 5.1 (see, for instance; Nomizu [7, p. 611]).

Prooosirmon 5.4. Let B and B^{\prime} be arbitrary standard horizontal vector fields on $L(M)$. Then we have
(1) If $T=0$, then $\left[B, B^{\prime}\right]$ is vertical;
(2) If $R=0$, then $\left[B, B^{\prime}\right]$ is horizontal.

Proof. (1) $\theta\left(\left[B, B^{\prime}\right]\right)=-2 d \theta\left(B, B^{\prime}\right)=-2 \Theta\left(B, B^{\prime}\right)=0$. Hence, $\left[B, B^{\prime}\right]$ is vertical. (2) $\omega\left(\left[B, B^{\prime}\right]\right)=-2 d \omega\left(B, B^{\prime}\right)=$ $-2 \Omega\left(B, B^{\prime}\right)=0$. Hence, $\left[B, B^{\prime}\right]$ is horizontal: ${ }^{\prime}$ QED.
Let $P\left(u_{0}\right)$ be the holonomy subbundle of $\mathcal{L}(M)$ through a point $u_{0} \in \mathrm{~L}(\mathrm{M})$ and $\Psi\left(u_{0}\right)$ the linear holonomy group with reference point u_{0}. Let A,, \ldots, A, be a basis of the Lie algebra of
$\Psi\left(u_{0}\right)$ and $A_{1}^{*}, \ldots, A_{r}^{*}$ the corresponding fundamental vector fields. Let B_{1}, \ldots, B_{n} be the standard horizontal vector fields corresponding to the basis e_{1}, \ldots, e_{n} of \mathbf{R}^{n}. These vector fields $A_{1}^{*}, \ldots, A_{r}^{*}, B_{1}, \ldots, B_{n}$ (originally defined on $L(M)$), restricted to $P\left(u_{0}\right)$, define vector fields on $P\left(u_{0}\right)$. Just as in Proposition 2.6, they define an absolute parallelism on $P\left(u_{0}\right)$. We know that [A_{i}^{*}, A_{j}^{*}] is the fundamental vector field corresponding to $\left[A_{i}, \mathrm{~A}\right.$,] and' hence is a linear combination of $A_{1}^{*}, \ldots, A_{r}^{*}$ with constant coefficients. By Proposition 2.3, $\left[A_{i}^{*}, B_{i}\right]$ is the standard horizontal vector field corresponding to $A_{i} e_{j} \in \mathbf{R}^{n}$. The following proposition gives some information about $\left[B_{i}, B_{j}\right]$.
Proposition 5.5. Let $P\left(u_{0}\right)$ be the holonomy subbundle of $L(M)$ through u_{0}. Let B and B '. be arbitrary standard horizontal wector fields. Then we have.,
(1) If $\nabla T=0$, then the horizontal component" of $\left[B, B^{\prime}\right]$ coincides with a standard horizontal vector field on $P\left(u_{0}\right)$.
(2) If $\nabla R=0$, then the vertical component of $\left[B, B^{\prime}\right]$, coincides with the fundamental vectorjeld A^{*} on $P\left(u_{0}\right)$, which corresponds to an element A of the Lie algebra of the linear holonomy group $\Psi\left(u_{0}\right)$.

Proof. (I) Let X^{*} be any horizontal vector at $u \in L(M)$. Sèt $X=\pi\left(X^{*}\right), Y=\pi\left(B_{u}\right)$ and $Z=\pi\left(B_{u}^{\prime}\right)$. By Proposition 5.2; फै have'

$$
X^{*}\left(2 \Theta\left(B, B^{\prime}\right)\right)=u^{-1}\left(\left(\nabla_{X} T\right)(Y, Z)\right)=0 . .
$$

This means that $\Theta\left(B, B^{\prime}\right)$ is a constant function (with values in $\mathrm{R}^{\prime \prime}$) on $P\left(u_{0}\right)$. Since $\theta\left(\left[B, \mathrm{~B}^{\prime}\right]\right)=-2 \Theta\left(B, B^{\prime}\right)$, the horizontal component of $\left[B, B^{\prime}\right]$ coincides on $P\left(u_{0}\right)$ with the 'standard horizontal vector field corresponding to the element $-2 \Theta\left(B, B^{\prime}\right)$ of \mathbf{R}^{n}.
(2) Again, by Proposition 5.2, VR $=0$ implies

$$
X^{*}\left(\Omega\left(B, B^{\prime}\right)\right)=0
$$

This means that $\Omega\left(B, B^{\prime}\right)$ is a constant function on $P\left(u_{0}\right)$ (with values in the Lie algebra of $\left.\Psi^{\prime}\left(u_{0}\right)\right)$. Since $\omega\left(\left[B, B^{\prime}\right]\right)=$ $-2 \Omega\left(B, B^{\prime}\right)$, the vertical component of $\left[B, B^{\prime}\right]$ coincides on $P\left(u_{0}\right)$ with the fundamental vector field corresponding to the element $-2 \Omega\left(B, B^{\prime}\right)$ of the Lie algebra of $\Psi^{\prime}\left(u_{0}\right)$.

It follows that, if $\mathrm{VT}=0$ and $\mathrm{VR}=0$, then the restriction of $\left[B_{i}, B_{j}\right]$ to $P\left(u_{0}\right)$ coincides with a linear combination of A_{1}^{*}, \ldots,
$A_{r}^{*}, B_{1}, \ldots, B_{n}$ with constant coefficients on $P\left(u_{0}\right)$. Hence we have
Proof. This is an immediate consequence of Corollary 4.2.
QED.
Corollary 5.6. Let \mathfrak{g} be the set of all vector fields \mathbf{X} on the holonomy bundle $P\left(u_{0}\right)$ such that $\theta(X)$ and $\omega(X)$ are constant functions on $P\left(u_{0}\right)$ (with values in \mathbf{R}^{n} and in the Lie algebra of $\Psi\left(u_{0}\right)$, respectively). If $\nabla T=0$ and $V R=0$, then \mathfrak{g} forms a Lie algebra and $\operatorname{dim} \mathfrak{g}=$ $\operatorname{dim} P\left(u_{0}\right)$.

The vector fields $A_{1}^{*}, \ldots, A_{r}^{*}, B_{1}, \ldots, B_{n}$ defined above form a basis for \mathfrak{g}.

6. Geodesics

A curve $\tau=x_{t}, a<t<b$, where $-\infty \leqq a<b \leqq \infty$, of class C^{1} in a manifold \mathbf{M} with a linear connection is called a geodesic if the vector field $\mathrm{X}=\dot{x}_{t}$ defined along τ is parallel along τ, that is, if $\nabla_{X} X$ exists and equals 0 for all t, where \dot{x}_{t} denotes the vector tangent to τ at $\boldsymbol{x}_{\boldsymbol{t}}$. In this definition of geodesics, the parametrization of the curve in question is important.

Proposition 6.1. Let τ be a curve of class C^{1} in M. A parametrization which makes τ into a geodesic, if any, is determined up to an affine transformation $\mathbf{t} \rightarrow s=$ at $+\beta$, where $\mathbf{a} \neq 0$ and β are constants.

Proof. Let x_{t} and y_{s} be two parametrizations of a curve τ which make τ into a geodesic. Then s is a function oft, $\mathrm{s}=\mathbf{s}(\mathbf{t})$, and $y_{s(t)}=x_{t}$. The vector \dot{y}_{s} is equal to $\frac{d t}{d s} \dot{x}_{t}$. Since the parallel displacement along $\boldsymbol{\tau}$ is independent of parametrization (cf.' $\$ 3$ of Chapter II), $\frac{d t}{d s}$ must be a constant different from zero. Hence, $s=$ at $+\beta$, where a $\neq 0$.

QED.
If $\boldsymbol{\tau}$ is a geodesic, any parameter t which makes τ into a geodesic is called an affine parameter. In particular, let x be a point of a geodesic τ and $\mathrm{X} \in T_{\boldsymbol{x}}(M)$ a vector in the direction of τ. Then there is a unique affine parameter t for $\tau, \tau=x_{t}$, such that $x_{0}=x$ and $\dot{x}_{0}=\mathrm{X}$. The parameter t is called the affine parameter for $\boldsymbol{\tau}$ determined by (x, X).

PROPOSITION 6.2. A curve $\boldsymbol{\tau}$ of class C^{1} through $x \in M$ is a geodesic if and only if its development into, $\mathrm{T},(\mathrm{M})$ is (an open interval of) a straight line.

Another useful interpretation of geodesics is given in terms of the bundle of linear frames $\mathbf{L}(\mathbf{M})$.

Proposition 6.3. The projection onto M of any integral curve of a standard horizontal vector field of $\mathrm{L}(\mathrm{M})$ is a geodesic and, converse\& every geodesic is obtained in this way.

Proof. Let \mathbf{B} be the standard. horizontal vector field on $\mathbf{L}(\mathbf{M})$ which corresponds to an element $\boldsymbol{\xi} \in \mathbf{R}^{n}$. Let b_{t} be an integral curve of B. We set $x_{t}=\pi\left(b_{t}\right)$. Then $\dot{x}_{t}=\pi\left(b_{t}\right)=\pi\left(B_{b_{t}}\right)=b_{t} \xi$, where $b_{t} \boldsymbol{\xi}$ denotes the image of $\boldsymbol{\xi}$ by the linear mapping $\mathrm{b},: \mathbf{R}^{n} \rightarrow$ $T_{x_{t}}(M)$. Since b_{t} is a horizontal lift of $\boldsymbol{x}_{\boldsymbol{t}}$ and $\boldsymbol{\xi}$ is independent of $\mathbf{t}, b_{\boldsymbol{t}} \boldsymbol{\xi}$ is parallel along the curve $\boldsymbol{x}_{\boldsymbol{t}}$ (see $\$ 7$, Chapter II, in particular, before Proposition 7.4).

Conversely, let $\boldsymbol{x}_{\boldsymbol{t}}$ 'be a geodesic' in \boldsymbol{M} defined in some open interval containing 0 . Let u_{0} be any' point of $L(M)$ such that $\pi\left(u_{0}\right)=x_{0}$. We set $\boldsymbol{\xi}=u_{0}^{-1} \dot{x}_{0} \in \mathbf{R}^{n}$. Let u_{t} be the horizontal lift of $\boldsymbol{x}_{\boldsymbol{t}}$ through $\boldsymbol{u}_{\boldsymbol{0}}$. Since $\boldsymbol{x}_{\boldsymbol{i}}$ is a geodesic, we have $\dot{x}_{t}=\dot{u}_{\boldsymbol{t}} \boldsymbol{\xi}$. Since u_{t} is horizontal and -since $\theta\left(\dot{u}_{t}\right)=u_{t}^{-1}\left(\pi\left(\dot{u}_{t}\right)\right)=u_{t}^{-1} \dot{x}_{t}=\xi, u_{t}$ is an integral curve of the standard horizontal vector field B corresponding to $\boldsymbol{\xi}$.

QED.
As an application of Proposition 6.3, we obtain the following
THEOREM 6.4. For any point $x \in \mathrm{M}$ and for any vector $\mathrm{X} \in T_{x}(M)$, there is a unique geodesic with the initial. condition (x, X), that is, a unique geodesic x_{t} such that $x_{0}=x$ and $\dot{x}_{0}=\mathrm{X}$.

Another consequence of Proposition 6.3 is that a geodesic, which is a curve of class $C^{\mathbf{1}}$, is automatically, of class C^{∞} (provided that the linear Connection is of class C^{∞}). In fact, every standard horizontal vector field is of class C^{∞} and hence its integral curves are all of class C^{∞}. The projection onto M of a curve of class C^{∞} in $L(M)$ is a curve of class C^{∞} in M .
A linear connection of \mathbf{M} is said to be complete if every geodesic can be xtended to a geodesic $\boldsymbol{\tau}=\boldsymbol{x}_{\boldsymbol{t}}$ defined for - co \lll co, where C is an affine parameter. In other words, for any $x_{1} \in M$ and $\mathrm{X} \in \mathrm{T},(\mathrm{M})$, the geodesic $\boldsymbol{\tau}=x_{t}$ in Theore n 6.4 with the initial condition (x, X) is defined for all values of $\boldsymbol{\square} \quad-\mathrm{co}<\boldsymbol{C}<$ co.

Immediate from Proposition 6.3 is the following
Proposititon 6.5. A linear connection is complete if and only every standard horizontal vector field on $\mathrm{L}(\mathrm{M})$ is complete.

We recall that a vector field on a manifold is said to be complete if it generates a global-1-parameter group of transformations of the manifold.

When the linear connection is complete, we can define the exponential map at each point $\mathrm{x} \in M$ as follows. For each $\mathrm{X} \epsilon T_{x}(M)$, let $\tau=x_{t}$ be the geodesic with the initial condition (x, X) as in Theorem 6.4. We set

$$
\exp \mathrm{X}=x_{1}
$$

Thus we have a mapping of $\mathrm{T},(\mathrm{M})$ into \dot{M} lor each x . We shall later (in \$8) define the exponential map in the case where the linear connection is not necessarily complete and discuss its differentiability and other properties.

7. Expressions in local coordinate systems

In this section, we shall express a linear connection and related concepts in terms of local coordinate systems.

Let M be a manifold and U a coordinate neighborhood in \dot{M} with a local coordinate system x^{1}, \ldots, x^{n}. We denote by X_{i} the vector field $\partial / \partial x^{i}, \mathrm{i}=1, \ldots, n$, defined in U. Every linear frame at a point x of U can be uniquely expressed by'

$$
\left(\Sigma_{i} X_{1}^{i}\left(X_{i}\right)_{x}, \ldots ; \Sigma_{i} X_{n}^{i}\left(X_{i}\right)_{x}\right)
$$

where $\operatorname{det}\left(X_{i}^{j}\right) \neq 0$. We take $\left(x^{i}, X_{k}^{j}\right)$ as a local coordinate system in $\pi^{-1}(U) \subset \mathrm{L}(\mathrm{M})$. (cf. Example 5.2 of Chapter I). Let (Y_{k}^{j}) be the inverse matrix of $\left(X_{k}^{j}\right)$ so that $\Sigma_{j} X_{i}^{j} Y_{j}^{k}=\Sigma_{j} Y_{i}^{j} X_{j}^{k}=\delta_{i}^{k}$.

We shall express first the canonical form θ in terms of the local coordinate system $\left(x^{i}, X_{k}^{j}\right)$. Let $\mathrm{e},, \ldots, \ell_{n}$ be the natural bdis for \mathbf{R}^{n} and set

$$
8=\Sigma_{i} \theta^{i} e_{i}
$$

Proposition 7.1. In terms of the local coordinate system $\left(x^{i}, X_{k}^{j}\right)$, the canonical form $\theta=\Sigma_{i} \theta^{i} e_{\boldsymbol{i}}$ can be expressed as follows:

$$
\theta^{i}=\Sigma_{j} Y_{j}^{i} d x^{j}
$$

III. LINEAR AND/AFFINE CONNECTIONS

Proof.. Let u be a point of $L(M)$ with coordinates (xi, $\left.X_{k}^{j}\right)$ so that u maps \boldsymbol{e}_{i} into $\Sigma_{j} X_{i}^{j}\left(X_{j}\right)_{x}$, where $\mathrm{x}=\pi(u)$. If $X^{*} \in T_{u}(L(M))$ and if

$$
\quad X^{*}=\Sigma, \lambda^{j}\left(\frac{\partial}{\partial x^{j}}\right)_{u}+\Sigma_{j, k} \Lambda_{k}^{j}\left(\frac{\partial}{\partial X_{k}^{j}}\right)_{u}
$$

so that $\pi\left(X^{*}\right)=\Sigma_{j} \lambda^{j}\left(X_{j}\right)_{x}$, then

$$
\begin{equation*}
\theta\left(X^{*}\right)^{\prime}=u^{-1}\left(\Sigma_{j} \lambda^{j}\left(X_{i}\right)_{x}\right)=\Sigma_{i, j}\left(Y_{j}^{i} \lambda^{j}\right) e_{i} \tag{QED.}
\end{equation*}
$$

Let ω be the connection form of a linear connection I ' of M. With respect to the basis $\left\{E_{i}^{j}\right\}$ of $\mathfrak{g l}(n ; \mathrm{R})$, we write

$$
\omega=\Sigma_{i, j} \omega_{j}^{i} E_{i}^{j}
$$

Let σ be the cross section of $L(M)$ over U which, assigns to each $x \bullet$ ' U the linear frame $\left(\left(X_{1}\right)_{x}, \cdots,\left(X_{n}\right)_{x}\right)$. We set

$$
\omega_{U}=\sigma^{*} \omega
$$

Then ω_{U} is a $\mathfrak{g l}(n ; \mathrm{R})$-valued 1-form defined on U. We define n^{3} functions $\Gamma_{j k}^{i}, i, j, k=1, \ldots, n$, on U by

$$
: \quad \therefore \quad \omega_{\ddot{U}}^{\circ}=\Sigma_{i, j, k}\left(\Gamma_{j k}^{4} d x^{5}\right) E_{i}^{k}
$$

These functions $\Gamma_{j k}^{i}$ are called the components (or Christoffel's symbols) 'of the linear connection I' with respect to the local coordinate system x^{1}, \ldots, x^{n}. It should be noted that they are not the components' of a tensor field. En fact, these components are subject to the following transformation rule.
Proposition 7.2. Let Γ be a linear connection of M : Let $\Gamma_{j n}^{i}$ and $\Gamma_{j k}$ be the components of T with respect to "local coordinate. systems $x^{\mathbf{1}}, \ldots, x^{n}$ and $\bar{x}^{1} ; \ldots, \bar{x}^{n}$, respectively. In the intersection of the two coordinate neighborhoods, we have

$$
\Gamma_{\beta \gamma}^{\alpha}=\sum_{i j, z} \Gamma_{j k}^{i} \frac{\partial x^{j}}{\partial \bar{x}^{\beta}} \frac{\partial x^{k}}{\partial \bar{x}^{\gamma}} \frac{\partial \bar{x}^{\alpha}}{\partial x^{i}}+\Sigma_{i} \frac{\partial^{2} x^{i}}{\partial \bar{x}^{\beta} \partial \bar{x}^{\gamma}} \frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} .
$$

Proof. We sderive the, above formula frem Proposition 1.4 of Chapter II. Let V be the coordinate neighborhood where the coordinate system $\bar{x}^{3}, \ldots, \bar{x}_{n}^{n}$ is valid. Let' $\bar{\sigma}$ be the cross section of $\mathrm{L}(\mathrm{M})$ over V which assigns to each $\mathrm{x} \in V$ the linear frame
$\left(\left(\partial / \partial \bar{x}^{1}\right)_{x}, \ldots,\left(\partial / \partial \tilde{x}^{n}\right)_{x}\right)$. We define a mapping $\psi_{U V}: U \cap V \rightarrow$ $G L(n ; \mathrm{R})$ by

$$
\bar{\sigma}(x)=\sigma(x) \cdot \psi_{U V}(x) \quad \text { for } \mathrm{x} \in U \cap V .
$$

Let φ be the (left invariant $\mathfrak{g l}(n ; \mathrm{R})$-valued) canonical 1 -form on $G L(n ; \mathrm{R})$ defined in. $\$ 4$ of Chapter-I; this form was denoted by θ in $\$ 4$ of Chapter I and in $\S 1$ of Chapter II. If $\left(s_{j}^{i}\right)$ is the natural coordinate system in $G L(\boldsymbol{n} ; \mathrm{R})$ and if $\left(t_{j}^{i}\right)$ denotes the inverse matrix of $\left(s_{j}^{i}\right)$, then

$$
\varphi=\Sigma_{i, j, k} t_{j}^{i} d s_{k}^{f} E_{i}^{k}
$$

the proof being similar to that of Proposition 7.1, It is easy to verify that

$$
\psi_{U V}=\left(\partial x^{i} / \partial \bar{x}^{j}\right)
$$

and hence

$$
\psi_{U V}^{*} \varphi=\Sigma_{\alpha, \beta}\left(\Sigma_{i} \frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} d\left(\frac{\partial x^{i}}{\partial \bar{x}^{\beta}}\right)\right) E_{\alpha}^{\beta}=\Sigma_{\alpha, \beta}\left(\Sigma_{i, \nu} \frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} \frac{\partial^{2} x^{i}}{\partial \bar{x}^{\beta} \partial \bar{x}^{\gamma}} d \bar{x}^{\gamma}\right) E_{\alpha}^{\beta} .
$$

With our notation, the formula in Proposition 1.4 of Chapter II can be expressed as follows:

$$
\omega_{V}=\left(\operatorname{ad}\left(\psi_{U V}^{-1}\right)\right) \omega_{U}+\psi_{U V}^{*} \varphi .
$$

By a simple calculation, we see that this formula is equivalent to the transformation rule of our proposition.

QED.
Froth the components $\Gamma_{j k}^{i}$ we can reconstruct the connection form ω.

Proposition 7.3. Assume that, for each local coordinate system $x l, \ldots, x^{n}$, there is given a set of functions $\Gamma_{j k}^{i}, i, j, \mathrm{k}=1, \ldots, n$, in such a way that they satisfy the tranfformation rule of Proposition 7.2. Then there is a unique linear connection I' whose components with respect to x^{1}, \ldots, x^{n} are precisely the given functions $\Gamma_{j k}^{i j}$. M oreover, the connection form $\omega=\Sigma_{i} \varphi_{i}^{i} E_{i}^{5}$ is given in terms of the local coordinate system (xi, X_{k}^{j}) by

$$
\omega_{j}^{i}=\Sigma_{k} Y_{k}^{i}\left(d X_{j}^{k}+\Sigma_{l, m} \Gamma_{m}^{k} X_{j}^{l} d x^{m}\right), \quad i, j=1 ; \therefore \ldots,
$$

Proof. It is easy to verify that the' form $\boldsymbol{\omega}$ defined by the above formula defines a connection in $L(M)$, that is, ω satisfies the conditions (a^{\prime}) and (b^{\prime}) of Proposition 1. of Chapter II. The fact that ω is independent of the local coordinate system used
follows from the transformation rule of $\Gamma_{i k}^{i}$; this can be proved by reversing the process in the proof of Proposition 7.2. The cross section $\sigma: U \rightarrow \mathrm{~L}(\mathrm{M})$ used above to define ω_{U} is given in terms of the local coordinate systems $\left(x^{i}\right)$ and $\left(x^{i}, X_{k}^{j}\right)$ by $\left(x^{i}\right) \rightarrow\left(x^{i}, \boldsymbol{\delta}_{k}^{j}\right)$. Hence, $\pi_{*}^{*} \mu_{s_{j}}^{i}=\Sigma_{m} \Gamma_{m j}^{i} d x^{m}$. This shows that the components of the connection Γ defined by ω are exactly the functions $\Gamma_{j k}^{j}$. QED:
The components of a linear connection can be expressed also in terms of covariant derivatives.
Proposition 7.4. Let x^{1}, \ldots, x^{n} be a local coordinate system in M with a linear connection I'. Set $X_{i}=\partial / \partial x^{i}, i=1, \ldots, n$. Then the components $\Gamma_{j k}^{i}$ of Γ with respect to x^{1}, \ldots, x^{n} are given by

$$
\nabla_{X_{i}} X_{i}=\Sigma_{k} \Gamma_{j i}^{k} X_{k}
$$

Proof. Let X_{j}^{*} be the horizontal lift of X_{j}. From Proposition 7.3, it follows that, in terms of the coordinate system (x^{i}, X_{k}^{j}), X^{*} is given by

$$
\ddot{X}_{j}^{*} \stackrel{\mathscr{2}}{=}\left(\partial / \partial x^{j}\right)-\Sigma_{i, k, l} \Gamma_{j k}^{i} X_{l}^{k}\left(\partial \partial \partial X_{l}^{i}\right)
$$

To apply Proposition 1.3 , let ρ be the \mathbf{R}^{n}-valued function on $\pi^{-1}(U) \subset \mathrm{L}(\mathrm{M})$ which corresponds to X_{i}. Then

$$
f=\boldsymbol{\Sigma}_{k} Y \text { fe, }
$$

A simple calculation shows that

$$
X_{j}^{*} f=\dot{\Sigma}_{k, L} \dot{\Gamma}_{j i}^{\prime} Y_{l}^{k} e_{k}
$$

By Proposition 1:3, $X_{j}^{*} f$ is the function corresponding to $\nabla_{X_{f}} X_{i}$ and -hence

$$
\nabla_{X_{j}} X_{i}=\Sigma_{k} \Gamma_{j i}^{k} X_{k} .
$$

QED.
'PROPOSITTON 7.5: Assume that a mapping $\mathfrak{X}(M) \times X(M) \rightarrow$ ${ }^{(}(M)$, denoted by $(X, Y) \rightarrow \nabla_{X} Y$, is given so as to satisfy the conditions (1), (2), (3) and (4) of Proposition 2.8. Then there is a unique linear connection Γ of M such that $\nabla_{X} Y$ is the covariant derivative of Y in -the direction of X with respect to I^{\prime}.
Proof. Leaving the detail to the reader, we shall give here an outline of the proof. Let $x \cdot M$. If $X, \mathrm{X}^{\prime}, \mathrm{Y}$ and Y^{\prime} arc vector fields on M and if $\mathrm{X}=\mathrm{X}^{\prime}$ and $\mathrm{Y}=\mathrm{Y}^{\prime}$ in a neighborhood of x, then $\left(\nabla_{X} Y\right)_{x}=\left(\nabla_{X^{\prime}} Y^{\prime}\right)_{x}$. This implies that the given mapping
$\mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ induces a mapping $\mathrm{I}(\mathrm{U}) \times 3(\mathrm{U}) \rightarrow$ $\mathrm{X}(\mathrm{U})$ satisfying, the same conditions of Proposition 2.8 (where U. is any open set of M). In particular, if U is a coordinate neighborhood with a locall coordinate system x^{1}, \ldots, x^{n}, we define n^{3} functions $\Gamma_{j k}^{i}$ on U by the formula given in Proposition 7.4. Then these functions satisfy the transformation rule of Proposition 7.2. By Proposition 7.3, they define a linear connection, say, Γ. It is dear that $\nabla_{X} Y$ is the covariant derivative of Yin the direction of X with respect to Γ.

QED.
Let η^{i} be the components of a vector field \boldsymbol{Y} with respect to a local coordinate system $x^{\mathbf{1}}, \ldots, \mathrm{I}, \mathrm{Y}=\boldsymbol{\Sigma}_{i} \eta^{i}\left(\partial / \partial x^{i}\right)$. Let $\eta_{; j}^{i}$ be the components of the covariant differential VY so that $\nabla_{X} \eta_{i} Y=$ $\Sigma_{i} \eta_{; j}^{i} X_{i}$, where $X_{i}=\partial / \partial x^{i}$. From Propositions 7.4 and 2.8 , we obtain the following formula :

$$
\eta_{; j}^{i}=\partial \eta^{i} / \partial x^{j}+\Sigma_{k} \Gamma_{j k}^{i} \eta^{k}
$$

If X is a vector field with components $\boldsymbol{\xi}^{\boldsymbol{i}}$, then the components of $\nabla_{X} Y$ are given by $\Sigma_{j} \eta_{; j}^{i} \xi^{i}$.

More generally, if K is a tensor field of type (r, s) with componen ts $K_{j_{1}}^{i_{1}} \ldots . i_{i_{r}}$, then the components of VK are given by

$$
\begin{aligned}
& K_{j_{1} \ldots j_{s} ; k}^{i_{1} \ldots i_{n}}=\partial K_{j_{1} \ldots j_{s}}^{i i_{1} \ldots i_{r}} / \partial x^{k}+\Sigma_{\alpha=1}^{r}\left(\Sigma_{l} \Gamma_{k l}^{i_{k}} K_{j_{1}}^{i_{1} \ldots j_{s}} i_{s} \ldots i_{r}\right) \\
& -\Sigma_{\beta=1}^{s}\left(\Sigma_{m} \Gamma_{k j_{\beta}}^{m} K_{j_{1} \ldots m, \ldots j_{s}}^{i_{1} \ldots i_{r}}\right),
\end{aligned}
$$

where l takes the place of i_{α} and m takes the place of j_{β}. The proof of this formula is the same as the one for a vector field, except that Proposition 2.7 has to be used in place of Proposition 2.8. If X is a vector field with components ξ^{i}, then the components of $\nabla_{X} K$ are given by

$$
\Sigma_{k} K_{j_{1} \ldots j_{i} ; k}^{i_{1} \ldots i_{r}} \xi^{k}
$$

The covariant derivatives of higher order can be defined similarly. For a tensor field K with components $K_{j_{1}}^{i_{1}, . . i_{r},} \boldsymbol{\nabla}^{m} K$

The components $\dot{T}_{j k}^{i}$ of thetorsion T and the components $R_{j k l}^{i}$ of the curvature \mathbf{R} are defined by

$$
T\left(X_{j}, X_{k}\right)=\Sigma_{i} T_{j k}^{i} X_{i}, \quad R\left(X_{k}, X_{l}\right) X_{j}=\Sigma_{i} R_{j k l}^{i} X_{i}
$$

Then they can be expressed in terms of the components $\Gamma_{j k}^{i}$ of the linear connection Γ as follows.

$$
\begin{array}{cc}
\text { Proposition } \text { 7.6. We have } \\
& T_{j k}^{i}=\Gamma_{j k}^{i}-\Gamma_{k j}^{i} ; \\
R_{j k l}^{i}=\left(\partial \Gamma_{l j}^{i} / \partial x^{k}-\partial \Gamma_{k j}^{i} / \partial x^{l}\right)+\Sigma_{m}\left(\Gamma_{l j}^{m} \Gamma_{k m}^{i}-\Gamma_{k j}^{m} \Gamma_{l m}^{i}\right)
\end{array}
$$

Proof. These formulas follow immediately from Theorem 5.1 and Proposition 7.4.

QED.
The proof of the following proposition is a straightforward calculation.

$$
\begin{aligned}
& \text { Proposition } \\
& f_{; k ; j}-f_{; j ; k}=\Sigma_{i} T_{k j}^{i} f_{; i} \text {. (1) } I f f \text { is a function defined on } \mathrm{M} \text {, then }
\end{aligned}
$$

(2) If X is a vector field on M with components ξ^{i}, then,
$\underline{\xi_{; l ; k}^{i}-\xi_{; k ; l}^{i}=\Sigma_{j} R_{j k l}^{i} \xi^{j} /+\Sigma_{j} T_{l k}^{j} \xi_{: i}^{i}}$
Since $n^{2}+\mathbf{n}$ l-forms $\theta^{i}, \omega_{\mathbf{k}}^{j}, \bar{i}, j, \mathbf{k}=1, \ldots, n$, define an absolute parallelism (Proposition 2.6), every differential form on $\mathrm{L}(\mathrm{M})$ can be expressed in terms of these 1 -forms and functions. Since the torsion form Θ and the curvature form Ω are'tensorial forms, they can be expressed in terms of $\mathbf{n} \mathbf{l}$-forms $\boldsymbol{\theta}^{\boldsymbol{i}}$ and functions. We define a set of functions $\mathcal{T}_{j k}^{i}$ and $\tilde{R}_{j k l}^{i}$ on $\mathbf{L}(\mathrm{M})$ by

$$
\begin{array}{ll}
\Theta^{i}=\Sigma_{j, k} \frac{1}{2} \tilde{T}_{j k}^{i} \theta^{j} \wedge \theta^{k}, \quad \tilde{T}_{j k}^{i}=-\tilde{T} \tilde{k}_{k j}^{i}, \\
\Omega_{j}^{i}=\Sigma_{k, l} \frac{1}{2} \tilde{R}_{j k l}^{i} \theta^{k} \wedge \theta^{l}, \quad \tilde{R_{j k l}^{i}}=-\tilde{R_{j k}^{i}} .
\end{array}
$$

These functions are related to the components of the torsion \mathbf{T} and the curvature \mathbf{R} as follows. Let $\sigma: U \rightarrow \mathbf{L}(\mathrm{M})$ be the cross section over U defined at the beginning of this section. Then

$$
\sigma^{*} T_{j k}^{i}=T_{j k}^{i}, \sigma^{*} \tilde{R}_{j k l}^{i}=R_{j k l}^{i}
$$

These formulas follow immediately from Proposition 7.6 and from

$$
\begin{gathered}
\sigma^{*} d \theta^{i}=-\Sigma_{j} \sigma^{*} \omega_{j}^{i} \wedge \sigma^{*} \theta^{j}+\sigma^{*} \Theta^{i} \\
\sigma^{*} d \omega_{j}^{i}=-\Sigma_{k} \sigma^{*} \omega_{k}^{i} \wedge \sigma^{*} \omega_{j}^{k}+\sigma^{*} \Omega_{j}^{i} \\
\sigma^{*} \theta^{i}=d x^{i} \text { and } \sigma^{*} \omega_{j}^{i}=\Sigma_{k} \Gamma_{k j}^{i} d x^{k}
\end{gathered}
$$

Proposition
7.8. Let $x^{i}=x^{i}(t)$ be the equations of a curve
$\tau=x_{\boldsymbol{t}}$ of class C^{2}. Then τ is a geodesic if and only if

$$
\frac{d^{2} x^{i}}{d t^{2}}+\Sigma_{j, k} \Gamma_{j k}^{i} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=0, \quad \mathrm{i}=\mathrm{i}, . ., \mathrm{n}
$$

Proof. The components of the vector field \dot{x}_{t} along τ are given by $d x^{i} / d t$. From 'the formula for the components of $\nabla_{X} Y$ given above, we see that, if we set $\mathrm{X}=\dot{x}_{t}$, then $\nabla_{X} X=0$ is equivalent to the above equations.

QED.
We shall compare two or more linear connections by their components.

Proposition 7.9. Let Γ be a linear connection of M with components $\Gamma_{j k}^{i}$. For each fixed $\mathrm{t}, 0 \leqq \mathrm{t} \leqq 1$, the set of functions $\Gamma_{j k}^{* i}=$ $t \Gamma_{j k}^{i}+(1-\mathrm{t}) \Gamma_{k j}^{i}$ defines a linear connection $I^{\prime *}$ which has the same geodesics as Γ. In particular, $\Gamma_{j k}^{* i}=\frac{1}{2}\left(\Gamma_{j k}^{i}+\Gamma_{k j}^{i}\right)$ define a linear connection with vanishing torsion.

Proof. Our proposition follows immediately from Propositions 7.3, 7.6 and 7.8 .

Q E D.
In general, given' two linear connections Γ with components $\Gamma_{j k}^{i}$ and Γ^{\prime} with components $\Gamma_{j k}^{\prime i}$, the set of functions $t \Gamma_{j k}^{i}+$ $(1-t) \Gamma_{j k}^{i}$ define a linear connection for each $t, 0 \leqq t \leqq 1$. Proposition 7.8 implies that I' and I" have' the same geodesics if $\Gamma_{j k}^{i}+\Gamma_{k j}^{i}=\Gamma_{j k}^{\prime i}+\Gamma_{k j}^{\prime i}$.

The following proposition follows from Proposition 7.2.
Proposition 7.10. If $\Gamma_{j k}^{i}$ and" $\Gamma_{j k}^{\prime i}$ are the components of linear connections Γ and I" respectively, then $S_{j k}^{i}=\Gamma_{j k}^{i} \rightarrow \Gamma_{j k}^{i}$ are the components of a tenorjield of $\boldsymbol{t y p e}(1,2)$. Conversely, if $\Gamma_{j k}^{i}$ are the components of a linear connection Γ and $S_{j k}^{i}$ are the components of a tensor field S of type (1,2), then $\Gamma_{j k}^{i}=\Gamma_{j k}^{i}+S_{j k}^{i}$ define a linear connection I?'. In terms of covariant derivatives, they are related to each other as follows :

$$
\nabla_{X}^{\prime} Y=\nabla_{X} Y+S(X, Y) \text { for any vector fields } X \text { and } Y \text { on } M
$$

where V and V^{\prime} are the covariant differentiations with respect to Γ and: Γ^{\prime} respectively.

8. Normal coordinates

In this section we shall prove the existence of normal coordinate systems and convex coordinate neighborhoods as well as the differentiability of the exponential map.

Let M be a manifold with a linear' connection Γ. Given $\mathrm{X} \in T_{x}(M)$, let $\tau=x_{i}$ be the geodesic with the initial condition (x, X) (cf. Theorem 6.3). We set

$$
\exp t X=x_{t}
$$

As we have seenfalready in $\$ 6$, exp $t X$ is defined in some open interval $-\varepsilon_{1} \lll \varepsilon_{2}$, where ε_{1} and ε_{2} are positive. If the connection is complete, the exponential map exp is defined on the whole of T,(M) 'for each $\mathrm{x} \in M$. In general, exp is defined only on a subset of $T_{x}(M)$ for each $\mathrm{x} \in \mathrm{M}$.

Proposition 8.1. Identifying each $\mathrm{x} \in M$ with the zero vector at x , we consider M as a submanifold of $T(M)=\bigcup_{x \in M} T,(M)$. Then there is a neighborhood N of M in $T(M)$ such that the exponential map is defined on N. The exponential map $N \rightarrow M$ is differentiable of class C ", provided that the connection is of class $\mathrm{C}^{\prime \prime}$.

Proof. Let x_{0} be any point of M and u_{0} a point of $\mathrm{L}(\mathrm{M})$ such that $\pi\left(u_{0}\right)=x_{0}$. For each $\boldsymbol{\xi} \in \mathbf{R}^{n}$, we denote by $B(\boldsymbol{\xi})$ the corresponding standard horizontal vector field on $L(M)$ (cf. §2). By. Proposition 1.5 of, Chapter I, there exist a neighborhood U^{*} of u_{0} and a positive number 6 such that the local l-parameter group of local transformations exp $t B(\xi): U^{*} \rightarrow \mathrm{~L}(M)$ is defined. for $|t|<\delta$. Given a compact set K of \mathbf{R}^{n}, we can choose.U^{*} and δ for all $\xi \in K$ simultaneously, because $B(\xi)$ depends differentiably on $\boldsymbol{\xi}$. Therefore, there exist a neighborhood U^{*} 'of u_{0} and a neighborhood V of 0 in \mathbf{R}^{n} such that $\exp t B(\xi): U^{*} \rightarrow \mathrm{~L}(\mathrm{M})$ is defined for $\boldsymbol{\xi} \in V$ and $|t| \leqq 1$. Let U be a neighborhood of x_{0} in M and σ a cross section of $\mathrm{L}(\mathrm{M})$ over U such that $\sigma\left(x_{0}\right)=u_{0}$ and $\sigma(U) \subset U^{*}$. Given x $\in U \dot{U}$, let N_{x} be the set of $\mathrm{X} \in \mathrm{T}$,(M) such that $\sigma(x)^{-1} X \in V$ and set $N\left(x_{0}\right)=\bigcup_{x \in U} N_{x}$. Given X $\bullet N_{x}$, set $\boldsymbol{\xi}=\boldsymbol{\sigma}(x)^{-1} X$. Then $\pi((\exp t B(\xi)) \cdot \boldsymbol{\sigma}(x))$ is the geodesic with the initial condition (x, X) and' hence

$$
\exp \mathrm{X}=\pi((\exp B(\xi)) \cdot \sigma(x))
$$

It is now clear that exp: $N\left(x_{0}\right) \rightarrow \mathrm{M}$ is differentiable of class C ". Finally, we set $N=\bigcup_{x_{0} 0 M} N\left(x_{0}\right)$.

QED.
Proposition 8.2. For every point $\mathrm{x} \in M$, there is a neighborhood N_{x} of x (more precisely, the zero vector at x) in $T,(M)$ which is mapped diffeomorphically onto a neghborhood U_{x} of x in M by the exponential map.

Proof. From the definition of the exponential map, it is evident that the differential of the exponential map at x is nonsingular. By the implicit function theorem, there is a neighborhood N_{x} of x in $\mathrm{T},(\mathrm{M})$ which has the property stated above.

Q E D .
Given a linear frame ' $u=\left(X_{1}, \ldots, X_{n}\right)$ at x , the linear isomorphism $u: \mathbf{R}^{n} \rightarrow T_{x}(M)$ defines a coordinate system in $T_{x}(M)$ in a natural manner'. Therefore, the diffeomorphism exp: $N_{x} \rightarrow$ U_{x} defines a local coordinate system in U_{x} in a natural manner. We call it the normal coordinate system determined by the frame u.
proposition 8.3. Let $\mathrm{xI}, \ldots, x^{n}$ be the normal coordinate system determined by a linear frame $u=\left(X^{1}, \ldots, X^{n}\right)$ at $x \in M$. Then the geodesic $\tau=x_{i}$ with the initial condition (x, X), where $\mathrm{X}=\Sigma_{i} a^{i} X_{i}$, is expressed by

$$
x^{i}=a^{i} t \quad i=1, \ldots, n
$$

Conversely, a local coordinate system x^{1}, \ldots, x^{n} with the above property is necessarily the normal coördinate system determined by $u=\left(X^{1}, \ldots, X^{n}\right)$.

Proof. The first assertion is an immediate consequence of the definition of a normal cogrdinate system. The second assertion follows from the fact that a geodesic is uniquely determined by the initial condition (x, X).

QED.
Remark. In the above definition of a normal coordinate system, we did not specify the neighborhood in which the coordinate system is valid. This is because if x^{1}, \ldots, x^{n} is the normal coordinate system valid in a neighborhood U of x and $y^{\mathbf{1}}, \ldots, y^{\boldsymbol{n}}$ is the normal coordinate system valid in a neighborhood' V of x and if the both are determined by the frame $u=\left(X_{1}, \ldots X_{n}\right)$, then they coincide in a neighborhood of x.

Proposimton 8.4.. Given a linear connection Γ on M, let $\Gamma_{j k}^{i}$, be its components with respect to a normal coordinate system with origin x_{0}. Then

$$
\Gamma_{j k}^{i}+\Gamma_{k j}^{i}=0 \quad \text { at } x_{0}
$$

Consequently, if the torsion of Γ vanishes, then $\Gamma_{j k}^{i}=0$ at $\boldsymbol{x}_{\boldsymbol{0}}$.
Proof. Let $\boldsymbol{x}^{\mathbf{1}}, \ldots, x^{n}$ be a normal coordinate system with origin x_{0}. For any $\left(a^{1}, \ldots, a^{n}\right) \in \mathbf{R}^{n}$, the curve defined by $x^{i}=a^{i} t$, $i=1, \ldots, n$, is a geodesic and, hence, by Proposition 7.8,
$\Sigma_{j, k} \Gamma_{j k}^{i}\left(a^{1} t, \ldots, a^{n} t\right) a^{j} a^{k}=0$. In particular,

$$
\Sigma_{j, k} \Gamma_{j k}^{i}\left(x_{0}\right) a^{j} a^{k}=0
$$

Since this holds for every $\left(a^{1}, \ldots, a^{\prime \prime}\right), \Gamma_{j k}^{i}+\Gamma_{k j}^{i}=0$ at \boldsymbol{x}_{0}. If the torsion vanishes, then $\Gamma_{j k}^{i}=0$ at x_{0} by Proposition 7.6. QED.

Corollary 8.5. Let K be a tensor field on M with components $K_{j_{1}}^{i_{1} \ldots i_{2}}$ with respect to a normal coordinate system x^{1}, \ldots, x^{n} with origin $\boldsymbol{x}_{\mathbf{0}}$. If the torsion vanishes, then the covariant derivative $K_{j_{1} \ldots j_{j}, k}^{i_{1} \ldots i_{r}}$ coincides with the partial derivative $\partial K_{j_{1}}^{i_{1} \ldots j_{z}} / \partial x^{k}$ at x_{0}. ${ }^{\dot{j}}$

Proof. This is immediate from Proposition 8.4 and the formula for, the covariant differential of K in terms of $\Gamma_{j \mathbf{k}}^{i}$ given in $\$ 7$.

QED.
Corollary 8.6. Let ω be any differential form on M. If the torsion vanishes, then

$$
\mathrm{do}=A(\nabla \omega)
$$

w here $\nabla \omega$ is the covariant differential of ω and A is the alternation defined in Example 3.2 of Chapter I.
' Proof. Let x_{0} be an arbitrary point of M and x^{1}, ..., x^{n} a normal coordinate system with origin x_{0}. By' Corollary 8.5, $d \omega=A(\nabla \omega)$ at x_{0}.

QED.
Theorem 8.7. Let x^{1}, \ldots, x^{n} be a normal coordinate system with origin x_{0}. Let $U\left(x_{0} ; \mathrm{p}\right)$ be the neighborhoodof x_{0} defined by $\boldsymbol{\Sigma}_{i}\left(x^{i}\right)^{2}<\rho^{2}$. Then there is a positive number a such that if $0<\mathrm{p}<a$, then
(1) $U\left(x_{0} ; \rho\right)$ is convex in the sense that any 'two points of $U\left(x_{0} ; p\right)$ can be joined by a geodesic which lies in $U\left(x_{0} ; p\right)$.
(2) Each point of $U\left(x_{0} ; p\right)$ has a' normal coordinate neighborhood containing $U\left(x_{0} ; \mathrm{p}\right)$.

Proof. By Proposition 7.9, we may assume that the linear connection has no torsion.

Lemma 1. Let $S\left(x_{n} ; p\right)$ denote the sphere defined by $\Gamma_{i}\left(x^{i}\right)^{2}=\rho^{2}$ Then there exists a positive number c such that, if $0<p<c$, then any geodesic which is tangent to $S\left(x_{0} ; \rho\right)$ at a point, say y, of $S\left(x_{0} ; p\right)$ lies outside $S\left(x_{0} ; p\right)$ in, a neighborhood of y.

Proof of Lemma 1. Since the torsion vanishes by our assumption, the components Γ_{j}^{i} : of the linear connection vanish at x_{0} by Proposition 8.4. Let $\boldsymbol{x}^{\boldsymbol{i}} \mp \mathrm{x}^{\prime}(\mathrm{t})$ be the equations of a geodesic
which is tangent to $S\left(x_{0} ; \rho\right)$ at a point $y=\left(x^{1}(0), \ldots, x^{n}(0)\right)$ (ρ will be restricted later). Set

$$
\mathrm{F}(\mathrm{t})=\Sigma_{i}\left(x^{i}(t)\right)^{2}
$$

Then

$$
\begin{aligned}
F(0) & =\rho^{2} \\
\left(\frac{d F}{d t}\right)_{t=0} & =2 \Sigma_{i} x^{i}(0)\left(\frac{d x^{i}}{d t}\right)_{t=0}=0, \\
\frac{d^{2} F}{d t^{2}} & =2 \Sigma_{i}\left(\left(\frac{d x^{i}}{d t}\right)^{2}+x^{i}(t) \frac{d^{2} x^{i}}{d t^{2}}\right)
\end{aligned}
$$

Because of the equations of a geodesic given in Proposition 7.8, we have

$$
\left(\frac{d^{2} F}{d t^{2}}\right)_{t=0}=\Sigma_{j, k}\left(\left(\delta_{j k}-\Sigma_{i} \Gamma_{j k}^{i} x^{i}\right) \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}\right)_{t=0}
$$

Since $\Gamma_{j k}^{i}$ vanish at x_{0}, there exists a positive number c such that the quadratic form with coefficients $\left(\delta_{j k}-\Sigma_{i} \Gamma_{j k}^{i} x^{i}\right)$ is positive definite in $U\left(x_{0} ; c\right)$. If $0<\rho<c$, then $\left(d^{2} F / d t^{2}\right)_{t=0}>0$ and hence $\mathrm{F}(\mathrm{t})>\rho^{2}$ when $t \neq 0$ is in a neighborhood of 0 . This completes the proof of the lemma.
Lemma 2. Choosea positivenumberc as in Lemma 1. 'Then there exists a positive number $\mathrm{a},<\mathrm{c}$ such that
(1) A ny two points of $U\left(x_{0} ;\right.$ a) can , be joined by a geodesic which lies in $U\left(x_{0} ;\right.$ c) ;
(2) Each point of $U\left(x_{0} ;\right.$ a) has a normal coordinate neighborhood containing $U\left(x_{0} ;\right.$ a).

Proof of Lemma 2. We consider A4 as a submanifold of $T(M)$ in a natural manner. Set

$$
\varphi(X)=(x, \exp X) \quad \text { for } X \in T_{x}(M)
$$

If the connection is complete, φ is a mapping of $T(M)$ into $M \times M$. In general, $\ddot{\varphi}$ is defined only in a neighborhood of M in $T(M)$. Since the differential of φ at x_{0} is nonsingular; there exist a neighborhood V of x_{0} in $T(M)$ and a positive number $a<c$ such that $\varphi: V \rightarrow U\left(\mathrm{x}, ;\right.$ a) $\mathrm{x} U\left(x_{0} ;\right.$ a) is a diffeomorphism. Taking V and a small, we may assume that $\exp t X \in U\left(x_{0} ; c\right)$ for all $X \in \mathrm{~V}$ and $|t| \leqq 1$. To verify condition (1), let x and y be points of $U\left(x_{0} ;\right.$ a). Let $\mathrm{X}=\varphi^{-1}(x, y), \mathrm{X} \in \mathrm{V}$. Then the geodesic with the initial
condition (x, X) joins x and y in $U\left(x_{0} ; \mathrm{c}\right)$. To verify (2), let $V_{x}=\mathrm{V} \cap \mathrm{T},(\mathrm{M})$. Since exp: $V_{x} \rightarrow U\left(x_{0} ;\right.$ a) is a diffeomorphism, condition (2) is satisfied.

To complete the proof of Theorem 8.7, let $0<\rho<\mathrm{a}$. Let x andy be any points of $U\left(x_{0} ; \boldsymbol{p}\right)$. Let $x^{i}=x^{i}(t), 0 \leqq t \leqq 1$, be the' equations of a geodesic 'from x toy in $U\left(x_{0} ;\right.$ c) (see Lemma 2). We shall show that this geodesic lies in $U\left(x_{0} ; \mathrm{p}\right)$. Set

$$
\mathrm{F}(\mathrm{t})=\Sigma_{i}\left(x^{i}(t)\right)^{2} \quad \text { for } 0 \leqq t \leqq 1
$$

Assume that $\mathrm{F}(\mathrm{t}) \geqq \rho^{2}$ for. some t (that is, $x^{i}(t)$ lies outside $U\left(x_{0} ; p\right)$ for some $\left.t\right)$. Let $t_{0}, 0<t_{0}<1$, be the value for which $F(t)$ attains the maximum. Then

$$
0=\left(\frac{d F}{d t}\right)_{l t=t_{0}}=2 \Sigma_{i} x^{i}\left(t_{0}\right)\left(\frac{d x^{i}}{d t}\right)_{s=t_{0}}
$$

This means that the geodesic $x^{d}(t)$ is tangent to the sphere $S\left(x_{0} ; \rho_{0}\right)$, where $\rho_{0}^{2}=F\left(t_{0}\right)$, at the point $x^{i}\left(t_{0}\right)$. By the choice of t_{0}, the geodesic $x^{i}(t)$ lies inside the sphere $S\left(x_{0} ; \rho_{0}\right)$, contradicting Lemma 1. This proves (1). (2) follows from (2) of Lemma 2.

Q E D.
The existence of convex neighborhoods is due to J. H. C. Whitehead [1].

9. Linear infinitesimal holonomy groups

Let Γ be a linear connection on a manifold M. For each point u of $L(M)$, the holonomy group $Y(u)$, the local holonomy group $\Psi^{*}(u)$ and the infinitesimal holonomy group $\Psi^{\prime}(u)$ are defined as in $\$ 10$ of Chapter II. These groups can be realized as groups of linear transformations of $\boldsymbol{T}_{\boldsymbol{x}}(\boldsymbol{M}), \boldsymbol{x}=\mathrm{w}(\mathrm{u})$, denoted' by $\Psi(x), \Psi^{*}(x)$ and $\mathrm{Y}^{\prime}(\mathrm{X})$ respectively (cf. $\S 4$ of Chapter II).

тheorem 9.1. The Lie' algebra $\mathrm{g}(\mathrm{x})$. of the holonomy group $\Psi(x)$ is equal to the subspace of linear endomorphisms of $\mathrm{T},(\mathrm{M})$ spanned by all elements of the form $(\tau R)(X ; Y)=\tau^{-1} \circ R(\tau X, \tau Y) \circ \tau$, where $\mathrm{X}, \mathrm{Y} \in T_{x}(\mathrm{M})$ and $\boldsymbol{\tau}$ is the parallel displacement along an arbitrary, piece wise differentiable curve τ starting from x.

Proof. This follows immediately from Theorem 8.1 of Chapter II and from the relationship between the curvature form Ω on $L(M)$ and the curvature tensor field R (cf. $\$ 5$ of Chapter III).

It is easy to reformulate Proposition 10.1, Theorems 10.2 and 10.3 of Chapter II in terms of $\mathrm{Y}(\mathrm{x})$ and $\mathrm{Y}{ }^{\prime *}(\mathrm{x})$. Wc shall therefore proceed to the determination of the Lie algcbra of $\Psi^{\prime \prime}(x)$.
Theorem 9.2. The Lie algebra $\mathfrak{g}^{\prime}(\boldsymbol{x})$ of the infinitesimal holonomy group $\Psi^{\prime \prime}(x)$ is spanned by all linear endomorphisms of $T_{x}(M)$ of the form $\left(\nabla^{\wedge} R\right)\left(X, Y ; V, ; \ldots ; V_{k}\right)$, where $X, Y, V,, . ., V_{k} \in \mathrm{~T},(\mathrm{M})$ and $0 \leqq k<\infty$.

Proof. The proof is achieved by the following two lemmas.
Lemma 1. By a tensor field of type $A_{k}\left(r e s p . B_{k}\right)$, we mean a tensor field of type $(1,1)$ of the form $\nabla_{V_{k}} \cdots . \nabla_{V_{1}}(R(X, Y))$ (resp. $\left(\nabla^{\wedge} R\right)$ $\left.\left(X, Y ; I_{1}^{\prime} ; \ldots, V_{k}\right)\right\rangle$, where $X, Y,{ }_{Y}, \ldots, V_{k}$ are arbitrary vector fields on M. Then every ten sor field of type A, (resp. B,) is a linear combination (with differentiable functions as coefficients) of a finite number of tensor fields of type $B_{j}\left(\right.$ resp. $\left.A_{j}\right), 0, j$.

Proof of Lemma 1. The proof is by induction on k. The case $\mathrm{k}=0$ is trivial. Assume that $\Gamma_{V_{k-1}} \cdot, \nabla_{V_{1}}(R(X, Y))$ is a sum of terms like

$$
f\left(\nabla^{j} R\right)\left(U, \vee ; W_{1} ; \ldots ; W_{j}\right), \quad 0 \leqq j \leq \mathrm{k}-1
$$

where f is a function. Then we have

$$
\begin{aligned}
\nabla_{V_{k}}\left(f\left(\nabla^{j} R\right)(U,\right. & \left.\left.V ; W_{1}, \ldots ; W_{i}\right)\right) \\
= & \left(V_{k} f\right) \cdot\left(\nabla^{j} R\right)\left(U, \mathrm{~V} ; W_{1} ; \ldots ; W_{j}\right) \\
& +\left(\nabla^{j+1} R\right)\left(U, \mathrm{~V} ; \mathrm{W} ; \ldots ; W_{j} ; V_{k}\right) \\
& +\left(\nabla^{j} R\right)\left(\nabla_{V_{k}} U, \mathrm{~V} ; W_{1} ; \ldots ; W_{j}\right) \\
& +\left(\nabla^{j} R\right)\left(U, \nabla_{V_{k}} V ; W_{1}, \ldots ; W_{j}\right) \\
& +\Sigma_{i}^{j},\left(\nabla^{j} R\right)\left(U, V ; W_{1} ; \ldots ; \nabla_{V_{k}} W_{i} ; \ldots ; W_{j}\right)
\end{aligned}
$$

Thisishows that every tensor field of type A_{k} is a linear combination of tensor fields of type $B_{j}, 0 \ldots j$ k.

Assume now that every tensor field of type B_{k-1} is a lineat combination of tensor fields of type $A, 0 j: k-1$. We have

$$
\begin{aligned}
\left(\nabla^{k} R\right)\left(X, 1^{\prime} ;\right. & \left.V_{1} ; \cdots ; V_{k}\right)=\Gamma_{1_{k}}\left(\left(\nabla^{k-1} R\right)\left(X, Y ; V_{1} ; \ldots ; V_{k-1}\right)\right) \\
& -\left(\Gamma^{k-1} R\right)\left(\Gamma_{1} X_{k}, Y ; V_{1} ; \ldots ; V_{k-1}\right) \\
& -\left(\nabla^{k-1} R\right)\left(X, \Gamma_{1} 1^{\prime} ; V_{1, \prime} \ldots ; V_{k-i}\right) \\
& -\Sigma_{i=1}^{k}\left(\Gamma^{k-1} R\right)\left(X, Y ; V_{1} ; \ldots ; \nabla_{k_{k}} V_{i} ; \ldots ; V_{k-1}\right) .
\end{aligned}
$$

The first term on the right hand side is a lincar combination of tensor fields of type $\mathrm{A}_{j}, 0<j: \mathrm{k}$. The remaining terms on the right hand side are linear combinations of tensor ficlds of type A_{j}, $0 \leqq j=k \quad$. This completes the proof of Lemma 1 .

By definition, $\mathfrak{g}^{\prime}(u)$ is spanned by the values at u of all $\mathfrak{g l}(n ; \mathbf{R})$ valued functions of the form (I,), $k=0,1,2, \ldots$ (cf Chapter II). 'l'hcorem 9.2 will follow from Lemma 1 and the following lemma.
$\underset{\text { Lemma }^{2}}{2 .}$ If $X, Y, \mathrm{~V}_{\ldots} \ldots, V_{k}$ are vector fields on M anh if $X^{*}, Y^{*}, I_{1}^{*}, \ldots, V_{k}^{*}$ are their horizontal lifts to $L(M)$, then we havg

$$
\begin{aligned}
&\left(\nabla_{V_{k}} \cdots \nabla_{\Gamma_{1}}(R(X, Y))\right)_{x} Z \\
&=u \circ\left(V_{k}^{*} \cdots V_{1}^{*}\left(2 \Omega\left(X^{*}, Y^{*}\right)\right)\right)_{u} \circ u^{-1}(Z \mathrm{j}
\end{aligned}
$$

for $Z \in T_{x}(M)$.
Proof of Lemma 2. This follows immediately from Proposition 1.3 of Chapter III; wc take $R(X, Y)$ and $2 \Omega\left(X^{*}, Y^{*}\right)$ as ψ and f in Proposition 1.3 of Chapter III.

QED.

By Theorem 10.8 of Chapter II and Theorem 9.2 then restrifted holonomy group $\Psi^{\circ}(x)$ of a real analytic lincar conncction is completely determined by the values of all successive covarian $n_{1 t}$ differentials $\nabla^{k} R, \mathrm{k}=0,1,2, \ldots$, at the point λ.

The results in this section were obtained by Nijenhuis [2].

CHAPTER IV

Riemannian Connections

1. Riemannian metrics

Let A4 be an n-dimensional paracompact manifold. We know (cf. Examples 5.5, 5.7 of Chapter I and Proposition 1.4 of Chapter III). that M admits a Riemannian metric and that there is a 1: 1 correspondence between the set- of Riemannian metrics' on M and the set of reductions of the bundle $L(M)$ of linear frames to a bundle $O(M)$ of orthonormal frames. Every Riemannian metric g defines a positive definite inner product in each tangent space $T_{x}(M)$; we write, $g_{x}(X, \mathrm{Y})$ or, simply, $\mathrm{g}(\mathrm{X}, \mathrm{Y})$ for $X, \mathrm{Y} \in \mathrm{T},(\mathrm{M})$ (cf. Example 3.1 of Chapter I).

Example 1.1. The Euclidean metric g on \mathbf{R}^{n} with the natural coordinate system $x^{1}, \ldots x^{n}$ is defined by

$$
g\left(\partial / \partial x^{i}, \partial / \partial x^{j}\right)=\delta_{i j} \quad(\text { Kronecker's symbol })
$$

Example 1.2. Let $\mathbf{f}: \mathrm{N} \rightarrow \mathrm{A} 4$ be an immersion of a manifold N into a Riemannian manifold \mathbf{M} with metric g . The induced Riemannian metric h on N is defined by $h(X, \mathrm{Y})=g\left(f_{*} X, f_{*} \mathrm{Y}\right)$, $\mathrm{X}, \mathrm{Y} \in T_{x}(N)$.

Example 1.3. A homogeneous space G / H, where G is a Lie group and H is a compact subgroup, admits an invariant metric. Let \tilde{H} be the linear isotropy group at the origin o (i.e., the point represented by the coset H) of $G / H ; \tilde{H}$ is a group of linear transformations of the tangent space $T_{o}^{\prime}(G / H)$, each induced by an element of H which leaves the point o fixed. Since His compact, so is \tilde{H} and there is a positive definite inner product, say g_{o}, in $T_{0}(G / H)$ which is invariant by \tilde{H}. For each $x \in G / H$, we take an element $\mathrm{a} \in \mathrm{G}$ such that $\mathrm{a}(\mathrm{o})=x$ and define an inner product g_{x} in $T_{x}(G / H)$ by $g_{x}(X, Y)=g_{0}\left(a^{-1} X, a^{-1} Y\right), X, Y \in T_{x}(G / H)$. It
is easy to verify that g_{x} is independent of the choice of a $\boldsymbol{\epsilon}$ G such that $a(o)=x$ and that the Riemannian metric g thus obtained is invariant by G. The homogeneous space G / H provided with an invariant Riemannian metric is called a Riemannian homogeneous space.

Example 1.4. Every compact Lie group G admits a Riemannian metric which is invariant by both right and left translations. In fact, the group $G \times G$ acts transitively on G by $(a, b) \cdot x=a x b^{-1}$, for $(a, 6) \in G \times G$ and $x \in G$. The isotropy subgroup of $G \times G$ at the identity e of G is the diagonal $D=((\mathrm{a}, \mathbf{a}\}$; $\mathbf{a} \boldsymbol{\in} \mathrm{G}\}$, so that $\mathrm{G}=(\mathrm{G} \times \mathrm{G}) / D$. By Example $1.3 ; \mathrm{G}$ admits a Riemannian metric invariant by $G \times G$, thus proving our assertion. If G is compact and semisimple, then G admits the following canonical invariant Riemannian metric. In the Lie algebra g, identified with the tangent space $\mathrm{T},(\mathrm{G})$, we have the Killing-Cartan form $\varphi(X, \mathrm{Y})=\operatorname{trace}($ ad $X \circ$ ad Y$)$, where $X, Y \in \mathbf{g}=\mathrm{Z}^{\prime},(\mathrm{G})$. The form φ is bilinear, symmetric and invariant by ad. G. When G is compact and semisimple, $\boldsymbol{\varphi}_{\boldsymbol{e}}$ is negative definite. We define a positive definite inner product g_{θ} in $\mathrm{T},(\mathrm{G})$ by $g_{\theta}(X, \mathrm{Y})=$ $-\varphi(X, Y)$. Since φ is invariant by ad G, g_{ℓ} is invariant by the diagonal D. By Example 1.3, we obtain a Riemannian metric on G invariant by $G \times G$. We discuss this metric in detail in Volume II.

By a Riemannian metric, we, shall always mean a positive definite symmetric covariant tensor field of degree 2. By an indejinite Riemannian metric, we shall mean a symmetric covariant tensor field g of degree 2 which is nondegenerate at each $\boldsymbol{x} \in \mathbf{M}$, that is, $\mathrm{g}(\mathrm{X}, \mathrm{Y})=0$ for all $\mathrm{Y} \in \mathrm{T},(\mathrm{M})$ implies $\mathrm{X}=0$.

Example 1.5. An indefinite Riemannian metric on \mathbf{R}^{n} with the coordinate system x^{1}, \ldots, x^{n} can be given by

$$
\Sigma_{i=1}^{p}\left(d x^{i}\right)^{2}-\Sigma_{j=p+1}^{n}\left(d x^{j}\right)^{2}
$$

where $0 \leq \boldsymbol{p} \leq \mathbf{n}-1$. Another example of an indefinite Riemannian metric is the canonical metric on a noncompact, semisimple Lie group G defined as follows. It is known that for such a group the Killing-Cartan form φ is indefinite and nondegenerate. The construction in Example 1.4 gives an indefinite Riemannian metric on G invariant by both right and left translations.

Let M be a manifold with a Riemannian metric or an indefinite Riemannian metric g. For each x, the inner product g_{x} defines a linear isomorphism ψ of $\mathrm{T},(\mathrm{M})$ onto its dual $T_{x}^{*}(M)$ (space of covectors 'at x) as follows: To each $\mathrm{X} \in T_{x}(M)$, we assign the covector a $\in \mathrm{T}, *(\mathrm{M})$ defined by

$$
\langle Y, \alpha\rangle=g_{x}(X, Y) \quad \text { for all YЕ } T_{x}(M)
$$

The inner product g_{x} in $T_{x}(M)$ defines an inner product, denoted also by g_{x}, in the dual space $\mathrm{T}, *(\mathrm{M})$ by means of the isomorphism ψ :

$$
g_{x}(\alpha, \beta)=g_{x}\left(\psi^{-1}(\alpha), \psi^{-1}(\beta)\right) \quad \text { for } \mathrm{a}, \beta \in \mathrm{~T}:(\mathrm{M})
$$

Let x^{1}, \ldots, x^{n} be a local coordinate system in M. The components $g_{i j}$ of g with respect to x^{1}, \ldots, x^{n} are given by

$$
g_{i j}=g\left(\partial / \partial x^{i}, \partial / \partial x^{j}\right), \quad i, j=1, \ldots, \mathrm{n}
$$

The contravariant components $\boldsymbol{g}^{\boldsymbol{i j}}$ of g are defined by

We have then

$$
g^{i j}=g\left(d x^{i}, d x^{j}\right), \quad i, j=1, \ldots, n .
$$

$$
\Sigma_{j} g_{i j} g^{j k}=\delta_{i}^{k}
$$

In fact, define $\psi_{i j}$ by $\psi\left(\partial / \partial x^{i}\right)=\Sigma_{j} \psi_{i j} d x^{j}$. Then we have

$$
g_{i j}=g\left(\partial / \partial x^{i}, \partial / \partial x^{j}\right)=\left\langle\partial / \partial x^{j}, \psi\left(\partial / \partial x^{i}\right)\right\rangle=\psi_{i j}
$$

On the other hand, we have
$\delta_{i}^{k}=\left\langle\partial / \partial x^{i}, d x^{k}\right\rangle=g\left(d x^{k}, \psi\left(\partial / \partial x^{i}\right)\right)=g\left(d x^{k}, \Sigma_{j} \psi_{i j} d x^{j}\right)=\Sigma_{j} \psi_{i j} g^{j k}$, thus proving our assertion.

If ξ^{i} are the components of a vector or a vector field X with respect to $x^{1}, \therefore ., x^{n}$, that is, $\mathrm{X}=\Sigma_{i} \xi^{i}\left(\partial / \partial x^{i}\right)$, then the components ξ_{i} of the corresponding covector or the corresponding l-form $\mathrm{a}=\mathrm{y}(\mathrm{X})$ are related to ξ^{i} by.

$$
\xi^{i}=\Sigma_{j} g^{i j} \xi_{j}, \quad \xi_{i}=\Sigma_{j} g_{i j} \xi^{j}
$$

The inner product. g in $T,(M)$ and in $T:(M)$ can be extended to an inner product, denoted also by g , in the tensor space $\mathbf{T}_{s}^{\mathbf{r}}(\boldsymbol{x})$ at x for each type $(\mathrm{r}, s)_{i_{r}}$ If K and L are tensors at \boldsymbol{x} of type (r, s)
with components $K_{j_{1}}^{i_{1} \ldots, j_{4}}$ and $L_{j_{1}}^{i_{1} \ldots i_{s}}$, (with respect to $\left.x^{1}, \ldots, x^{n}\right)$,
then

$$
\dot{g}(K, L)=\Sigma g_{i_{1} k_{1}} \cdot . g_{i_{r} k_{r}} g^{j_{1} l_{1} \cdots g^{j_{1} l_{1}} K_{j_{1}}^{i_{1}} \ldots j_{s} i_{1}} L_{l_{1} \ldots l_{1}}^{k_{1} \ldots} .
$$

The isomorphism $\psi: \mathrm{T},(\mathrm{M}) \rightarrow T_{x}^{*}(M)$ can be extended to tensors. Given a tensor $K \in \mathbf{T}_{s}^{\mathbf{T}}(x)$ with components $K_{j_{1} \ldots . . i_{j}}^{i_{1}}$, we obtain a tensor $\mathrm{K}^{\prime} \in \mathbf{T}_{s+1}^{r-1}(x)$ with components

$$
K_{j_{1} \ldots j_{j_{+1}}}^{\prime i_{1} \ldots i_{r-1}}=\Sigma_{k} g_{i_{1} k} K_{j_{2} \ldots j_{s+1}}^{k i_{1} \ldots i_{r-1}}
$$

or $K^{\prime \prime} \in \mathbf{T}_{s-1}^{r+1}(x)$ with components

$$
K_{j_{1} \ldots j_{s-1}}^{\prime i_{1} \ldots}=\Sigma_{k} g^{i_{1} k} K_{k j_{1}}^{i_{1}} \ldots j_{t-1} .
$$

Example 1.6. Let A and B be skew-symmetric endomorphisms of the tangent space $\mathrm{T},(\mathrm{M})$, that is, tensors at \boldsymbol{x} of type $(1,1)$ such that

$$
g(A X, Y)=-g(A Y, X) \text { and } g(B X, Y)=-g(B Y, X)
$$

$$
\text { for } X, \text { YE } T,(M) \text {. }
$$

Then the inner product $g(A, B)$ is equal to --trace (AB). In fact, take a local coordinate system $\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{n}$ such that $g_{i j}=\delta_{i j}$ at \boldsymbol{x} and let $\boldsymbol{a}_{\boldsymbol{j}}^{\boldsymbol{i}}$ and $\boldsymbol{b}_{\boldsymbol{j}}^{\boldsymbol{i}}$ be' the components of A and B respectively. Then

$$
g(A, B)=\Sigma g_{i k} g^{j l} a_{j}^{i} b_{l}^{k}=\Sigma a_{j}^{i} b_{j}^{i}=-\Sigma a_{j}^{i} b_{i}^{j}=-\operatorname{trace}(\mathrm{AB})
$$

since B is skew-symmetric, i.e., $b_{j}^{i}=-b_{i}^{j}$.
On a Riemannian manifold M, the arc length of a differentiable curve $\tau=x_{t}, \mathrm{a} \leqq \mathrm{t} \leqq b$, of class C^{1} is defined by

$$
\mathrm{L}=\int_{a}^{b} g\left(\dot{x}_{t}, \dot{x}_{t}\right)^{\frac{1}{2}} \mathrm{dt}
$$

In terms Of a local coordinate system $x^{\mathbf{1}}, \ldots, x^{n}, L$ is given by

$$
L=\int_{a}^{b}\left(\Sigma_{i, j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}\right)^{\frac{t}{2}} d t
$$

This definition can be generalized to a piecewise differentiable curve of class C^{1} in an obvious manner.

Given a Riemannian metric g on a-connected manifold M, we define the distance function $d(x, y)$ on M as follows. The distance $\dot{d}(x, y)$ between two points x andy is, by definition, the infinimum of the lengths of all piecewise differentiable curves of class $C^{\mathbf{1}}$
joining x and-r. Then we have

$$
d(x, y) \geqq 0, \quad d(x, y)=d(y, x), d(x, y)+d(y, z) d(x, z)
$$

We shall see later (in §3) that $d(x, y)=0$ only when $x=y$ and that the topology defined by the distance function (metric) d is the same as the manifold topology of M.

2. Riemannian connections

Although the results in this section are valid for manifolds with indefinite Riemannian metrics, we shall consider (positive definite) Riemannian metrics only for the sake of simplicity.

Let M be an n-dimensional Riemannian manifold with metric' g and $\mathrm{O}(\mathrm{M})$ the bundle of orthonormal frames over M. Every connection in $\mathrm{O}(\mathrm{M})$ determines a connection in the bundle $\mathrm{L}(\mathrm{M})$ of linear frames, that is, a linear connection of M by virtue of Proposition 6.1 of Chapter II. A linear connection of M is called a metric connection if it is thus determined by a connection in $0(M)$.
proposition 2.1. A linear connection Γ of a Riemannian manifold M with metric g is a metric connection if and only if g is parallel with respect to Γ.

Proof. Since g is a fibre metric (cf. §1 of Chapter III) in the tangent bundle $\mathrm{T}(\mathrm{M})$, our proposition follows immediately from, Proposition 1.5 of Chapter III.

QED.
Among all possible metric connections, the most important is the Riemannian connection (sometimes called the Levi-Civita connection) which is given by the following theorem.
theorem 2.2. Every Riemannian manifold admits a unique metric connection with vanishing torsion.

We shall present here two proofs, one using the bundle $O(M)$. and the other using the formalism of covariant differentiation.

Proof (A). Uniqueness. Let θ be the canonical form of $L(M)$ restricted to $O(M)$. Let ω be the connection form on $O(M)$ definining a metric connection of M. With respect to the basis e_{1}, \ldots, e_{n} of \mathbf{R}^{n} and the basis $E_{i}^{j}, \mathrm{i}<j, i, j=1, \ldots, \mathrm{n}$, of the Lie algebra $0(\mathrm{n})$, we represent θ and ω by n forms $\theta^{i}, i=1, \ldots, n$, and a skew-symmetric matrix of differential forms ω^{i} respectively.

The proof of the following lemma is similar to that of Proposition 2.6 of Chapter III and hence is left to the reader.

Lemma. The n forms $0^{i}, \mathrm{i}=1, \ldots, \mathrm{n}$, and the $\frac{1}{2} n(n-1)$ forms $\omega_{k}^{j}, 1 \leqq j<\mathrm{k} \leqq \mathrm{n}$, define an absolute parallelism on $\mathrm{O}(\mathrm{M})$.

Let φ be the connection form defining another metric connection of M . Then $\varphi-\omega$ can be expressed in terms of 0^{i} and ω_{k}^{j} by the lemma. Since $q-\omega$ annihilates the vertical vectors, we have

$$
\varphi_{j}^{i}-\omega_{j}^{i}=\Sigma_{k} F_{j k}^{i} \theta^{k},
$$

where the $F_{j k}^{i}$'s are functions on $\mathrm{O}(\mathrm{M})$. Assume that the connections defined by ω and φ have no torsion. Then, from the first structure equation of Theorem 2.4 of Chapter III, we obtain

$$
0=\Sigma_{j}\left(\varphi_{j}^{i}-\omega_{j}^{i}\right) \wedge \theta^{j}=\Sigma_{j, k} F_{j k}^{i} \theta^{k} \wedge \theta^{j}
$$

This implies that $F_{j k}^{i}=F_{k j}^{i}$. On the other hand, $F_{j k}^{i}=-F_{i k}^{j}$ since $\left(\omega_{j}^{i}\right)$ and $\left(\dot{\varphi}_{j}^{i}\right)$ are skew-symmetric. It follows that $F_{j k}^{i}=0$, proving the uniqueness.
Existence. Let φ be an arbitrary metric connection form on $O(M)$ and. Θ its torsion form on $O(M)$. We write
and set

$$
\begin{gathered}
\Theta^{i}=\frac{1}{2} \Sigma_{j, k} \tilde{T}_{j k}^{i} \theta^{j} \wedge \theta^{k}, \quad \tilde{T}_{j k}^{i}=-\tilde{T}_{k j}^{i} \\
\tau_{j}^{i}=\Sigma_{k} \frac{1}{2}\left(\tilde{T}_{j k}^{i}+\tilde{T}_{k i}^{j}+\tilde{T}_{j i}^{k}\right) \theta^{k}
\end{gathered}
$$

and

$$
\omega_{j}^{i}=\varphi_{j}^{i}+\tau_{j}^{i}
$$

We shall show that $\omega=\left(\omega_{j}^{i}\right)$ defines the desired connection. Since both $\left(\tilde{T}_{j k}^{i}+\tilde{T}_{k i}^{j}\right)$ and $\tilde{T}_{j i}^{k}$ are skew-symmetric in i and j, so is τ_{j}^{i}. Hencer ω is $o(n)$-valued. Since θ annihilates the vertical vectors, so does $\tau=\left(\tau_{j}^{i}\right)$. It is easy to show that $R_{a}^{*} \tau=\operatorname{ad}\left(a^{-1}\right)(\tau)$ for every $a \in O(n)$. Hence, ω is a connection form. Finally, we verify that the metric connection defined by ω has zero torsion. Since $\left(\tilde{T}_{j i}^{k}+\tilde{T}_{k i}^{j}\right)$ is symmetric in j and k, we have

$$
\Sigma_{j} \tau_{j}^{i} \wedge \theta^{i}=-\Theta^{i}
$$

and hence

$$
d \theta^{i}=-\Sigma_{j} \varphi_{j}^{i} \wedge \theta^{j}+\Theta^{i}=-\Sigma_{j} \omega_{j}^{i} \wedge \theta^{j}
$$

proving our assertiofr:

Proof (B) . Existence. Given vector fields X and Y on M , we define $\mathrm{V}_{\boldsymbol{x}} \mathrm{Y}$ by the following equation:

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X \cdot g(Y, Z)+Y \cdot g(X, Z)-Z \cdot g(X, Y) \\
& +g([X, Y], Z)+g([Z, X], Y)+g(X,[Z, Y]),
\end{aligned}
$$

which should hold for every vector field \mathbf{Z} on M . It is a straightforward verification that the mapping (X, Y) $\rightarrow \nabla_{\boldsymbol{X}} Y$, satisfies the four conditions of Proposition 2.8 of Chapter III and hence determines a linear connection I' of M by Proposition 7.5 of Chapter III. The fact that I' has no torsion follows from the above definition of $\nabla_{X} Y$ and the formula $T(X ; \mathbf{Y})=\nabla_{\mathbf{V}}^{\mathrm{X}} Y=$ $\nabla_{Y} X-[\mathrm{X}, Y]$ given in Theorem 5.1 of Chapter III. To show that Γ is a metric connection, that is, $\mathrm{Vg}=0$ (cf. Proposition 2.1), it is sufficient to prove

$$
X \cdot g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

for all vector fields $\boldsymbol{X}, \mathrm{Y}$ and \boldsymbol{Z},
by virtue of Proposition 2.10 of Chapter III. But this follows immediately from the definition of $\nabla_{X} Y$.

Uniqueness. It is a straightforward ${ }_{Y} X-[\mathrm{V}, \mathrm{Y}]=0$, then ${ }^{\mathrm{it}} \mathrm{Y}$ satisfies $\nabla_{X} g=0$ and $\nabla_{X} Y-\nabla_{\boldsymbol{Y}} X-[\mathrm{X}, \mathrm{Y}]=0$,
satisfies the equation which defined $\nabla_{\boldsymbol{X}} \mathbf{Y}$.
In the course of the proof, we obtained 'the following
Proposition 2.3. With respect to the Riemannian connection, we have

$$
2 g\left(\nabla_{X} Y, Z\right)=\dot{X} \cdot g(Y, Z)+Y \cdot g(X, Z)-Z \cdot g(X, Y)
$$

for all vector fields X, Y and Z of M .
Corollary 2.4. In terms of a local coordinate system $\boldsymbol{x}^{\mathbf{1}}, \ldots, \boldsymbol{x}^{n}$, the components $\Gamma_{j k}^{i}$ of the Riemannian connection are given by

$$
\Sigma_{l} g_{l k} \Gamma_{j i}^{l}=\frac{1}{2}\left(\frac{\partial g_{k i}}{\partial x^{j}}+\frac{\partial g_{j k}}{\partial x^{i}}-\frac{\partial g_{j i}}{\partial x^{k}}\right) .
$$

Proof. Let $X=\partial / \partial x^{j}, \mathrm{Y}=\partial / \partial x^{i}$ and $\mathrm{Z}=\partial / \partial x^{k}$ in Proposjtion 2.3 and use Proposition 7.4 of Chapter III.

Let M and M^{\prime} be Riemannian manifolds with Riemannian metrics g and g^{\prime} respectively. A mapping $\mathrm{f}: \mathrm{M} \rightarrow M^{\prime}$ is called isometric at a point x of M if $g(X, \mathrm{Y})=g^{\prime}\left(f_{*} X, f_{*} \mathrm{Y}\right)$ for all $X, Y \in \mathrm{~T},(\mathrm{M})$. In this case, f_{*} is injective at x, because $f_{*} X=0$ implies that $g(X, \mathrm{Y})=0$ for all Y and hence $X=0$. A mapping f which is isometric at every point of M is thus an immersion which we'call an isometric immersion. If, moreover, f is $1: 1$, then) it is called an isometric imbedding of M into M^{\prime}. If f maps, $\mathrm{M} 1: 1$ onto M^{\prime}, then f is called an isometry ${ }^{\text {of }} \mathrm{M}$ onto M^{\prime}.

PRopositron 2.5. If is an isometry of a Riemannian manifold M onto another Riemannian manifold M^{\prime}, 'then the differential off commutes with the parallel displacement. More precisely, if τ is a curve from x toy in M, then the following diagram is commutative:,

where $\mathrm{x}^{\prime}=f(x), y^{\prime}=f(y)$ and $\tau^{\prime}=f(\tau)$.
Proof. This is, a consequence of the, uniqueness of the Riemannian connection in Theorem 2.2.. Being a diffeomorphism between M and M^{\prime}, f defines a 1: 1 correspondence between the set of vector fields on M and. the set of vector fields on M^{\prime}. From the Riemannianconnection Γ^{\prime} on M^{\prime}, we obtain a linear connection Γ on M by $\nabla_{X} Y=f^{-1}\left(\nabla_{f Y}(f \dot{Y})\right)$, where X and Y are vector fields on M. It is easy to verify that Γ has no torsion and is metric with respect to g . Thus, Γ is the Riemannian connection of M. This means that $f\left(\nabla_{X} Y\right)=\nabla_{f X}(f Y)$ with respect to the Riemannian connections of M and M^{\prime}. This implies immediately our

$$
+g([X, Y], Z)+g([Z, X], Y)+g(X,[Z, Y])
$$ proposition.

QED.
Proposition 2.6. If f is an isometric immersion of a Riemannian manifold M into another Riemannian manifold M^{\prime} and if $f(M)$ is open in M^{\prime}, then the differential off commutes with the parallel displacement.

Proof. Since $f(M)$ is open in M^{\prime}, $\operatorname{dim} M=\operatorname{dim} M^{\prime}$. Since f is an immersion, every point x of M has an open neighborhood U such that $f(U)$ is open in M^{\prime} and $f: U \rightarrow f(U)$ is a diffeomorphism. Thus, f is an isometry of U onto $f(U)$. By Proposition 2.5 , the differential off commutes with the parallel displacement
along any curve in U. Given an arbitrary curve τ from x to-y in M, we can find a finite number of open neighborhoods in M with the above property which cover τ. It follows that the differential off commutes with the parallel displacement along τ. QED.

Remark. It follows immediately that, under the assumption of Proposition 2.6, every geodesic of M is mapped by f into a geodesic of M^{\prime}.

Example2.1. Let M be a Rieriannian manifold with metric g . Let M^{*} be a covering manifold of M with projection ρ. We can introduce a Riemannian metric g^{*} on M^{*} in such a way that $p: M^{*} \rightarrow M$ is an isometric 'immersion. Every geodesic of M^{*} projects on a geodesic of M. Conversely, given a geodesic $\boldsymbol{\tau}$ from \boldsymbol{x} toy in M and a point x^{*} of M^{*} with $p\left(x^{*}\right)=\mathrm{x}$, there is a unique curve τ^{*} in M^{*} starting from x^{*} such that $p\left(\tau^{*}\right)=\tau$. Since p is a local isometry, τ^{*} is a geodesic of M^{*}. A similar argument, together with Proposition 2.6, shows that if $p\left(x^{*}\right)=x$, then the restricted linear holonomy group of M^{*} with reference point x^{*} is isomorphic by p to the restricted linear holonomy group of M with reference point x.

Proposition 2.5 and 2.6 were stated with respect to Riemannian connections which are special linear connections. Similar statements hold with respect to the corresponding affine connections. The statement concerning linear holonomy groups in Example 2.1 holds also for affine holonomy groups.

3. Normal coordinates and convex neighborhoods

Let M be a Riemannian manifold with metric g . The length of a vector X, i.e., $g(X, X)^{\frac{1}{2}}$, will be denoted by $\|X\|$.

Let $\tau=x_{t}$ be a geodesic in M. Since the tangent vectors \dot{x}_{t} are parallel along τ and since the parallel displacement is isometric, the length of \dot{x}_{t} is constant along τ. If $\left\|\dot{x}_{i}\right\|=1$, then t is called' the canonical parameter of the geodesic τ.
$B v$ a normal coordinate system at x of a Riemannian manifold A, we always mean a normal coordinate system x^{1}, \ldots, x^{n} at x such that $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$ form an orthonormal frame at x. However, $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$ may not be orthonormal at other points.

Let U be a normal coordinate neighborhood of x with a normal coordinate system x^{1}, \ldots, x^{n} at x . We define a cross section σ of
$O(M)$ over U as follows: Let u be the orthonormal frame at x given by $\left(\partial / \partial x^{1}\right)_{x}, \ldots,\left(\partial / \partial x^{n}\right)_{x}$. By the parallel displacement of u along the geodesics through x, we attach an orthonormal frame to every point of U. For the study of Riemannian manifolds, the cross section $\sigma: U \rightarrow O(M)$ thus defined is more useful than the cross section $U \rightarrow \mathrm{~L}(\mathrm{M})$ given by $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$. Let $\theta=\left(\theta^{i}\right)$ and $\omega=\left(\omega_{k}^{j}\right)$ be the canonical form and the Riemannian connection form on $O(M)$ respectively. We set

$$
\bar{\theta}=\sigma^{*} \theta=\left(\bar{\theta}^{i}\right) \quad \text { and } \bar{\omega}=\sigma^{*} \omega=\left(\bar{\omega}_{k}^{j}\right)
$$

where $\bar{\theta}^{i}$ and $\bar{\omega}_{\boldsymbol{k}}^{j}$ are l-forms on U. To compute these forms explicitly, we introduce the polar coordinate system ($\left.\boldsymbol{p}^{1}, \ldots, p^{n} ; t\right)$ by

$$
\dot{x^{i}}=p^{i} t, \quad i=1, \ldots, \mathrm{n} ; \quad \Sigma_{i}\left(p^{i}\right)^{2}=1
$$

Then, $\bar{\theta}^{i}$ and $\bar{\omega}_{k}^{j}$ are linear combinations of $d p^{1}, \ldots, d p^{n}$ and $d t$ with functions of p^{1}, \ldots, p^{n}, t as coefficients.

Propositton 3.1. (1) $\bar{\theta}^{i}=p^{i} \mathrm{dt}+\varphi^{i}$, where $\varphi^{i}, i=1, \ldots, n$, do not involvedt;
(2) $\bar{\omega}_{k}^{j}$ do not involve dt;
(3) $\varphi^{i}=0$ and $\bar{\omega}_{k}^{j}=0$ at $t=0$ (i.e., at the origin x);

$$
\begin{align*}
& d \varphi^{i}=-\left(d p^{i}+\Sigma_{j} \bar{\omega}_{j}^{i} p^{j}\right) \wedge d t+\cdots \tag{4}\\
& d \bar{\omega}_{j}^{i}=-\Sigma_{k l} R_{j k l}^{i} p^{k} \varphi^{l} \mathrm{~A} d t+\cdots
\end{align*}
$$

where the dots . \cdot indicate terms not involving dt and $\bar{R}_{j k l}^{i}$ are the components of the curvature tensqr field with respect to the frame field σ.

Proof. (1) For a fixed direction $\left(p^{1}, \ldots, p^{n}\right)$, let $\tau=x_{i}$ be the geodesic defined by $x^{i}=p^{i} t, i=1, \ldots$, n. Set $u_{t}=\sigma\left(x_{t}\right)$. To prove that $\bar{\theta}^{i}-p^{i}$ dt do not involve dt , it' is sufficient to prove that $\bar{\theta}^{i}\left(\dot{x}_{t}\right)=p^{i}$. From the definition of the canonical form θ, we have

$$
\theta\left(\dot{u}_{t}\right) \doteq \bar{\theta}\left(\dot{x}_{t}\right)=u_{t}^{-1}\left(\dot{x}_{t}\right)
$$

Since both u_{i} and \dot{x}_{t} are parallel along $\tau, \bar{\theta}\left(\dot{x}_{t}\right)$ is independent oft. On the other hand, we have $\bar{\theta}^{i}\left(\dot{x}_{0}\right)=p^{i}$ and hence $\bar{\theta}^{i}\left(\dot{x}_{t}\right)=p^{i}$ for all t.
(2) Since u_{t} is horizontal by the construction of σ, we have

$$
\bar{\omega}_{k}^{j}\left(\dot{x}_{t}\right)=\dot{\omega}_{k}^{\dot{j}}\left(\dot{u}_{t}\right)=0
$$

This means that $\bar{\omega}_{k}^{j}$ do not involve dt.
(3) Given any unit vector X at x (i.e., the point where $t=0$), iet $\tau=\mathrm{x}$, bc the geodesic with the initial condition (x, X) so that $X=\dot{x}_{0}$. By (1) and (2), we have $\varphi^{i}\left(\dot{x}_{0}\right)=0$ and $\bar{\omega}_{k}^{j}\left(\dot{x}_{0}\right)=0$.
(4) From the structure equations, WC obtain

$$
\begin{aligned}
d\left(p^{i} \mathrm{dt}+\varphi^{i}\right) & =-\Sigma_{j} \bar{\omega}_{j}^{i} \wedge\left(p^{j} \mathrm{dt}+\varphi^{j}\right) \\
d \bar{\omega}_{j}^{i} & =-\Sigma_{k} \bar{\omega}_{k}^{i} \wedge \bar{\omega}_{j}^{k}+\bar{\Omega}_{j}^{i},
\end{aligned}
$$

where

$$
\bar{\Omega}_{j}^{i}=\Sigma_{k, l} \frac{1}{2} R_{j k l}^{i} \bar{\theta}^{k} \text { A } \bar{\theta}^{l}=\Sigma_{k, l} \frac{1}{2} R_{j k l}^{i}\left(\phi^{k} \mathrm{dt}+\varphi^{k}\right) \text { A }\left(p^{l} \mathrm{dt}+\varphi^{l}\right)
$$

(cf. \$7 of Chapter III)
and hence (4).
QED.
In terms of dt and φ^{2}, we can express the metric tensor g as follows (cf. the classical expression $d s^{2}=\Sigma g_{i j} d x^{i} d x^{j}$ for g as explained in Example 3.1 of Chapter I).

PRoposition 3.2. The metric tensor g can be expressed by

$$
d s^{2}=(d t)^{2}+\Sigma_{i}\left(p^{i}\right)^{2}
$$

Proof. Since $\bar{\theta}(X)-(\sigma(y))^{-1}(X)$ for every $X \in \mathrm{~T},(\mathrm{M})$, $y \in U$, and since $\sigma(y)$ is an isometric mapping of \mathbf{R}^{n} onto $T_{y}(M)$, we have

$$
g(X, Y)=\Sigma_{i} \bar{\theta}^{\prime}(X) \bar{\theta}^{\prime}(Y) \quad \text { for } X, Y \in \mathrm{~T},(\mathrm{M}) \quad \text { and } \mathrm{y} \in U
$$

In other words,

$$
d s^{2}=\Sigma_{i}\left(\overline{\vartheta^{i}}\right)^{2}
$$

By Proposition 3.1, we have

$$
d s^{2}=(d l)^{2}+\Sigma_{i}\left(\varphi^{i}\right)^{2}+2 \Sigma_{i} p^{i} \varphi^{i} \mathrm{dt}
$$

Since $p^{i}=0$ at $t=0$ by Proposition 3.1, we shall prove that $\Sigma_{i} p^{i} \varphi^{i}=0$ by showing that $\Sigma_{i} p^{i} \psi^{i}$ is independent of l. Since $\Sigma_{i} p^{i} \varphi^{i}$ does not involve $d t$ by Proposition 3.1, it is sufficient to show that $d\left(\Sigma_{i} p^{i} \varphi^{i}\right)$ does not involve dt . We have, by Proposition 3.1,

$$
d\left(\Sigma_{i} p^{i} q^{i}\right)=-\Sigma_{i} p^{i}\left(d p^{i} ; \Sigma_{j} \overline{11}_{j}^{i} p^{j}\right) \wedge d t+\cdots
$$

where the dots . . indicate terms not involving $d t$.
From $\Sigma_{i}\left(p^{i}\right)^{2}=1$, WC obtain

$$
0=d\left(\Sigma_{i}\left(p^{i}\right)^{2}\right)=2 \Sigma_{i} p^{i} d p^{i}
$$

On the other hand,

$$
\Sigma_{i, j} p^{i} \bar{m}_{j}^{i} p^{j}=0
$$

because $\left(\bar{o}_{j}^{i}\right)$ is skew-symmetric. This proves that $d\left(\Sigma_{i} p^{i} \varphi^{i}\right)$ does not involve $d t$.

QED.
From Proposition 3.2, we obtain
Proposition 3.3. Let x^{1}, \ldots, x^{n} be a normal coordinate system at x. Then every geodesic $\tau=x_{t}, x^{i}=a^{i} t(\mathrm{i}=1, \ldots, \mathrm{n})$, through x is perpendicular to the sphere $S(x ; r)$ defined by $\Sigma_{i}\left(x^{i}\right)^{2}=r^{2}$.

For each small positive number r, we set
$N\left(x ; \quad \frac{1}{7}\right.$ the neighborhood of 0 in $\mathrm{T}_{, .}(\mathrm{M})$ defined by $\|X\|<r$, $U(x ; r)=$ the neighborhood of x in M defined by $\Sigma_{i}\left(x^{i}\right)^{2}<r^{2}$.
By the very definition of a normal coordinate system, the exponential map is a diffeomorphism of $N(x ; r)$ onto $U(x ; r)$.

$$
\begin{aligned}
& \text { Proposition 3.4. Let } r \text { be a positive number such that } \\
& \text { exp: } N(x ; r) \rightarrow U(x ; r)
\end{aligned}
$$

is a diffeomorphism. Then we have
(1) Every point y in $U(x ; r)$ can be joined to x (origin of the coordinate system) by a geodesic lying in $U(x ; r)$ and such a geodesic is unique;
(2) The length of the geod'esic in (1) is equal to the distance $d(x, y)$;
(3) $U(x ; r)$ is the set of points $\mathrm{y} \bullet M$ such that $d(x, \mathrm{y})<r$.

Proof. Every line in $N(x ; r)$ through the origin 0 is mapped into a geodesic in $U(x ; r)$ through x by the exponential map and vice versa. Now, (1) follows from the fact that cxp: $N(x ; r) \rightarrow$ $U(x ; r)$ is a diffeomorphism. To prove (2), let $\left(\left(I^{\prime}, \ldots, a^{\prime \prime} ;\right.\right.$ b) be the coordinates ofy with respect to the polar coc.dinate system $\left(p^{1}, \ldots: \therefore, p^{\prime \prime} ; t\right)$ introduced at the beginning of the section. Let $\tau=x_{u}$, a $\leqq s \leqq \beta$, be any piccewise differential curve from x to y. We shall show that the length of τ is greater than or equal to b. Let

$$
p^{1}=p^{1}(s), \ldots, p^{n}=p^{n}(s), \mathrm{t}=\mathrm{t}(\mathrm{~s}), \mathrm{a} \leqq s \leqq \beta
$$

be the equation of the curve $\boldsymbol{\tau}$. If we denote by $\mathrm{L}(\mathrm{T})$ the iength of $\boldsymbol{\tau}$, then Proposition 3.2 implies the following inequalities:

$$
L(\tau) \geqq \int_{\alpha}^{\beta}\left|\frac{d t}{d s}\right| d s=\int_{0}^{b} d t==b
$$

We shall now prove (3). If y is in $U(x ; r)$, then, clearly, $d(x, y)<r$. Conversely, let $d(x, y)<r$ and let τ be a curve from x toy such that $\mathrm{L}(\mathrm{T})<r$. Suppose τ does not lie in $U(x ; r)$. Let y^{\prime} be the first point on τ which belongs to the closure of $U(x ; r)$ but not to $U(x ; r)$. Then, $d\left(x, y^{\prime}\right)=r$ by (1) and (2). The length of τ from x toy' is at least r. Hence, $L(\tau) \geqq r$, which is a contradiction. Thus τ lies entirely in $U(x ; r)$ and hence y is in $U(x ; \mathrm{r})$. QED.
proposirtron 3.5. $d(x, y)$ is a distance function (i.e., metric) on A4 and defines the same topology as the manifold topology of M .
Proof. As we remarked earlier (cf. the end of §l), we have

$$
d(x, y) \geqq \dot{0}, \dot{d}(x, y)=d(y, x), d(x, y)+d(y, z) \geqq d(x, z)
$$

From Proposition 3.4, it follows that if $\mathrm{x} \neq y$, then $d(x, y)>0$. Thus d is a metric. The second assertion follows from (3) of Proposition 3.4.

QED.
A geodesic joining two points x and y of a Riemannian manifold M is called minimizing if its length is equal to the distance $d(x, y)$. We now proceed to prove the existence of a convex neighborhood around each point of a Riemannian manifold in the following form.

Theorem 3.6. Let x^{1}, \ldots, x^{n} be a normal coordinate system at x of a Kiemannian manifold M. There exists a positive number a such that, if $0<p<a$, then
(1) Any two points of $U(x ; \mathrm{p})$ can be joined by a unique minimizing geodesic; and it is the unique geodesic joining the two points and lying in $U(x ; p)$;
('2) In $U(x ; \mathrm{p})$, the square of the distance $d(y, z)$ is a differentiable function ofy and z.

Proof. (1) Let a be the positive number given in Theorem 8.7 of Chapter III and ${ }^{〔}$ let $0<\mathrm{p}<\mathrm{a}$. If y and z are points of $U(x ; \mathrm{p})$, they can be joined by a geodesic τ lying in $U(x ; \mathrm{p})$ by the same theorem. Since $U(x ; p)$ is contained in a normal coordinate neighborhood of y (cf. Theorem 8.7 of Chapter III), we see from Proposition 3.4 that τ is a unique geodesic joining y and z and lying in $U(x ; \mathrm{p})$ and that the length of τ is equal to the distance, that is, τ is minimizing. It is clear that τ is the unique minimizing geodesic joining y and z in M.
(2) Identifying every pointy of M with the zero vector at y, we consider y as a point of $T(M)$. For each y in $U(x ; \mathrm{p})$, let N_{v} be the neighborhood of y in $\mathrm{T},(\mathrm{M})$ such that exp: $N_{v} \rightarrow U(x ; \mathrm{p})$ is a diffeomorphism (cf. (2) of Theorem 8.7 of Chapter III). Set $\mathrm{v}=\bigcup_{y \in U(x ; p)} N_{v}$. Then the mapping $\dot{V} \rightarrow U(x ; \mathrm{p}) \times U(x ; \mathrm{p})$ which sends $\mathrm{Y} \in N_{y}$ into (y , exp Y) is a diffeomorphism (cf. Proposition 8.1 of Chapter III). If $\mathrm{z}=\exp Y$, then $d(y, \mathrm{z})=$ $\|Y\|$. In other words, $\|Y\|$ is the function on V which corresponds to the distance function $d(y, z)$ under the diffeomorphism $V \rightarrow$ $U(x ; p) \times U(x ; p)$. Since $\|Y\|^{2}$ is a differentiable function on $V, d(y, z)^{2}$ is a differentiable function on $U(x ; \mathrm{p}) \times U(x ; \mathrm{p})$.

QED.
As an application of Theorem 3.6, we obtain the following
theorem 3.7. Let M be a paracompact differentiable manifold. Then every open covering $\left\{U_{x}\right\}$ of M has an open refinement $\left\{V_{i}\right\}$ such that
(1) each V_{i} has compact closure;
(2) $\left\{V_{i}\right\}$ is locally finite in the sense that every point of M has a neighborhood which meets only a finite number of V 's;
(3) any nonempty finite intersection of V_{i} 's is diffeomorphic with an open cell of \mathbf{R}^{n}.

Proof. By taking an open refinement if necessary, we may assume that $\left\{U_{\alpha}\right\}$ is locally finite and that each U_{α} has compact closure. Let $\left\{U_{\alpha}^{\prime}\right\}$ be an open refinement of $\left\{U_{\alpha}\right\}^{\alpha}$ (with the same index set) such that $\bar{O}_{x}^{\prime} \subset U_{x}$ for all α (cf. Appendix 3). Take any Riemannian metric on M. For each $x \in M$, let W_{x} be a convex neighborhood ofx (in the sense of Theorem 3.6) which is contained in some U_{α}^{\prime}. For each α, let

$$
\mathfrak{B}_{\alpha}=\left\{W_{x} ; W_{x} \mathrm{n}{\widetilde{O_{\alpha}}}^{\prime} \text { is non-empty }\right\}
$$

Since O_{α}^{\prime} is compact, there is a finite subfamily \mathfrak{B}_{α} of \mathfrak{B}_{α} which covers $\mathcal{O}_{\alpha}^{\prime}$. Then the family $\mathfrak{B}=\bigcup_{\alpha} \mathfrak{B}_{\alpha}$ is a desired open refinement of $\left\{U_{\alpha}\right\}$. In fact, it is clear from the construction that \mathfrak{B} satisfies (1) and (2). If V_{1}, \ldots, V_{k} are members of \mathfrak{B} and if x and y are points of the intersection $V_{1} \mathrm{n} \cdot,{ }_{\mathrm{n}} V_{k}$, then there is a unique minimizing geodesic joining x and y in M. Since the geodesic lies in each $V_{i}, \mathrm{i}=1, \ldots, k$, it lies in the intersection $V_{1}{ }^{n} \cdots \mathrm{n} V_{k}$. It follows that the intersection is diffeomorphic with an open cell of R".

QED.

Remark. A covering $\left\{V_{i}\right\}$ satisfying (1), (2) and (3) is called a simple covering. Its usefulness lies in the fact that the Čcch cohomology of M can be computed by means of a simple covering of A4 (cf. Weil [1]).

In any metric space M_{i}, a segment is defined to be a continuous image $\mathrm{x}(\mathrm{t})$ of a closed interval a $\leqq t \leq b$ such that

$$
\begin{aligned}
& d\left(x\left(t_{1}\right), x\left(t_{2}\right)\right)+d\left(x\left(t_{2}\right), x\left(t_{3}\right)\right)=d\left(x\left(t_{1}\right), x\left(t_{3}\right)\right) \\
& \text { for a } \leq t_{1} \leq t_{2} \leq t_{3} \leqq b,
\end{aligned}
$$

where d is the distance function. As an application of Theorem 3.6, we have

Proposition 3.8. Let M be a Riemannian manifold with metric g and d the distancefunction defined by g . Then every segment is a geodesic (as a point set).

The parametrization of a segment may not be affinc.
Proof. Let $x(t), a:^{\prime} t \leq \mathrm{b}, \mathrm{bc}$ a segment in. M. We first show that $\mathrm{x}(\mathrm{t})$ is a gcodcsic for $\mathrm{a} \leq t \leq \mathrm{a}+\varepsilon$ for some positive ε. Let U be a convex neighborhood of $x(a)$ in the sense of Theorem 3.6. There exists $\varepsilon>0$ such that $x(t) \in U$ for $a \leq t \leq a+\varepsilon$. Let τ be the minimizing geodesic from $x(a)$ to $x(a+\varepsilon)$. We shall show that τ and $\mathrm{x}(\mathrm{t}), \mathrm{a} \leq \ell \leq \mathrm{a}+\varepsilon$, coincide as a point set. Suppose there is a number $\mathrm{c}, \mathrm{a}<\mathrm{c}<\mathrm{a}+\varepsilon$, such that $\mathrm{X}(\mathrm{C})$ is not. on τ. Then

$$
d(x(a), x(a+\varepsilon))<d(x(a), x(c))+d(x(c), x(a+\varepsilon))
$$

contradicting the fact that $\mathrm{x}(\mathrm{t}), \mathrm{a}=t=a+\varepsilon$, is a segment. This shows that $x(t)$ is a geodesic for a " $t \cdot a+\varepsilon$. By continuing this argument, we see that $x(t)$ is a gcodesic for $a t: b$. QED.

Remark. If x_{t} is a continuous curve such that $d\left(x_{t_{1}}, x_{t_{1}}\right)=$ $\left|t_{1}--t_{2}\right|$ for all t_{1} and t_{2}, then x_{i} is a gcodesic with arc length η_{l} as parameter.

Corollary 3.9. Let $\tau=\mathrm{x}, a-\mathrm{t} . b$, be a piecewise differenliable curve of class C^{1} from x toy such that its length $L(\tau)$ is equal to $d(x, y)$. Then τ is a geodesic as a point set. If, moreover, $\left\|\dot{x}_{t}\right\|$ is constant alon!s 7 , then τ is a geodesic including the parametrization.
Proof. It suffices to show that τ is a scgment. Let $a \leq t_{1} \leqq$ $t_{2} \cdot t_{3} b$. Denoting the points $x_{t_{i}}$ by $x_{i}, \mathrm{i}=1,2,3$, and the

arcs into which τ is divided by these points by $\tau_{1}, \tau_{2}, \tau_{33}$ and τ_{4} respectively, we have

$$
\begin{gathered}
d\left(x, x_{1}\right) \quad L\left(\tau_{1}\right), \quad d\left(x_{1}, \quad x_{2}\right) \quad I .\left(\tau_{2}\right), \quad d\left(\begin{array}{ll}
x_{2}, & \left.x_{3}\right)
\end{array} \quad L\left(\tau_{3}\right),\right. \\
d\left(x_{3}, y\right) \quad I .\left(\tau_{1}\right) .
\end{gathered}
$$

If we did not have the equality evervithere, we would have

$$
\begin{aligned}
& d\left(x, x_{1}\right)+d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)-d\left(x_{3}, y\right) \\
& \therefore L\left(\tau_{1}\right)+L\left(\tau_{2}\right): L\left(\tau_{3}\right)+L\left(\tau_{4}\right)=\mathrm{L}(7)=d(x, 3)
\end{aligned}
$$

which is a contradiction. Thus we have

$$
d\left(x_{1}, x_{2}\right)=L\left(\tau_{2}\right), \quad d\left(x_{2}, x_{3}\right)=L\left(\tau_{3}\right)
$$

Similarly, we sec that

$$
d\left(x_{1}, x_{3}\right)=I\left(\tau_{2} \div \tau_{3}\right)
$$

Finally, we obtain

$$
d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)=d\left(x_{1}, x_{3}\right)
$$

QED.
Using Proposition 3.8, we shall show that the distance function determines the Riemannian metric.
'Theorem 3.10. Let M and.M ' be Riemannian manijolds with Fiemannian metrics g and g^{\prime}, respectively. Let d and d^{\prime} be the distance functions of M and M^{\prime} respectively. If f is a mapping (which is not assumed to be cominuous or differentiable) of M onto M ' such that $d(x, y)=d^{\prime}(f(x), f(y))$ fur all $x, y \in M$, then f is a diffeomorphism of M onto M^{\prime} which maps the iensor field g into the tensor field g^{\prime}.

In particular, ecery mapping $\int \mathrm{oj}^{\prime} M$ onto itself which preserves d is an isometry, that is, preserves g.

Proof. Clearly, f is a homcomorphism. Let x be an arbitrary point of . II and set $x^{\prime}=f(x)$. For a normal coordinate neighborhood U^{\prime} of x^{\prime} let l^{\prime} be a normal coordinate neighborhood of x such that $f(U) \subset l_{i}^{\prime \prime}$. For any unit tangent vector X at x, let τ be a geodesic in I^{\prime} with the initial condition (x, X). Since τ is a segment with respect to $d, f(\tau)$ is a segment with respect to d^{\prime} and hence is a geodesic in 1 ." with origin x^{\prime}. Since $\tau=x_{s}$ is parametrized by the are length s a n d since $d^{\prime}\left(f\left(x_{s_{1}}\right), f\left(x_{s_{2}}\right)\right)=$ $d\left(x_{v_{1}}, x_{s_{3}}\right)=\left|s_{2}--s_{f}\right|, f(\tau)=f\left(x_{s}\right)$ is parametrized by the arc
length s also. Let $\mathrm{F}(\mathrm{X})$ be the unit vector tangent to $f(\tau)$ at x^{\prime}. Thus, F is a mapping of the set of unit tangent vectors at x into the set of unit tangent vectors at x '. It can be extended to a mapping, denoted by the same F, of $T_{x}(M)$ into $T_{x^{\prime}}\left(M^{\prime}\right)$ by proportion. Sincefhas an inverse which also preserves the distance functions, it is clear that F is a $1: 1$ mapping of $T_{x}(M)$ onto $T_{x^{\prime}}\left(M^{\prime}\right)$. It is also clear that
$f \circ \exp _{x}=\exp _{x^{\prime}} \circ \mathbf{F}$ and $\|F(X)\|=\|X\|$ for $\mathrm{X} \in T_{x}(M)$, where exp, (resp. exp,.) is the exponential map of a neighborhood of 0 in $T_{\mathbf{x}}(M)\left(\right.$ resp. $\left.T_{x^{\prime}}\left(M^{\prime}\right)\right)$ onto U^{\prime} (resp. U'). Both exp, and exp,. are diffeomorphisms. To prove thatfis a diffeomorphism of \mathbf{M} onto \dot{M}^{\prime} which maps g into g^{\prime}, it is therefore sufficient to show that F is a linear isometric mapping of $T_{x}(M)$ onto $T_{x^{\prime}}\left(M^{\prime}\right)$.

We first prove that $g(X, Y)=\mathbf{g}^{\prime}(\mathbf{F}(\mathrm{X}), \mathbf{F}(\mathrm{Y}))$ for all $X, \mathrm{Y} \in T_{x}(M)$. Since $F(c X)=c F(X)$ for any $X \in T_{x}(M)$ and any constant c , we may assume that both X and Y are unit vectors. Then both $\mathbf{F}(\mathbf{X})$ and $\mathbf{F}(\mathbf{Y})$ are unit vectors at x '. Set

$$
\cos \mathrm{a}=g(X, \mathrm{Y}) \quad \text { and } \quad \cos \mathrm{a}^{\prime}=g^{\prime}(\mathrm{F}(\mathrm{X}), \mathrm{F}(\mathrm{Y}))
$$

Let x_{s} andy, be the geodesics with the initial conditions (x, X) and (x, Y) respectively, both parametrized by their arc length from x. Set

$$
x_{s}^{\prime}=f\left(x_{s}\right) \text { and } y_{s}^{\prime}=f\left(y_{s}\right)
$$

Then x_{s}^{\prime} and y_{s}^{\prime} are the geodesics with the initial conditions ($x^{\prime}, \mathbf{F}\left(\mathbf{X}^{\prime}\right)$) and ($\mathrm{X}^{\prime}, \mathbf{F}(\mathbf{Y})$), respectively.

$$
\text { LEMMA. } \quad \sin \frac{1}{2} \mathbf{a}=\lim _{s \rightarrow 0} \frac{1}{2 s} d\left(x_{s}, y_{s}\right) \text { and } \sin \frac{1}{2} \alpha^{\prime}=\lim _{\mathbf{5}-0} \frac{1}{2 s} d\left(x_{s}^{\prime}, y_{s}^{\prime}\right)
$$

We 'shall give the proof of the lemma shortly. Assuming the lemma for the moment, we shall complete the proof of our theorem. Since f preserves distance, the lemma implies that

$$
\sin \frac{1}{2} \alpha=\sin \frac{1}{2} \alpha^{\prime}
$$

and hence

$$
\begin{aligned}
g(X, \mathrm{Y})=\cos \mathrm{a} & =-1-2 \sin ^{2} \frac{1}{2} \alpha \\
& =1-2 \sin ^{2} \frac{1}{2} \alpha^{\prime}=\cos \mathrm{a}^{\prime}=g^{\prime}(F(X), \mathrm{F}(\mathrm{Y}))
\end{aligned}
$$

We shall now prove that \mathbf{F} is linear. We already observed that $F(c X)=c F(X)$ for any $X \in T_{x}(M)$ and for any constant, c.

Let $\mathrm{X}, \ldots, X_{n}$ be an orthonormal basis for $T_{x}(M)$. Then $X_{i}^{\prime}=F\left(X_{i}\right), \mathrm{i}=1, \ldots, \mathbf{n}$, form an orthonormal basis for $T_{x^{\prime}}\left(\mathbf{M}^{\prime}\right)$ as we have just proved. Given X and Y in $T_{x}(M)$, we have

$$
\begin{aligned}
& g^{\prime}\left(F(X+\mathrm{Y}), X_{i}^{\prime}\right)=g\left(X+Y, X_{i}\right)=g\left(X, X_{i}\right)+g\left(Y, X_{i}\right) \\
& \quad=g^{\prime}\left(F(X), X_{i}^{\prime}\right)+g^{\prime}\left(F(Y), X_{i}^{\prime}\right)=g^{\prime}\left(F(X)+F(Y), X_{i}^{\prime}\right)
\end{aligned}
$$

for every \mathbf{i}, and hence

$$
F(X+\mathrm{Y})=\mathrm{F}(\mathrm{X})+\mathrm{F}(\mathrm{Y})
$$

Proof of. Lemma. It is sufficient to prove the first formula. Let U be a coordinate neighborhood with a normal coordinate system $x^{\mathbf{1}}, \ldots, x^{n}$ at x. Let h be the Riemannian metric in U given by $\Sigma_{i}\left(d x^{i}\right)^{2}$ and let $\delta(y, z)$ be the distance between y and z with respect to h. Supposing that

$$
\overline{\lim }_{s \rightarrow 0} \frac{1}{2 s} d\left(x_{s}, y_{s}\right)>\sin \frac{1}{2} \alpha
$$

we shall obtain a contradiction. (The case where the inequality is reversed can be treated in a similar manner.) Choose $\mathrm{c}>1$ such that

$$
\varlimsup_{s-0} \frac{1}{2 s} d\left(x_{s}, y_{s}\right)>c \sin \frac{1}{2} \alpha
$$

Taking U small, we, may assume that $\frac{1}{c} h<\mathrm{g}<c h$ on U in the sense that

$$
\frac{1}{c} h(Z, Z)<g(Z, Z)<\kappa h(Z, Z) \quad \text { for } Z \in T_{z}(M) \text { and } \mathrm{z} \in U
$$

From the definition of the distances \mathbf{d} and δ, we obtain

$$
\frac{1}{c} \delta(y, z)<d(y, z)<c \delta(y, z)
$$

Hence we have

$$
\frac{c}{2 s} \delta\left(x_{3}, y_{s}\right)>\frac{1}{2 s} d\left(x_{3}, y_{s}\right)>c \sin \frac{1}{2} \alpha \quad \text { for small } s
$$

On the other hand, \boldsymbol{h} is a Euclidean metric and hence

$$
\frac{1}{2 s} \delta\left(x_{s}, y_{s}\right)=\sin \frac{1}{2} \alpha
$$

This is a contradiction. Hence,

$$
\varlimsup_{s \rightarrow 0} \frac{1}{2 s} d\left(x_{s}, y_{s}\right)=\sin \frac{1}{2} \alpha .
$$

Similarly, we obtain

$$
\lim _{s \rightarrow \pi} \frac{1}{2 s} d\left(x_{s}, y_{s}\right)=\sin \frac{1}{2} x
$$

QED.
Theorem 3.10 is duc to Myers and Steenrod [1] ; the proof is adopted from Palais [2].

4. Completeness

A Riemannian manifold A4 or a Riemannian metric g on M is said to be complete if the Riemannian connection is complete, that is, if every geodesic of M can be extended for arbitrarily large valucs of its canonical parameter (cf. $\$ 6$ of Chapter III). We shall prove the following two important theorems.
theorem 4.1. For a connected Riemannian manifold M; the following conditions are mutually equivalent:
(1) M is a complete Riemannian manifold;
(2) M is a complete metric space with respect to the distance function d ;
(3) Every bounded subset of M (with respect to d) is relatively compact;
(4) For an arbitrary point x of M and for an arbitrary curve C_{C}^{\prime} in the tangent space $\mathrm{T},(\mathrm{M})$ (or more precisely, the affine tangent space $A_{x}(M)$) skirting from the origin, there is a curve τ in \bar{M} starting from x which is developed upon the given curve C .
theorem 4.2. If M is a connected coniplete Riemannian manifold, then any two points x andy of A 4 can be-joined by a minimizing geodesic.

Proof. We divide the proofs of these theorems into scveral steps.
(i) The implication (i) \rightarrow (1). Let $x_{s}, 0 . s<L$, bc a geodesic, where s is the canonical parameter. We show that this geodesic can be extended beyond L. Let $\left\{s_{n}\right\}$ be an infinite sequence such thiat $s_{n} \uparrow \mathrm{~L}$. Then

$$
d\left(\boldsymbol{x}_{s_{m}}, x_{x_{n}}\right)-\left|s_{m}-s_{n}\right|
$$

so that $\left\{x_{s_{n}}\right\}$ is a Cauchy sequence in M with respect to d and hence converges to a point, say x. The limit point x is independent
of the choice of a sequence $\left\{s_{n}\right\}$ converging to L. We set $x_{L}=x$. By using a normal coordinate system at x, we can extend the geodesic for the values of s such that $L \leqq s \leq L+\varepsilon$ for some $\varepsilon>0$.
(ii) Proof of Theorem 4.2. Let \boldsymbol{x} be any point of M. For each $r>0$, we set

$$
S(r)=\{y \in \mathrm{M} ; d(x, \mathrm{y}) \leqq r\}
$$

and
$E(r)=\{y \in S(r) ; y$ can be joined to x by a minimizing geodesic $\}$.
We are going to prove that $\mathrm{E}(\mathrm{r})$ is compact and coincides with $S(Y)$ for every $r>0$. To prove the compactness of $E(r)$, let y_{i}, $i=1,2, \ldots$, be a sequence of points of $\mathrm{E}(\mathrm{r})$ and, for each i , let $\boldsymbol{\tau}_{i}$ be. a minimizing geodesic from x to y_{i}. Let X_{i} be the unit vector tangent to τ_{i} at \boldsymbol{x}. By taking a subsequence if necessary, we may assume that $\left\{\boldsymbol{X}_{i}\right\}$ converges to a unit vector X_{0} in $T_{x}(M)$. Since $d\left(x, y_{i}\right) \leqq r$ for all i, we may assume, again by taking a subsequence if necessary, that $d\left(x, y_{i}\right)$ converges to a non-negative number r_{0}. Since τ_{i} is minimizing, we have

$$
y_{i}=\exp \left(d\left(x, y_{i}\right) X_{i}\right)
$$

Since M is a complete Riemannian manifold, exp $r_{0} X_{0}$ is defined. We set

$$
y_{0}=\mathrm{e} \times \mathrm{p} \quad r_{0} X_{0}
$$

It follows that $\left\{y_{i}\right\}$ converges to y_{0} and hence that $d\left(x, y_{0}\right)=r_{0}$. This implies that the geodesic $\exp s X_{0}, 0-s \leqq r_{0}$, is minimizing and that y_{0} is in $\mathrm{E}(\mathrm{r})$. This proves the compactness of $\mathrm{E}(\mathrm{r})$.

Now'we shall prove that $E(r)=S^{\prime}(r)$ for all $r>0$. By the existence of a normal coordinate system and a convex neighborhood around x (cf. Theorem 3.6), we know that $E(r)=S(r)$ for $0<r<\varepsilon$ for some $\varepsilon>0$. Let r^{*} be the supremum of $r_{0}>0$ such thpt ${ }^{\wedge} E(r)=S(r$.$) for r<r_{0}$. To show that $r^{*}=\infty$, assume that $r^{* *}<\infty$. We first prove that $\mathrm{E}\left(r^{*}\right)=S\left(r^{*}\right)$. Let y be a point of $S\left(r^{*}\right)$ and let $\left\{y_{i}\right\}$ bc a sequence of points with $d\left(x, y_{i}\right)$ which converges to y. (The existence of such a sequence $\left\{y_{i}\right\}$ follows from the fact that x and y can be joined by a curve whose length is as close to $d(x, \mathrm{y})$ as we wish.) Then each y_{i} belongs to some $E(Y)$, where $r<r^{*}$, and hence each y_{i} belongs to $E\left(r^{*}\right)$.

Since $E\left(r^{*}\right)$ is compact, y belongs to $E\left(r^{*}\right)$. Hence $S\left(r^{*}\right)=$ $E\left(r^{*}\right)$. Next we shall show that $\mathrm{S}(\mathrm{r})=E(r)$ for $r<r^{*}+\delta$ for some $\delta>0$, which contradicts the definition of r^{*}. We need the following

Lemма. On a Riemannian manifold M, there exists a positive continuous function $\mathrm{r}(\mathrm{z}), \mathrm{z} \in \mathrm{M}$, such that any two points of $S_{z}(r(z))=$ $\{y \in M ; d(z, y) \leqq r(z)\}$ can be joined by a minimizing geodesic.
Proof of Lemma. For each $z \in M$, let $\mathrm{r}(\mathrm{z})$ be the supremum of $r>0$ such that any two points y and y^{\prime} with $d(z, y) \leqq r$ and $\mathrm{d}\left(z, y^{\prime}\right) \leqq r$ can be joined by a minimizing geodesic. The existence of a convex neighborhood (cf. Theorem 3.6) implies that $r(z)>0$. If $r(z)=\infty$ for some point z, then $\mathrm{r}(\mathrm{y})=$ co for every pointy of M and any positive continuous function on M satisfies the condition of the lemma. Assume that $r(z)<\infty$ for every $z \in M$. We shali prove the continuity of $\mathrm{r}(\mathrm{z})$ by showing that $|\mathrm{r}(\mathrm{z})-\mathrm{r}(\mathrm{y})|$ $\leqq d(z, y)$. Without any loss of generality, we may assume that $r(z)>\mathrm{r}(\mathrm{y})$. If $d(z, y) \geqq \mathrm{r}(\mathrm{z})$, then obviously $|r(z)-r(y)|<$ $d(z, y)$. If $d(z, y)<\mathrm{r}(z)$, then $S_{y}\left(r^{\prime}\right)=\left\{y^{\prime} ; \mathrm{d}\left(\mathrm{y}, \mathrm{y}^{\prime}\right) \leqq r^{\prime}\right\}$ is contained in $S_{z}\left(r(z)\right.$), where $r^{\prime}=r(z)-d(z, y)$. Hence $\mathrm{r}(\mathrm{y}) \geqq r(z)-$ $\mathrm{d}(z, y)$, that is, $|r(z)-r(y)| \leqq d(z, y)$, completing theproofof the lemma.

Going back to the proof of Theorem 4.2, let $r(z)$ be the continuous function given in the lemma and let δ be the minimum of $r(z)$ on the compact set $E\left(r^{*}\right)$. To complete the proof of Theorem 4.2, we shall show that $S\left(r^{*}+\delta\right)=E\left(r^{*}+\mathrm{S}\right)$. Let $y \in S\left(r^{*}+\delta\right)$ but $\notin S\left(r^{*}\right)$. We show first that there exists a point y’ in $S\left(r^{*}\right)$ such that $d\left(x, y^{\prime}\right)=\mathrm{r}^{*}$ and that $\mathrm{d}(\mathrm{x}, \mathrm{y})=d\left(x, y^{\prime}\right)+^{\prime} \mathrm{d}\left(\mathrm{y}^{\prime}, \mathrm{y}\right)$. To this end, for every. positive integer k, choose a curve τ_{k} from x to y such that $L\left(\tau_{k}\right)<d(x, y)+\frac{1}{k_{k}}$, where $L\left(\tau_{k}\right)$ is the length of τ_{k}. Let y_{k} be the last point on τ_{k} which belongs to $E\left(r^{*}\right)=S\left(r^{*}\right)$. Then $d\left(x, y_{k}\right)=r^{*}$ and $d\left(x, y_{k}\right)+d\left(y_{k}, y\right) \leqq L\left(\tau_{k}\right)<d(x, y)+\frac{1}{k}$. Since $E\left(r^{*}\right)$ is compact, we may assume, by taking a subsequence if necessary, that $\left\{y_{k}\right\}$ converges to a point, say y', of $E\left(r^{*}\right)$. We have $\mathrm{d}\left(\mathrm{x}, \mathrm{y}^{\prime}\right)=r^{*}$ and $d\left(x, y^{\prime}\right)+d\left(y^{\prime}, \mathrm{y}\right)=d(x, \mathrm{y})$. Let τ^{\prime} be a minimizing geodesic from x to y^{\prime}. Since $d\left(y^{\prime}, y\right) \leqq \delta \leqq r\left(y^{\prime}\right)$, there is a minimizing geodesic $\tau^{\prime \prime}$ fromy' toy. Let τ be the join of ' τ^{\prime} and
$\tau^{\prime \prime}$. Then $L(\mathrm{~T})=L\left(\tau^{\prime}\right)+L\left(\tau^{\prime \prime}\right)=\mathrm{d}\left(\mathrm{x}, \mathrm{y}^{\prime}\right)+\mathrm{d}\left(\mathrm{y}^{\prime}, \mathrm{y}\right)=\mathrm{d}(\mathrm{x}, \mathrm{y})$. By Corollary 3.9, τ is a geodesic, in fact, a minimizing geodesic from x toy. Hence y $\in E\left(r^{*}+\delta\right)$, completing the proof of Theorem 4.2.
Remark. To prove that $\mathrm{E}(\mathrm{r})=S(r)$ is compact for every r, it is sufficient to assume that every geodesic issuing from the particular point x can be extended'infinitely.
(iii) The implication (1) \rightarrow (3) in Theorem 4.1. In (ii) we proved that (1) implies that $\mathrm{E}(\mathrm{r})=\mathrm{S}(\mathrm{r})$ is compact for every r. Every bounded subset of M is contained in $S\left(\mathrm{r}^{\prime}\right)^{\prime}$ for some r, regardless of the point \boldsymbol{x} we choose in the proof of (ii).
(iv) The implication (3) \rightarrow (2) is evident.
(v) The implication (4) \rightarrow (1). Since a geodesic is a curve in M which is developed upon a straight line (or a segment) in the tangent space, it is obvious that every geodesic can be extended infinitely.
(vi) The implication (1) \rightarrow (4). Let $C_{t}, 0 \leqq t \leqq$ a, be an arbitrary curve in $T_{x}(M)$ starting from the origin. We know that there is $\varepsilon>0$ /such that $\mathrm{C}, 0 \leqq t \leqq \varepsilon$, is the development of a curve $x_{t}, 0 \leqq t \leqq \varepsilon$, in M. Let b be the supremum of such $\varepsilon>0$. We want to show that $\mathrm{b}=\mathrm{a}$. Assume that $b<\mathrm{a}$. First we show that $\lim _{t \rightarrow b} x_{t}$ exists in M. Let $t_{n} \uparrow b$. Since the development preserves the aric length, the length of $x_{t}, t_{n} \leqq t \leqq t_{m}$, is equal to the length of $C_{t}, t_{n} \leqq t \leqq t_{m}$. On the other hand, the distance $d\left(x_{i_{n}}, x_{m_{m}}\right)$ is less than or equal to the length of $x_{t}, t_{n} \leqq t \leqq t_{m}$. This implies that $\left\{x_{t_{n}}\right\}$ is a Cauchy sequence in M. Since we know the implication (1) \rightarrow (3) by (iii) and (iv), we see that $\left\{x_{t}\right\}$ converged to a point, say y . It is easy to see that $\lim _{t} x^{t}=y$. Let
C_{t}^{\prime} be the curve in $T_{y}(M)$ (or more precisely, in $\mathrm{A},(\mathrm{M})$) obtained by the affine (not linear!) parallel displacement of the curve C_{t} along the curve $x_{t}, 0 \leqq t \leqq \mathrm{~b}$. Then C_{b}^{\prime} is the origin of $T_{y}(M)$. There exist $6>0$ and a curve $x_{t}, \mathrm{~b} \leqq t \leqq b+\delta$, which is developed upon $C_{t}^{\prime}, b \leqq t \leqq \mathrm{~b}+\delta$. Then the curve $x_{t}, 0 \leqq t \leqq$ $\mathrm{b}+\delta$, is developed upon $\mathrm{C}, 0 \leqq t \leqq b+\delta$. This contradicts the definition of b.

QED.
Corollary 4.3. If all geodesics starling from any particular point x of a connected Riemannian manifold M are infinitely extendable, then M is complete.

Proof. As we remarked at the end of (ii) in the proof of Theorem 4.2, $\mathrm{E}(\mathrm{r})=S(r)$ is compact for every r. Every bounded subset of M is contained in $S(r)$ for some r and hence is relatively compact.

QED.
Corollary 4.4. Every compact Riemannian manifold is complete. Proof. This follows from the implication (3) \rightarrow (1) in Theorem 4.1.

QED.
A Riemannian manifold M is said to be homogeneous if the group of isometries, i.e., transformations preserving the metric tensor g, of M is transitive on M. (Cf. Example 1.3 and Theorem 3.4, Chapter VI.)
theorem 4.5. Every homogeneous Riemannian manifold is complete.
Proof. Let x be a point of a homogeneous Riemannian manifold M. There exists $r>0$ such that, for every unit vector Xat x, the geodesic $\exp s X$ is defined for $|s| \leqq r$ (cf. Proposition 8.1 of Chapter III). Let $\tau=x_{s}, 0 \leqq s \leqq \mathrm{a}$, be any geodesic with canonical parameter s in M. We shall show that $\tau=x_{s}$ can be extended to a geodesic defined for $0 \leqq s \leqq a+r$. Let φ be an isometry of M which maps \boldsymbol{x} into \boldsymbol{x}_{a}. Then φ^{-1} maps the unit vector \dot{x}_{a} at x_{a} into a unit vector X at $\mathrm{x}: \mathrm{X}=\varphi^{-\mathbf{1}}\left(\dot{x}_{a}\right)$. Since $\exp s X$ is a geodesic through $x, p(\exp s X)$ is a geodesic through $\boldsymbol{x}_{\boldsymbol{a}}$. We set

$$
x_{\mathrm{ats}}=\varphi(\exp s X) \quad \text { for } 0 \leqq s \leqq r
$$

Then $\tau=x_{s}, 0 \leqq s \leqq \mathrm{a}+r$, is a geodesic.
QED.
Theorem 4.5 follows also from the general fact that every locally compact homogeneous metric space is complete.
theorem 4.6. Let M and M^{*} be connected Riemannian manifolds of the same dimension. Let $p: M^{*} \rightarrow \mathrm{M}$ be an isometric immersion.
(1) If M^{*} is complete, then M^{*} is a covering space of M with projection p and M is also complete.
(2) Conversely, if $p: M^{*} \rightarrow \mathrm{M}$ is a covering projection and if M is complete, then M^{*} is complete.

Proof. The proof is divided into several steps.
(i) If M^{*} is complete so is M. Let $x^{*} \in M^{*}$ and set $\boldsymbol{x}=\boldsymbol{p}\left(x^{*}\right)$. Let X be any unit vector of M at x and choose a unit vector X^{*} at x^{*} such that $p\left(X^{*}\right)=\mathrm{X}$. Then $\exp s X=\mathrm{p}\left(\exp s X^{*}\right)$ is the geodesic in M with the initial condition (x, X). Since $\exp s X^{*}$ is defined
for all s, -co $<s<\infty$, so is exp $s X$. By Corollary 4.3, M is. complete.
(ii) If M^{*} is complete, p maps M^{*} onto M. Let $x^{*} \in M^{*}$ and $x=p\left(x^{*}\right)$. Given a point y of M , let $\exp s X, 0 \leqq s \leqq \mathrm{a}$, be a geodessic from x toy, where X is a unit vector at x . Such a geodesic exists by Theorem 4.2 since \mathbf{M} is complete by (i). Let X^{*} be the unit vector of M^{*} at x^{*} such that $p\left(X^{*}\right)=$. Set $y^{*}=\exp a X^{*}$. Then $p\left(y^{*}\right)=\exp a X=y$.
(iii) If M^{*} is complete, then $p: M^{*} \rightarrow \mathrm{M}$ is a covering projection. For a given $x \in \mathrm{M}$ and for each positive number r, we set
$U(x ; r)=\{y \in \mathrm{M} ; d(x, y)<r\}, N(x ; r)=\left\{X \in T_{x}(M) ;\|X\|<r\right\}$.
Similarly, we set, for $x^{*} \in M^{*}$,

$$
\begin{aligned}
& U\left(x^{*} ; r j=\left\{y^{*} \in M^{*} ; d\left(x^{*}, y^{*}\right)<r\right\}\right. \\
& N\left(x^{*} ; r\right)=\left\{X^{*} \in T_{x^{*}}\left(M^{*}\right) ;\|X\|<r\right\} .
\end{aligned}
$$

Choose $r>0$ such that exp: $N(x ; 2 \mathrm{r}) \rightarrow U(x ; 2 \mathrm{r})$ is a diffeomorphism. Let $\left\{x_{1}^{*}, x_{2}^{*}, \ldots\right\}$ be the set $p^{-\mathbf{1}}(x)$. For each x_{i}^{*}; we have the following commutative diagram :

It is sufficient to prove the following three statements:
(a) $p: U\left(x_{i}^{*} ; r\right) \rightarrow U(x ; r)$ is a diffeomorphism for every i;
(b) $p^{-1}(U(x ; r))=\bigcup U\left(x_{i}^{*} ; r\right)$;
(c) $U\left(x_{i}^{*} ; r\right) \cap U\left(x_{j}^{*} ; r\right)$ is empty if $x_{i}^{*} \neq x_{i}^{*}$.

Now, (a) follows from the fact that both $p: N\left(x_{i}^{*} ; 2 \mathrm{r}\right) \rightarrow N(x ; 2 \mathrm{r})$ and exp: $N(x ; 2 r) \rightarrow U(x ; 2 r)$ are diffeomorphisms in the above diagram. To prove (b), let $\mathrm{y}^{*} \in \boldsymbol{p}^{-1}(U(x ; \mathrm{r}))$ and sety $=p\left(y^{*}\right)$. Let $\exp s Y, 0 \leqq s \leqq a$, be a minimizing geodesic from y to x, where Y is a unit vector aty. Let Y^{*} be the unit vector aty* such that $p\left(Y^{*}\right)=Y$. Then $\exp s Y^{*}, 0 \leqq s \leqq a$ is a geodesic in M^{*} starting from y^{*} such that $p\left(\exp s Y^{*}\right)=\exp s Y$. In particular, $\mathrm{p}\left(\exp a Y^{*}\right)=x$ and hence $\exp a Y^{*}=x_{i}^{*}$ for some x_{i}^{*}. Evidently, $\mathrm{y}^{*} \bullet U\left(x_{i}^{*} ; r\right)$, proving that $p^{-1}(U(x ; r)) \subset \bigcup U\left(x_{i}^{*} ; r\right)$. On
the other hand, it is obvious that $p\left(U\left(x_{i}^{*} ; r\right)\right) \subset U(x ; r)$ for every i and hence $p^{-1}(U(x ; r)) \supset \bigcup U\left(x_{i}^{*} ; r\right)$. To prove (c), suppose $\gamma^{*} \in U\left(x_{i}^{*} ; r\right) \mathrm{n} U\left(x_{j}^{*} ; r\right)$. Then $x_{i}^{*} \in U\left(x_{j}^{*} ; 2 r\right)$. Using the above diagram, we have shown that $p: U\left(x_{j}^{*} ; 2 r\right) \rightarrow U(x ; 2 r)$ is a diffeomorphism. Since $\boldsymbol{p}\left(x_{i}^{*}\right)=p\left(x_{j}^{*}\right)$, we must have $x_{i}^{*}=x_{j}^{*}$.
(iv) Proof of (2). Assume that $p: M^{*} \rightarrow M$ is a covering projection and that M is complete. Observe first that, given a curve $\boldsymbol{x}_{\boldsymbol{t}}, 0 \leqq t \leqq \mathrm{a}$, in M and given a point \boldsymbol{x}_{0}^{*} in \boldsymbol{M}^{*} such that $p\left(x_{0}^{*}\right)=$ x_{0}, there is a unique curve $x_{i}^{*}, 0 \leqq t \leqq$ a, in M^{*} such that $p\left(x_{t}^{*}\right)=\boldsymbol{x}_{\boldsymbol{t}}$ for $0 \leqq t \leqq 4$. Let $\boldsymbol{x}^{*} \in \mathrm{M}^{*}$ and let X^{*} be any unit vector at X^{*}. Set $X=p\left(X^{*}\right)$. Since M is complete, the geodesic $\exp s X$ is defined for $-\infty /<s<\infty$. From the above observation, we see that there is a aique curve $x_{s}^{*},-\infty<s<\infty$, in M^{*} such that $x_{0}^{*}=x^{*}$ and that $p\left(x_{s}^{*}\right)=\exp s X$. Eyidently, $x_{s}^{*}=$ $\exp s X^{*}$. This shows that M^{*} is complete.

QED.
Coroliary 4.7. Let M and M^{*} be connected manifolds of the same dimension and let $p: M^{*} \rightarrow M$ be an immersion. If M^{*} is compact, so is M, and p is a covering projection.

Proof. Take any Riemannian metric g on M. It is easy to see that there is a unique Riemannian metric g^{*} on M^{*} such that p is an isometric immersion. Since $M *$ is complete by Corollary 4.4, p is a covering projection by Theorem 4.6 and hence M is compact.

QED.
Example 4.1. A Riemannian manifold is said to be non-proZongeable if it cannot be isometrically imbedded into another Riemannian manifold as a proper open submanifold. Theorem 5.6 shows that every complete Riemannian manifold is nonprolongeable. The converse is not true. For example, let M be the Euclidean plane with origin removed and M^{*} the universal covering space of M. As an open submanifold of the Euclidean plane, M has a natural Riemannian metric which is obviously not complete. With respect to the natural Riemannian metric on M^{*} (cf. Example 2.1), M^{*} not complete by Theorem 4.6. It can be shown that M^{*} is non-prolongeable.

CoroliAry 4.8. Let G be a group of isometrics of a connected Riemannian manifold M. If the orbit $G(x)$ of a point x of M contains an
open set of M, then the orbit $G(x)$ coincides with M, that is, M is homogeneous.

Proof. It is easy to see that $G(x)$ is open in M. Let- M^{*} be a connected component of $\mathrm{G}(\mathrm{x})$. For any two points x^{*} and y^{*} of M^{*}, there is an element f of G such that $f\left(x^{*}\right)=y^{*}$. Since f maps every connected component of $G(x)$ onto a connected component of $G(x), f\left(\mathrm{M}^{*}\right)=\mathrm{M} *$. Hence M^{*} is a homogeneous Riemannian manifold isometrically imbedded into M as an open submanifold . Hence, $\boldsymbol{M}^{*}=\mathrm{M}$

QED.
Proposirion 4.9. Let M be a Riemannian manifold and M * a submanifold of M which is locally closed in the sense that every point x of M has a neighborhood U such that every connected component of $U \cap M^{*}$ (with respect to the topology of M^{*}) is closed in U. If M is complete, so is M^{*} with respect to the induced metric.

Proof. Let d be, the distance function defined by the Riemannian 'metric of M and d^{*} the distance 'function defined by the induced Riemannian metric of M^{*}. Let x_{s} 'be a geodesic in M^{*} and let a, be the supremum of s such that x_{s} is defined. To show that $\mathrm{a}=\infty$, assume $\mathrm{a}<$ cc. Let $s_{n} \hat{\imath}$ a. Since $d\left(x_{s_{n}}, x_{s_{n}}\right) \leqq$ $d^{*}\left(x_{s_{n}}, x_{s_{m}}\right) \leqq\left|s_{n}-s_{m}\right|,\left\{x_{s_{n}}\right\}$ is a Cauchy sequence in M and hence converges to a point, say x , of M . Then $x=\lim \mathrm{x}$, Let U
be, a neighborhood of x in M with, the property stated in Proposition. Then $x_{s}^{\prime}, b \leqq s<\mathrm{a}$, lies in Ufor some b. Since the connected componënt of $M^{*} \cap U$ containing $x_{s}, \mathrm{~b} \leqq s<\mathrm{a}$, is closed in U, the point \boldsymbol{x} belongs to M^{*}. Set $x_{a}=\mathrm{x}$. Then $x_{s}, 0 \leqq s \leqq a$, is a geodesic in' M^{*}. Using a normal coordinate system at x_{a}, we see that this geodesic can be extended to a geodesic $x_{s}, 0 \leq s \leq \mathrm{a}+6$, for some $\delta>0$.

QED.

5. Holonomy groups

Throughout this section, let M be a connected Riemannian manifold with metric g and, $\mathcal{L}(x)$ the linear or homogeneous holonomy group of the Riemannian connection with reference point $x \in M$ (cf. $\S 4$ of Chapter II and $\S 3$ of Chapter III). Then M is said to be reducible or irreducible according as $\Psi^{\prime}(x)$ is reducible or irreducible as a linear group acting on T,(M). In this section, we shall study $\Psi(\boldsymbol{x})$ and local structures of a reducible Riemannian manifold.

Assuming that Mis reducible, let T_{x}^{\prime} be a non-trivial subspace of T,(M) which is invariant by $\Psi(x)$. Given a pointy $\in M$, let τ be a curve from x toy and T_{y}^{\prime} the image of T_{x}^{\prime} by the (linear) parallel displacement along τ. The subspace T_{y}^{\prime} of $T,(M)$ is independent of the choice of τ. In fact, if μ is any other curve from x toy, then $\mu^{-1} . \tau$ is a closed curve at x and the subspace T_{x}^{\prime} is invariant by the parallel displacement along $\mu^{-1} . \tau$, that is, $\mu^{-1} \cdot \tau\left(T_{x}^{\prime}\right)=T_{x}^{\prime}$, and hence $\tau\left(T_{x}^{\prime}\right)=\mu\left(T_{x}^{\prime}\right)$. We thus obtain a distribution T^{\prime} which assigns to each pointy of M the subspace T_{y}^{\prime} of $T,(M)$.

A submanifold N of a Riemannian manifold (or more generally, a manifold with a linear connection) M is said to be totally geodesic at a point x of N if, for every $\mathrm{X} \in T,(N)$, the geodesic $\tau=\dot{x}_{t}$ of M determined by (x, X) lies in N for small values of the parameter t . If N is totally geodesic at every point of N , it is called a totally geodesic submanifold of M.

Proposition 5.1. (1) The distribution T is differentiable and involutive;
(2) Let M^{\prime} be the maximal integral manifold of T through a point of M. Then M ' is a totally geodesic submanifold of M. If M is complete, so is M^{\prime} with respect to the induced metric.

Proof. (1) To prove that T^{\prime} is differentiable, let y be any point of M and x^{1}, \ldots, x^{n} a normal coordinate system at y, valid in a neighborhood U ofy. Let $\mathrm{X}, \ldots, X_{z}$ be a basis for T_{y}^{\prime} ' For each $i, \mathrm{l} \leq i \leq k$, we define a vector field X_{i}^{*} in U by

$$
\left(X_{i}^{*}\right)_{z}=\tau X_{i} \quad \text { for } z \in U
$$

where τ is the geodesic from y to z given by $x^{j}=a^{j} t, j=$ $1, \ldots, n,\left(a^{1}, \ldots, \mathrm{a}\right)$ being the coordinates of z. Since the parallel displacement τ depends differentiably on ($\mathrm{a}^{\prime}, \ldots, a^{n}$), we obtain a differentiable vector ficld X_{i}^{*} in U. It is clear that $X_{1}^{*}, \ldots, X_{k}^{*}$ form a basis of T_{z}^{\prime} for every point z of U.

To prove that T^{\prime} is involutive, it is sufficient to prove that if X and Y arc vector fields belonging to T^{\prime}, so are $\nabla_{X} \mathrm{Y}$ and $\nabla_{Y} X$, because the Riemannian connection has no torsion and $[\mathrm{X}, \mathrm{Y}]=$ $\nabla_{X} Y-\nabla_{Y} X$ (cf. Theorem 5.1 of Chapter III). Let x_{i} be the integral curve of X starting from an arbitrary pointy. Let τ_{0}^{t} be the parallel displacement along this curve from the point x_{t} to
the point $\mathrm{y}=\boldsymbol{x}_{\mathbf{0}}$. Since Y_{y} and $Y_{x_{t}}$ belong to T^{\prime} for every t, $\left(\nabla_{X} Y\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(\tau_{0}^{t} Y_{x_{t}}-Y_{y}\right)$ belongs to $T_{\boldsymbol{y}}^{\prime}$.
(2) Let M ' be a maximal integral manifold of T '. Let $\boldsymbol{\tau}=\boldsymbol{x}_{\boldsymbol{i}}$ be a geodesic of M with the initial condition (y, X), where $\boldsymbol{y} \in M$ d $X \in T_{y}\left(M^{\prime}\right)=T_{v}^{\prime}$. Since the tangent vectors \dot{x}_{t} are parallel along τ, we see that \dot{x}_{t} belongs to $T_{x_{t}}^{\prime}$ for every t and hence τ lies in M^{\prime} (cf. Lemma 2 for Theorem 7.2 of Chapter II). This proves that M^{\prime} is a totally geodesic submanifold of M. From the following lemma, we may conclude that, if M is complete, so is M^{\prime}.

Lemma. Let $\cdot N$ be a totally geodesic submanifold of a Riemannian manifold M. Every geodesic of N with respect to the induced Riemannian metric of N is a geodesic in M.

Proof of Lemma. Let $x \in \mathrm{~N}$ and $X \in T,(N)$. Let $\tau=\boldsymbol{x}_{\boldsymbol{t}}$, $0 \leqq t \leqq a$, be the geodesic of M with the initial condition (x, X). Since N is totally geodesic, τ lies in N. It now suffices to show that τ is a geodesic of N with respect to the induced Riemannian metric of N . Let d and d^{\prime} be the distance functions of M and N respectively. Considering only small values of t, we may assume that τ is a minimizing geodesic from $x=x_{0}$ to x_{a} so that $d\left(x, x_{a}\right)=$ $\mathbf{L}(\mathbf{T})$, where $\mathbf{L}(\mathbf{T})$ is the arc length of $\boldsymbol{\tau}$. The arc length of $\boldsymbol{\tau}$ measured by the metric of M is the same as the one measured with respect to the induced metric of N. From the definition of the distance functions d and d, we obtain

$$
d^{\prime}(x, x,) \geqq d(x, x,)=\mathrm{L}(\mathrm{~T})
$$

Hence, $d^{\prime}(x, \mathrm{x})=,L(T)$. By Corollary 3.9, $\boldsymbol{\tau}$ is a geodesic with respect to the induced metric of N .

QED.
Remark. The lemma is a consequence of the following two facts which will be proved in Volume II. (1) If M is a manifold with a linear connection whose torsion vanishes and if N is a totally geodesic submanifold of M, then N has a naturally induced linear connection such that every geodesic of N is a geodesic of M; (2) If N is a totally geodesic submanifold of a Riemannian manifold M, then the naturally induced linear connection of N is the Riemannian connection with respect to
the induced metric of N. Note that Proposition 5.1 holds under the weaker assumption that M is a manifold with a linear connection whose torsion vanishes.

Let T^{\prime} be a distribution defined as before. We now use the fact that the homogeneous holonomy group consists of orthogonal transformations of $\mathrm{T},(\mathrm{M})$. Let $T_{x}^{\prime \prime}$ be the orthogonal complement of T_{x}^{\prime} in $\mathrm{T},(\mathrm{M})$. Then $\mathrm{T},(\mathrm{M})$ is the direct sum of two subspaces I_{x}^{\prime} and $T_{-}^{\prime \prime}{ }_{x}$ which are invariant by $\mathrm{Y}(\mathrm{x})$. From the subspace $T_{x}^{\prime \prime}$ we obtain a distribution $T^{\prime \prime}$ just as we obtained T^{\prime} from T_{x}^{\prime}. The distributions T^{\prime} and $T^{\prime \prime}$ are complementary and orthogonal to each other at every point of M .

Proposition 5.2 . Let y be any point of M . Let M^{\prime} and $M^{\prime \prime}$ be the maximal integral manifolds of the distributions T^{\prime} and $T^{\prime \prime}$ defined above. Then y has an open neighborhood V such that $\mathrm{V}=\mathrm{V}^{\prime} \mathbf{x} \mathrm{V}$ ", where $V^{\prime}\left(\right.$ resp. $\left.V^{\prime \prime}\right)$ is an open neighborhood ofy in M^{\prime} (resp. $M^{\prime \prime}$), and that the Riemannian metric in V is the direct 'product \mathcal{V} :he Riemannian metrics in V^{\prime} and $V^{\prime \prime}$.

Proof. We first prove the following
Lemma. If T^{\prime} and $T^{\prime \prime}$ are two involutive distributions on a manifold M which are complementary at every point of M, then, for each pointy of M, there exists a local coordinate system x^{1}, \ldots, x^{n} with origin at y such that $\left(\partial / \partial x^{1}, \ldots, \partial / \partial x^{k}\right)$ and $\left(\partial / \partial x^{k+1}, \ldots, \partial / \partial x^{n}\right)$ form local bases for T^{\prime} and $T^{\prime \prime}$ respectively. In other words, for any set of constants (c^{1}, \ldots $c^{k}, c^{k+1}, \ldots, c^{n}$), the equations $x^{i}=c^{i}, 1 \leqq i \leqq k$ (resp. $x^{\prime}=c$, $k+1 \leqq j \leqq n)$ define an integral manifold of $T^{\prime \prime} \cdot\left(\right.$ resp. $\left.T^{\prime}\right)$.

Proof of Lemma. Since T^{\prime} is involutive, there exists a local coordinate system $y^{1}, \ldots, y^{k}, x^{k+1}, \ldots, x^{n}$ with origin y such that $\left(\partial / \partial y^{1}, \ldots, \partial / \partial y^{k}\right)$ form a local basis for T^{\prime}. In other words, the equations $x^{j}=c^{j}, k+1 \leqq j \leqq n$, define an integral manifold of T^{\prime}. Similarly, there exists a local coordinate system x^{1}, \ldots, x^{k}, z^{k+1}, \ldots, z^{n} with origin y such that $\left(\partial / \partial z^{k+1}, \ldots, \partial / \partial z^{n}\right)$ form a local basis for $\mathrm{T}^{\prime \prime}$. In other words, the equations $\boldsymbol{x}^{i} \neq \mathrm{c}^{\prime}$, $1 \leqq i \leqq k$, define an integral manifold of $\mathrm{T}^{\prime \prime}$. It is easy to see that $x^{1}, \ldots, x^{k} ; x^{k+1}, \ldots, x^{n}$ is a local coordinate system with the desired property.
Making use of the local coordinate system x^{1}, \ldots, x^{n} thus obtained, we shall prove Proposition 5.2. Let V be the neighborhood ofy defined by $\left|x^{i}\right|<\mathrm{c}, 1 \leqq i \leqq \mathrm{n}$, where c is a sufficiently
small positive number so that the coordinate system x^{1}, \ldots, x^{n} gives a homeomorphism of V onto the cube $\left|x^{i}\right|<c$ in R". Let V^{\prime} (resp. $\mathrm{V}^{\prime \prime}$) be the set of points in V defined by $\left|x^{i}\right|<c, 1 \leqq i \leqq k$, and $x^{j}=0, \mathrm{k}+1 \leqq j \leqq n$ (resp. $x^{i}=0,1 \leqq i \leqq \mathrm{k}, \quad$ nnd $\left|x^{j}\right|<\mathrm{c}, \mathrm{k}+1 \leqq j \leqq \mathrm{n}$. It is clear that V^{\prime} (resp. $\mathrm{V}^{\prime \prime}$) is an integral manifold of T^{\prime} (resp. $T^{\prime \prime}$) through y and is a neighborhood of y in M^{\prime} (resp. $M^{\prime \prime}$) and that $\mathrm{V}=\mathrm{V}^{\prime} \times V^{\prime \prime}$. We set $X_{i}=\partial / \partial x^{i}, 1 \leqq i \leqq \mathrm{n}$. To prove that the Riemannian metric of V is the direct product of those in V^{\prime} and $\mathrm{V}^{\prime \prime}$, we show that $g_{i j}=g\left(X_{i}, X_{j}\right)$ are independent of x^{k+1}, \ldots, x^{n} for $1 \leq i, j \leqq k_{\ldots}$, that $g_{i j}=g\left(X_{i,} X_{i}\right)$ are. independent of $x, \ldots, \ldots r_{k}^{k} f f r_{k}^{1}+1 \leq$ $i, j \leqq n$ and that $g_{i j}=g\left(X_{i}, X_{j}\right)=0$ for $1 \leqq i \leqq k$ and $k+1 \leqq$ $\mathrm{j} \leqq \mathrm{n}$. The last assertion is obvious since $X_{i}, 1 \leqq i \leqq \mathrm{k}$, belong to $T^{\prime \prime}$ and $X_{j}, k+1 \leqq \jmath^{\prime} \leq n$, belong to $T^{\prime \prime}$ and since T^{\prime} and $T^{\prime \prime}$ are orthogonal to each other at every point. We now prove the first assertion, and the proof of the second assertion is similar. Let $1 \leqq i \leqq \mathrm{k}$ and $\mathrm{k}+1 \leqq \mathrm{~m} \leqq n$. As in the proof of (1) of Proposition 5.1, we see that $\nabla_{X_{m}} X_{i}$ belongs to T^{\prime} and that $\nabla_{X_{i}} X_{m}$ belongs to $T^{\prime \prime}$. Since the torsion is zero and since $\left[X_{i}, X_{m}\right]=0$, we have

$$
\nabla_{X_{i}} X_{m}-\nabla_{X_{m}} X_{i}=\nabla_{X_{i}} X_{m}-\nabla_{X \cdot m} X_{i}-\left[X_{i}, X_{m}\right]=0
$$

Hence, $\nabla_{X_{i}} X_{m} \doteq \nabla_{X_{m}} X_{i}=0$. Since g is parallel, we have

$$
\begin{aligned}
X_{m}\left(g_{i j}\right) & =\nabla_{X_{m}}\left(g\left(X_{i}, X_{j}\right)\right) \\
& =g\left(\nabla_{X_{m}} X_{i}, X_{j}\right)+g\left(X_{i}, \nabla_{X_{m}} X_{j}\right)=0, \quad 1 \leqq i, j \leqq k
\end{aligned}
$$

thus proving our assertion.
QED.
Proposition 5.3. Let T^{\prime} and $T^{\prime \prime}$ be the distributions on M used in Proposition 5.2. If M is simply connected, then the homogeneous holonomy group $\Psi(x)$ is decomposed into the direct product of two normal subgroups $\mathbf{Y}^{\prime}(\mathbf{x})$ and $\Psi^{\prime \prime \prime}(x)$ such that $\Psi^{\prime \prime}(x)$ is trivial on $T_{x}^{\prime \prime}$ and that $\Psi^{\prime \prime \prime}(x)$ is trivial on T_{x}^{\prime}.

Proof. Given an element $a \in Y(x)$, let a, (resp. a_{2}) be the restriction of a to $T_{x}^{\prime \prime}\left(\right.$ resp. $\left.T_{x}^{\prime \prime}\right)$. Let a' (resp. a") be the orthogonal transformation of $T,(M)$ which coincides with a, on T_{x}^{\prime} (resp. with a_{2} on $T_{x}^{\prime \prime}$) 'and which is trivial on $T_{x}^{\prime \prime}$ (resp. T_{x}^{\prime}). If we take an orthonormal basis for $T_{x}(M)$ such that the first k vectors lie in T_{x}^{\prime} and the remaining $n-\mathrm{k}$ vectors lie in $T_{x}^{\prime \prime}$, then these linear
transformations can be expressed by matrices as follows:

$$
a=\left(\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right), \quad a^{\prime}=\left(\begin{array}{ll}
a_{1} & 0 \\
0 & 1
\end{array}\right), \quad a^{\prime \prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & a_{2}
\end{array}\right)
$$

We shall show that both a^{\prime} and $a^{\prime \prime}$ are elements of $\Psi(x)$. Let τ be a closed curve at x such that the parallel displacement along τ is the given element a $\in \mathrm{Y}(\mathrm{x})$. First we consider the special case where τ is a small lasso in the following sense. A closed curve τ at X is called a small lasso if it can,be decomposed into three curves as follows: $\tau=\mu^{-1}, \sigma \cdot \mu$, where μ is a curve from x to a pointy (so that μ^{-1} is a curve from y to x going backward) and σ is a closed curve at y which is small enough to be contained in a neighborhood $V=V^{\prime} \times V^{\prime \prime}$ ofy given in Proposition 5.2. In this' special case, we denote by σ^{\prime} (resp. a") the image of σ by the natural projection $V \rightarrow V^{\prime}$ (resp. $\left.V \rightarrow V^{\prime \prime}\right)$. We set

$$
\tau^{\prime}=\mu^{-1} \cdot \sigma^{\prime} \cdot \mu, \quad \tau^{\prime \prime}=\mu^{-1} \cdot \sigma^{\prime \prime} \cdot \mu
$$

The parallel displacement along $\boldsymbol{\tau}^{\prime}$ (resp. $\tau^{\prime \prime}$) is trivial on $T_{y}^{\prime \prime}$ (resp. T_{y}^{\prime}). The parallel displacement along σ is the product of those along σ^{\prime} and $\sigma^{\prime \prime}$. Hence the parallel displacement along τ is the product of those along τ^{\prime} and $\tau^{\prime \prime}$. On the other hand, τ^{\prime} (resp. $\tau^{\prime \prime}$) is trivial on $T_{x}^{\prime \prime}$ (resp. $T_{x}^{\prime \prime}$). It follows that a' (resp. a") is the parallel displacement -along τ^{\prime} (resp. $\tau^{\prime \prime}$), thus proving our assertion in the case where τ is a small lasso.
${ }^{\top} \mathrm{n}$ the general case, we decompose τ into a product of small las os as follows.

Lemma. If M is simply connected, then the parallel displacement along τ is the product of the parallel displacements along a finite number of small lassos at x.

Proof of Lemma. This follows from the factorization lemma (cf. Appendix 7).

It is now clear that both a^{\prime} and a " belong to $\Psi(x)$ in the general case. We set

$$
\Psi^{\prime}(x)=\left\{a^{\prime} ; a \in \Psi(x)\right\}, \Psi^{\prime \prime}(x)=\left\{a^{\prime \prime} ; a \in \Psi(x)\right\}
$$

Then $Y(x)=Y^{\prime}(x)$ x $Y^{\prime \prime}(x)$.
QED.
We now proceed to define a most natural decomposition of $T_{x}(\mathcal{M})$ and derive its consequences. Let $T_{x}^{(0)}$ be the set of
elements in $T_{x}(M)$ which are left fixed by $\Psi(x)$. It is the maximal linear subspacc of $T_{x}(\boldsymbol{M})$ on which $\Psi^{\prime}(x)$ acts trivially. Let $T_{:}^{\prime}$ be the orthogonal complement of $T_{x}^{(1)}$ in $T_{x}(\mathbb{M})$. It is invariant by $\mathrm{Y}(\mathrm{x})$ and can be decomposed into a direct sum $T_{x}^{\prime}=\Sigma_{i}^{k}, T_{i}^{(i)}$ of niutually orthogonal, invariant and irreducible subspaccs. We shall call $T_{x}(11)=\Sigma_{i=0}^{k} T_{x}^{(i)}$ a canonical decomposition (or de R ham decomposition) of $T_{x}(\mathrm{M})$

тheorem 5.4. Let M be a Riemannian manifold, $T_{x}(M)=$ $\Sigma_{i=0}^{k} T_{x}^{(i)}$ a canoniral decomposition of $T_{x}(M)$ and $T^{(i)}$ the involutive distribution on M obtained by parallel displacement of $T_{x}^{(i)}$ for each $\mathrm{i}=0,1, \ldots, \mathrm{k}$. Lety be a point of M and let, for each $\mathrm{i}=0,1, \ldots, \mathrm{k}$, M_{i} be the maximal integral manifold of $T^{(i)}$ through y . Then
(1) The point ' y has an open neighborhtiod V such that $V=V_{0} \times$ $V_{1} \times \cdots \times V_{k}$ where each V_{i}^{\prime} is an open neighborhood ofy in \tilde{X}_{i} and that the Riemannian metric in V is the direct product of the Riemannian metrics in the V_{i} 's;
(2) The maximal integral manifold M_{0} is locally Euclidean in the sense that every point of M_{0} has a neighborhood which is isometric with an

(3) If M is simply connected, then the homogeneous holonomy group $Y(x)$ is the direct product $\Psi_{0}(x) \times \Psi_{1}(x) \times \ldots \times \Psi_{k}(x)$ of normal subgroups, where $Y,(\mathrm{x})$ is trivial on $T_{x}^{(j)}$ if $\mathrm{i} \neq j$ and is irreducible on $T_{x}^{(i)}$ for each $i=1, \ldots, \mathrm{k}$, and $\Psi_{0}(x)$ consists of the identity only;
(4) If M is simply connected, then a canonical decomposition $T_{x}(M)=$ $\Sigma_{i=0}^{k} T_{r}^{(i)}$ is unique $u p$ to an order.

Proof. (1) This is a generalization of Proposition 5.2.
(2) Since y is an arbitrary point of M, it is sufficient to prove that V_{0} is isometric to an open subset of an n,-dimensional Euclidean space. Since the homogeneous holonomy group of V_{0} consists of the identity only, $T_{y}^{(0)}$ is the direct sum of. n_{0} I-dimensional subspaces. From the proof of Proposition 5.2, it follows that V_{0} is a direct product of l-dimensional submanifolds and that the Riemannian metric on $V_{\mathbf{0}}$ is the direct product of the Riemannian metrics on these l-dimensional submanifolds. On the other hand, on any l-dimensional manifold with a local coordinate sustem x^{1} every Riemannian metric is of the form $g_{11} d x^{1} d x^{1}$. If x^{1} is normal coordinate system, then the metric is of the form $d x^{1} d x^{1}$ Hence V_{0} is isometric to an open set of a Euclidean space.
(3) This is clear from the definition of a canonical decomposition of $\mathrm{T},(\mathrm{M})$ and from the proof of Proposition 5.3.
(4) First we prove

Lemma. Let S_{x} be any subspace of T,(M) invariant by $Y(x)$. Then, for each $i=1, \ldots, k$, either S_{x} is orthogonal to $T_{x}^{(i)}$ or S_{x} contains $T_{x}^{(i)}$.

Proof of Lemma. (i) As sume that all vectors of S_{x} are left fixed by $\Psi_{i}(x)$.'Then S_{x} is orthogonal to $T_{x}^{(i)}$. In fact, let $\mathrm{X}=$ $\Sigma_{j=0}^{k} X_{j}$ be any element of S_{x}, where $X_{i} \in T_{x}^{(j)}$. For an arbitrary element a, of $\Psi_{i}(x)$, we have

$$
a_{i}(X)=X_{0}+X_{1}+\cdots+a_{i}\left(X_{i}\right)+\cdots+X_{k}
$$

since a_{i} acts trivially on $T_{x}^{(j)}$ for $j \neq \mathrm{i}$. If $a_{i}(X)=\mathrm{X}$, then $a_{i}\left(X_{i}\right)=X_{i}$. Since this holds for every a, $\epsilon \Psi_{i}(x)$ and since $\mathrm{Y},(\mathrm{x})$ is irreducible in $T_{x}^{(i)}$, we must have $X_{i}=0$. This shows that X is orthogonal to $T_{x}^{(i)}$.
(ii) Assume that $a_{i}(X) \neq X$ for some $a_{i} \bullet \Psi_{i}(x)$ and for some $\mathrm{X} \in S_{x}$. Let $\mathrm{X}=\Sigma_{j=0}^{k} X_{j}$, where $X_{j} \in T_{x}^{(j)}$. Since. each $X_{j}, j \neq \mathrm{i}$, is left fixed by every element of $\Psi_{i}(x), X-a_{i}(X)=X_{i}-$ $a_{i}\left(X_{i}\right) \neq 0$ is a vector in $T_{x}^{(i)}$ as well as in $S_{x^{*}}$ The subset $\left\{b_{i}\left(X-a_{i}(X)\right) ; b_{i} \in \Psi_{i}(x)\right\}$ is in $T_{x}^{(i)} \cap S_{x}$ and spans $T_{x}^{(i)}$, since $\Psi_{i}(x)$ is irreducible in $T_{x}^{(i)}$. This implies that $T_{x}^{(i)}$ is contained in S_{x}, thus proving the lemma.

Going back to the proof of (4), let $T,(M)=\Sigma_{j=0}^{l} S_{x}^{(j)}$ be any other canonical decomposition. First it is clear that $T_{x}^{(0)}=S_{x}^{(0)}$. It is therefore sufficient to prove. that each $S_{x}^{(j)}, 1 \leqq j \leqq l$, coincides with some $T_{x}^{(i)}$. Consider, for example, $S_{x}^{(1)}$. By the lemma either it is orthogonal, to $T_{\dot{x}}^{(i)}$ for every $i \geqq 1$ or it contains $T_{x}^{(i)}$ for some $\mathrm{i} \geqq 1$. In the first case, it must be contained in the orthogonal complement $T_{x}^{(0)}$ of $\Sigma_{i=1}^{k} T_{x}^{(i)}$ in $T,(M)$. This is obviously a contradiction. In the second case, the irreducibility of $S_{x}^{(1)}$ implies that $S_{x}^{(1)}$ actually coincides with $T_{x}^{(i)}$.

The following result is due to Bore1 and Lichnerowicz [1].
тheorem 5.5. The restricted homogeneous holonomy group of a Riemannian manifold M is a closed subgroup of $S O(n)$, where $n=\operatorname{dim} M$.

Proof. Since the homogeneous holonomy group of the universal covering space of M is isomorphic with the restricted homogeneous holonomy group of M (cf. Example 2.1), we may assume,
without loss of generality, that M is simply connected. In view of (3) of Theorem 5.4, our assertion follows from the following result in the theory of Lie groups:

Let G be a connected Lie subgroup of $S O(n)$ which acts irreducibly on the n-dimensional vector space $\mathbf{R}^{\mathbf{n}}$. Then G is closed in $\mathbf{S O (n)}$.

The proof of this result is given in Appendix 5.

6. The decomposition theorem of dè Rham

Let M be a connected, simply connected and complete Riemannian manifold. Assuming that M is reducible, let $T\left({ }_{x} 1 /\right)=$ $T_{x}^{\prime}+T_{x}^{\prime \prime}$ be a decomposition into subspaces invariant by the linear holonomy group $\Psi(x)$ 'and let T^{\prime} and T ' be the parallel distributions defined by T_{x}^{\prime} and $T_{x}^{\prime \prime}$ of $\S 5$. We fix a point o $\in M$ and let M^{\prime} and $M^{\prime \prime}$ be the maximat integral manifolds of T and $T^{\prime \prime}$ through o, respectively. By Proposition 5.1 , both M^{\prime} and $M^{\prime \prime}$ are complete, totally geodesic submanifolds of M.
The purpose of this section is to prove
тheorem 6.1. M is isometric to the direct product 31 ’ $M^{\prime \prime}$
Proof. For any curve $z_{t}, 0 \leqq t \leqq 1$, in M with $z_{0}=0$, we shall define its projection on M^{\prime} to be the curve, $x_{t}, \Omega_{v} t \leq 1$ with $x_{0}=\mathrm{o}$ which is obtained as follows. Let C_{t} be the develop: ment of \boldsymbol{z}_{t} in the affine tangent space $T_{o}(\boldsymbol{M})$. (For the sake of simplicity we identify the affine tangent space with the tangent (vector) space.) Since $T_{o}(M)$ is 'the direct product of the two Euclidean spaces T_{o}^{\prime} and $T_{o}^{\prime \prime}, C_{t}$ may be represented bv a pair ' $\left(A_{t}, B_{t}\right)$, where A , and B_{t} are curves in T_{o}^{\prime} and $T_{0}^{\prime \prime}$ respectivel.: By applying (4) of Theorem 4.1 to M^{\prime}, we see that there exists a
 view of Proposition 4.1 of Chapter III we may define the curve x_{t} as follows. For each t, let ' X_{t} be the result of the parallel displacement of the T^{\prime}-component of \dot{z}_{i} from z_{t} to $\mathrm{o}=z_{0}$ (along the curve z_{t}). The curve x_{t} is a curve in M^{\prime} with $x_{0}=0$ such that the result of the parallel displacement of \dot{x}_{t} along itself to 0 is equal to X_{t} for each t.

Before proceeding further, we shall indicate the main idea of the proof. We show that the end point x_{1} of the projection x_{t} depends only on the end point z_{1} of the curve z_{t} if M is simply connected.

Thus we obtain a projection $p^{\prime}: M \rightarrow M^{\prime}$ and, similarly, a projection $p^{\prime \prime}: M \rightarrow M^{\prime \prime}$. The mapping $p=\left(p^{\prime}, p^{\prime \prime}\right)$ of M into $M^{\prime} \times$ $M^{\prime \prime}$ will be shown to be isometric at every point. Theorem 4.6 then implies that p is a covering projection of M onto $M^{\prime} \times M^{\prime \prime}$. If h is a homotopy in M from a curve of M^{\prime} to another curve of M^{\prime}, then $P^{\prime}(\mathrm{h})$ is a homotopy between the two curves in M^{\prime}. Thus, M^{\prime} is simply counected. Similarly, $M^{\prime \prime}$ is simply connected. Thus p is an isometry of M onto $M^{\prime} \times \mathrm{M}{ }^{\prime \prime}$. The detail now follows.
Lemma 1. ' Let $\tau=z_{t}, 0 \leqq \mathrm{t} \leqq 1$, be a curve in 64 with $z_{0}=0$ and let a be any number with $0 \leq \mathrm{a} \leqq 1$. Let τ_{1} be the curve z_{t}, $0 \leq \mathrm{t} \leqq \mathrm{a}$, and let τ_{2} be the curve $z_{t}, \mathrm{a} \leq \mathrm{t} \leq 1$. Let τ_{2}^{\prime} be the projection of τ_{2} in the maximal integral manifold $M^{\prime}\left(z_{a}\right)$ of T^{\prime} through z, . Then the projection of $\tau=\tau_{2}, \tau_{1}$ in M^{\prime} coincides with the projection of $\tau^{\prime}=\tau_{2}^{\prime} \cdot \tau_{1}$.
'Proof of Lemma 1. This is obvious from the second definition of the projection by means of the (linear) 'parallel displacement of tangent vectors.

Lemma 2. Let $z \in M$ and let. $V=V^{\prime} \times V^{\prime \prime}$ be an open neighborhood of Z in M , where V^{\prime} and $V^{\prime \prime}$ are open neighborhoods of z in $M^{\prime}(z)$ and $M^{\prime \prime}(z)$ respectively. For any curve z_{t} with $z_{0}=z$ in V, the projection of z_{t} in $M^{\prime}(z)$ is given by the natural projection of V onto V^{\prime}.

Proof of Lemma 2. For the existence of a neighborhood $V=V^{\prime} \times V^{\prime \prime}$, see Proposition 5.2. Let z_{t} be given by the pair $\left(x_{t}, y_{t}\right)$ where $x_{t}\left(\right.$ resp. $\left.y_{t}\right)$ is a curve in $\mathrm{V}^{\prime}\left(\right.$ resp. $\left.\mathrm{V}^{\prime \prime}\right)$ with $x_{0}=z$ (resp. $y_{0}=\mathrm{z}$). Since $V=V^{\prime} \times V^{\prime \prime}$, the parallel displacement of the T-component. of \dot{z}_{t} from z_{t} to $z_{0}=z$ along the curve z_{t} is the same as the paraliel displacement of \dot{x}_{t} from x_{t} to $x_{0}=z$ along the curve x_{i}, Thus x_{t} is the projection of the curve z_{t} in $M^{\prime}(z)$.

We introduce the following terminologies. A (piecewise differentiable) curve z_{t} is called a, T'-curve (resp. T"-curve)+ if $;$ belongs to $T_{z_{4}}^{\prime}$ (resp. $T_{z_{i}}^{\prime \prime}$) for every i. Given a (piecewise differentiable) homotopy z: $[0,1] \times\left[0, s_{0}\right] \rightarrow M$ which 1 s dè\&Led by $z(t, s)=z_{i}^{k}$, we shall denote by $z_{i}^{(k)}$ (resp. $\left.z_{(t)}^{k}\right)$ the curve with parameter \boldsymbol{t} for the fixed value of \boldsymbol{s} (resp. the curve with parameter s for the fixed value of t. Their tangent vectors will .be denoted by $\dot{z}_{t}^{(8)}$ and $\dot{z}_{(t)}^{s}$, respectively. For. any point $\mathrm{z} \in \mathrm{M}$, let d^{\prime} (resp. $d^{\prime \prime}$) denote the distance function on the maximal'
integral manifold $\mathrm{M}^{\prime}(\mathrm{z})$ of T^{\prime} (resp. M" (z) of $T^{\prime \prime}$) through z. Let $U^{\prime}(z ; r)$ (resp. $\left.U^{\prime \prime}(z ; r)\right)$ denote the set of points $w \in M^{\prime}(z)$ (resp. w $\left.\in M^{\prime \prime}(z)\right)$ such that $d^{\prime}(z, w)<r$ (resp. $d^{\prime \prime}(z, w)<r$).

Lemma 3. Let $\tau^{\prime}=x_{i}, 0 \leq \mathrm{t} \leq 1$, be a T^{\prime}-curce. Then there exist a number $r>0$ and a family of isometries $f_{t}, 0-\mathrm{t} \leq 1$, of $U^{\prime \prime}\left(x_{0} ; r\right)$ onto $U^{\prime \prime}\left(x_{i} ; r\right)$ with the following properties:
(1) The differential of $f_{t} む x_{6}$ coincides with the parallel displacement along the curve τ^{\prime} from x_{0} to x_{t};
(2) For aǹy curve $\tau^{\prime \prime}=y^{\rho}, 0 \leqq s \sqsubseteq s_{0}$, in $U^{\prime \prime}\left(x_{0} ; \mathrm{r}\right)$ with $y^{0}=x_{0}$, set $z_{t}^{s}=f_{t}\left(y^{s}\right)$. Then
(a) For any $0 \leq t_{1} \leqq 1$ and $0 \leqq s_{1} \leq s_{0}$, the parallel displacement along the "parallelogram" formed b_{j}, the curve $x_{i}, 0 \leqq \mathrm{t} \leqq t_{1}, t h$ curve $z_{\left(t_{1},\right.}^{s}, 0 \leq s \leqq s_{1}$, the inverse of the curve $z_{l}^{\left(s_{1}\right)}, 0 \leqq \mathrm{t} \leqq t_{1}$, and the inverse of the curve $y^{s}, 0 \leqq s_{\leqq} s_{1}$, is trivial;
(b) For any s and $\mathrm{t}, \dot{z}_{t}^{(s)}$ is parallel to \dot{x}_{t} along the curve $z_{(1)}^{s}$;
(c) For any s and $\mathrm{t}, \dot{z}_{(1)}^{*}$ is parallel to \dot{y}^{s} along the curve $z_{i}^{\left({ }_{x}^{()}\right)}$.

Proof of Lemma 3. Let V be a neighborhood of x_{0} of the form $\mathrm{V}=V^{\prime} \times \mathrm{V}^{\prime \prime}$ as in Proposition 5.2. Choose a number $r>0$ sufficiently small so that $x_{t} \in \mathrm{~V}^{\prime}$ and $U^{\prime \prime}\left(x_{t} ; r\right) \subset\left\{x_{t}\right\}$ ' $\mathrm{x} V^{\prime \prime}$ ' for $0 \leqq t \leq r$. We define f_{t} by $f_{t}\left(x_{0}, y\right)=\left(x_{t}, y\right)$ for-r $\in U^{\prime \prime}\left(x_{0} ;\right.$ r). It is clear that the family of isometries $f_{i}, 0 \leq t \leq r$, has all the properties (1) and (2). The family f_{t} can be extended easily for $0 \leqq t \leqq 1$ and for a suitable $r>0$ by covering the curve $\tau^{\prime}=x_{t}$ by a finite number of neighborhoods of the form $V=V^{\prime} \times V^{\prime \prime}$ and using the above argument for each neighborhood.

Lemma 4. Let $\tau^{\prime}=x_{t}, 0 \leqq \mathrm{t}-1$, be a T-curve and let $\tau^{\prime \prime}=y^{s}$ $0 \leq s \leq s_{0}$, be a P-geodesic with $y^{0}=x_{0}$, where s is the arc length: Then there exists a homotopy $z_{l}^{s}, 0 \leqq \mathrm{t} \leqq 1,0 \leqq s \leq s_{0}$, with the foltowing properties
(1) $z_{i}^{(1)}=x_{t}$ nnd $z_{(0)}^{(0)}=y^{s}$;
(2) z_{i}^{R} kas properties (a), (b) and (c) of Lemma 3.

The homotopy z_{t}^{x} is uniquely determined. In fact, if Y_{t} is the result of parallel displacement of the initial tangent vector $Y_{0}=\dot{y}^{0}$ of the geodesic $\tau^{\prime \prime}$ along the curve $\boldsymbol{\tau}^{\prime}$, then $z_{t}^{*}=\exp s Y_{t}$.

Proof of Lemma 4. We first prove the uniqueness. By (a) and (c) and by the fact that " τ " is a geodesic, it follows that \dot{z}_{0}^{\prime} is, parallel to Y_{t} along the curve $z_{(t)}^{*}$. This means that $z_{(t)}^{*}$ is a
geodesic with initial tangent vector Y_{i}. Thus, $z_{t}^{*}=\exp s Y_{t}$, proving the uniqueness.

It remains therefore to prove that $z_{t}^{*}=\exp s Y_{t}$ actually sntisfics conditions (1) and (2). Condition (1) is obvious. To prove (2), we may assume that τ^{\prime} is a differentiable curve so that z_{l}^{*} is differentiable in (t, s). Let f_{f} be the filmily of isometries as in Lemma 3. It is obvious that there exists a number $\delta>0$ such that $z_{i}^{*}=f_{t}\left(y^{s}\right)$ for $0 \leqslant t \leq 1$ and $0 \leq s \leq 8$. Thus, z_{t}^{s} satisfies condition (2) for $0 \leq t \leq!$ and $0 \leqq s \leqq 6$. Let a bc the supromum of such δ. In order to prove a $=s_{0}$, assume a $<s_{0}$. First we show that z_{i}^{s} satisfies (2) for $0 \leqq t \leqq 1$ and $0 \leq s \leq a$. Since z_{t}^{x} is differentiable in (t, s), the parallel displacement along the curve $z_{t}^{(a)}$ is the limit of the parallel displacement along the curve $z_{t}^{(s)}$ as $s \uparrow a$ (cf. Lemma for Theorem 4.2 of Chapter II). Thus condition (a) is satisfied. We have also $\dot{\dot{z}}_{(t)}^{a}=\lim _{s^{\dagger} a} \dot{z}_{(l)}^{*}$ and $\dot{z}_{t}^{(t)}:=\lim _{s \neq 1 t} \dot{z}_{t}^{(s)}$. Combined with the above limit argument, this gives conditions (b) and (c) for $0 \leqq t \leqq 1$ and $s=\dot{a}$.

In ordrr to show that z_{t}^{s} has property (2) beyond the value a, we apply Lemma 3 to the T^{\prime}-curve $\tau^{(a)}=z_{t}^{(a)}$ and the Y-geodesic $y^{\prime \prime}$, where $u=s-a$. We see then that there exist a number $r>0$ and a homotopy $u_{f}^{\prime \prime}, 0 \leqq t \leqq 1,-r \leqq u \leqq r$, satisfying a condition similar to (2), such that $w_{t}^{(0)}=z_{i}^{(a)}$ and $w_{0}^{\prime \prime}=y^{s}$. Since $w_{t}^{(0)}$ is parallel to j^{n} along the curve $w_{t}^{(0)}=z_{t}^{(a)}$, it follows that $z_{t}^{\infty}=$ $\mathfrak{e r}^{-{ }^{-a}}$ for $0 \leq t \leq 1$ and $a-r \leqq s \leqq a+r$. This proves that z_{s}^{t} satisfies condition (2) for $0 \leqq t \leqq 1$ and $0 \leqq s \leqq a+r$, contradicting the assumption that $\mathrm{a}<s_{0}$.

Lemma 5. Keeping the notation of Lemma 4, the projection of the curve $\tau^{\prime} \cdot \tau^{\prime \prime-1}$ in $M^{\prime}\left(y^{\delta_{0}}\right)$ coincides with $\tau^{\left(s_{0}\right)}=z_{t}^{\left({ }^{\circ}\right)}, 0 \leqq \mathrm{t} \leqq 1$.

Proof of Jemma 5. Since $\tau^{\prime \prime-1}$ is a $T^{\prime \prime}$-curve, its projection in $M^{\prime}\left(y^{n}\right)$ is trivial,. that is, reduces to the point $y^{\Omega_{0}}$. Conditions (a) and (b) imply that, for each t, the parallel displacement of \dot{x}_{t} along $\tau^{\prime \prime} \cdot \tau^{\prime-1}$ to $y^{g_{0}}$ is the same as the parallel displacement of $\dot{z}_{t}^{\left(\delta_{0}\right)}$ along $z_{t}^{\left(\delta_{0}\right)}$ to $y^{\delta_{0}}$. This means that $\tau^{\prime \prime} \cdot \boldsymbol{\tau}^{\prime-1}$ projects on $\tau^{\left(g_{0}\right)}$.

We now come to the main step for the proof of Theorem 6.1.
Lemma 6. If two curves $\boldsymbol{\tau}_{\mathbf{1}}$ and, $\boldsymbol{\tau}_{\mathbf{2}}$ from \boldsymbol{Q} to a point \boldsymbol{z} in M are homotopic to each other, then their projections in $M^{\prime}=M^{\prime}(0)$ have the same end point.

Proof of Lemma 6. We first remark that $\tau_{,}$is obtained from τ_{1} by a finite succession of small deformations. Here a small deformation of a curve z_{t} means that, for a ceriain small neighborhood l, we replace a portion $z_{t}, t_{1} \leq t \leq t_{a_{a}}$ of the curve lying in V by a curve $w_{1}, t_{1} \geq t_{z} t_{2}$, with $w_{1}=z_{t_{1}}$ and $w_{t r a}=z_{,}$lving, in V. As a neighborhood V, we shall always take a neighborhood of the form $V^{\prime} \quad V^{\prime \prime}$ as in Lemma 2.

It suffices therefore to prove the following assertion. Let τ be a curve from 0 to z_{1}, μ a curve from z_{1} to z_{2} which lies in a small neighborhood $\Gamma=V^{\prime} \times \mathrm{J} "$, and κ a curve from z_{2} to z. Let v be another curve from z_{1} to z_{2} which lies i $n \quad I$. Then the projections of $\kappa \cdot \mu \cdot \tau$ and $\kappa \cdot 3 \cdot \tau$ i $n \quad M^{\prime}$ have the same erdd point.
To prove this, we may first replace thr curve κ by its projection in $J^{\prime}(\because=0)$ by Lemma I. Thas we shall assume that κ is a T^{\prime}. curve. Let μ be represented n the pair $\left(\mu^{\prime}, \mu^{\prime \prime}\right)$ in $V=l^{\prime \prime}$ I". By Lemma 2, the projection of μ in $M^{\prime}\left(z_{1}\right)$ is μ^{\prime}. Let μ^{*} be a $T^{\prime \prime}$-geodesic in V^{\prime} joining z_{0}, and the end point of μ^{\prime}. The paralicl displacement of Y-vectors at Σ_{2} along μ^{-1} is the same as the parallel displacement along $\mu^{\prime-1} \cdot \mu^{*}$, because $\mu^{\prime \prime}$ and u^{*} sive the same parallel displacement for T-vectors. By Lemma 5. we see that the projection of $\kappa^{\cdot} \mu$ in $M^{\prime}\left(z_{1}\right)$ is the curve μ^{\prime} followed by the 'curve κ. obtained by using the homotopy z_{i}^{*} constructed from the Y-geodesic μ^{*} and the T^{\prime}-curve $\boldsymbol{\kappa}$. The homotopy z_{i}^{*} depends only on μ^{*} and κ and not on μ. Thus if we replace μ by ν in the above arqument, we see that the projection of κ_{1}, v is equal to v^{\prime} followed $\mathrm{b} y \kappa^{\prime}$, where $v=\left(\nu^{\prime} ; \mathrm{v}\right.$ ") in $V=V^{\prime} \times V^{\prime \prime}$.
We now dividr τ into a finite number of arcs, say, $\tau_{1}, \tau_{9} \ldots \tau_{k}$, such that each τ, lies in a small neighborhood V_{i} of the form $V_{i}^{\prime \prime} V_{i}^{\prime \prime}$. We show that the projections of the curves $\kappa^{\prime} \cdot \mu^{\prime} \cdot \tau_{k}$ and $\kappa^{\prime} \cdot \boldsymbol{v}^{\prime} \cdot \tau_{k}$ have the same end point in the maximal intenral manifold of T^{\prime} through the initial point of τ_{k}. Again, let $-{ }_{-}$
$\left(\tau_{k}^{\prime}, \tau_{k}^{\prime \prime}\right)$ in $V_{k}=V_{k}^{\prime} \times V_{k}^{\prime \prime}$ and let τ_{k}^{*} be the geodesic in V_{k}^{\prime} joinime the end point of τ_{k} to the end point of τ_{k}^{\prime}. As before, the projection of $\kappa^{\prime} \cdot \mu^{\prime} \cdot \tau_{k}$ is the curve τ_{k}^{\prime} followed by the curve obtained by the homoiopy which is constructed from the T^{n}-geodesic -* and the T^{\prime}-curve $\kappa^{\prime} \cdot \mu^{\prime}$. Similarly for the projection of $\kappa^{\prime} \cdot v^{\prime} \cdot \tau_{k}$. Each homotopy was constructed by the parallel displaceme t of the initial tangent vector of the geodesic τ_{k}^{*} along $\kappa^{\prime} \mu^{\prime}$ or along
$\kappa^{\prime} \cdot \nu^{\prime}$. Since $\nu^{\prime-1} \cdot \mu^{\prime}$ is a curve in V^{\prime}, the parallel displacement along $\boldsymbol{v}^{\prime-1} \cdot \mu^{\prime}$ is trivial for $T^{\prime \prime}$-vectors. This means that the parallel displacements of the initial tangent vector of τ_{k}^{*} along μ^{\prime} and ν^{\prime} are the same so that the two homotopies produce the curves μ_{k} and $\boldsymbol{v}_{\boldsymbol{k}}$ starting at the end point of $\boldsymbol{\tau}_{\boldsymbol{k}}^{\prime}$ and ending at the same point, where a curve κ_{k} starts in such a way that $\kappa_{k} \cdot \mu_{k} \cdot \tau_{k}^{\prime}$ and $\boldsymbol{\kappa}_{\boldsymbol{k}} \cdot \boldsymbol{\nu}_{k}, \tau_{k}^{\prime}$ are the projections of $\kappa^{\prime} \cdot \mu^{\prime} \cdot \tau_{k}$ and $\kappa^{\prime} \cdot \boldsymbol{\nu}^{\prime} \cdot \tau_{k}$ respectively. We also remark that the parallel displacements of every T"-vector along μ_{k} and $\boldsymbol{\nu}_{k}$ are the same; this indeed follows from property (a) of the homotopý in Lemma 4.

We continue to the next stage of projecting the curves $\kappa_{k} \cdot \mu_{k} \cdot \tau_{k}^{\prime} \cdot \tau_{\boldsymbol{k}-\mathbf{1}}$ a $\mathrm{nd} \kappa_{k} \cdot \boldsymbol{\nu}_{\boldsymbol{k}} \cdot \tau_{k}^{\prime} \cdot \tau_{k-1}$ by the same method. As a result of the above remark, we have two curves ending at the same point. Now it is obvious that this process can be continued, thus completing the proof of Lemma 6

Now we are in position to complete the proof-of Theorem 6.1.
Lemma 6 allows us to define a mapping p^{\prime} of M into M^{\prime}. Similarly, we define a mapping $p^{\prime \prime}$ of M into $M^{\prime \prime}$. These mappings are differentiable. As we indicated before Lemma 1, we have only to show that the mapping $p=\left(p^{\prime}, p^{\prime \prime}\right)$ of M into $M^{\prime} \times M^{\prime \prime}$ is isometric at each point. Let Z be any point of M and let τ be a curve from o to z. For any tangent vector $Z \in T_{z}(M)$, let $Z=$ $\mathrm{X}+Y$, where $\mathrm{X} \in T_{2}^{\prime}$ and $Y \in T_{z}^{\prime \prime}$. By definition of the projection, it is clear. that $p^{\prime}(Z)$ is the same as the vector obtained by the parallel displacement of X from z to o along τ and then from o to $p^{\prime}(z)$ along $p^{\prime}(\tau)$. Therefore, $p^{\prime}(Z)$ and X have the same length. Similarly, $p^{\prime \prime}(\boldsymbol{Z})$ and Y have the same length. It follows that Z and $p(Z)=\left(p^{\prime}(Z), p^{\prime \prime}(Z)\right)$ have the same length, proving that p is isometric at z.

Combining Theorem 5.4 and Theorem 6.1, we obtain the decomposition theorem of de Rham.-

тizorem 6.2. A connected, simply connected and complete Riemannian manifoit M is isometric to the direct product $M_{0} \times M_{1} \times \cdots \times$
M_{k}, where M_{0} is a Euclidean space (possibly of dimension 0) and M_{1}, \ldots, M_{k} are all simply connected, complete, irreducible Riemannian manifolds. Such a decomposition is uniqueup to an order.

Theorems 6.1 and 6.2 are due to de Rham [1]. The proof of Theorem 6.1 is new; it was inspired by the work of Reinhart [1].

7. Affine holonomy groups

Let M be a connected Riemannian manifold. Fixing a point x of M, we denote the affine holonomy group $\Phi(x)$ and the linear holonomy group ' $\mathrm{F}(\mathrm{x})$ simply by Φ and Ψ, respectively. We know' (cf. Theorem 5.5) that the restricted linear holonomy group Ψ^{0} is a closed-subgroup of $\mathrm{SO}(\mathrm{n})$, where $n=\operatorname{dim} \cdot M$. Φ is a group of Euclidean motions of the affine (or rather Euclidean) tangent space i-‘,(M)

We first prove the following result.

Theorem, 7.1. If M'irreducible, then either
 (1) Φ^{0} contains all translations of T ;(M).

or

(2) Φ^{0} fixes a point of $\mathrm{T},(\mathrm{M})$

Proof. Let K be the kernel of the homomorphism of Φ^{0} onto $\Psi^{\circ}{ }^{\circ}$ (cf. Proposition 3.5 of Chapter III). Since K is a normal subgroup of Φ^{0} and since every element a of ϕ^{0} is of the form $\mathrm{a}=\xi \cdot \tilde{a}$ where $\tilde{a} \in \Psi^{0}$ and ξ is a pure translation, Ψ^{0} normalizes K, that is, $\tilde{a}^{-1} K \tilde{a}=K$ for every $\tilde{a} \in \Psi^{0}$. Consider first the case where K is not discrete. Since Ψ^{0} is connected, it normalizes the identity component K^{0} of K . Let V be the orbit of the origin of $T_{x}(M)$ by K^{0}. It is a non-trivial linear subspace of $T_{x}(M)$ invariant by Ψ^{0}; the invariance by Ψ^{00} is a consequence of the fact chat Ψ^{00} normalizes K^{0}. Since Ψ^{00} is irreducible by assumption, wc have $V=T_{x}(M)$. This means that Φ^{0} contains all translations of $T_{x}(M)$. Consider next the case where K is discrete. Since Ψ^{0} is connected, $\Psi^{\circ 0}$ commutes with K elemantwise. Hence, for every $\boldsymbol{\xi} \in K, \boldsymbol{\xi}(0)$ is invariant by Ψ^{0} (where 0 denotes the origin of $\mathrm{T},(\mathrm{M})$). Since $\Psi^{0}{ }^{0}$ is irreducible, $\xi(0)=0$ for every $\xi \in \mathrm{K}$. This means that K consists of the identity element only and hence that Φ^{0} is isomorphic to Ψ^{0} in a natural manner. In particular, Φ^{0} is compact. On the other hand, any compact group of affine transformations of $T,(M)$ has a fixed point. Although we shall prove a more general statement in Volume II, we shall give here a direct proof of this fact. Lct f be the mapping from Φ^{0} into $T,(M)$ defined by

$$
f(a)=a(0) \quad \text { for } \mathrm{a} \epsilon \Phi^{0} .
$$

Let $d a$ be a bi-invariant Haar measure on Φ^{0} and define

$$
X_{0}=\int f(u) d a
$$

It is "asy to verify that X_{0} is a fixed point of Φ^{0}.
We now investigate the second case of Theorem 7.1 (without assuming the irreducibility of M).
theorem 7.2. Let M be a connected, simply connected and complete Riemannian manifold. If the (restricted) affine holonomy group Φ^{0} at \boldsymbol{a} point \boldsymbol{x} fixes a point of the Euclidean tangent space $T,(M)$, then M is isometric to a Euclidean space,

Proof. Assuming that $X_{0} \in T_{x}(M)$ is a point fixed by Φ^{0}, let τ be the geodesic from x to a pointy which is developed upon the line segment $t X_{0}, 0 \leqq t \leqq 1$. We observe that the affine holonomy group $\Phi^{0}(y)$ aty fixes the origin of $\mathrm{T}_{\text {, }}(\mathrm{M})$. In fact, for any closed curve μ at y, the affine parallel displacement along $\boldsymbol{\tau}^{\mathbf{1}} \cdot \mu \cdot \boldsymbol{\tau}$ maps X_{0} into itself, that is, $\left(\tau^{\mathbf{- 1}} \cdot \mu \cdot \tau\right) X_{\mathbf{0}}=X_{\mathbf{0}}$. Hence the origin of T ,(M) given by $\tau\left(X_{0}\right)$ is left fixed by μ. This shows that we may assume that Φ^{0} fixes the origin of $\mathrm{T},(\mathrm{M})$. Since M is complete, the exponential mapping $\mathrm{T},(\mathrm{M}) \rightarrow \mathrm{M}$ is surjective. We show that it is 1 : 1 . Assume that two geodesics τ and μ issuing from x meet at a pointy $\neq x$. The affine parallel displacement $\mu^{-1} \cdot \boldsymbol{\tau}$ maps the origin 0 , of $T,(M)$ into itself and hence we have

$$
\tau^{-1}\left(0_{y}\right)=\mu^{-1}\left(0_{y}\right)^{2}
$$

where 0 , denotes the origin of $T_{y}(M)$. Since $\tau^{-1}\left(0_{v}\right)$ and $\mu^{-1}\left(0_{y}\right)$ are the end points of the developments of τ and μ. in $\left.\mathrm{T}_{,(M)}\right)^{\prime}$ respectively, these developments which are line segments coincide with each other. Thus $\tau=\mu$, contradicting the assumption that $\mathrm{x} \neq y$. This proves that the exponential mapping $\mathrm{T},(\mathrm{M}) \rightarrow \mathrm{M}$ is $1: 1$.

1: l.
Assume that exp, is a diffeomorphism of $N(x ; r)=\left\{\vec{X} \in T_{x}(M)\right.$; $\|X\|<r\}$ onto $U(x ; r)=\{y \in M ; \mathrm{d}(\mathrm{x}, \mathrm{y})<\mathrm{r}\}$, and let $x^{\mathbf{1}}, \ldots, x^{n}$ be a normal coordinate system on $U(x ; r)$.

We set $X=-\sum_{i=1}^{n} x^{i}\left(\partial / \partial x^{j}\right)$ and let p be the corresponding point field (cf. $\S 4$ of Chapter III). We show that p is a parallel point field. Since Φ^{0} fixes the origin of $T_{x}(M)$, it is sufficient to
prove that b is parallel along each geodesic through x. Our assertion follows therefore from

Lemma 1. Let $\tau=x_{t}, 0 \leqq \mathrm{t} \leqq 1$, be a curve in a Riemannian manifold M and let $\bar{\tau}_{s}^{t}\left(\right.$ resp. $\left.\tau_{s}^{t}\right)$ denote the affine (resp. linear) parallel displacement along τ from x_{t} to $x_{\text {, }}$. Then

$$
\tilde{\tau}_{0}^{t}(Y)=\tau_{0}^{t}(Y)+C_{t}, \quad Y \in T_{x_{t}}(M)
$$

where $C_{t}, 0 \leqq \mathrm{t} \leqq 1$, is the development of $\tau=x_{t}$ into $T_{x_{0}}(M)$.
Proof of Lemma 1. Given $Y \in T_{,(M)}(M)$ let p (resp. q) be the point field along τ defined by the affine parallel displacement of Y (resp. the origin of $\left.T_{x_{t}}(M)\right)$ and let Y^{*} be the vector field along τ defined by the linear parallel displacement of Y. Then $p=q+$ Y^{*} at each point of τ, that is, Y^{*} is the vector with initial point q and end point p at each point of τ. At the point x_{0}, this means precisely $\tilde{\tau}_{0}^{t}(\mathrm{Y})=\tau_{0}^{\prime}(Y)+\mathrm{C}$,.

Going back to the proof of Theorem 7.2, we assert that

$$
\nabla_{V} X+V=0 \quad \text { for any vector field } V
$$

This follows from
Lemma 2. Let p be a point field along a curve $\tau=x_{t}, 0 \leqq t \leqq 1$, in a Riemannian manifold M and let X be the corresponding vector field along τ. Then p is a parallel point field if and only if

$$
\nabla_{t_{i}} X+\dot{x}_{t}=0 \quad \text { for } 0 \leqq \mathrm{t} \leqq 1
$$

Proof of Lemma 2. From Lemma 1, we obtain

$$
\tilde{\tau}_{t}^{\prime+h}\left(p_{x_{t+h}}\right)=\tau_{t}^{t+h}\left(X_{x_{t+n}}\right)+C_{t, h}
$$

where $C_{t, n}$ (for a fixed t and with parameter h) is the development of τ into $T_{x_{t}}(M)$. Since $\tilde{\tau}_{t}^{t+h}\left(\boldsymbol{p}_{x_{t+h}}\right)$ is independent of h (and depends only on t) if and only if p is parallel, we have

$$
\begin{aligned}
0 & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\tau_{t}^{t+h}\left(X_{x_{t+n}}\right)-X_{x_{t}}\right]+\lim _{h \rightarrow 0} \frac{1}{h} C_{t, n} \\
& =\nabla_{d_{t}} X+\dot{x}_{t}
\end{aligned}
$$

for $0 \leqq t \leqq 1$ if and only if p is parallel, completing the proof of Lemma 2.

Let I' and Z be arbitrary vector fields on M. From $\nabla_{Y} X+\mathrm{Y}=$ 0 and $\Gamma_{Z} X+Z=0$, we obtain (cf. Theorem 5.1 of Chapter III)

$$
\nabla_{X} Y=\cdot \nabla_{Y} X+[X, \mathrm{Y}]=-\mathrm{Y}+[X, \mathrm{Y}]
$$

ind

$$
\nabla_{X} Z=\nabla_{Z} X+[X, Z]=--Z+[X, Z]
$$

Hence,

$$
\begin{aligned}
X(g(Y, Z)) & =g\left(\nabla_{X} Y, Z\right)+g\left(Y, \Gamma_{X} Z\right) \\
& =-2 g(Y, Z)+g([X, Y], Z)+g(Y,[X, Z])
\end{aligned}
$$

Let $\mathrm{Y}=\partial / \partial x^{j}$ and $\mathrm{Z}=\partial \dot{\partial} \partial x^{k}$ for any fixed j and k. Then we have

$$
X \cdot g_{i k}=-2 g_{j k}+g_{j k}+g_{i k}=0
$$

This means that the functions $g_{i k}$ arc invariant by the local 1parameter group of transformations q_{t} generated by X. But φ_{t} is of the form

$$
q_{i}\left(x^{1}, \ldots, x^{n}\right)=\left(e^{-t} x^{1}, \ldots, e^{-t} x^{n}\right)
$$

Thus the functions $g_{j k}$ are constant along each geodesic $\mathbf{t h r o u g h} x$. Hence,

$$
g_{j k}=g_{j k}(x)=(\mathrm{I},, \quad \text { at every point of } U(x ; r) .
$$

This shows that $\exp _{x}$ is an isometric mapping of $N(x ; r)$ with Euclidean metric onto $U\left(x ; r\right.$, . Let r_{0} be the supremum of $r>0$ such that esp, is a diffcomorphism of $N(x ; r)$ onto $U(x ; r)$. Since the differential $\left(\exp _{s}\right)_{*}$ is non-singular at every point of $N\left(x ; r_{0}\right)$, $\exp _{x}$ is a dificomorphism, hence an isometry, by the argument above, of $N\left(x ; r_{0}\right)$ onto $U\left(x ; r_{0}\right)$. If $r_{0}<\infty$, it follows that $\left(\exp _{x}\right)_{*}$ is isometric at cvery point y of the boundary of $\Lambda\left(r ; r_{0}\right)$ and hence nonsingular in a neighborhood of such γ. Since the boundary of $N\left(x ; r_{0}\right)$ is compact, we see that there exists $\varepsilon>0$ such that $\exp _{s}$ is a diffeomorphism of $N\left(x ; r_{0}+\varepsilon\right)$ onto $U\left(x ; r_{0}+\varepsilon\right)$, contradicting the definition of r_{0}. This shows that $\exp _{x}$ is a diffeomorphism of $T_{x}(M)$ onto M. By choosing a normal coordinate system x^{1}, \ldots, x^{n} on the whole M, we conclude that $g_{j k}=\delta_{j k}$ at every point of M, that is, M is a Euclidean space.

QED.
As a consequence we obtain the following corollary due to Coto and Sasaki [1].
corollary 7.3. Let M be a connected and complete Riemannian manifold. If the restricted affine holonomy group $\Phi^{0}(x)$ fixes a point of the Euclidean tangent space $T_{x}(M)$ for some $x \in M$, then M is locally Euclidean (that is, every point of M has a neighborhood which is isometric to an open subset of a Euclidean space).

Proof. Apply Theorem 7.2 to the universal covering space of M.

QED.
coroliary 7.4. If M is a complete Riemannian manifold of dimension >1 and if the restricted linear holonomy group $\Psi^{\circ}(x)$ is irreducible, then the restricted affine holonomy group $\boldsymbol{\Phi}^{0}(x)$ contains all translations of $\mathrm{T},(\mathrm{M})$.

Proof. Since $\Psi^{\circ}(x)$ is irreducible, M is not locally Euclidean. Our. assertion now follows from Theorem 7.1 and Corollary 7.3.

QED.

CHAPTER V

Curvature and Space Forms

1. Algebraic preliminaries

Let V be an n-dimensional real vector space and R : $V \times V \times$ $V \times V \rightarrow \mathrm{R}$ a quadriiinear mapping with the following three properties:
(a) $R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=-R\left(v_{2}, v_{1}, v_{3}, v_{4}\right)$
(b) $R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=-R\left(v_{1}, v_{2}, v_{4}, v_{3}\right)$
(c) $R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)+R\left(v_{1}, v_{3}, v_{4}, v_{2}\right)+R\left(v_{1}, v_{4}, v_{2}, v_{3}\right)=0$.

Proposition 1.1. If R possesses the above three properties, then it possesses also the following fourth property:
(d) $R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=R\left(v_{3}, v_{4}, v_{1}, v_{2}\right)$.

Proof. We denote by $S\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ the left hand side of (c). By a straightforward computation, we obtain

$$
0=S\left(v_{1}, v_{2}, v_{3}, v_{4}\right)-S\left(v_{2}, v_{3}, v_{4}, v_{1}\right)-S\left(v_{3}, v_{4}, v_{1}, v_{2}\right)
$$

$$
+S\left(v_{4}, v_{1}, v_{2}, v_{3}\right)
$$

$=R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)-R\left(v_{2}, v_{1}, v_{3}, v_{4}\right)-R\left(v_{3}, v_{4}, v_{1}, v_{2}\right)$

$$
+R\left(v_{4}, v_{3}, v_{1}, v_{2}\right)
$$

By applying (a) and (b), we see that

$$
2 R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)-2 R\left(v_{3}, v_{4}, v_{1}, v_{2}\right)=0
$$

Proposition 1.2. Let R and T be two quadrilinear mappings with the above properties (a), (b) and (c). If

$$
R\left(v_{1}, v_{2}, \mathrm{a} ; v_{2}\right)=T\left(v_{1}, v_{2}, v_{1}, v_{2}\right) \quad \text { for all } v_{1}, v_{2} \in \mathrm{~V}
$$

then $\mathrm{R}=T$.

Proof. We may assume that $\mathrm{T}=0$; consider $\mathrm{R}=\mathrm{T}$ and 0 instead of R and T . We assume therefore that $R\left(v_{1}, v_{2}, v_{1}, v_{2}\right)=0$ for all $i_{1}, i_{2} \in \mathrm{~V}$. We have

$$
\begin{aligned}
0 & =R\left(v_{1}, v_{2}+v_{4}, v_{1}, v_{2}+v_{4}^{\prime}\right) \\
& =R\left(v_{1}, v_{2}, v_{1}, v_{4}\right)+R\left(v_{1}, v_{4} i_{1}^{\prime}, v_{2}\right) \\
& =2 R\left(v_{1}, v_{2}, v_{1}, v_{4}\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
R\left(v_{1}, v_{2}, v_{1}, v_{4}\right)=0 \quad \text { for all } v_{1}, v_{2}, v_{4} \in V \tag{1}
\end{equation*}
$$

From (1) we obtain

$$
\begin{aligned}
0 & =R\left(v_{1}+v_{3}, v_{2}, v_{1}+v_{3}, v_{4}\right) \\
& =R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)+R\left(v_{3}, v_{2}, v_{1}, v_{4}\right) .
\end{aligned}
$$

Now, by applying (d) and then (b), we obtain

$$
\begin{aligned}
0 & =R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)+R\left(v_{1}, v_{4}, v_{3}, v_{2}\right) \\
& =R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)-R\left(v_{1}, v_{4}, v_{2}, v_{3}\right) .
\end{aligned}
$$

Hence,
(2) $R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=R\left(v_{1}, v_{4}, v_{2}, v_{3}\right) \quad$ for all $v_{1}, v_{2}, v_{3}, v_{4} \in \mathrm{~V}$.

Replacing v_{2}, v_{3}, v_{4} by v_{3}, v_{4}, v_{2}, respectively, we obtain

$$
\text { (3) } R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=R\left(v_{1}, v_{3}, v_{4}, v_{2}\right) \quad \text { for all } v_{1}, v_{2}, v_{3}, v_{4} \in V
$$

From (2) and (3), we obtain

$$
\begin{aligned}
3 R\left(v_{1}, v_{2}, v_{3}, v_{4}\right): R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)+R\left(v_{1},\right. & \left.v_{3}, v_{4}, v_{2}\right) \\
& +R\left(v_{1}, v_{4}, v_{2}, v_{3}\right)
\end{aligned}
$$

where the right hand side vanishes by (c). Hence,

$$
R\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=0 \quad \text { for all } v_{1}, v_{2}, v_{3}, v_{4} \in V
$$

QED.
Besides a quadrilincar mapping R, we consider an inner product (i.e., a positive definite symmetric bilinear form) on V , which will be denoted by ,). Let p be a plane, that is, a 2 dimensional subspace, in I^{\prime} and let v_{1} and v_{2} be an orthonormal basis for p. We set

$$
K(p) \quad R\left(v_{1}, v_{2}, v_{1}, v_{2}\right) .
$$

As the notation suggests, $K(p)$ is independent of the choice of an orthonormal basis for p. In fact, if w_{1} and w_{2} form another orthonormal basis ofp, then

$$
w_{1}=a v_{1}+b v_{2}, \quad w_{2}=-b v_{1}+a v_{2} \quad\left(\text { or } \quad b v_{1}-a u_{1}\right)
$$

where a and b are real numbers such that $a^{2}+b^{2}=1$. Using (a) and (b), we easily obtain $R\left(v_{1}, v_{2}, v_{1}, v_{2}\right)=R\left(w_{1}, w_{2}, w_{1}, w_{2}\right)$.
Propositton 1.3. If v_{1}, v_{2} is a basis (not necessarily orthonormal) of a plane p in V, then

$$
\mathrm{K}(\mathrm{P})=\frac{R\left(v_{1}, v_{2}, v_{1}, v_{2}\right)}{\left(v_{1}, v_{1}\right)\left(v_{2}, v_{2}\right)-\left(v_{1}, v_{2}\right)^{2}} .
$$

Proof. We obtain the formula making use of the following orthonormal basis for p :

$$
\frac{v_{1}}{\left(v_{1}, v_{1}\right)^{\frac{1}{2}}}, \quad \frac{1}{a}\left[\left(v_{1}, v_{1}\right) v_{2}-\left(v_{1}, v_{2}\right) v_{1}\right]
$$

where $\mathrm{a}=\left[\left(v_{1}, v_{1}\right)\left(\left(v_{1}, v_{1}\right)\left(v_{2}, v_{2}\right)-\left(v_{1}, \dot{v}_{2}\right)^{2}\right)\right]^{\frac{1}{2}}$
QED.
We set

$$
\begin{array}{r}
R_{1}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=\left(v_{1}, v_{3}\right)\left(v_{2}, v_{4}\right)-\left(v_{2}, v_{3}\right)\left(v_{4}, v_{1}\right) \\
\\
\text { for } v_{1}, v_{2}, v_{3}, v_{4} \in V
\end{array}
$$

It is a trivial matter to verify that R_{1} is a quadrilinear mapping having the properties (a), (b) and (c) and that, for any-plane \boldsymbol{p} in V, we have

$$
K_{1}(p)=R_{1}\left(v_{1}, v_{2}, v_{1}, v_{2}\right)=1
$$

where v_{1}, r_{2} is an orthonorm ${ }^{\text {al }}$ basis for p.
proposition 1.4. Let he a quadrilinear mapping with properties (a), (b) and (c). If $K(p)=c$ for all planes P, then $R=c R_{1}$.

Proof. By Proposition 1.3, we have

$$
R\left(v_{1}, v_{2}, v_{1}, v_{2}\right)=c R_{1}\left(v_{1}, v_{2}, v_{1}, v_{2}\right) \quad \text { for all } v_{1}, v_{2} \in \mathrm{~V}
$$

Applying Proposition 1.2 to R and $c R_{1}$, we conclude $\mathrm{R}=c R_{1}$. QED.

Let $\left.e_{1}, \ldots\right) e_{n}$ be an orthonormal basis for V with respect to the inner product (,). To each quadrilinear mapping R having
properties (a), (b) and (c), we associate a symmetric bilinear form S on V as follows:

$$
\begin{aligned}
S\left(v_{1}, v_{2}\right)=R\left(e_{1}, v_{1}, e_{1}, v_{2}\right)+R\left(e_{2}, v_{1},\right. & \left.e_{2}, v_{2}\right)+\cdots \\
& +R\left(e_{n}, v_{1}, e_{n}, v_{2}\right), \quad v_{1}, v_{2} \in V
\end{aligned}
$$

It can be easily verified that S is independent of the choice of an orthonormal basis e,, .., ℓ_{n}. From the definition of S, we obtain

Proposition 1.5. Let $\mathrm{v} \in V$ be a unit vector and let $\mathrm{v}, e_{2}, \ldots, e_{n}$ be an orthonormai basis for V . Then

$$
S(v, v)=K\left(p_{2}\right)+\cdots+K\left(p_{n}\right),
$$

where p_{i} is the plane spanned $b y \mathrm{v}$ and $\boldsymbol{e}_{\boldsymbol{i}}$.

2. Sectional curvature

Let M be an n -dimensional Riemannian manifold with metric tensor g . Let $R(X, \mathrm{Y})$ denote the curvature transformation of $\mathrm{T},(\mathrm{M})$ determined by $\mathrm{X}, \mathrm{Y} \in \mathrm{T},(\mathrm{M})$ (cf. $\$ 5$ of Chapter III). The Riemannian curvature tensor (field) of M, denoted also by R , is the tensor field of rovariant degree 4 'defined by

$$
\begin{aligned}
& R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(R\left(X_{3}, X_{4}\right) X_{2}, X_{1}\right) \\
& \\
& X_{i} \in \mathrm{~T},(\mathrm{M}), \mathrm{i}=1, \ldots, 4
\end{aligned}
$$

Proposition 2.1. The Riemannian curvaturetensor, considered as a quadrilinear mapping $\mathrm{T},(\mathrm{M}) \times \mathrm{T},(\mathrm{M}) \mathbf{x} T_{x}(M) \times \mathrm{T},(\mathrm{M}) \rightarrow \mathbf{R}$ at each $x \in M$, possesses properties (a), (b), (c) and hence (d) of $\S 1$.

Proof. Let u be any point of the bundle $\mathrm{O}(\mathrm{M})$ of orthonormal frames such that $\pi(u)=\mathrm{x}$. Let $X_{3}^{*}, X_{4}^{*} \in T_{\mathfrak{u}}(O(M))$ with $\pi\left(X_{3}^{*}\right)=$ X_{3} and $\pi\left(X_{4}^{*}\right)=X_{4}$. From the definition of the. curvature transformation $R\left(X_{3}, X_{4}\right)$ given in $\$ 5$ of Chapter III, we obtain

$$
\begin{aligned}
g\left(R\left(X_{3}, X_{4}\right) X_{2}, X_{1}\right) & =g\left(u\left[2 \Omega\left(X_{3}^{*}, X_{4}^{*}\right)\left(u^{-1} X_{2}\right)\right], X_{1}\right) \\
& =\left(\left(2 \Omega\left(X_{3}^{*}, X_{4}^{*}\right)\right)\left(u^{-1} X_{2}\right), u^{-1} X_{1}\right)
\end{aligned}
$$

where (,) is the natural inner product in R ". Now we see that property (a) is a consequence of the fact that $\Omega\left(X_{3}^{*}, X_{4}^{*}\right) \in 0(\mathrm{n})$ is a skew-symmetric matrix. (b) follows from $R\left(X_{3}, X_{4}\right)=$ $-R\left(X_{4}, X_{3}\right)$. Finally, (c) is a consequence of Rianchi's first identity given in Theorem 5.3 of Chapter III.

QED.

For each plane p in the tangent space $T_{x}(M)$, the sectional curvature $\mathrm{K}(\mathrm{p})$ for p is defined by

$$
K(p)=R\left(X_{1}, X_{2}, X_{1}, X_{2}\right)=g\left(R\left(X_{1}, X_{2}\right) X_{2}, X_{1}\right),
$$

where X_{1}, X_{2} is an orthonormal basis for p. As we saw in $\$ 1$, $\mathrm{K}(\mathrm{p})$ is independent of the choice of an orthonormal basis X_{1}, X_{2}. Proposition 1.2 implies that the set of values of $K(p)$ for all planes p in $T_{x}(M)$ determines the Riemannian curvature tensor at x .
If $\mathrm{K}(\mathrm{p})$ is a constant for all planes p in $T_{x}(M)$ and for all points $\mathrm{x} \in \mathrm{M}$, then M is called a space of constant curvature. The following theorem is due to F. Schur [1].
theorem 2.2. Let M be a connected Riemannian manifold of dimension $\geqq 3$. If the sectional curvature $K(p)$, where p is a plane in T, (M), depends only on x, then M is a space of constant curvature.
Proof. We define a covariant tensor field R_{1} of degree 4 as follows :

$$
R_{1}(W, Z, X, Y)=g(W, X) g(Z, Y)-g(Z, X) g(Y, W)
$$

$W, Z, X, Y \in T_{x}(M)$.
By Proposition 1.4, we have

$$
\mathrm{R}=k R_{1},
$$

where k is a function on M . Since g is parallel, so is \boldsymbol{R}_{1}. Hence,

$$
\left(\nabla_{U} R\right)(W, Z, X, Y)=\left(\nabla_{U} k\right) R_{1}(W, Z, X, Y)
$$

for any $U \in T,(M)$.
This means that, for any $X, \mathrm{Y}, Z, U \in \mathrm{~T},(\mathrm{M})$, we have

$$
\left[\left(\nabla_{U} R\right)(X, Y)\right] Z=(U k)(g(Z, Y) X-g(Z, X) Y)
$$

Consider the cyclic sum of the above identity with respect to ($U, \mathrm{X}, \mathrm{Y}$). The left hand side vanished by Bianchi's second identity (Theorem 5.3 of Chapter III). Thus we have

$$
\begin{aligned}
0= & (U k)(g(Z, Y) X-g(Z, X) Y) \\
& +(X k)(g(Z, U) Y-g(Z, Y) U) \\
& +(Y k)(g(Z, X) U-g(Z, U) X)
\end{aligned}
$$

For an arbitrary X , we choose Y, Z and U in such a way that X, Y and Z are mutually orthogonal and that $U=Z$ with $g(Z, Z)=1$. This is possible since $\operatorname{dim} M \geqq 3$. Then we obtain

$$
(X k) Y-(Y k) X=0
$$

Since X and Y are linearly independent, we have $X k=Y k=0$. This shows that k is a constant.

QED.

Corollary

2.3. For a space of constant curvature k, we have

$$
R(X, Y) Z=k(g(Z, Y) X-g(Z, X) Y)
$$

This was established in the course of proof for Theorem 2.2.
If k is a positive (resp. negative) constant, M is called a space of constant positive (resp. negative) curvature.
If $\sum_{j k t}^{j}$ - $\mathrm{fid} g_{i j}$ are the components of the curvature tensor and the rietric tensor with respect to a local coordinate system (cf. $\S 7$ of Chapter III), then the components $R_{i j k l}$ of the Riemannian curvature tensor are given by

$$
R_{i j k l}=\Sigma_{m} g_{i m} R_{j k l}^{m}
$$

If M is a space of constant curvature with $K(p)=k$, then

$$
R_{i j k l}=k\left(g_{i k} g_{j l}-g_{i k} g_{l i}\right), \quad R_{j k l}^{i}=k\left(\delta_{k}^{i} g_{j l}-g_{j k} \delta_{l}^{i}\right) .
$$

As in $\$ 7$ of Chapter III, we define a set of function; $\tilde{R}_{j k l}^{i}$ on $L(M)$ by

$$
\Omega_{j}^{i}=\Sigma_{k, l} \frac{1}{2} \tilde{R}_{j k l}^{i} \theta^{k} \wedge \theta^{l},
$$

where $\Omega=\left(\Omega_{j}^{i}\right)$ is the curvature form of the Riemannian connection. For an arbitrary point \boldsymbol{u} of $\mathrm{O}(\mathrm{M})$, we choose a local coordinate system x^{1}, \ldots, x^{n} with origin $\mathrm{x}=\pi(u)$ such that u is the frame given by $\left(\partial / \partial x^{1}\right)_{x}$,
$\left(\partial / \partial x^{n}\right)_{x}$. With respect to this coordinate system, we have

$$
g_{i j}=\delta_{i j} \text { at } \mathrm{x}
$$

and hence

$$
R_{j k l}^{i}=R_{i j k l}=k\left(\delta_{i k} \delta_{j l}-\delta_{i k} \delta_{l i}\right) \quad \text { at x. }
$$

Let σ be the local cross section of $L(M)$ given by the field of linear frames $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$. As we have shown in $\$ 7$ of

Chapter III, we have $\sigma^{*} \tilde{R}_{j k l}^{i}=R_{j k l}^{i}$. Hencc,

$$
\begin{gathered}
\dot{R}_{j k l}^{i}=k\left(\delta_{i k} \dot{\delta}_{j l}-\delta_{j h} \delta_{l i}\right) \quad \text { a } \quad \mathrm{t} \\
\Omega_{j}^{\prime}=k 0^{i} \mathrm{~A} 0^{j} \text { at } u
\end{gathered}
$$

Since u is an arbitrary point of $O(M)$, we have
Proposition 2.4. If M is a space of constant curvature with secttonal curvature k, then the curvature form $\Omega=\left(\Omega_{j}^{\prime}\right)$ is given by

$$
\Omega_{j}^{i}=k \theta^{i} \wedge \theta^{j} \circ \cap O(M)
$$

where $\theta=\left(0^{\circ}\right)$ is the canonical form on $O(M)$.

3. Spaces of constant coryature

In this section, we shall construct, for each constand k, a simply connected, complete space of constant curvature with tectional
curvature k. Namely, we prove.

Theorem 3.1. Let (x^{1}, . . x^{n}, t) be the coordinate system of \mathbf{R}^{n+1} and M the kypersurface of \mathbf{R}^{n+1} defined by

$$
\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}+r t^{2}=r(r: \text { a nonzero constant })
$$

Let g bethe Riemannian metric of M obtained by restricting the following form to M :

Then

$$
\left(d x^{1}\right)^{2}+\cdots+\left(d x^{n}\right)^{2}+r d t^{2}
$$

(1) $M_{i s}$ a s qee of cont antcurvature with sectional curvature $1 / r$.
(2) The group G of linear transformations of \mathbf{R}^{n+1} leaving the quadratic form $\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}+r t^{2}$ invariant acts transitively on M as a group of isometries of M.
(3) If $r>0$, then M is isometric to a sphere of a radius-r!. If $r<0$, then M consists of two mutually isometric connected manifolds each of which is diffeomorphic with \mathbf{R}^{n}.
Proof. First we observe that M is a closed submanifold of \mathbf{R}^{n+1} (cf. Example 1.1 of Chapter I) ; we leave the verification to the-teader.

We begin with the proof of (3). If $r>0$, then we set $x^{n+1}=r^{\frac{1}{t}} t$. Then M is given by

$$
\left(x^{1}\right)^{2}+\cdots+\left(x^{n+1}\right)^{2}=r
$$

and the metric g is the restriction of $\left(d x^{1}\right)^{2}+\cdot \cdot \vdash\left(d x^{\mu \cdot 1}\right)^{2}$ to M. This means that M is isometric with a sphere of radius $r^{\frac{1}{2}}$. If $r<0$, then $t^{2} \geqq 1$ at every point of M. Let $M^{\prime}\left(\operatorname{resp} . M^{\prime \prime}\right)$ be the set of points of M with $t \geqq 1$ (resp. $t \leqslant-1$). The mapping $\left(x^{1}, \ldots, x^{n}, t\right) \rightarrow\left(y^{1}, \ldots, y^{n}\right)$ defined by

$$
y^{i}=x^{i} / t, \quad i=1, \ldots, n
$$

is a diffeomorphism of M^{\prime} (and $M^{\prime \prime}$) onto the open subset of \mathbf{R}^{n} given by

$$
\Sigma_{i=1}^{n}\left(y^{i}\right)^{2}+r<0
$$

In fact, the inverse mapping is given by

$$
\begin{aligned}
x^{i} & =y^{i} t, \quad \mathrm{i}=1, \ldots, n \\
t & = \pm\left(\frac{r}{r+\Sigma_{i}\left(y^{i}\right)^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

A straightforward computation shows that the metric g is expressed in terms of y^{1}, \ldots, y^{n} as follows:

$$
\frac{r\left[\left(r+\Sigma_{i}\left(y^{i}\right)^{2}\right)\left(\Sigma_{i}\left(d y^{i}\right)^{2}\right)-\left(\Sigma_{i} y^{2} d y^{i}\right)^{2}\right]}{\left(r+\Sigma_{i}\left(y^{i}\right)^{2}\right)^{2}}
$$

To prove (2), we first consider G as a group acting on \mathbf{R}^{n+1}. Since' G is a linear group leaving $\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}+r t^{2}$ invariant, it leaves the form $\left(d x^{1}\right)^{2}+\cdots+\left(d x^{n}\right)^{2}+r d t^{2}$ invariant. Thus, considered as a group acting on, M, G is a- group of isometries of the Riemannian manifold M. The transitivity of G on M is a consequence of Witt's theorem, which may be stated as follows.

Let Q be a nondegenerate quadratic form on a vector space V. Iff is a linear mapping of a subspace U of V into V such that $Q(f(x))=Q(x)$ for all $x \in U$, then f can be extended to a linear isomorphism of V onto itself such that $Q(f(x))=Q(x)$ for all $x \in V$. In 'particular, if x_{0} and x_{1} are elements of V with $Q\left(x_{0}\right)=$ $Q\left(x_{1}\right)$, there is a linear isomorphism f of V onto itself which leaves Q invariant and which maps x_{0} into x_{1}.

For the proof of Witt's theorem, see, for example, Artin $[1$, p. 121] .

Finally, we shall prove (1). Let H be the subgroup of G which consists of transformations leaving the point o with coordinates
$(0, \ldots, 0,1)$ fixed. We define a mapping $f: G \rightarrow O(M)$ as follows. Let $u_{0} \in O(M)$ be the frame at the point $o=(0, \ldots, 0,1)$ $\epsilon \mathrm{M}$ given by $\left\langle\partial / \partial x^{1}\right)_{a}, \ldots,\left(\partial / \partial x^{n}\right)_{0}$. Every element $a \in \mathrm{G}$, bcing an isometric transformation of M, maps each orthonormal frame of M into an orthonormal frame. In particular, $a\left(u_{0}\right)$ is an orthonormal frame of M at the point-a(o). We define

$$
f(a)=\vec{a}\left(u_{0}\right), \quad a \in \mathrm{G} .
$$

Lemme 1. The mapping $f: G \rightarrow O(M)$ is an isomorthism of the principal fibre bundle $G(G / H, H)$ onto the bundle $O(1 /)(M, O(n)$.

Proof of Lemma 1. If we consider G as a group of $(n, 1)$ < $(n+1)$-matrices in a natural manner, then H is naturally isomorphic with $\mathrm{O}(\mathrm{n})$:

$$
H=\left(\begin{array}{cc}
O(n) & 0 \\
0 & 1
\end{array}\right) \text {. }
$$

It is easy to verify that $f: \mathrm{G} \rightarrow O(M)$ commutes with the right translation R_{a} for every a $\in \mathrm{H}=\mathrm{O}(\mathrm{n})$:

$$
f(b a)=f(b) \cdot a \quad \text { for } b \in G \text { and } a \in H=O(n) .
$$

The transitivity of G on M implies that the induced mapping $\mathrm{f}: \mathrm{G} / \mathrm{H} \rightarrow \mathrm{M}$ is a diffeomorphism and hence that $f: \mathrm{G} \rightarrow \mathrm{O}(\mathrm{M})$ is a bundle isomorphism.
The quadratic form defining M is given by the following $(\mathrm{n}+1) \mathrm{x}(\mathrm{n}+1)$-matrix:

$$
Q=\left(\begin{array}{ll}
I_{n} & 0 \\
0 & r
\end{array}\right)
$$

An $(\mathrm{n}+1) \mathrm{x}(\mathrm{n}+1)$-matrix a is an element of G if and only if ${ }^{t} a Q a=Q$, where ${ }^{t} a$ is the transpose of a. Let

$$
\mathrm{a}=\left(\begin{array}{ll}
X & y \\
t_{z} & \mathrm{w}
\end{array}\right),
$$

where X is an $n \times$ n-matrix;? and z are elements of \mathbf{R}^{n} and w is a real number. Then the condition for a to be in G is expressed by

$$
{ }^{t} X X+r \cdot \mathrm{z}^{t} z=\mathrm{I}, \quad \quad{ }^{t} X y+r \cdot z w=0, \quad{ }^{t} y y+r \cdot w^{2}: r
$$

It follows that the Lie algebra of G is formed by the matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
c & 0
\end{array}\right)
$$

where A is an $n \times n$-matrix with ${ }^{~} A+A=0$ and b and c are elements of \mathbf{R}^{n} satisfying $b+r c=0$. Let

$$
\left(\begin{array}{ccc}
\alpha_{1}^{1} \ldots x_{n}^{1} & \beta^{1} \\
\ldots \ldots & \ldots & \ldots \\
\ldots \ldots & \ldots & \ldots \\
\alpha_{1}^{n} \ldots & \alpha_{n}^{n} & \beta^{n} \\
\gamma_{1} \ldots & \gamma_{n} & 0
\end{array}\right)
$$

be the (left invariant) canonical l-form on G (cf. $\S 4$ of Chapter I). We have

$$
\alpha_{j}^{i}+\alpha_{i}^{j}=0, \beta^{i}+r \gamma_{i}=0, \quad i, j=1, \ldots, n .
$$

The Maurer-Cartan equation of G is expressed by

$$
\begin{aligned}
& d \beta^{i}=-\Sigma_{k} \alpha_{k}^{i} \mathrm{~A} \beta^{k}, \\
& d \alpha_{j}^{i}=-\Sigma_{k} \alpha_{k}^{i} \mathrm{~A} \alpha_{j}^{k}-\beta^{i} \text { A } \gamma_{j}, \quad i, j=1, \ldots, \mathrm{n} .
\end{aligned}
$$

Lemma 2. Let $\theta=\left(\theta^{i}\right)$ andto $=\left(\omega_{j}^{i}\right)$ be the canonical form and the connection form on $\mathrm{O}(\mathrm{M})$. Then

$$
f * \theta^{i}=\beta^{i} \quad \text { and } f * \omega_{j}^{i}=\alpha_{j}^{i}, ' i, j=1, \ldots, n
$$

Proof of Lemma 2. As we remarked earlier, every element $a \in \mathrm{G}$ induces a transformation of $O(M)$; this transformation corresponds to the left translation by a in G under the isomorphism $f: \mathrm{G} \rightarrow \mathrm{O}(\mathrm{M})$. From the definition of θ, we see easily that $\theta=\left(\theta^{i}\right)$ is invariant by the transformation induced by each $a \in \mathrm{G}$. On the other hand, $\left(\beta^{i}\right)$ is invariant by the left translation by each a $\epsilon \mathrm{G}$. To prove $f^{*} \theta^{i}=\beta^{i}$, it is therefore sufficient to show that $\left(f^{*} \theta^{i}\right)\left(X^{*}\right)=\beta^{i}\left(X^{*}\right)$ for all $\mathrm{X}^{*} \in \mathrm{~T},(\mathrm{G}) . \mathrm{Set}, X^{X_{i}} \overline{\text { The }}$
$\left(\partial / \partial x^{i}\right)$ so that the frame u_{0} is given by (X,. $\left(\partial / \partial x^{i}\right)_{0}$ so that the frame u_{0} is given by (X,, ...,
composite mapping $\pi \circ f: \mathrm{G} \rightarrow O(M) \rightarrow M$ maps an element of $T_{e}(G)$ dildntifified with the Lie algebra of G$)$ of the form

$$
\left(\begin{array}{ll}
A & b \\
{ }_{c} & 0
\end{array}\right)
$$

 $\Sigma_{i} \beta^{i}\left(X^{*}\right) X_{i}$ and hence

$$
\begin{aligned}
\left(f^{*} 0^{1}\left(X^{*}\right), \ldots, f^{*} \theta^{n}\left(X^{*}\right)\right)=u_{0}^{-1}(& \left.\pi \circ f\left(X^{*}\right)\right) \\
& =\left(\beta^{1}\left(X^{*}\right), \ldots, \beta^{n}\left(X^{*}\right)\right)
\end{aligned}
$$

which proves the first assertion of the lemma. Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of G and H, respectively. 'Let m be the'linear subspace of \mathfrak{g} consisting of matrices of the form

$$
\left(\begin{array}{ll}
0 & b \\
{ }^{t} c & 0
\end{array}\right)
$$

It is easy to verify that m is stable under ad H, that is ad $(\mathrm{a})(\mathrm{m})=$ m for every a ϵH. Applying Theorem 11.1 of Chapter I! we see that $\left(\alpha_{j}^{i}\right)$ defines a connection in the bundle $G(G / H, H)$. Now the second assertion of Lemma 2 follows from the following thred facts: (1) $\left(\beta^{i}\right)$ corresponds to $\left(\theta^{i}\right)$ under the isomorphismf: $\mathrm{G} \rightarrow$ $\mathrm{O}(\mathrm{M})$; (2) the Ric mannian connection form (ω_{3}^{i}) is characterized by the property that the torsion is zero (Theorem 2.2 of Chapter IV), that is, $d 0^{t}=-\Sigma_{k} \sigma_{k}^{i}$ A θ^{k}; (3) the connection form (α_{j}^{i}) satisfies the equality: $d \beta^{\prime}=-\Sigma_{k} \alpha_{k}^{i} \wedge \beta^{k}$.

We shall now complete the proof of Theorem 3.1. Lemma 2, together with
and

$$
d x_{j}^{i}=-\Sigma_{k} \alpha_{k}^{i} \wedge \alpha_{j}^{k}-\beta^{i} \wedge \gamma_{j}
$$

$$
\beta^{i}+r \gamma_{i}=0
$$

implies

$$
d \alpha_{j}^{i}=-\Sigma_{k} \alpha_{k}^{i} \wedge \alpha_{j}^{k}+\frac{1}{r} \beta^{i} \wedge \beta^{j}
$$

showing that the curvature form of the Riemannian connection is given by $\frac{1}{r} \theta^{i}$ A θ^{j}. By 'Proposition $2.4, \mathrm{M}$ is a space of constant curvature with sectional curvature $1 / r$.

QED.

Remark. The group G is actually the group of all isometries of M. To see this, let $\mathfrak{J}(M)$ be the group of isometries of M and define a mapping $f: \Im(M) \rightarrow \mathrm{O}(\mathrm{M})$ in the same way as we defined $f: \mathrm{G} \rightarrow \mathrm{O}(\mathrm{M})$. Then $\mathrm{G} \subset 3(\mathrm{M})$ and $f: \mathfrak{J}(M) \rightarrow \mathrm{O}(\mathrm{M})$
is an extension of $f: \mathrm{G} \rightarrow O(M)$. Since f maps $3(\mathrm{M}) 1: 1$ into $\mathrm{O}(\mathrm{M})$ and since $f(G)=\mathrm{O}(\mathrm{M})$, we must have $\mathrm{G}=\Im(M)$.

In the course of the prouf of Theorem 3.1, we obtamed
Theorem 3.2. (1) Let M be the sphere in \mathbf{R}^{n+1} dejined by

$$
\left(x^{1}\right)^{2}+\ldots+\left(x^{n+1}\right)^{2}=a^{2}
$$

Let g be the restriction of $\left(d x^{1}\right)^{2}+\cdots+\left(d x^{n+1}\right)^{2}$ to M. Then, with respect to this Riemannian metric g, M is. a space of constant curvature with sectional curvaturel $/ a^{2}$.
(2) Let M be the open set in \mathbf{R}^{n} dejined by

$$
\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}<a^{2}
$$

Then, with respect to the Riemannian metric given by

$$
\frac{a^{2}\left[\left(a^{2}-\Sigma_{i}\left(y^{i}\right)^{2}\right)\left(\Sigma_{i}\left(d y^{i}\right)^{2}\right)-\left(\Sigma_{i} y^{i} d y^{i}\right)^{2}\right]}{\left(a^{2}-\Sigma_{i}\left(y^{i}\right)^{2}\right)^{2}}
$$

M is a space of constant curvature with sectional curvature $-1 / a^{2}$.
The spaces M constructed in The\&em 3.2 are' all simply connected, homogeneous and hence complete by Theorem 4.5 of Chapter IV. The space \mathbf{R}^{n} with the Euclidean metric $\left(d x^{1}\right)^{2}+$ $\cdots+\left(d x^{n}\right)^{2}$ gives a simply connected, complete space of zero curvature.
A Riemannian manifold of constant curvature is said to be elliptic, hyperbolic or flat (or locally Euclidean) according as the sectional curvature is positive, negative or zero. These,, spaces are also called space forms (cf. Theorem 7.10 of Chapter V_{I}).

4. Flat affine and Riemannian connections

Throughout this section, M will be a connected, paracompact manifold of dimension n.

Let $A(M)$ be. the bundle of affine frames over M; it is a principal fibre bundle with structure group $\mathrm{G}=A(n ; \mathrm{R})$ (cf. $\$ 3$ of Chapter III). An affine 'connection of M is said to be flat it every point of M has an oven neighborhood U and an isomorphism $\psi: A(M) \rightarrow \mathscr{U} \times G$ which maps' the horizontal space at each $\mathrm{u} \in \mathrm{A}(\mathrm{U})$ into the horizontal space at $\psi(u)$ of the canonical flat connection of $U \times$ G. A manifold with a flat affine connection is
said to be locally affine. A Riemannian manifold is flat (or locally Euclidean) if the Riemannian connection is a flat affine connection.

Theorem 4.1. For an affine connection of M, the foliowing conditions are mutually equivalent:
(1) It is flat;
(2) The torsion and the curvature of the corresponding linear connection vanish identically :
(3) The affine holonomy group is discrete.

Proof. By Theorem 9.1 of Chapter II, an affine connection is flat if and only if its curvature form Ω on $A(M)$ vanishes identically. The equivalence of (1) and (2) follows from Proposition 3.4 of Chapter III. The equivalence of (2) and (3) follows from Theorems 4.2 and 8.1 of Chapter II.

QED.
Remark. Similarly, for a linear connection of M, the following conditions are. mutually equivalent:
(1) It is flat, i.e., the connection in $L(M)$ is flat; (2) Its curvature vanishes identically; (3) The linear (or homogeneous) holonomy group is discrete.

When we say that the affine holonomy group and the linear holonomy group are discrete, we mean that they are O-dimensional Lie groups. Later (cf. Theorem 4.2) we shall see that the affine holonomy group of a complete flat affine connection is discrete in the affine group $A(n ; \mathrm{R})$. But the linear holonomy group need not be discrete in $G L(n ; \mathrm{R})$ (cf. Example 4.3). It will be'shown that the linear holonomy group of a cornpact flat Riemannian manifold is discrete in $O(n)$ (cf. the proof of (4 of Theorem 4.2 and the remark following Theorem 4.2).

Example4.1. Let ξ_{1}, \ldots, ξ_{k} be linearly independent elements of $\mathbf{R}^{n}, \mathrm{k} \leqq \mathrm{n}$. Let G be thesubgroup of \mathbf{R}^{n} generated by ξ_{1}, \ldots, ξ_{k} :

$$
\mathrm{G}=\left\{\Sigma m_{i} \xi_{i} ; m_{i} \text { integers }\right)
$$

The action of G on \mathbf{R}^{n} is properly discontinuous, and \mathbf{R}^{n} is the universal covering manifold of \mathbf{R}^{n} / G. The Euclidean metric $\left(d x^{1}\right)^{2}+\cdot \cdot+\left(d x^{\prime \prime}\right)^{2}$ of $\mathrm{R}^{\prime \prime}$ is invariant by G and hence induces a flat Riemannian metric on \mathbf{R}^{n} / G. The manifold \mathbf{R}^{n} / G with the Riemannian metric thus defined will be called a Euclidean cylinder. It is called a Euclidean torus if $\boldsymbol{\xi}_{1, \ldots} \ldots, \boldsymbol{\xi}_{\boldsymbol{k}}$ form a basis of \mathbf{R}^{n}, i e $\mathrm{k}=n$. Every connected abelian Lie group with an invariànt'

Riemannian metric is a Euclidean cylinder, and if it is, moréover, compact, then. it is a Euclidean torus. In fact, the universal' covering group of such a Lie group is isomorphic. with a vector group \mathbf{R}^{n} and its invariant Riemannian metric is given by $\left(d x^{1}\right)^{2}+\cdots+\left(d x^{n}\right)^{2}$ by a proper choice of basis in R". Our assertion is now clear.

The following example shows that a torus can admit a flat affine connection which is not Riemannian. This was taken from Kuiper [1].

Example4.2. The set G of transformations

$$
\begin{aligned}
(x, y) \rightarrow(x+n y+ & m, y+n) \\
& n, m=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

of \mathbf{R}^{2} with coordinate sytem (x, y) forms a discrete subgroup of the group of affine transformations; it acts properly discontinuously on \mathbf{R}^{2} and the quotient space \mathbf{R}^{2} / G is diffeomorphic with a corus. The flat affine connection of \mathbf{R}^{2} induces a flat affine connection on \mathbf{R}^{2} / G. This flat affine connection of \mathbf{R}^{2} / G is not Riemannian. In fact, if it is Riemannian, the induced Riemannian metric on the universal covering space \mathbf{R}^{2} must be of the form: a $d x d x+26 d x d y+c d y d y$, where a, b and c are constants, since the metric must be parallel. On the other hand, G is not a group of isometries of \mathbf{R}^{2} with respect to this metric, thus proving our assertion.

Let M be locally affine and choose a linear frame $u_{0} \in L(M) \subset$ $\mathrm{A}(\mathrm{M})$. Let M * be the holonomy bundle through u_{0} of the flat affine connection and M^{\prime} the holonomy bundle through u_{0} of the corresponding flat linear connection. Then M^{*} (resp. M^{\prime})' is a principal fibre bundle over M whose structure group is the affine holonomy group $\Phi\left(u_{0}\right)$ (resp. the linear holonomy group $\Psi(\mathrm{a},$,$)).$ Since $\Phi\left(u_{0}\right)$ and $\Psi\left(u_{0}\right)$ are discrete, both M^{*} and M^{\prime} are covering manifolds of M . The homomorphism $\beta: A(M) \rightarrow L(M)$ defined in $\$ 3$ of Chapter III maps M^{*} onto M^{\prime} (cf. Proposition 3.5 of Chapter III). Hence M^{*} is a covering manifold of M^{\prime}.

Theorem 4.2. Let M be a manifold with a complete, flat affine connection. Let $u_{0} \in L(M) \subset \mathrm{A}(\mathrm{M})$. . Let M^{*} be the holonomy bundle through u_{0} of the flat affine connection and $I I^{\prime}$ the holonomy bundle through $u_{0} \boldsymbol{o f}$ the corresponding flat linear connection. Then
(1) M^{*} is the unive ral covering space of M and, with respect to the flat affine connection induced on M^{*}, it is isomorphic to the ordinary affine space A "
(2) With respect to the flat affine connection induced on $\mathrm{M}^{\prime}, M^{\prime}$ is a Euclidean cylinder, and the first homotopy group of M^{\prime} is isomorphic to the kernel of the homomorphism $\Phi\left(u_{0}\right) \rightarrow \Psi\left(u_{0}\right)$.
(3) $\boldsymbol{I f} M^{\prime \prime}$ is a Euclidean cylinder and is a covering space of M, then it is a covering space of M^{\prime}.
(4) M ' is a Euclidean torus if and only if M is a compact flat Riemannian manifold.

Proof. Let

$$
d \theta^{i}=-\Sigma_{j} \omega_{j}^{i} \wedge \theta^{j}, \quad d \omega_{j}^{i}=-\Sigma_{k} \omega_{k}^{i} \wedge \omega_{j}^{k}, \quad i, j=1, \ldots, n
$$

be the structure equations on $L\left(M^{\prime}\right)$ of the flat affine connection of M^{\prime}. Let N be the kernel of the homomorphism $\Phi\left(u_{0}\right) \rightarrow \Psi\left(u_{0}\right)$. Since $M^{\prime}=M^{*} \mid N$, the affine holonomy group of the flat affine 'connection on M ' is naturally isomorphic with N (cf. Proposition 9.3 of Chapter II). The group N consists of pure translations only and the linear holonomy group of M^{\prime} is trivial. Let $\sigma: M^{\prime} \rightarrow$ $L\left(M^{\prime}\right)$ be a globally defined parallel field of linear frames. Set

$$
\bar{\theta}^{i}=\sigma^{*} \theta^{i}, \bar{\omega}_{j}^{i}=\sigma^{*} \omega_{j}^{i}, \quad i, j=1, \ldots, \mathrm{n} .
$$

Since σ is horizontal, that is, $\sigma\left(M^{\prime}\right)$ is horizontal, we have $\bar{\omega}_{j}^{i}=0$. The structure equations imply that $d \bar{\theta}^{i}=0$. We assert that, for an arbitrarily chosen point o of M^{\prime}, there exists a unique abelian group structure on M^{\prime} such that the point o is the identity element and that the forms $\overline{\boldsymbol{\theta}}^{i}$ are invariant. Our assertion follows from the following three facts:
(a) $\bar{\theta}^{1}, \ldots, \bar{\theta}^{n}$ form a basis for the space of covectors at every point of M^{\prime};
(b) $d \overline{0}^{i}=0$ for $\mathrm{i}=1, . ., \mathrm{n}$;
.(c) Let X be a vector field on M^{\prime} : such that $\bar{\theta}^{i}(X)=c^{i}\left(c^{i}\right.$: constant) for $i=1, \ldots, n$. Then X is complete in the sense that it generates a l-parameter group of global transformations of M^{\prime}.

The completeness of the connection implies (c) as follows. Let X^{*} be the horizontal vector field on $L\left(M^{\prime}\right)$ defined by $\theta^{i}\left(X^{*}\right)=$ $c^{i}, i=1, \ldots, \mathrm{n}$. Under the diffeomorphism $\sigma: M^{\prime} \rightarrow \sigma\left(M^{\prime}\right), X$ corresponds to X^{*}. Since X^{*} is complete (cf. Proposition 6.5 of

Chapter III), so is X. Note that (b) implies that the group is abelian.

It is.clear that $\bar{\theta}^{1} \bar{\theta}^{1}+\cdots+\bar{\theta}^{n} \bar{\theta}^{n}$ is an invariant Riemannian metric on the abelian Lie group M^{\prime}. As we have seen in Example 4.1, M^{\prime} is a Euclidean cylinder.

Lemma 1. Let $\mathbf{R}^{n} / G, G=\left\{\Sigma_{i=1}^{k} m_{i} \xi_{i} ; m_{i}\right.$ integers $\}$, be a Euclidean cylinder as defined in Example 4.1. Then the affine holonomy group of \mathbf{R}^{n} / G is a group of translations isomorphic with G.

Proof of Lemma 1. We identify the tangent space $T_{a}\left(\mathbf{R}^{n}\right)$ at each point a $\boldsymbol{\epsilon} \mathbf{R}^{n}$ with \mathbf{R}^{n} by the following correspondence:

$$
T_{a}\left(\mathbf{R}^{n}\right) \ni \Sigma_{i=1}^{n} \lambda^{i}\left(\partial / \partial x^{i}\right)_{a} \leftrightarrow\left(\lambda^{1}, \ldots, \lambda^{n}\right) \in \mathrm{R}^{\prime \prime}
$$

The linear parallel displacement from $0 \in R^{n}$ to $a \in R^{n}$ sends $\left(\lambda^{1}, \ldots, \lambda^{n}\right) \in T_{0}\left(\mathbf{R}^{n}\right)$ into the vector with the same components $\left(\lambda^{1}, \ldots, \lambda^{n}\right) \in T_{a}\left(\mathbf{R}^{n}\right)$. The affine parallel displacement from 0 to $\mathrm{a}=\left(\boldsymbol{a}^{1}, \ldots, a^{n}\right)$ sends $\left(\lambda^{1}, \ldots, \lambda^{n}\right)$, considered as an element of the tangent affine space $A_{0}\left(\mathbf{R}^{n}\right)$, into $\left(\lambda^{1}+a^{1}, \ldots, \lambda^{n}+a^{n}\right) \epsilon$ $A_{a}\left(\mathbf{R}^{n}\right)$. Let $\tau^{*}=x_{i}^{*}, 0 \leqq t \leqq 1$, be a line from 0 to $\Sigma_{i=1}^{k} m_{i} \xi_{i} \in G$ and let $\tau=x_{t}, 0 \leqq t \leqq 1$, be the image of τ^{*} by the projection $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n} / G$. Then τ is a closed curve in \mathbf{R}^{n} / G. Let

$$
\Sigma_{i=1}^{k} m_{i} \xi_{i}=\left(a^{1}, \ldots, a^{n}\right) \in \mathrm{R}^{\prime \prime}
$$

Then the affine parallel displacement along τ yields the translation

$$
\left(\lambda^{1}, \ldots, \lambda^{n}\right) \rightarrow\left(\lambda^{1}+a^{1}, \ldots, \lambda^{n}+a^{n}\right)^{\prime \prime}
$$

This completes the proof of Lemma 1.
Being a covering space of $\mathrm{M}^{\prime}, \mathrm{M}$ * is also a Euclidean cylinder. By Proposition 9.3 of Chapter II, the affine holonomy group of M^{*} is trivial. By Lemma $1, M^{*}$ must be the ordinary affine space A", proving (1).

Since $\mathrm{M}^{\prime}=M^{*} / N$, the first homotopy group of M^{\prime} is isomorphic with N. This completes the proof of (2).

Let $M^{\prime \prime}$ be a covering space of M. Since M^{*} is the universal covering space of M , we can write $M^{n}=M^{*} / H$, where H is a subgroup of $\Phi\left(u_{0}\right)$. The affine holonomy group of $M^{\prime \prime}$ is H by Proposition 9.3 of Chapter II. If $\mathrm{M} "$ is a Euclidean cylinder, the affine holonomy group H consists of translations only (cf. Lemma 1) and hence is contained in the kernel N of the homomorphism
$\Phi\left(u_{0}\right) \rightarrow \Psi^{\prime}\left(u_{0}\right)$. Since $M^{\prime}=M^{*} / N$, we may conclude that $M^{\prime \prime}$ is a covering space of M^{\prime}, thus proving (3).

Suppose M^{\prime} is a Euclidean torus. It follows that M is compact and the linear holonomy group $\Phi\left(u_{0}\right)$ of M is a finite group. This implies that the flat affine connection of M is Riemannian. In fact, we choose an inner product in $T_{x_{0}}(M), x_{0}=\pi\left(u_{0}\right)$, invariant by the linear holonomy group with reference point x_{0}, and then we extend it to a Riemannian metric by parallel displacement. The flat affine connection of M is the Riemannian connection with respect to the Riemannian metric thus constructed.
Conversely, suppose M is a compact, connected, flat Riemannian manifold. By virtue of (1), identifying M^{*} with \mathbf{R}^{n}, we may write $M=\mathbf{R}^{n} / G$, where G is a discrete subgroup of the group of Euclidean motions acting on \mathbf{R}^{n}. Let N be the subgroup of G consisting of pure translations. In view of (2) and (3) our problem is to prove that \mathbf{R}^{n} / N is a Euclidean torus. We first prove several lemmas.

Lemma 2. Let A and B be unitary matrices of degree n such that A commutes with $A B A^{-1} B^{-1}$. If the characteristic roots of B have positive real parts, then A commutes with B.

Proof of Lemma 2. Since $A A B A^{-1} B^{-1}=A B A^{-1} B^{-1} A$, we have $A B A^{-1} B^{-1}=B A^{-1} B^{-1} A$. Without loss of generality, we may assume that B is diagonal with diagonal elements $b_{k}=\cos \beta_{k}+$ $\mathrm{J}-1 \sin \beta_{k}, k=1, \ldots, n$. Since $A^{-}{ }^{\prime}={ }^{t} \bar{A}$ and $B^{-1}={ }^{t} \bar{B}=\bar{B}$, we have

$$
A B^{t} \bar{A} \bar{B}=A B A^{-1} B^{-1}=B A^{-1} B^{-1} A=B^{t} \bar{A} \bar{B} A
$$

Comparing the (i,i)-th entries, we have

$$
\Sigma_{j=1}^{n} a_{j}^{i} b_{j} \bar{a}_{j} \bar{b}_{i}=\Sigma_{j=1}^{n} b_{i} \bar{a}_{i}^{j} \bar{b}_{j} a_{i}^{j}, \quad \text { where } \mathrm{A}=\left(a_{j}^{i}\right)
$$

Comparing the imaginary parts, we obtain

$$
\Sigma_{j=1}^{n}\left(\left|a_{j}^{i}\right|^{2}+\left|a_{i}^{j}\right|^{2}\right) \cdot \sin \left(\beta_{j}-\beta_{i}\right)=0 \quad \text { for } \mathrm{i}=1, \ldots, n
$$

We may also assume that $\beta_{1}=\beta_{2}=\cdots=\beta_{p_{1}}<\beta_{p_{1}+1}=\cdots=$ $\beta_{p_{1}+p_{2}}<\cdots \leqq \beta_{n}<\beta_{1}+\pi$. Since all the b_{k} 's have positive real parts, we have

$$
\sin \left(\beta_{j}-\beta_{i}\right)>0 \quad \text { for } \mathrm{i} \leqq p_{1} \text { and } j>p_{1}
$$

Hence we must have

$$
a_{3}^{\dot{j}}=a_{i}^{j}=0 \quad \text { for } i \leqq p_{1} \text { and } j>p_{1}
$$

Similarly, we have

$$
a_{j}^{i}=a_{i}^{j}=0 \quad \text { for } i \leqq p_{1}+p_{2} \quad \text { and } j>p_{1}+p_{2}
$$

Continuing this argument we have

$$
A=\left(\begin{array}{llll}
A_{1} & & & 0 \\
& A_{2} & & \\
& & & \\
0 & &
\end{array}\right), \quad B=\left(\begin{array}{llll}
B_{1} & & & 0 \\
& B_{2} & & \\
& & & \\
& & & \\
0 & & & \\
& B_{1}=b_{1} I_{1}, & B_{2}=b_{p_{1}+1} I_{2}, \ldots,
\end{array}\right.
$$

where $A, A_{,}, \ldots$ are unitary matrices of degree p_{1}, p_{2}, \ldots, and I_{1}, I_{2}, \ldots are the identity matrices of degree p_{1}, p_{2}, \ldots This shows clearly that A and B commute.

For any matrix $\mathrm{A}=\left(a_{j}^{i}\right)$ of type (r, s) we set

$$
\varphi(A)_{i}=\left(\Sigma_{i, j}\left|a_{j}^{i}\right|^{2}\right)^{\frac{1}{2}}
$$

In other words, $\varphi(A)$ is the length of A when A is considered as a vector with irs components. We have

$$
\begin{gathered}
\varphi(A+B) \leqq \varphi(A)+\varphi(B) \\
\varphi(A B) \leqq \varphi(A): \varphi(B)
\end{gathered}
$$

The latter follows from the inequality of Schwarz. If A is an orthogonal matrix, we have

$$
\varphi(A B)=\varphi(B), \varphi(C A)=\varphi(C)
$$

Every Euclidean motion of \mathbf{R}^{n} is given by

$$
x \rightarrow A x \quad+p, \quad x \in \mathbf{R}^{n}
$$

where A is an orthogonal matrix (called the rotation part of the motion) and p is an element of \mathbf{R}^{n} (called the translation part of the motion). This motion will be denoted by (A, p).
lemma 3. Given any two Euclidean motions (A, p) and (B, q), set

$$
\left(A_{1}, p_{1}\right)=(A, \mathrm{p})(B, \mathrm{q})(A, p)^{-1}(B, q)^{-1}
$$

Let I be the identity matrix of degree n . If $\varphi(A-\mathrm{I})<\mathrm{a}$ and $q(B-I)<b$, then we haue
(1) $\varphi\left(A_{1}-I\right)<2 a b$;
(2.) $q\left(p_{1}\right)<b \cdot \varphi(p)+a \cdot \varphi(q)$.

Proof of Lemma 3. We have

$$
\begin{aligned}
\mathrm{A},-\mathrm{Z} & =\mathrm{ABA}-\mathrm{B}-1-\mathrm{Z}=(\mathrm{AB}-B A) A^{-1} B^{-1} \\
& =((\mathrm{A}-\mathrm{Z})(\mathrm{B}-I)-(\mathrm{B}-I)(\mathrm{A}-I)) A^{-1} B^{-1}
\end{aligned}
$$

Since $A^{-1} B^{-1}$ is an orthogonal matrix, we have $\varphi\left(A_{1}-I\right) \leqq \varphi(A-I) \cdot \varphi(B-I)+\varphi(B-I) \cdot \varphi(A-I)<2 \mathrm{ab}$.
By a simple calculation, we obtain

$$
p_{1}=A(I-B) A^{-1} p+\mathrm{AB}\left(Z-A^{-1}\right) B^{-1} q
$$

By the same reasoning as above, we obtain

$$
\grave{\varphi}\left(p_{1}\right) \leqq \varphi(l-B) \cdot \varphi(p)+\varphi\left(I-{ }^{t} A\right) \cdot \varphi(q)<b \varphi(p)+a \varphi(q)
$$

Lemma 4. With the same notation as in Lemma 3, set
$\left(A_{k}, p_{k}\right)=(A, p)\left(A_{k-1}, p_{k-1}\right)(A, p)^{-1}\left(A_{k-1}, p_{k-1}\right),-1, k=2,3, \ldots$ Then, for $k=1,2,3, \ldots$, we have
(1) $\varphi\left(A_{k}-I\right)<2^{k} a^{k} b$;
(2) $\varphi\left(p_{k}\right)<\left(2^{k}-1\right) a^{k-1} b \cdot \varphi(p)+a^{k} \cdot \varphi(q)$.

Proof of Lemma 4. A simple induction using, Lemma 3 establishes the inequalities.

Lemma 5. Let G be a discrete subgroup of the group of Euclidean motions of \mathbf{R}^{n}. Let $a<\frac{1}{2}$ and

$$
\mathrm{G}(\mathrm{a})=\{(A, p) \bullet \mathrm{G} ; \varphi(A-I)<\mathrm{a})
$$

Then any two elements (A, p) and (B, q) of $\mathrm{G}(\mathrm{a})$ commute.
Proof of Lemma 5. By Lemma 4, $\varphi\left(A_{k}-I\right)$ and $\varphi\left(p_{k}\right)$ approach zero as k tends to infinity. Since G is discrete in $A(n, \mathbf{R})$, there exists an integer k such that $A_{k}=$ Zandp, $=0$. We show that the characteristic roots a_{1}, \cdots, a_{1}, of an orthogonal matrix A with $\varphi(A-I)<\frac{1}{2}$ have positive real parts. If U is a unitary matrix such that $U A U^{-1}$ is diagonal, then

$$
\begin{aligned}
\varphi(A-I) & =\varphi\left(U(A-I) U^{-1}\right)=\varphi\left(U A U^{-1}-I\right) \\
& =\left(\left|a_{1}-1\right|^{2}+\cdot \cdot+\left|a_{n}-1\right|^{2}\right)^{\frac{1}{2}}<\frac{1}{2},
\end{aligned}
$$

which proves our assertion. By applying Lemma 2 to $4_{i_{k}} \equiv$ $A A_{k-1} A^{-1} A_{k-1}$, we see that $A_{k-1}=I$. Continuing this argument,
we obtain $A_{1}=I$. Thus A and B commute.
Hence,

$$
\begin{aligned}
& p_{1}=(I-B) p-(I-A) q, p_{2}=(A-I) p_{1}, \\
& p_{3}=(A-I) p_{2}=(A-I)^{2} p_{1}, \\
& \cdots \\
& p_{k}=(A-I) p_{k-1}=(A-I)^{k-1} p_{1} .
\end{aligned}
$$

Since $p_{k}=0$, we have

$$
(A-I)^{k-1} \eta-=0
$$

Changing the roles of (A, p) and (B, q) and noting that
we obtain

$$
(B, q)(A, p)(B, q)^{-1}(A, p)^{-1}=\left(I,-p_{1}\right)
$$

$$
(B-I)^{m-1} p_{1}=0 . \text { for some integer } m
$$

Since A and B commute, there exists a unitary matrix U such that $U A U^{-1}$ and $U B U^{-1}$ are both diagonal. Set

$$
\begin{aligned}
& U A U^{-1}=\left(\begin{array}{cc}
a_{1} & 0 \\
\cdot & \\
\cdot & \cdot \\
0 & a_{n}
\end{array}\right), \quad U B U^{-1}=\left(\begin{array}{cc}
b_{1} & 0 \\
\cdot & \\
\cdot \\
0 & b_{n}
\end{array}\right), \\
& \operatorname{up}=\left(\begin{array}{c}
r_{1} \\
\cdot \\
\cdot \\
\cdot \\
r_{n}
\end{array}\right), \quad U q=\left(\begin{array}{c}
s_{1} \\
\cdot \\
\cdot \\
\cdot \\
s_{n}
\end{array}\right)
\end{aligned}
$$

Then, from $(A-I)^{k-1} p_{1}=(\mathrm{A}-I)^{k-1}((I-B) p-(I-A) q)=$ 0 , we obtain

$$
\left(a_{i}-1\right)^{k-1}\left\{\left(1-b_{i}\right) r_{i}-\left(1-a_{i}\right) s_{i}\right\}=0, \quad i=1, \ldots, n
$$

Similarly, from

$$
(B-I)^{m-1} p_{1}=(B-I)^{m-1}\{(I-B) p-(I-A) q\}=0
$$

we obtain

$$
\left(b_{i}-1\right)^{m-1}\left\{\left(1-b_{i}\right) r_{i}-\left(1-a_{i}\right) s_{i}\right\}=0, \mathrm{a}=1, \ldots, n
$$

Hence we have

$$
\left(1-b_{i}\right) r_{i}-\left(1-a_{i}\right) s_{i}=0, \quad i=1, ., \ldots, n
$$

In other words, we have

$$
p_{1}=(I-B) p-(I-A) q=0
$$

which completes the proof of Lemma 5 .
If $(A, p) \in G(a)$ and $(B, q) \in G$, then $(B, q)(A, p)(B, q)^{-1} \bullet G(a)$. Indeed,

$$
\left.\varphi\left(B A B^{-1}-\mathrm{I}\right)=\varphi(B \uparrow A-I) B^{-1}\right)=\varphi(A-\mathrm{I})<\mathrm{a}
$$

This shows that the group generated by $\mathrm{G}(\mathrm{a})$ is an invariant subgroup of G. By Lemma 5, it is moreover abelian if a $<\frac{1}{2}$.

A subset V of \mathbf{R}^{n} is called a Euclidean subspace if there exist an element $x_{0} \in \mathbf{R}^{n}$ and a vector subspace S of \mathbf{R}^{n} such that $V=$ $\left\{x+x_{0} ; x \in \mathrm{~S}\right\}$. We say that a group G of Euclidean motions of \mathbf{R}^{n} is irreducible if \mathbf{R}^{n} is the only Euclidean subspace invariant by G.

Lemma 6. If H is an abelian normal subgroup of an irreducible group G of Euclidean motions of \mathbf{R}^{n}, then H contains pure translations only.

Proof of Lemma 6 . Since \hat{H} is abelian, we may assume, by applying an orthogonal change of basis of \mathbf{R}^{n} if necessary, that the elements (A, p) of H are simultaneously reduced to the following form :

where $I_{n-2 k}$ is the identity matrix of degree $n-2 k$, each p_{i} is a vector with 2 components and p^{*} is a vector with $n-2 k^{i}$ components. Moreover, for each i, there exists an element (A, p) of H such that A_{i} is different from the identity matrix I_{2} so that $A_{i}-I_{2}$ is non-singular.
v. CURVATURE AND SPACE FORMS

Our task is now to prove that $k=0$, i.e., $A=1$, for all $(A, p) \epsilon$ H. Assuming $k \geqq 1$, we shall derive a contradiction.

For each i, choose $(\mathrm{A}, p) \in \mathrm{H}$ such that $A_{i}-I_{2}$ is non-singular and define a vector t_{i} with 2 components by

We shall show that $\quad\left(A_{i}-I_{2}\right) t_{i}=p_{i}$.

$$
\left(B_{i}-I_{2}\right) t_{i}=q_{i} \quad \text { for all }(\mathrm{B}, q) \bullet H
$$

Since (A, p) and (B, q) commute, we have
or

$$
A_{i} q_{i}+p_{i}=B_{i} p_{i}+q_{i}
$$

Hence we have

$$
\left(A_{i}-I_{2}\right) q_{i}=\left(B_{i}-I_{2}\right) p_{i}
$$

$$
\begin{aligned}
\left(B_{i}-I_{2}\right) t_{i} & =\left(B_{i}-I_{2}\right)\left(A_{i}-I_{2}\right)^{-1} p_{i}=\left(A_{i}-I_{2}\right)^{-1}\left(B_{i}-I_{2}\right) p_{i} \\
& =\left(A_{i}-I_{2}\right)^{-1}\left(A_{i}-I_{2}\right) q_{i}=q_{i}
\end{aligned}
$$

thus proving our assertion. We define a vector $t \in \mathbf{R}^{n}$ by

$$
t=\left(\begin{array}{c}
t_{1} \\
\cdot \\
\cdot \\
\cdot \\
t_{k} \\
0
\end{array}\right)
$$

We have now
1

$$
\begin{aligned}
\left(I_{n}, t\right)(A, p)\left(I_{n}, t\right)^{-\mathbf{1}} & =\left(I_{n}, t\right)(\mathrm{A}, p)\left(I_{n},-t\right) \\
& \doteq\left(\mathrm{A}, p-\left(\mathrm{A},-I_{n}\right) t\right), \quad(A, \mathrm{P}) \in H
\end{aligned}
$$

where

$$
p-\left(A \frac{\left(\begin{array}{c}
p_{1} \\
\cdot \\
I_{n}
\end{array}\right) t}{\left(\begin{array}{c}
\\
p_{k} \\
p^{*}
\end{array}\right)}\left(\begin{array}{ll}
& p_{1} \\
\cdot & - \\
p_{k} & \cdot \\
p_{1}^{*} & \\
p_{k}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\cdot \\
\cdot \\
\cdot \\
0 \\
p^{*}
\end{array}\right)\right.
$$

By translating the origin of \mathbf{R}^{n} to t, we may now assume that the clements (A, p) of H are of the form

$$
\mathbf{A}=\left(\begin{array}{cccc}
A_{1} & & & 0 \\
& \cdot & & \\
& \cdot & & \\
& & & \\
& & A_{k} & \\
0 & & & I_{n-2 k}
\end{array}\right), p=\left(\begin{array}{c}
0 \\
\cdot \\
\cdot \\
0 \\
0 \\
p^{*}
\end{array}\right)
$$

Let V be the vector subspace of $\mathbf{R}^{\boldsymbol{n}}$ consisting of all vectors whose first $2 k$ components are zero. Then V is invariant by all elements (\mathbf{A}, p) of H. We shall show that V is also invariant by G. First we observe that V is precisely the set of all vectors which are left fixed by all A where $(\mathbf{A}, \mathbf{p}) \in \mathbf{H}$. Let $(\mathrm{C}, \boldsymbol{r}) \in \mathrm{G}$. Since H is a normal subgroup of G, for each (\mathbf{A}, p) c H, there exists an element $(\mathrm{B}, q) \in H$ such that

$$
(A, p)(C, r)=(C, r)(B, q)
$$

If $v \bullet V$, then $A C v=C B v=C v$. Since $C v$ is left fixed by all \mathbf{A}, it lies in V. Hence C is of the form

$$
C=\left(\begin{array}{ll}
C^{\prime} & 0 \\
0 & C^{\prime \prime}
\end{array}\right)
$$

where C^{\prime} and $C^{\prime \prime}$ are of degree $\mathbf{2 k}$ and $n-2 k$, respectively. To prove that the first $\mathbf{2 k}$ components of r are zero, write

$$
r=\left(\begin{array}{l}
r_{1} \\
\cdot \\
\cdot \\
\cdot \\
r_{k} \\
r^{*}
\end{array}\right)
$$

For each i, let (\mathbf{A}, \mathbf{p}) be an element of H such that $A_{i}-I_{2}$ is nonsingular. Applying the equality $(\mathbf{A}, p)(\mathbf{C}, r)=(\mathbf{C}, \boldsymbol{r})(\mathbf{B}, q)$ to the zero vector of \mathbf{R}^{n} and comparing the $(2 i-1)$-th and Pi-th components of the both sides, we have

$$
A_{i} r_{i}=r_{i}
$$

Since $\left(A_{i}-I_{2}\right)$ is non-singular, we obtain $r_{i}=0$. Thus every element ($\mathrm{C}, \boldsymbol{r}$) of G is of the form

$$
\mathbf{C}=\left(\begin{array}{cc}
C^{\prime} & 0 \\
0 & C^{n}
\end{array}\right), \quad r=\left(\begin{array}{c}
0 \\
\cdot \\
\cdot \\
\cdot \\
0 \\
r^{*}
\end{array}\right)
$$

This shows that V is invariant by G, thus contradicting the irreducibility of G. This completes the proof of Lemma 6.

Lemma 7. A group G of Euclidean motions of $\mathbf{R}^{\boldsymbol{n}}$ is irreducible if

 \mathbf{R}^{n} / G is compact.Proof of Lemma 7. Assuming that G is not irreducible, let V be a proper Euclidean subspace of $\mathbf{R}^{\mathbf{n}}$ which is invariant by G. Let x_{0} be any point of V and let \mathbf{L} be a line through x_{0} perpendicular to V. Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{\mathbf{2}}, \ldots, \boldsymbol{x}_{\boldsymbol{m}}, \ldots$ be a sequence of points on \mathbf{L} such that the distance between x_{0} and x_{m} is equal to m. Let $G\left(x_{0}\right)$ denote the orbit of G through $\boldsymbol{x}_{\mathbf{0}}$. Since $G\left(x_{0}\right)$ is in V, the distance between $G\left(\dot{x}_{0}\right)$ and x_{m} is at least. \mathbf{m} and, hence, is equal to \mathbf{m}. Therefore the distance between the images of x_{0} and x_{m} in \mathbf{R}^{n} / G by the projection $\mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}^{\boldsymbol{n}} / G$ is eall to \mathbf{m}. This means that \mathbf{R}^{n} / G is not compact.

We are now in position to complete the proof of (4). Let G and $\mathrm{G}(\mathrm{a})$ be as in Lemma 5 and assume $\quad \ll \frac{1}{2}$. Let H be the group generated by $\mathrm{G}(\mathrm{a})$; it is an abelian normal subgroup of G. Assume that $\mathbf{R}^{\boldsymbol{n}} / G$ is compact. Lemmas 6 and 7 imply that H contains nothing but pure, translations. On the other. hand, since G is discrete, \mathbf{G} / \mathbf{H} is finite by construction of $G(a)$. Hence \mathbf{R}^{n} / H is also compact and hence is a Euclidean torus. Let N be the subgroup of G consisting of all pure translations of G. Since $G(a)$ contains N, we bave $N=H$. This proves that \mathbf{R}^{n} / N is a Euclidean torus.

Remark. (4) means that the linear holonomy group of a compact flat Riemannian manifold $\mathbf{M}=\mathbf{R}^{n} / G$ is isomorphic to G / N and hence is finite.

Although (1), (2) and (3) are essentially in Auslander-Markus [1], we laihemphasis on affine holonomy groups. (4) was originally
proved by Bieberbach [1]. The proof given here was taken from Frobenius [I] and Zassenhaus [1]. ,

Example 4.3. The linear holonomy group of a non-compact flat Riemannian manifold may not be finite. Indeed, fix an arbitrary irrational real number 2. For each integer m, we set

$$
A(m)=\left(\begin{array}{ccc}
\cos \lambda m \pi & \sin & \lambda m \pi
\end{array} \begin{array}{c}
0 \\
-\sin \lambda m \pi^{\prime} \\
\cos \\
\lambda m \pi
\end{array} 0\right.
$$

Then we set $\mathrm{G}=\{(A(m), p(m)) ; \mathrm{m}=0, \pm 1, \pm 2, \ldots\}$.It is easy to see that G is a discrete subgroup of the group of Euclidean motions of \mathbf{R}^{3} and acts freely on \mathbf{R}^{3}. The, linear holonomy group of \mathbf{R}^{3} / G is isomorphic to the group $\{A(m) ; m=0, \pm 1, \pm 2, \ldots\}$.
coroliary 4.3. A manifold M with a fat affine connection admits a Euclidean torus as a covering space if and only if M is a compact flat. Riemannian manifold.

Proof. Let $M^{\prime \prime}$ be a Euclidean torus which is a cover\&space of M. By (3) of Theorem $4.2, M^{\prime \prime}$ is a covering space of M^{\prime}. Thus, M^{\prime} is a compact, Euclidean cylinder and hence is a Euclidean torus. By (3) of Theorem 4.2, M is a compact flat Riemannian . manifold. The converse is contained in (4) of Theorem 4.2. QED.
Example 4.4. In Exanple 4.2, set $\mathrm{M}=\mathbf{R}^{2} / G$ Let N be the subgroup of G consisting' of translations:

$$
(x, y) \rightarrow(x+m, y), \quad m=0, \pm 1, \pm 2, \ldots
$$

Then the covering space M^{\prime} defined in Theorem 4.2 is given by \mathbf{R}^{2} / N in this case: Clearly, M^{\prime} is an ordinary cylinder, that is, the direct product of a circle with a line.
The determination of the P-dimensional complete flat Riemannian manifolds is due to Killing [1,2], Klein [1,2] and H. Hopf [1]. We shall present here their results with an indication of the proof.

There are four types of two-dimensional complete flat Riemannian manifolds other than the Euclidean plane. We give the fundamental group (the first homotopy group) for each type, describing its action on the universal covering space $\mathbf{R}^{\mathbf{2}}$ in terms of the Cartesian coordinate system (x, y).
(1) Ordinary glinder (orientable)
$(x, y) \rightarrow(x+n, y)$,

$$
n=0, \pm 1, \pm 2, \ldots
$$

(2) Ordinary torus (orientable)

$$
\begin{array}{r}
(x, y) \rightarrow(x+m a+n, y+m b) \\
m, n=0, \pm 1, \$ 2, \ldots, \\
a, \text { b: real numbers, b } \quad 0
\end{array}
$$

(3) Id iüs'ab with thin nfe'twidth or twisted cylinder (non-orientable) $(x, y) \rightarrow\left(x+n,(-1)^{n} y\right)$,

$$
n=0,-1, \quad a, \ldots
$$

(4) Klein bottle or twisted torus (non-orientable) $(x, y) \rightarrow\left(x+n,(-1)^{n} y b m\right)$,

$$
\begin{aligned}
& n, m=0,1, \quad 2, \ldots \\
& b: \text { non-zero real number. }
\end{aligned}
$$

Any two-dimensional complete flat Riemannian manifold M is isometric, up to a constant factor, to one of the above four types of surfaces.
The proof gocs roughly as follows. By Theorem 4.2, the problem reduces to the determination of the discrete groups of motions acting freely on \mathbf{R}^{2}. Let G be such a discrete group. We first prove that every clement of G which prcscrvrs the orientation of \mathbf{R}^{2} is necessarily a translation. Set $\mathrm{z}=x \cdots i y$. Then every orientation preserving motion of \mathbf{R}^{2} is of the form

$$
z \rightarrow \varepsilon z \cdots w
$$

where ε is a complex number of absolute value 1 and w is a complex number. If we iterate the transformation $\mathrm{z} \rightarrow \varepsilon z \perp \mathrm{w} r$ times, then we obtain the transformation

$$
z \rightarrow \varepsilon^{r} z+\left(\varepsilon^{r-1}+\varepsilon^{r-2}+\cdots+1\right) w .
$$

We see easily that, if $\varepsilon \neq 1$, then the point $w /(1-\varepsilon)$ is left fixed by the transformation $z \rightarrow \varepsilon z-w$, in contradiction to the assumption that G acts freely on \mathbf{R}^{2}. Hence $\varepsilon=1$, which proves our assertion. If f is an element of G which reverses the orientation of \mathbf{R}^{2}, then f^{2} is an orientation preserving transformation and hence is a translation; We thus proved that every clement of G is a transformation of the type

$$
z \rightarrow z+w \quad \text { o } \quad \text { r } \quad z \rightarrow \bar{z}+w_{2}
$$

where \bar{z} is the complex conjugate of \boldsymbol{z}
that M must be one of the above four types of surfaces. The detail is left to the reader.

Transformations

1. Affine mappings and affine transformations

Let M and M^{\prime} be manifolds provided with linear connections I' and I" respectively. Throughout this section, we denote by' $P(M, \mathrm{G})$ and $P^{\prime}\left(M^{\prime}, \mathrm{G}^{\prime}\right)$ the bundles of linear frames $L(M)$ and $L\left(M^{\prime}\right)$ of M and M^{\prime}, respectively, so that $G=G L(n ; \mathrm{R})$ and $G^{\prime}=G L\left(n^{\prime} ; \mathrm{R}\right)$, where $n=\operatorname{dim} M$ and $n^{\prime}=\operatorname{dim} M^{\prime}$

A differentiable mapping $f: M \rightarrow M^{\prime}$ of class C^{1} induces a continuous mapping $f: \mathrm{T}(\mathrm{M}) \rightarrow T\left(M^{\prime}\right)$, where $T(M)$ and $T\left(M^{\prime}\right)$ are the tangent bundles of M and \boldsymbol{M}^{\prime}, respectively. We call $f: M \rightarrow M^{\prime}$ an affine mapping if the induced mapping $f: T(M) \rightarrow$ $T\left(M^{\prime}\right)$ maps every horizontal curve into a horizontal curve, that is, iff maps each parallel vector field along each curve τ of M into a parallel vector field along the curve $f(\boldsymbol{\tau})$.

Proposition 1.1. An affine mapping $f: M \rightarrow M^{\prime}$ maps every geodesic of M into a geodesic of M^{\prime} (together with its affine parameter) Consequently, f commutes with the exponential mappings, that is,

$$
f \circ \exp X=\exp \circ f(X), \quad X \subset T,(M)
$$

Proof. This is obvious from the definition of an affine mapping.

QED.

Proposition 1.1 implies that an affine mapping is necessarily of class C^{∞} provided that the connections Γ and Γ^{\prime} are of class $C^{\prime \prime}$.

We recall that a vector field X of M is f-related to a vector field X^{\prime} of M^{\prime} if $f\left(X_{x}\right)=X_{f(x)}^{\prime}$ for all $x \in M$ (cf. $\S 1$ of Chapter I).

Proposition 1.2. Let $f: M \rightarrow M^{\prime}$ be an affine mapping. Let X, Y and Z be vectorjelds on M which are f-related to vector fields X^{\prime}, Y^{\prime} and Z^{\prime} on M^{\prime}, respectively. Then
(1) $\nabla_{X} Y$ isf-related to ∇_{X}, Y^{\prime}, where V denotes covariant differentiation both in M and M^{\prime};
(2) $T(X, Y)$ is f-related to $T^{\prime}\left(X^{\prime}, Y^{\prime}\right)$, where T and T^{\prime} are the torsion tensor fields of M and M^{\prime}, respectively;
(3) $R(X, Y) Z$ is f-related to $R^{\prime}\left(X^{\prime}, Y^{\prime}\right) Z^{\prime}$, where R and R^{\prime} are the curvature tensor fields of M and M^{\prime}, respectively.

Proof. (1) Let x_{t} be an integral curve of X such that $\mathrm{x}=x_{0}$ and let τ_{0}^{t} be the parallel displacement along this curve from x_{t} to $x=x_{0}$. Then (cf. §1 of Chapter III)

$$
\left(\nabla_{X} Y\right)_{x}=\lim _{t \rightarrow 0} \frac{1}{t}\left(\tau_{0}^{t} Y_{x_{t}}-Y_{x}\right)
$$

Set $x_{t}^{\prime}=f\left(x_{t}\right)$ and let $\tau_{0}^{\prime t}$ be the parallel displacement along this image curve from x_{t}^{\prime} to $\mathrm{x}^{\prime}=x_{0}^{\prime}$. Since f commutes with parallel displacement, we have

$$
\begin{aligned}
f\left(\left(\nabla_{X} Y\right)_{x}\right) & =\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(\tau_{0}^{t} Y_{x_{i}}\right)-f\left(Y_{x}\right)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\tau_{0}^{\prime \prime} Y_{x^{\prime}}^{\prime}-Y_{x^{\prime}}^{\prime}\right)=\left(\nabla_{X^{\prime}} Y^{\prime}\right)_{x^{\prime}}
\end{aligned}
$$

(2) and (3) f 91 ow from (1) and Theorem 5.1 of Chapter IIIED.;
A. diffeomorphism f of M onto itself is called an affine transformation of M if it is an affine mapping. Any transformation f of M induces in a natural manner an automorphism \tilde{f} of the bundle $P(M, \mathrm{G}) ; \tilde{f}$ maps a frame $\mathrm{u}=\left(X_{1}, \ldots, X_{n}\right)$ at' $\mathrm{x} \in M$ into the frame $\tilde{f}(u)=\left(f X_{1}, \ldots, f X_{n}\right)$ at $f(x) \bullet M$. Since $f^{\tilde{1} \text { is an auto- }}$ morphism of the bundle P , it leaves every fundamental vector field of P invariant.

Proposition 1.3. (1) for every transformation f of M, the induced automorphism \tilde{f} of the bundle P of linear frames leaves the canonical form θ invariant. Conversely, every jibrepreserving transformation of P leaving θ invariant is induced by a transformation of M.
(2) Iff is an affine transformation of M, then the induced automorphism f-of P leaves both the canonical form θ and the connection form ω invariant. Conversely, overy fibre-preserving transformation of P leaving both θ and ω invariant is induced $b y$ an affine transformation of M.

Proof. (1) Let $\mathrm{X}^{*} \in \mathrm{~T},(\mathrm{P})$ and $\operatorname{set} X=\pi\left(X^{*}\right)$ so that $X \in T,(M)$, where $x=\mathrm{n}(\mathrm{u})$. Then (cf. §2 of Chapter III)

$$
\theta\left(X^{*}\right)=u^{-1}(X) \text { and } \theta\left(\tilde{f} X^{*}\right)=\tilde{f}(u)^{-1}(f X),
$$

where the frames u and $\tilde{f}(u)$ are considered as linear mappings of \mathbf{R}^{n} onto $T_{x}(M)$ and $T_{f(x)}(M)$, respectively. It follows from the definition of \tilde{f} that the following diagram is commutative:

Hence, $u^{-1}(X)=\tilde{f}(u)^{-1}(f X)$, th u s proving that θ is invariant by \tilde{f}. Conversely, let F be a fibre-preserving transformation of ${ }_{P}$ leaving θ invariant. Let f be the transformation of the base M induced by F . We prove that $\tilde{f}=\mathrm{F}$. We set $J=\tilde{f}^{-1} \circ F$. Then J is a fibre-preserving transformation of P leaving θ invariant. Moreover, J induces the identity transformation on the base M. Therefore, we have

$$
u^{-1}(X)=\theta\left(X^{*}\right)=\theta\left(J X^{*}\right)=J(u)^{-1}(X) \quad \text { for } X^{*} \in T,,(P)
$$

This implies that $\mathbf{J}(\mathbf{u})=u$, that is, $\tilde{f}(u)=F(u)$.
(2) Let f be an affine transformation of M. The automorphism \tilde{f} of P maps the connection I' into a connection, say, $\tilde{f}(\Gamma)$, and the form $\tilde{f}{ }^{*} \omega$ is the connection form of $\tilde{f}(\Gamma)$ (cf. Proposition 6.1 of Chapter II). From the definition of an affine transformation, we see that f-maps, for each $u \in P$, the horizontal subspace of $T,(P)$ onto the horizontal subspace of $T_{\tilde{f}(u)}(P)$. This means that $\tilde{f}(\Gamma)=$ I^{\prime} and hence $\tilde{f^{*}} \omega=w$.
Conversely, let F be a fibre-preserving transformation of P leaving θ and ω invariant. By (1), there exists. a transformation f of M such: that $F=\tilde{f}$. Since \tilde{f} maps every horizontal curve of P into a horizontal curve of P, the transformation $f: T(M) \rightarrow$ $\mathrm{T}(\mathrm{M})$ maps every horizontal curve of $\mathrm{T}(\mathrm{M})$ into a horizontal curve of $T(M)$. This means that $f: M \rightarrow \mathrm{M}$ is an affine mapping thus completing the proof.

QED:
Remark. Assume that M is orientable. Then the bundle P, consists of two principal fibre bundles, say $P+\left(M, G^{0}\right)$ and
$P^{-}\left(M, G^{0}\right)$, where G^{0} is the connected component of the identity of $G=G L(n ; \mathrm{R})$. Then any transformation F of P^{+}or P^{-} leaving θ invariant is fibre-preserving and hence is induced by a transformation \boldsymbol{f} of the base ${ }^{*} M$. In fact, every vertical vector X^{*} of P^{+}or P^{-}is mapped into a vertical vector by F since $\theta\left(F X^{*}\right)=$ $0\left(X^{*}\right)=0$. Any curve in any fibre of P^{+}or P^{-}is therefore mapped into a curve in a fibre by \mathbf{F}. Since the fibres of P^{+}or P are connected, F is. fibre-preserving.

Propositton 1.4 . Let Γ be a linear connection on M. For a transformation f of M, the following conditions are mutually equivalent:
(1) f is an afine transformation of M;
(2) $\tilde{f}^{*}(1)=\omega$, where ω is the connection form of I' and f -is the transformation of P induced by \mathbf{f};
(3) f -leaves every standard horizontal vector field $B(\xi)$ invariant;
(4) $f\left(\nabla_{1} Z\right)=\nabla_{f}(f Z)$ for any vector fields Y and Z on M.

Proof. (i) The equivalence of (1) and (2) is contained in Proposition 1.3.
(ii) (2) \rightarrow (3). By Proposition 1.3, we have

$$
\xi=\theta(B(\xi))=(\tilde{f} * \theta)(B(\xi))=\theta\left(\tilde{f}^{-1} B(\xi)\right)
$$

Since $\omega(B(\xi))=0$, (2) implies

$$
0=\Phi(B(\xi))=\left(\tilde{f}^{*}(\omega)(B(\xi))=\omega\left(\tilde{f}^{-1} \cdot B(\xi)\right)\right.
$$

This means that $\tilde{f^{-1}} \cdot \mathrm{R}(\mathrm{E})=\mathrm{B}(\mathrm{E})$.
(iii) (3) \rightarrow (2). The horizontal subspace at u is given by the set of $B(\xi)_{u}$. Hence (3) implies that f -maps every horizontal subspace intd a horizontal subspace. This means that $\tilde{f}(\Gamma)=1$ ' and hence $\tilde{f}^{*}(\omega)=\omega$.
(iv) $(1) \rightarrow$ (4). This follows from Proposition 1.2.
(v) (4) \rightarrow (1). Let Z be a parallel vector 'field along a curve $\tau=x_{t}$. Let Y be the vector field along τ tangent to r, that is, $\mathrm{Y}_{x_{t}}=\dot{x}_{t}$. We extend Y and \mathbf{Z} to vector fields defined on M , which will be denoted by the same letters Y and \mathbf{Z} respectively. (4) implies that $f Z$ is parallel along $f(\tau)$. This means that f is an affine transformation.

QED.
The set of affinc transformations of M, denoted by $\mathfrak{Y}(M)$ or $\mathfrak{U}\left(\mathrm{I}^{\prime}\right)$, forms a group. The set of all fibre-preserving transformations
of \mathbf{P} leaving θ and ω invariant, denoted by $\mathfrak{g}(P)$, forms a group which is canonically isomorphic with $\mathbb{N}(M)$. We prove that $\mathfrak{A}(M)$ is a Lie group by establishing that $\mathfrak{d}(P)$ is a Lie group with respect. to the compact-open topology in P.
тнеовем 1.5. Let Γ bealinear connection on a manifold M with a finite number of connected components. Then the group $\mathfrak{n}(M)$ of affine transformations of M is a Lie transformation group with respect to the compact-open topology in P .

Proof. Let $\theta=\left(\theta^{i}\right)$ and $\omega=\left(\omega_{k}^{j}\right)$ be the canonical form and the connection form on P. We set

$$
g\left(X^{*}, \mathrm{Y}^{*}\right)=\Sigma_{i} \theta^{i}\left(X^{*}\right) \theta^{i}\left(Y^{*}\right)+\Sigma_{j, k} \omega_{k}^{j}\left(X^{*}\right) \omega_{k}^{j}\left(Y^{*}\right)
$$

$$
X^{*}, Y^{*} \in T^{\prime \prime}(P)
$$

Since the $n^{2}+n 1$-forms $\theta^{i}, \omega_{k}^{j}, i, j, k=1,: \ldots$, A, form a basis of the space of covectors at every point \boldsymbol{u} of \boldsymbol{P}-(cf. Proposition 2.6 of Chapter III), g is a Riemannian metric on P which is invariant by $\mathfrak{g}(P)$ by Proposition 1.3. The group of isometries of P is a Lie transformation group of P with respect to the campact-open topology by Theorem 4.6 and Corollary 4.9 of Chapter I (cf., also Theorem, 3.10 of Chapter IV). Since $41(P)$ is clearly a closed subgroup of the group of isometries of $\mathrm{P}, \mathfrak{M}(P)$ is also a Lie transformation group of P .

QED.

2. Infinitesimal affine transformations

Throughout this section, $P(M, G)$ denotes the bundle of linear frames over a manifold M so that $G=G L(n ; \mathbf{R})$, where $n=$ $\mathrm{d} \mathrm{i} \mathrm{m} \quad M$.
Every transformation q of M induces a transformation of P in a natural manner. Correspondingly, every vector field X on M induces a vector ficld \bar{X} on Pin, a natural manner. More precisely, we . prove
Proposition 2.1.. For each vect, r field X on M, there exists a unique vector field \hat{X} on. P such that
(1) \tilde{X} is invariant by R_{a} for every $\mathfrak{G} \in$;
(2) $L_{\bar{R}} 0=0$;
(3) \tilde{X} is n-related to X, that is, $\pi\left(\tilde{X_{u}}\right)=X_{n(u)}$ for every $u \in \mathbf{P}$.

Conversely, given a vectorjeld \tilde{X} on P satisfying (1) and (2), there exists a unique vectorjeld X on M satisfying (3).
We shall call \tilde{X} the natural lift of X .
Proof. Given a vector field X on M and a point $\boldsymbol{x} \in \mathrm{M}$, let φ_{t} be a local 1-parameter group of local transformations generated by X in a neighborhood U of x . For each t, φ_{t} induces a transformation $\tilde{\varphi}_{t}$ of $\pi^{-1}(U)$ onto $\pi^{-1}\left(\varphi_{t}(U)\right)$ in a natural. manner. Thus we obtain a local 1-parameter group of local transformations $\tilde{\varphi}_{t}: \pi^{-1}(U) \rightarrow \mathrm{P}$ and hence the induced vector field on P , which will be denoted by \tilde{X}. Since $\tilde{\varphi}_{t}$ commutes with R_{q} for every a $\in \mathrm{G}$, \tilde{X} satisfies (1) (cf. Corollary 1.8 of Chapter 1). Since $\tilde{\varphi}_{i}$ preserves the form θ, \tilde{X} satisfies (2). Finally, $\pi \circ \tilde{\varphi}_{t}=\tilde{\varphi}_{t} \circ \pi$ implies (3).

To prove the uniqueness of \tilde{X}, let \tilde{X}_{1} be another vector field on P satisfying (1), (2) and (3). Let $\tilde{\psi}_{t}$ be a local 1-parameter group of local transformations generated by X_{1} : Then $\tilde{\psi}_{t}$ commutes with every R, a $\in G$, and preserves the canonical form θ. By (1) of Proposition 1.3, it follows that $\tilde{\psi}_{t}$ is induced by a local 1-parameter group of local transformations ψ_{t} of M. Because of (3), ψ_{t} induces the vector field X on M. Thus $\psi_{t}=\varphi_{t}$ and hence $\tilde{\psi}_{t}=\tilde{\varphi}_{t}$, which implies that $\tilde{X}=8$,.

Conversely, let \tilde{X} be a vector field on P satisfying (1) and (2). For each $x \in M$, choose a point $\mathrm{u} \in P$ such that $\pi(u)=\mathrm{x}$. We then set $X_{x}=\pi\left(\tilde{X}_{u}\right)$. Since \tilde{X} satisfies (1), X_{x} is independent of the choice of u and thus we obtain a vector field X which satisfies (3). The uniqueness of X is evident.

QED.
Let Γ be a linear connection on M. A vector field X on M is called an intnitesimal affine transformation of M if, for each $x \in M$, a local I-parameter group of local transformations φ_{t} of a neighborhood U of x into M preserves the connection I^{\prime}, more precisely, if each $\varphi_{t}: U \rightarrow \mathrm{M}$ is an affine mapping, where U is provided with the affine connection I' $\mid U$ which is the restriciion'of I' to U.

Próposition 2.2. Let Γ be a linear connection on \dot{M}. For a vector field X on M , the following conditions are mutually equivalent:
(1) X is an infinitesimal affine transformation of M;
(2) $L_{\tilde{X}}(\omega=0$, where ω is the connection form of Γ and \tilde{X} is the natural lift of X;
(3) $[\tilde{X}, B(\xi)]=0$ for every $\xi \in \mathbf{R}^{n}$, where $B(\xi)$ is the standard horizontal vectorjeld corresponding to ξ;
(4) $L_{X} \circ \nabla_{Y}-\nabla_{Y} \circ L_{X}=\nabla_{[X, Y]}$ for every vector field Y on M. Proof. Let φ_{t} be a local 1-parameter group of local transformations of M generated by X and let, for each't, $\tilde{\varphi}_{t}$ be a local transformation of P induced by φ_{t}.
(i) (1) \rightarrow (2). By Proposition 1.4, $\tilde{\varphi}_{t}$ preserves ω. Hence we have (2).
(ii) (2) \rightarrow (3). For every vector field X, we have (Proposition 2.1)
$0=\tilde{X}(\theta(B(\xi)))=\left(L_{\tilde{X}} \theta\right)(B(\xi))+\theta([\tilde{X}, B(\xi)])=\theta([\tilde{X}, B(\xi)])$, which means that $[\tilde{X}, \mathrm{~B}(\mathrm{E})]$ is vertical. If $L_{\tilde{X}} \omega=0$, then
$0=\tilde{X}(\omega(B(\xi)))=\left(L_{\tilde{X}} \omega\right)(B(\xi))+\omega([\tilde{X}, B(\xi)])=\omega([\tilde{X}, B(\xi)])$, which means that $[\tilde{X}, \mathrm{~B}(\mathrm{t})]$ is horizontal. Hence, $[\tilde{X}, B(\xi)]=0$.
(iii) (3) \rightarrow (1). If $[\tilde{X}, B(\xi)]=0$, then $\tilde{\varphi}_{t}$ leaves $B(\xi)$ invariant and thus maps the horizontal subspace at u into. the horizontal subspace at $\tilde{\varphi}_{i}(u)$, whenever $\tilde{\varphi}_{i}(u)$ is defined. Therefore $\tilde{\varphi}_{i}$ preserves the connection, Γ and X is an infinitesimal affine transformation of M..

$$
\begin{aligned}
& \\
& \text { (iv }^{\prime}\left(\nabla_{Y} Z\right) \rightarrow(4) \text {. By Proposition } 1.4, \text { we have } \\
& \nabla_{t} Y\left(\varphi_{t} Z\right) \quad \text { for any vector fields ' } \mathrm{Y} \text { and } Z \text { on } M .
\end{aligned}
$$

From the definition of Lie differentiation given in $\S 3$ of Chapter I, we obtain

$$
\begin{aligned}
L_{X} \circ \nabla_{Y} Z & =\lim _{t \rightarrow 0} \frac{1}{t}\left[\nabla_{Y} Z-\varphi_{t}\left(\nabla_{Y} Z\right)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[\nabla_{Y} Z \nabla_{\varphi_{t} Y} Z\right]+\lim _{t \rightarrow 0} \frac{1}{t}\left[\nabla_{\varphi_{t} Y} Z-\nabla_{\varphi_{Y} Y}\left(\varphi_{t} Z\right)\right] \\
& =\nabla_{L_{X} Y} Z+\nabla_{Y} \circ L_{X} Z=\nabla_{[X, Y]} Z+\nabla_{Y} \circ L_{X} Z
\end{aligned}
$$

"We thus verified the formula:

$$
L_{X} \circ \nabla_{Y} K-\nabla_{Y} \circ L_{X} K=\nabla_{[X, Y]} K
$$

'when K is, \mathbf{a} vector field. If K is a function, the above formula is evidently true. By the lemma for Proposition 3.3 of Chapter I, the formula holds for any tensor field K.
(v) (4) $\rightarrow(1)$. We fix a point $x \in M$. We set

$$
V(t)=\left(\varphi_{t}\left(\nabla_{Y} Z\right)\right)_{x} \quad \text { and } \quad W(t)=\left(\nabla_{q_{t} Y}\left(\varphi_{t} Z\right)\right)_{x}
$$

For each t, both $\mathrm{V}(\mathrm{t})$ and $\mathrm{W}(\mathrm{t})$ are elements of $T(\boldsymbol{M})$ In view of Proposition 1.4, it is sufficient to prove that $V(t)=\mathscr{W}(t)$. As in (iv), we obtain

$$
\begin{aligned}
d V(t) / d t & =\varphi_{t}\left(\left(L_{X} \circ \nabla_{Y} Z\right)_{\varphi_{t}^{-1}(x)}\right) \\
d W(t) / d t & =\varphi_{t}\left(\left(\nabla_{[Y, Y]} Z+\nabla_{Y} \circ L_{X} Z\right)_{\varphi_{t}^{-1}(x)}\right)
\end{aligned}
$$

From our assumption we obtain $d V(t) / d t=d W(t) / d t$. On the other hand, we have evidently $\mathrm{V}(0)=\mathrm{W}(0)$. Hence, $\mathrm{V}(\mathrm{t})=\mathrm{W}(\mathrm{t})$.

QED.
Let $\mathrm{a}(\mathrm{M})$ be the set of infinitesimal affine transformations of M. Then $a(M)$ forms a subalgebra of the Lie algebra $X(M)$ of all vector fields on M . In fact, the correspondence $X \rightarrow \tilde{X}$ defined in Proposition 2.1 is an isomorphism of the Lie algebra $X(M)$ of vector fields on M into the Lie algebra $\mathrm{X}(\mathrm{P})$ of vector fields on P. Let $a(P)$ be the set of vector fields X on P satisfying (1) and (2) of Proposition 2.1 and also (2) of Proposition 2.2. Since $L_{\left[\mathcal{R}, x^{\prime}\right]}=$ $L_{X} \circ L_{X^{\prime}}-L_{X^{\prime}} \circ L_{X}($ cf. Proposition 3.4 of Chapter I), $a(P)$ forms a subalgebra of the Lie algebra $X(P)$. It follows that $\mathrm{a}(\mathrm{M})$ is a subalgebra of $\mathrm{X}(\mathrm{M})$ isomorphic with $a(P)$. spondence $X \rightarrow 8$ defined in Proposition 2.1.
тнеоrem 2.3. If M is a connected manifold with an affine connection Γ, the Lie algebra $\mathrm{a}(\mathrm{M}) \mathrm{f}^{2}$ inchiesimal affine transformations of M is of dimension at most $n^{2}+n$, where $\cdot n=\operatorname{dim} M$. If $\operatorname{dim} a(M)=n^{2}+n$, then Γ is flat, that is, both the torsion and the curvature of Γ vanish identically:

Proof. To prove the first statement it is sufficient to show that $\mathrm{a}(\mathrm{P})$ is of dimension at most $n^{2}+n$, since $\mathbf{a}(\boldsymbol{M})$ is isomorphic with $\mathrm{a}(\mathrm{P})$. Let $u \mathrm{bc}$ an arbitrary point of P. The following lemma implics that the lincar mapping $f: \mathrm{a}(\mathrm{P}) \rightarrow T_{n}(P)$ defined by $f(X)=X_{u}$ is injcctive so that $\operatorname{dim} \mathfrak{a}(P) \leqq \operatorname{dim} T_{u}(P)=n^{2}+n$.

Lemma. If an element \tilde{X} of $\mathrm{a}(\mathrm{P})$ vanishes at some Point of P, then it vanishes identically on P.

Proof of Lemma. If $\hat{X}_{u}=0$, then $\tilde{X}_{u a}=0$ for every a $\in G$ as 8 is invariant by $\boldsymbol{R}_{\boldsymbol{a}}$ (cf. Proposition 2.1). Let F be the set of points $x=\mathrm{n}(\mathrm{u}) \in \boldsymbol{M}$ such that $\hat{X}_{u}=0$. Then F is closed in M. 'Since M is connected, it suffices to show that F is open. Assume $\vec{X}_{u}=0$. Let b_{i} be a local 1-parameter group of local transformations
generated by a standard horizontal vector field $B(\xi)$ in a neighborhood of u. Since $[\hat{X}, B(\xi)]=0$ by Proposition $2.2, X$ is invariant by b_{t} and hence $\hat{X}_{b_{t} u}=0$. In the definition of a normal coordinate system (cf. §8 of Chapter III), we saw that the points of the form $\pi\left(b_{t} u\right)$ cover a neighborhood of $x=\pi(u)$ when ξ and t vary. This proves that F is open.

To prove the second statement, we assume that $\operatorname{dim} a(M)=$ $\operatorname{dim} a(P)=n^{2}+n$. Let u be an arbitrary point of P. Then the linear mapping $f: f(\hat{X})=\hat{X}_{u}$, maps $a(P)$ onto $T_{u}(P)$. In particular, given any element $A \in \mathfrak{g}$, there exists a -(unique) element $\tilde{X} \in \mathrm{a}(\mathrm{P})$ such that $\tilde{X}_{u}=A_{u}^{*}$, where A^{*} denotes the fundamental vector field corresponding to A. Let $B=\boldsymbol{B}(\boldsymbol{\xi})$ and $\mathrm{B}^{\prime}=\boldsymbol{B}\left(\boldsymbol{\xi}^{\prime}\right)$ be the standard horizontal vector fields corresponding to $\boldsymbol{\xi}$ and $\boldsymbol{\xi}^{*}$, respectively. Then

$$
X_{u}\left(\Theta\left(B, \mathrm{~B}^{\prime}\right)\right)=A_{\boldsymbol{u}}^{*}\left(\Theta\left(B, B^{\prime}\right)\right)
$$

We compute both sides of the equality separately. From $L_{X} \Theta=L_{X}(d \theta+\omega \wedge 0)=0$ and from (3) of Proposition 2.2, we obtain
$X\left(\Theta\left(B, B^{\prime}\right)\right)=\left(L_{X} \Theta\right)\left(B, B^{\prime}\right)+\Theta\left([X, B], B^{\prime}\right)+\Theta\left(B,\left[X, B^{\prime}\right]\right)=0$.
To compute the right hand side, we first observe that the exterior differentiation d applied to the first structure equation yields

$$
0=-\Omega \wedge \theta+\omega \wedge \theta+d \theta
$$

Hence we have

$$
\begin{aligned}
L_{A} \cdot \Theta & =\left(d \circ \iota_{A^{*}}+\iota_{A} \cdot \circ d\right) \Theta \\
& =\iota_{A^{*}} \circ d \Theta=\iota_{A^{*}}\left(\Omega_{A} 0-\omega \mathrm{A} \quad \Theta\right)=-\omega\left(A^{*}\right) \cdot \Theta
\end{aligned}
$$

and

$$
\left(L_{A}, \Theta\right)\left(B, B^{\prime}\right)=-A \cdot \Theta\left(B, B^{\prime}\right)
$$

Therefore,
$A^{*}\left(\Theta\left(B, B^{\prime}\right)\right)=-A \cdot \Theta\left(B, B^{\prime}\right)+\Theta\left(\left[A^{*}, B\right], B^{\prime}\right)+\Theta\left(B,\left[A^{*}, B^{\prime}\right]\right)$.
If we take as A the identity matrix of $\mathfrak{g}=\mathfrak{g l}(n ; \mathrm{R})$, then, by Proposition 2.3 of Chapter III, we have $\cdot \cdots$

$$
\left[A^{*}, B\right]=B \text { and }\left[A^{*}, H^{\prime}\right]=B^{\prime}
$$

Thus we have

$$
\begin{aligned}
0 & =X_{u}\left(\Theta\left(B, \mathrm{~B}^{\prime}\right)\right)=A_{u}^{*}\left(\Theta\left(B, B^{\prime}\right)\right) \\
& =-\Theta_{u}\left(B, B^{\prime}\right)+\Theta_{u}\left(B, \mathrm{~B}^{\prime}\right)+\Theta_{u}\left(B, \mathrm{~B}^{\prime}\right)=\Theta_{u}\left(B, B^{\prime}\right),
\end{aligned}
$$

showing that the torsion form vanishes.
Similarly, comparing the both sides of the equality:

$$
X_{u}\left(\Omega\left(B, \mathrm{~B}^{\prime}\right)\right)=A_{u}^{*}\left(\Omega\left(B, B^{\prime}\right)\right)
$$

and letting A equal the identity matrix of $\mathrm{g}=\mathrm{gl}(n ; \mathrm{R})$, we see that the curvature form vanishes identically.

QED.
We now prove the following result due to Kobayashi [2].
тheorem 2.4. Let 17 be a complete linear connection on M . Then every infinitesimal affine transformation X of M is complete, that is, generates a global I-parameter group of affine transformations of M

Proof. It suffices to show that every element \tilde{X} of $\mathfrak{a}(P)$ is complete under the assumption that M is connected. Let u_{0} be an arbitrary point of P and let $\otimes_{t}: U \rightarrow P,|t|<\delta$, be. a local 1parameter group of local transformations generated by \tilde{X} (cf. Proposition 1.5 of Chapter I). We shall prove that $\tilde{\varphi}_{t}(u)$ is defined for every $u \in P$ and $|t|<6$. Then it follows that \tilde{X} is complete.

By Proposition 6.5 of Chapter III, every standard horizontal vector field $B(\xi)$ is complete since the connection is complete. Given any point \boldsymbol{u} of P , there exist standard horizontal vector fields $B\left(\boldsymbol{\xi}_{1}\right), \ldots, B\left(\xi_{k}\right)$ and an element a • G such that

$$
u=\left(b_{t_{1}}^{1} \circ b_{t_{2}}^{2} \circ \cdots \circ b_{t_{k}}^{k} u_{0}\right) a
$$

where each b_{t}^{i} is the l-parameter group of transformations of P generated by $B\left(\xi_{i}\right)$. In fact, the existence of normal coordinate neighborhoods (cf. Proposition 8.2 of Chapter III) and the connectedness of M imply that the point $\mathrm{x}=\pi(u)$ can be joined to the point $x_{0}=\pi\left(u_{0}\right)$ by a finite succession of geodesics. By Proposition 6.3 of Chapter III, every geodesic is the projection of an integral curve of a certain standard horizontal vector field. This means that by taking suitable $B\left(\xi_{1}\right), \ldots, B\left(\xi_{k}\right)$, we obtain a point $\mathrm{v}=b_{t_{1}}^{1} \circ b_{t_{2}}^{2} \circ \cdots \circ b_{t_{k}}^{k} u_{0}$ which lies in the same fibre as u. Then $\mathrm{u}=v a$ for a suitable a $\epsilon_{\epsilon} \mathrm{G}$, thus proving our assertion. We then define p ?,(u) by-

$$
\tilde{\varphi}_{t}(u)=\left(b_{t_{1}}^{1} \circ b_{t_{2}}^{2} \circ \cdots \circ b_{l_{k}}^{k}\left(\tilde{\varphi}_{t}\left(u_{0}\right)\right)\right) a, \quad|t|<\delta
$$

The fact that $\tilde{\varphi}_{t}(u)$ is independent of the choice of $b_{t_{1}}^{1}, \cdots, b_{t_{k}}^{k}$, a and that $\bar{\varphi}_{t}$ is generated by \tilde{X} follows from (1) of Proposition 2.1 and (3) of Proposition 2.2; note that (3) of Proposition 2.2 implies that $b_{s} \circ \tilde{\varphi}_{t}(u)=\tilde{\varphi}_{t} \circ \mathrm{~b},(u)$ whenever they are both defined.

In general, every element of the Lie algebra of the group $\mathfrak{A}(M)$ of affine transformations of M gives rise to an element of $a(M)$ which is complete, and conversely. In other words, the Lie algebra of $\mathfrak{A}(M)$ can be identified with the subalgebra of $\mathrm{a}(\mathrm{M})$ consisting of complete vector fields. Theorem 2.4 means that if the connection is complete, then $\mathfrak{a}(M)$ can be considered as the Lie algebra of $\mathfrak{A}(M)$.

For any vector field X on M , the derivation $A_{X}=L_{X}-\nabla_{X}$ is induced by a tensor, field of type $(1,1)$ because it is zero on the function algebra $\mathcal{F}(M)$ (cf. the proof of Proposition 3.3 of Chapter I). This fact may be derived also from the following

Proposition $\quad 2.5$. For any vector fields X and Y on M, we have

$$
A_{X} Y=-\nabla_{Y} X-\mathrm{T}(\mathrm{X}, \mathrm{Y}),
$$

where T is the torsion.
Proof. By Theorem 5.1 of Chapter III, we have

$$
\begin{aligned}
A_{X} Y & =L_{X} Y-\nabla_{X} Y=[X, Y]-\left(\nabla_{Y} X+[X, Y]+T(X, Y)\right) \\
& =-\nabla_{Y} X-\mathrm{T}(X, Y) .
\end{aligned}
$$

QED.
We conclude this section by
Proposition 2.6. (1) A vector field X on M is an infinitesimal affine transformation if and only if

$$
\nabla_{Y}\left(\dot{A}_{X}\right)=R(X, Y) \quad \text { for every vector field } Y \text { on } M .
$$

(2) If both X and Y are infinitesimal affine transformations of M, then

$$
\mathrm{A}_{[X, Y]}=\left[A_{X}, A_{Y}\right]+R(X, Y)
$$

where R denotes: thecurvature.
Proof. (1) By Theorem 5.1 of Chapter III, we have

$$
\begin{aligned}
R(X, Y) & =\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}=\left[L_{X}-A_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]} \\
& \left.=C L, \nabla_{Y}\right]-\nabla_{[X, Y]}-\left[A_{X}, \nabla_{Y}\right] .
\end{aligned}
$$

By Proposition 2.2, X is an infinitesimal affine transformation if and only if $R(X, Y)=-\left[\mathrm{A}, \nabla_{Y}\right]$ for every Y, that is, if and only if

$$
R(X, Y) Z=\nabla_{Y}\left(A_{X} Z\right)-A_{X}\left(\nabla_{Y} Z\right)=\left(\nabla_{Y}\left(A_{X}\right)\right) Z
$$

$$
\text { for all } \mathrm{Y} \text { and } \mathrm{Z} \text {. }
$$

(2) By Theorem 5.1 of Chapter III and Proposition 2.2, we have

$$
\begin{aligned}
{\left[A_{X}, A_{Y}\right]-A_{[X, Y]} } & =\left[L_{X}-\nabla_{X}, L_{Y}-\nabla_{Y}\right]-\left(L_{[X, Y]}-\Gamma_{[X, Y]}\right) \\
& =\left[L_{X}, L_{Y}\right]-\left[\nabla_{X}, L_{Y}\right]-\left[L_{X}, \nabla_{Y}\right] \\
& +\left[\nabla_{X}, \nabla_{Y}\right]-L_{[X, Y]}+\nabla_{[X, Y]}=R(X, Y) .
\end{aligned}
$$

QED.

3. Isometrics and infinitesimal isometries

Let M be a manifold with a Riemannian metric g and the corresponding Riemannian connection Γ. An isometry of M is a transformation of M which leaves the metric g invariant. We know from Proposition 2.5 of Chapter IV that an isomctry of M is necessarily an affine transformation of M with respect to I',

Consider the bundle $O(M)$ of orthonormal frames over M which is a subbundle of the bundle $L(M)$ of linear frames over M. We have

Proposition 3.1. (1) A transformation f of M is an isometry if and only if the induced transformation f of $L(M)$ maps $O(M)$ into itself;
(2) A fibre-preserving transformation F of $\mathrm{O}(\mathrm{M})$ which leaves the canonical form θ on $0\left(\mathrm{M}^{3}\right)$ invariant is induced by an isometry of M.

Proof. (1) This follows from the fact that a transformation \boldsymbol{f} of M is an isometry if and only if it maps each orthonormal frame at an arbitrary point x into an orthonormal frame at $f(x)$.
(2) Letf be the transformation of the base M induced by F. We set $J=\hat{f}^{-1} \circ F$. Then J is a fibre-preserving mapping of $O(M)$ into $L(M)$ which preserves θ. Moreover, J induces the identity transformation on the base M, Therefore we have

$$
\begin{aligned}
\mathrm{u}-{ }^{\prime}(\mathrm{X})=\theta\left(X^{*}\right)= & \theta\left(J^{*}\right)=\mathrm{J}(\mathrm{u})-^{\prime}(\mathrm{X}), \\
& X^{*} \in T_{u}(O(M)), \quad X=\pi\left(X^{*}\right) .
\end{aligned}
$$

This implies that $J(u)=u$, that is, $\tilde{f}(u)=\mathrm{F}(u) . \mathbf{B y}(1), f$ is an isometry of M.

QED.
A vector field X on M is called an infinitesimal isometry (or, a Killing vector field) if the local 1 -parameter group of local transformations generated by X in a neighborhood of each point of M consists of local'isometries. An infinitesimal isometry is necessarily an infinitesimal affine transformation.

Proposition 3.2. For a vector field X on a Riemannian manifold M, the following conditions are mutually equivalent :
(1) X is an infinitesimal isometry;
(2) The natural lift \hat{X} of X to $\mathrm{L}(\mathrm{M})$ is tangent to $\mathrm{O}(\mathrm{M})$ at every point of $O(M)$;
(3) $L_{x}=0$, where g is the metric tensar field of M;
(4) The tensor field $A_{X}=L_{X}-V_{X}$ of type $(1,1)$ iss skew-symmetric with respect to g everywhere on M , that is, $g\left(A_{X} Y ; Z\right)=-g\left(A_{X} Z, Y\right)$ for arbitrary vector felds Y and Z.

Proof." (i) To prove the equivalence of (1) and (2), let φ_{t} and $\tilde{\varphi}_{\text {t }}$ the the local I-parameter groups of local transformations generated by X and \tilde{X} respectively. If X is an infinitesimal isometry, then $\dot{\varphi}_{t}$ are local isometries and hence $\tilde{\varphi}_{i}$ map $O(\mathrm{M})$ into itselff: Thus \tilde{X} is tangent to $\mathrm{O}(\mathrm{M})$ at every point of $\mathrm{O}(\mathrm{M})$. Converselyy;, if $-\hat{X}$-is tangent to $O(M)$ 'at every point of $O(M)$, the integital curve of \tilde{X} through each point of $O(M)$ is contained in (O) M) and hence each $\tilde{\varphi}_{t}$ maps $O(\mathrm{M})$ into itself. This'means, bv Proqosition 3.1; that each φ_{t} is a local isometxy and hence X is'an infinitesimal isometry.
(ii) The- equivalence of (1) and (3) follows from Corollary 3.7 of Chapter
I.
(iii) Since $\nabla_{X} g=0$ for any vector field $X, L_{X} g=0$ is equivalent to $A_{X} g=0$. Since A_{X} is a derivation of the algebra of tensor fields, we have

$$
A_{X}(g(Y, Z))=\left(A_{X} g\right)(Y, Z)+g\left(A_{X} Y, Z\right)+g\left(Y, A_{X} Z\right)
$$

$$
\text { for } Y, Z \in \mathfrak{X}(M) \text {. }
$$

Since A, maps every function into zero, $A_{X}(g(Y, Z)) \doteq 0$. Hence $A_{x} g=0$ if and only if $g\left(A_{X} Y, Z\right)+g\left(Y, A_{X} Z\right)=0$ for all Y and Z , thus proving the equivalence of (3) and (4). QED.

The set of all infinitesimal isometries of M, denoted by $\left(T M_{l}\right)$ forms a Lie algebra. In fact, if X and Y are infinitesimal isometries of M, then

$$
L_{[X, Y]} g=\dot{L}_{X}, \circ L_{Y} g-L_{Y} \circ L_{X} g=0
$$

by Proposition 3.2. By the same proposition, $[X, \mathrm{Y}]$ is an infinitesimal isometry of M

тнеовем 3.3. 'The Lie algebra $\mathrm{i}(\mathrm{M})$ of infinitesimal isometries of a connected Riemannian manifold M is of dimension at most $\operatorname{tiv}(n+1)$, where $\mathrm{n}=\operatorname{dim} \mathrm{M}$. If $\operatorname{dim} \mathrm{i}(\mathrm{M})=\frac{1}{2} n(n+1)$, then M is a space of constant curvature.

Proof. To prove the first assertion, it is sufficient to show that, for any point u of $O(\mathrm{M})$, the linear mapping $\mathrm{X} \rightarrow \vec{X}_{u}$ maps $\mathrm{i}(M)$ $1: 1$ into $T_{n}(O(M))$. By Proposition 3.2, \tilde{X}_{u} is certainly an element of $T_{u}(O(M))$. If $\tilde{X}_{u}=0$, then the proof of Theorem. 23 shows that $\mathrm{X}=0$. We now prove the second assertion.
Let X, X^{\prime} be an orthonormal basis of a plane p in $T_{x}(M)$ and let u be a point of $O(M)$ such that $\pi(u)=x$. We set $\xi=u^{-1}(X)$, $\xi^{\prime}=u^{-1}\left(X^{\prime}\right), B=B(\xi)$ and $\mathrm{B}^{\prime}=B\left(\xi^{\prime}\right)$, where $\mathrm{B}(5)$ and $B\left(\xi^{\prime}\right)$ are the restrictions to $O(\dot{M})$ of the standard horizontal vector' fields corresponding to ξ and ξ^{\prime}, respectively. From the definition of the curvature transformationgiven in $\S 5$ of Chapter III we see that the, sectional curvature $\mathrm{K}(\mathrm{j})$ (cf. 92 of Chapter V) is given by

$$
K(p)=\left(\left(2 \Omega\left(B_{u}, B_{u}^{\prime}\right)\right) \xi^{\prime}, \xi\right),
$$

where (,) denotes the natural inner product in \mathbf{R}^{n}. To prove that $\mathrm{K}(\mathrm{g})$ is independent of p, let Y, Y^{\prime} be an orthonormal basis of another plane q in $\mathrm{T},(\mathrm{M})$ and set $\eta=u^{-1}(Y)$ and $\eta^{\prime}=u^{-1}\left(Y^{\prime}\right)$. Let a be an element of $S O(n)$ guch that $a \xi=\mathrm{g}$-and $a \xi^{\prime}=\eta^{\prime}$. By Proposition 2.2 of Chapter III, we have

$$
\begin{aligned}
\Omega\left(B(\eta)_{u}, B\left(\eta^{\prime}\right)_{u}\right) & =\Omega\left(B(a \xi)_{u}, B\left(a \xi^{\prime}\right)_{u}\right)=\Omega\left(R_{a^{-1}}\left(B_{u a}\right), R_{a^{-1}}\left(B_{u a}^{\prime}\right)\right) \\
& =\operatorname{ad}(a)\left(\Omega\left(B_{u a}, B_{u \dot{u} a}^{\prime}\right)\right)=a \cdot \Omega\left(B_{u a}, B_{u a}^{\prime}\right) \cdot a a^{-} .
\end{aligned}
$$

Hence the sectional curvature $\mathrm{K}(q)$ is given by

$$
\begin{aligned}
K(q) & =\left(\left(2 \Omega\left(B(\eta)_{u}, B\left(\eta^{\prime}\right)_{u}\right) \eta^{\prime}, \eta\right)\right. \\
& =\left(\left(\mathrm{a} \cdot 2 \Omega\left(B_{u a}, B_{u u}^{\prime}\right) \cdot a^{-1}\right) a \xi^{\prime}, a \xi\right) \\
& =\left(\left(2 \Omega\left(B_{u a}, B_{u a}^{\prime}\right)\right) \xi^{\prime}, \xi\right) .
\end{aligned}
$$

To prove that $K(p)=K(q)$, it is sufficient to show that $\Omega\left(B_{u a}, B_{u a}^{\prime}\right)=\Omega\left(B_{u}, B_{u}^{\prime}\right)$. Given any vertical vector $\mathrm{X}^{*} \boldsymbol{\epsilon}$ $T_{v}(O(M))$ with $\mathrm{n}(\mathrm{v})=x$, there exists an element $\mathrm{X} \in \mathrm{i}(\mathrm{M})$ such that $X_{v}=X^{*}$ if $\operatorname{dim} \mathrm{i}(\mathrm{M})=\frac{1}{2} n(n+1)$, since the mapping $X \rightarrow \tilde{X}_{v}$ maps $\mathrm{i}(\mathrm{M})$ onto $T_{v}(O(\hat{M}))$. We have
$\tilde{X}\left(\Omega\left(B, \mathbf{B}^{\prime}\right)\right)=\left(L_{\mathcal{R}} \Omega\right)\left(B, \mathbf{B}^{\prime}\right)+\tilde{\Omega}\left([X, \mathbf{B}], \mathbf{B}^{\prime}\right)+\Omega\left(B,\left[\mathbf{X}, B^{\prime}\right]\right)=0$.
This implies that $\Omega\left(B_{u}, B_{u}^{\prime}\right)=\Omega\left(B_{u a}, B_{u a}^{\prime}\right)$ for every a $\in S O(\mathrm{n})$. We thus proved that $K(p)$ depends only on the point x. We prove that $\mathrm{K}(\mathrm{p})$ does not depend even on x . Given any vector $Y^{*} \epsilon_{\epsilon} T_{u}(O(M))$, let Y be an element of $\mathrm{i}(\mathrm{M})$ such that $Y_{u}=Y^{*}$. We have again $\tilde{Y}\left(\Omega\left(B, \mathrm{~B}^{\prime}\right)\right)=0$. Hence, for fixed ξ and ξ^{\prime}, the function $\left(\left(2 \Omega\left(B, B^{\prime}\right)\right) \xi^{\prime} ;\right.$ 组' constant in a neighborhood of u. This means that $K(p)$, considered as a function on M, is locally constant. Since it is continuous and \mathbf{M} is connected, it must be constant on M. (If $\operatorname{dim} \mathrm{M} \geqq 3$, the fact that $K(p)$ is independent of x follows also from Theorem 2.2 of Chapter V.) "

QED.
Theorem 3.4. (I)'For a Riemannian manifold M with' a finite number of connected components, the group $\mathfrak{J}(M)$-of isometries of M is a Lie transformation group with respect to the compact-open topology in M ;
(2) The Lie algebra_ of $\mathfrak{I}\left(M^{\prime \prime} \mid \xi\right.$ naturally isomorphic with the Lie algebra of all complete infinitesimal isometries;
(3) The isotropy, subgroup $\mathfrak{J}_{x}(M)$ of $3(\mathrm{M})$ at an arbitrary point x is compact;
(4) If M is complete, the Lie algebra of $\mathfrak{J}(M)$ is naturally isomorphic with the Lie algebra $\mathrm{i}(\mathrm{M})$ of all infinitesimal isometries of M;
(5) $\mathbf{Z f} M$ is compact, then the group, $\mathfrak{I}(M)\{s-$ compact.

Proof. (1) As we indicated in, the proof of Theorem 1.5, this follows from Theorem-4.6 and, Corollary 4.9 of Chapter I and Theorem 3.10 of Chapter IV.
(2) Every 1-parameter subgroup of $\mathfrak{J}(M)$ induces an infinitesimal isometry X which is complete on' M and, conversely, every. complete infinitesimal isometry X generates a 1 -parameter subgroup of $\mathfrak{I}(M)$.
(3) This follows from Corollary 4.8 of Chapter I.
(4) This follows from (2) and Theorem 2.4 .
(5) This follows from Corollary 4.10 of Chapter I.

QED.
Clearly, $3(\mathrm{M})$ is a closed subgroup of $\mathfrak{Y}(M)$. We shall see that,
in many instances, the identity component $\mathfrak{S}^{0}(M)$ of $3(\mathrm{M})$ coincides with the identity component $\mathfrak{A}^{0}(M)$ of $\mathfrak{A}(M)$. We first prove a result by Hano [1].

THEOREM 3.5. If $M=M_{0} \times M_{1} \times 1 .{ }^{\prime} \times M_{\mathbf{k}}$ is the de Rham decomposition of a complete, simply connected Riemannian manifold M, then

$$
\begin{aligned}
& \mathfrak{H}^{0}(M) \approx \mathfrak{A}^{0}\left(M_{0}\right) \times \mathfrak{A}^{0}\left(M_{1}\right) \times \quad \cdots \times \quad \mathfrak{A}^{0}\left(M_{k}\right), \\
& \mathfrak{J}^{0}(M) \approx \mathfrak{J}^{0}\left(M_{0}\right) \times \quad \mathfrak{J}^{0}\left(M_{1}\right) \times \quad \cdots \times \mathfrak{I}^{0}\left(M_{k}\right),
\end{aligned}
$$

Proof. We need the following two lemmas.
Lemma 1. Let T,(M) $=\Sigma_{i=0}^{k} T_{0}^{(i)}$ be the canonical decomposition:
(ic) If $\varphi \cdot \mathrm{A}(\mathrm{M})$, then $\varphi\left(T_{x}^{(0)}\right)=T_{\varphi(x)}^{(0)}$ and for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$, $\varphi\left(T_{x}^{(i)}\right)=T_{\varphi(x)}^{(j)}$ for some $\mathrm{j}, 1 \leqq \mathrm{j} \leqq \mathrm{k}$;
(2) If $\varphi \in A^{0}(M)$, then $\varphi\left(T_{x}^{(i)}\right)=T_{q(x)}^{(i)}$ for every $\mathrm{i}, 0 \leqq \mathrm{i} \leqq \mathrm{k}$.

Proof of Lemma 1. Let $\boldsymbol{\tau}$ be any loop at \boldsymbol{x} and set $\boldsymbol{\tau}^{\prime}=\varphi(\boldsymbol{r})$ so thate τ^{\prime} is a loop at $9(\mathrm{x})$. If we denote by the same letter τ and $\boldsymbol{\tau}^{\prime}$ the parallel displacements along τ and τ^{\prime} respectively, then

$$
\varphi \circ \tau(X)=\tau^{\prime} \circ \varphi(X) \quad \text { for } X \in T_{x}(M)
$$

It follows easily that $\varphi\left(T_{x}^{(0)}\right)$ is invariant elementwise and every $\varphi\left(T_{x}^{(i)}\right), 1 \leqq \mathrm{i} \leqq \mathrm{k}$, is irreducible by the linear holonomy group $\Psi(\varphi(x))$. Hence, $\varphi\left(T_{x}^{(0)}\right) \subset T_{\varphi(x)}^{(0)}$ and, their dimensions being the same, $\varphi\left(T_{x}^{(0)}\right)=T_{q(x)}^{(0)}$. Thus we obtain the canonical decomposition $\mathrm{T}_{\varphi(x)}=\sum_{i=0}^{k} \varphi\left(T_{x}^{(i)}\right)$ which should coincide with the canonical decomposition $T_{q(x)}^{x}=\Sigma_{i=0}^{k} T_{q(x)}^{(i)}$ up to an 'order by (4) of Theorem 5.4 of Chapter IV. This meansprecisely the statement (1). Let φ_{t} be a, l-parameter subgroup of $\mathfrak{A}^{0}(M)$ and let X be a non-zero element of $T_{x}^{(i)}$, Let $\tau=x_{t}=\varphi_{t}(x)$. Since $g\left(\varphi_{0}(X), X\right)=$
 $\delta>0$, where τ_{t}^{0} denotes the parallel displacement from x_{0} to \boldsymbol{x}_{t} 'along τ. This means that $\varphi_{t}\left(T_{x_{i}}^{(i)}\right)=T_{\phi_{(1)}}^{(i)}$ for $|t|<8$ ' for some positive number 8^{\prime}; in fact, if X_{1}, \cdots, X_{r}, is a basis for $\boldsymbol{T}_{\boldsymbol{x}}{ }^{(i)}$, then $g\left(\varphi_{t}\left(X_{j}\right), \tau_{t}^{\theta} X_{j}\right) \neq 0$ for $1 \leqq \mathrm{j}$. $\leqq r$ and $|t|<6^{\prime}$ for some positive number δ^{\prime} and hence $\varphi_{t}\left(X_{j}\right) \in T_{q_{i}(x)}^{(i)}$ for $|t|<\delta^{\prime}$, which, implies $\varphi_{t}\left(T_{x}^{(i)}\right)=T_{\varphi_{f}(x)}^{(i)}$ for $|t|<8^{\prime}$ because of the linearity of φ_{i}. This concludes the proof of the statement (2), since $\mathfrak{A}^{0}(M)$ is generated by l-parameter subgroups.

Lemma 1 is due to Nomizu [3].

Lemma 2. Let φ_{i} be an arbitrary transformation of M_{i} for every i , $0 \leq \mathrm{i} \leqq \mathrm{k}$. Let φ be the transformation of $\mathrm{M}=M_{0} \times M_{1} \times \cdots$ x M_{k} defined by
$r(x)=\left(\varphi_{0}\left(x_{0}\right), \varphi_{1}\left(x_{1}\right), \ldots, \varphi_{k}\left(x_{k}\right)\right)$ for $x=\left(x_{0}, x_{1}, \ldots, x_{k}\right) \in M$. Then
(1) φ is an affine transformation of $M \cdot$ if and only if every φ_{i} is an affine transform\&ion of M_{i}.
(2), ω is an isometry of M if and only if every φ_{i} is an isometry' of M_{i}.

The proof is trivial.

The correspondence $\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{k}\right) \rightarrow 9$ defined in Lemma 2 maps $\mathfrak{H}\left(M_{0}\right) \times \mathfrak{H}\left(M_{1}\right) \times \cdots \times \mathfrak{N}\left(M_{k}\right)$ isomorphically into $\mathfrak{N}(M)$. To complete the proof of' Theorem 3.5, it suffices to show that, for every $\varphi \in \mathfrak{A}^{\theta}(M)$, there exist transformations $\varphi_{i}: M_{i} \rightarrow M_{i}, 0 \leqq \mathrm{i} \leqq \mathrm{k}$, such that
$\varphi(x)=\left(\varphi_{0}\left(x_{0}\right), \varphi_{1}\left(x_{1}\right), \ldots, \varphi_{k}\left(x_{k}\right)\right)$ for $x=\left(x_{0}, x_{1}, \ldots, x_{k}\right) \in M$.
We prove that, if $p_{i}: M \rightarrow M_{i}$ denotes the naturalprojection, then $p_{i}(\varphi(x))$ depends only on $x_{i}=p_{i}(x)$. Given any Point. $\mathrm{y}=$ $\left(y_{0}, 0, \ldots, y_{i-1}, x_{i}, y_{i+1}, \ldots, y_{k}\right)$, let, for each $j \overline{\mathrm{v}}, 1, \cdots, i-1$. $\mathrm{i}+1, \ldots, \mathrm{k}_{,} \tau_{j}=x_{i}(t), 0 \leqq t \leqq 1$, be a curve from x_{j} toy, in M_{j} so that $x_{j}(0)=x_{j}$ and $x_{j}(1)=y_{j}$. Let $\tau=x(t), 0<\mathrm{t} \leqq 1$, b e the curve from x toy in M defined by
$x(t)=\left(x_{0}(t), x_{1}(t), \ldots, x_{i-1}(t), x_{i}, x_{i+1}(t), \ldots, x_{k}(t)\right), 0 \leqq \mathrm{t}$
For each t, the tangent vector $\dot{x}(t)$ to τ at $\mathrm{x}(\mathrm{t})$ is in the distribution $T^{(0)}+\ldots+T^{(i-1)}+T^{(i+1)}+\cdots+T^{(k)}$. By Lemma 1, $\gamma(\dot{x}(t))$ lies also in the same distribution. Hence $p_{i}(\varphi(x(t)))$ is independent of t (cf. Lemma 2 for Theorem 7.2 of Chapter HI). In particular, $p_{i}(\varphi(x))=p_{i}(\varphi(y))$, thus proving our assertion. We then define a transformation $\varphi_{i}: M_{i} \rightarrow M_{i}$ by

$$
\varphi_{i}\left(x_{i}\right)=p_{i}(\varphi(x))
$$

Clearly, we have

$$
\varphi(x)=\left(\varphi_{0}\left(x_{0}\right), \varphi_{1}\left(x_{1}\right), \ldots, \varphi_{k}\left(x_{k}\right)\right)
$$

QED.
It is therefore important to study $\mathfrak{A}(\boldsymbol{M})$ when M is irreducible. The following result is due to Kobayashi [4].

тнеовем 3.6. If M is a complete, irreducible Riemannian manifold, then $\mathscr{A}(M)=3(\mathrm{M})$ except when M is a I-dimensional Euclidean space.
Proof. A transformation φ of a Riemannian manifold is said to be homothetic if there is a positive constant c such that $g(\varphi(X)$, $\varphi(Y))=c^{2} g(X, Y)$ for all X, YE $T_{x}(M)$ and $x \in \mathrm{M}$. Consider the Riemannian metric $\mathrm{g} *$ defined by $g^{*}(X, Y)=g(\varphi(X), \varphi(Y))$. From the proof (B) of Theorem 2.2 of Chapter III, we see that the Riemannian connection defined by g^{*} coincides with the one defined by g . This means that every homothetic transformation of a Riemannian manifold M is an affine transformation of M.

LEMMA 1. If M is an irreducible Riemannian manifold, then every affine transformation φ of M is homothetic.
Proof of Lemma 1. Since φ is an affine transformation, the two Riemannian metrics g and g^{*} (defined above) determine the same Riemannian connection, say I'. Let $\Psi(x)$ be the linear holonomy group of Γ with reference point \boldsymbol{x}. Since it is irreducible and leaves both g ard g^{*} invariant, there exists a positive constant c_{x} such that $\mathrm{g}^{*}(\mathrm{X}, \mathrm{Y})=c_{x}^{2} \cdot g(X, \mathrm{Y})$ for all X , YE $T_{x}(M)$, that is, $g_{x}^{*}=c_{x}^{2} \cdot g_{x}$ (cf. Theorem 1 of Appendix 5). Since both $g *$ and g^{\prime} are parallel tensor fields with respect to $\mathrm{I}^{\prime}, \boldsymbol{c}_{x}$ is constant.
Lemma 2. If A4 is a complete Riemannian manifold which is not locally Euclidean, then every homothetic transformation φ of M is an isometry.

Proof of Lemma 2. Assume that φ is a non-isometric homothetic transformation of M. Considering the inverse transformation if necessary, we may assume that the. constant c associated with φ is less than 1 . Take, an arbitrary point x of M . If the distance between x and $\mathrm{g}(\mathrm{x})$ is less than δ, then the distance between $\varphi^{m}(x)$ and $\varphi^{m+1}(x)$ is less than $c^{m} \delta$. It follows that $\left\{\varphi^{m}(x) ; m=\right.$ $1,2, \ldots\}$ is a Cauchy sequence and hence converges to some point, say x^{*}, since M is complete. It is easy to see that the point x^{*} is left fixed by φ.

Let U be a neighborhood of x^{*} such that O is compact. Let K^{*} be a positive number such that $\left|g\left(R\left(Y_{1}, Y_{2}\right) Y_{2}, Y_{1}\right)\right|<K^{*}$ for any unit vectors Y_{1} and Y_{2} at y $\in U$, where R denotes the curvature tensor field. Let $z \in \mathrm{M}$ and q any plane in $T_{z}(M)$. Let X, Y be an orthonormal basis for q. Since φ is an affine
transformation, (3) of Proposition 1.2 implies that

$$
R\left(\varphi^{m} X, \varphi^{m} Y\right)\left(\varphi^{m} Y\right)=\varphi^{m}(R(X, Y) Y)
$$

Hence we have

$$
\begin{aligned}
g\left(R\left(\varphi^{m} X, \varphi^{m} Y\right)\left(\varphi^{m} Y\right), \varphi^{m} X\right) & =g\left(\varphi^{m}(R(X, Y) Y), \varphi^{m} X\right) \\
& =c^{2 m} g(R(X, Y) Y, X)=c^{2 m} \mathcal{K}(q)
\end{aligned}
$$

On the other hand, the distance between $x^{*}=\varphi^{m}\left(x^{*}\right)$ and $\varphi^{m}(z)$ approaches 0 as m tends to infinity. In other words, there exists an integer m_{0} such that $\varphi^{m}(z) \in U$ for every $m \geqq m$, Since the lengths of the vectors $\phi^{m} X$ and $p^{m} Y$ are equal to c^{m}, we have

$$
c^{4 m} K^{*} \geqq\left|g\left(R\left(\varphi^{m} X, \varphi^{m} Y\right)\left(\varphi^{m} Y\right), \varphi^{m} X\right)\right| \quad \text { for } m \geqq m
$$

Thus we obtain

$$
c^{2 m} K^{*} \geqq|K(q)| \quad \text { for } m \geqq m,
$$

Letting m tend to infinity, we have $K(q)=0$. This shows that M is locally Euclidean.

QED.
Let X be an infinitesimal affine transformation on a complete Riemannian manifold M. Using Theorems 3.5 and 3.6 , we shall find a number of sufficient conditions for X to be an infinitesimal isometry. Assuming that M is connected, let \tilde{M} be the universal covering manifold with the naturally induced Riemannian metric $\tilde{g}=p^{*}(g)$; where $\mathrm{p}: \tilde{M} \rightarrow \mathrm{M}$ is the natural projection. Let \tilde{X} be the vector field on \tilde{M} induced by $\mathrm{X} ; \tilde{X}$ is p-related to X . Then \tilde{X} is an infinitesimal affine transformation of \tilde{M}. Clearly, \tilde{X} is an infinitesimal isometry of \tilde{M} if and only if X is an infinitesimal isometry of M. Let $\tilde{M}=M_{0} \times M_{1} \times \cdots \times M_{k}$ be the de Rham decomposition of the complete simply connected Riemannian manifold \tilde{M}. By Theorem 3.5, the Lie algebra $\mathfrak{a}(\tilde{M})$ is isomorphic with $\mathfrak{a}\left(M_{0}\right)+\mathfrak{a}\left(M_{1}\right)+\cdots+\mathfrak{a}\left(M_{k}\right)$. Let $\left(X_{0}, X_{1}, \ldots, X_{k}\right)$ be the element of $\mathfrak{a}\left(M_{0}\right)+\mathfrak{a}\left(M_{1}\right)+\ldots+\mathfrak{a}\left(M_{k}\right)$ corresponding to $\tilde{X} \in \mathfrak{a}(\tilde{M})$. Since X_{1}, \ldots, X_{k} are all infinitesimal isometries by Theorem 3.6, X is an infinitesimal isometry if and only if X_{0} is.

Corollary 3.7. If M is a connected, complete Riemannian manifold whose restricted linear holonomy group $\Psi^{\circ}(x)$ leaves no non-zero vector at X fixed, then $\mathfrak{a}^{0}(M)=\mathfrak{J}^{0}(M)$.

Proof. The linear holonomy group of M is naturally isomorphic
with the restricted linear holonomy group $\Psi^{\circ}(x)$ of A4 (cf. Example 2.1 of Chapter IV).. This means that M_{\jmath} reduces to a point and hence $X_{0}=0$ in the above notations.

QED.
Corollary 3.0. If X is an ininitesimal affine transformation of a complete Riemannian manifold and if the length of X is bounded, then X is an infinitesimal isometry.

Proof. We may assume M to be connected. If the length of X is bounded on M, the length of X_{0} is also bounded on M_{0}. Let x^{1}, \ldots, x^{r} be the Euclidean coordinate system in M_{0} and set

$$
X_{0}=\sum_{\alpha=1}^{r} \xi^{x}\left(\partial / \partial x^{x}\right)
$$

Applying the formula $\left(L_{X_{0}} \circ \nabla_{Y}=\nabla_{Y} \circ L_{X_{0}}\right) Z=\nabla_{\left[X_{0}, Y\right]} Z$ (cf. Proposition 2.2) to $Y=\dot{\partial} / \partial x^{\beta}$ and $Z=\partial / \partial x^{\prime \prime}$, we see that

$$
\frac{\partial^{2} \dot{\zeta}^{x}}{\partial x^{j} \partial x^{\prime \prime}}=0
$$

This means that X_{0} is of the form

$$
\Sigma_{x}^{r} \mathrm{I}\left(\Sigma_{\beta}^{r}, a_{\beta}^{\alpha} x^{\beta}+b^{\alpha}\right)\left(\partial / \partial x^{\alpha}\right)
$$

It is easy to see that length of X_{0} is bounded on M_{0} if and only if $a_{\beta}^{\alpha}=0$ for $\alpha, i=1, \ldots, r$. Thus if X_{0} is of bounded length, then X_{0} is an infinitecimal isometry of M_{0}.

QED.
Corollary 3.8, obtaincd by Hano [1], implies the following result of Yano [1] which was originally proved by a completely different method.

Corollary 3.9. On , a compact 'Riemannian marifold M, we have $\mathfrak{I}^{0}(M)=\mathfrak{J}^{0}(. M)$.

Proof. On a compact manifold M, every vector field is of bounded length. By Corollary 3.8, every infinitesimal affine transformation X is an infinitesimal isometry.

4. Holonomy and infinitesiaml isometrics

Let M be a differentiable manifold with a linear connection I'. -For an infinitesimal affine transformation X of M, we give a geometric interpretation' of the tensor 'field $A,=L_{X}-\nabla_{X}$ introduced in $\$ 2$.

Let \boldsymbol{x} be an arbitrary point of M and let φ_{t} be a local l-pa--rameter group of affine transformations generated by X in a neighborhood of x. Let τ be the orbit $x_{t}=\varphi_{t}(x)$ of x . We denote by τ_{t}^{s} the parallel displacement along the curve τ from x_{s} to x_{i}. For each t , we consider a linear transformation $C_{t}=\tau_{0}^{\boldsymbol{t}} \circ\left(\varphi_{t}\right)_{*}$ of $T_{x}(M)$.

Proposition 4.1. $\quad C_{t}$ is a local l-parameter group of linear transformations of $T,(M): C_{t+s}=C_{t} \circ C_{s}$, and $C_{t}=\exp \left(-t\left(A_{Z}\right)_{x}\right)$.

Proof. Since φ_{t} maps the portion of τ from $x_{0} t_{t} \boldsymbol{x}_{\boldsymbol{x}}$ into the portion of τ from $\boldsymbol{x}_{\boldsymbol{t}}$ to \boldsymbol{x}_{t+s} and since φ_{t} is compatible'with parallel displacement, we have

$$
\varphi_{t} \circ \tau_{0}^{s}=\tau_{t}^{t+s} \circ \varphi_{t}
$$

Hence

$C_{t} \circ C_{s}=\tau_{0}^{t} \circ \varphi_{t} \circ \tau_{0}^{s} \circ \varphi_{s}=\tau_{0}^{i} \circ \tau_{t}^{+s} \circ \varphi_{t} \circ \varphi_{s}=\tau_{0}^{t+s} \circ \varphi_{t+s}=C_{t+s}$.
This 'proves the first assertion: Thus there is a linear endomorphism, say, A of $T,(M)$ such that $C_{t}=\exp t A$. The second assertion says that $A=-\left(A_{X}\right)_{x}$. To prove this, we show that

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(C_{t} Y_{x}-Y_{x}\right)=-\left(A_{X}\right)_{x} Y_{x} \quad \text { for } Y_{x} \in \mathrm{~T},(\mathrm{M})
$$

First, consider the case where $X_{x} \neq 0$. Then x has a coordinate neighborhood with local coordinate system x^{1}, \ldots, x^{n} such that the curve $\tau=x_{i}$ is given by $x^{1}=\mathrm{t}, x^{2}=\cdots=x^{n}=0$ for small values oft. We may therefore extend Y_{x} to a vector field Y on M in such a way that $\varphi_{t}\left(Y_{x}\right)=Y_{x_{i}}$ for small values of t . Evidently, $\left(L_{X} Y\right)_{x}=0$. We have

$$
\begin{aligned}
-\left(A_{X}\right)_{x} Y_{x} & =\left(\nabla_{X} Y\right)_{x}-\left(L_{X} Y\right)_{x}=\left(\nabla_{X} Y\right)_{x} \\
& =\lim _{\rightarrow t \rightarrow 0} \frac{1}{t}\left(\tau_{u}^{t} Y_{x_{t}}-Y_{x}\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(\tau_{0}^{\prime} \circ Y_{t} Y_{x}-Y_{x}\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(C_{t} Y_{x}-Y_{x}\right)
\end{aligned}
$$

Second, consider the case where $X_{x}=0$. In this case, q_{t} is a local l-parameter group of local transformations leaving x fised and the
parallel displacement τ_{0}^{t} reduces to the identity transformation of T,(M). Thus $\left(\nabla_{X} Y\right)_{x}=0$. We have

$$
\begin{aligned}
-\left(A_{X}\right)_{x} Y_{x} & =\left(\nabla_{X} Y\right)_{x}-\left(L_{X} Y\right)_{x}=-\left(L_{X} Y\right)_{x} \\
& =-\lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{x}-\varphi_{t} Y_{x}\right)=\lim _{\mathrm{t}-\mathrm{o}} \frac{1}{t}\left(C_{t} Y_{x}-Y_{x}\right)
\end{aligned}
$$

This completes the proof of the second assertion.
QED.
Remark. Proposition 4.1 is indeed a special' case of Proposition 11.2 of Chapter II and can be derived from it.

Proposition 4.2. Let $N(\Psi(x))$ 'and $N\left(\Psi^{0}(x)\right)$ be the normalizors of the Linear holonomy group $Y(x)$ and the restricted linear holonomy group $\Psi^{\circ}(x)$ in the group of linear transformations of $\mathrm{T},(\mathrm{M})$. Then C_{t} is contained in $N(\Psi(x))$ as well as in $N\left(\Psi^{0}(x)\right)$.
Proof. Let φ_{t} and τ_{t}^{8} be as before. For any loop μ at x, we set $\mu_{t}^{\prime}=\varphi_{t}(\mu)$ so that μ_{t}^{\prime} is a loop at $x_{t}=\varphi_{t}(x)$. We denote by μ and μ_{t}^{\prime} the parallel displacements along μ and μ_{t}^{\prime}, respectively. Then $\varphi_{t} \circ \mu=\mu_{t}^{\prime} \circ \varphi_{t}$. We have
$C_{t} \circ \mu \circ C_{t}^{-1}=\tau_{0}^{t} \circ \varphi_{t} \circ \mu \circ \varphi_{t}^{-1} \circ \tau_{t}^{0}=\tau_{0} \circ \mu_{t}^{\prime} \circ \varphi_{t} \circ \varphi_{t}^{-1} \circ \tau_{t}^{0}=\tau_{0}^{t} \circ \mu_{t}^{\prime} \circ \tau_{l}^{0}$. This shows that $C_{t} \circ \mu \circ C_{t}^{-1}$ is an element of $\mathrm{Y}(\mathrm{x})$. It is in $\Psi^{\circ}(x)$ if μ is in $\Psi^{\circ}(x)$. (Note that $N\left(\Psi^{0}(x)\right) \subset N\left(\Psi^{0}(x)\right)$ since $\Psi^{0}(x)$ is the identity component of $N(\Psi(x)$.)

QED.
Corollary 4.3. If X is an infinitesimal affine transformation of M, then, at each point $x \in M,(\mathrm{~A}$,$) , belongs to the normalizor N(\mathfrak{g}(x))$ of the Lie algebra $g(x)$ of $\Psi(x)$ in the Lie algebra of endomorphisms of $T_{x}(M)$.

We recall that $N(\mathfrak{g}(x))$ is by definition the set of linear endomorphisms A of $T,(M)$ such that $[A, B] \epsilon g(x)$ for every $B \in \mathfrak{g}(x)$.

If X is an infinitesimal isometry of a Riemannian manifold M, then A, is skew-symmetric (cf. Proposition 3.2) and, for each t, C_{t} is an orthogonal transformation of $T,(\mathrm{M})$. We have then
theorem 4.4. Let M be a Riemannian manifold and $g(x)$ the Lie algebra of $Y(x)$. If X is an infinitesimal isometry of M, then, for each $x \in M,(\mathrm{~A}$,$) , is in the normalizor N(\mathrm{~g}(\mathrm{x}))$ of $\mathrm{g}(\mathrm{x})^{\prime}$ in the Lie algebra $\mathrm{E}(\mathrm{x})$ of skew-symmetric linear endomorphisms of $\mathrm{T},(\mathrm{M})$.

The following theorem is due to Kostant [1].
theorem 4.5. If X is an infinitesimal isometry of a compact Riemannian manifold M, then, for each $x \in M,(A$,$) , belongs to the Lie$ algebra $\mathrm{g}(\mathrm{x})$ of the linear holvnomy group $\mathrm{Y}(\mathrm{x})$.

Proof. In the Lie algebra $E(x)$ of skew-symmetric endomorphisms of $T,(M)$, we introduce a. positive definite inner product (,) by setting

$$
(\mathrm{A}, B)=-\operatorname{trace}(A B)
$$

Let $B(x)$ be the orthogonal complement of $g(x)$ in $E(x)$ with respect this inner product. For the given infinitesimal isometry X of M, we set

$$
\begin{aligned}
A_{X}= & S_{X}+B_{X} \\
& \text { where } S_{X} \in \mathrm{~g}(\mathrm{x}), \quad B_{X} \in \mathrm{~B}(\mathrm{x}), \quad x \in \mathrm{M}
\end{aligned}
$$

Lemma. The tensor field B_{X} of type $(1,1)$ is parallel.
Proof, of Lemma. Let τ be an arbitrary curve from a point x to another pointy. The paralle! displacement, τ gives an isomorphism of $\mathrm{E}(\mathrm{x})$ onto $\boldsymbol{E}(y)$ which maps $\mathrm{g}(x)$ onto $g(y)$. Since the inner products. in, $E(x)$ and in $E(y)$ arc, preserved by τ, τ maps $B(x)$ onto $B(y)$. This means that, for any vector field. Y on M, $\nabla_{Y}\left(S_{X}\right)$ is in $g(x)$ whereas $\nabla_{Y}\left(B_{X}\right)$ is in $\mathrm{B}(\mathrm{x})$ at each point $x \in M$. On the other hand, the formula $\nabla_{Y}\left(A_{X}\right)=R(X, Y)$ (cf. Proposition 2.6) implies that $\nabla_{Y}\left(A_{X}\right)$ belongs to $\mathrm{g}(\mathrm{x})$ at each $\boldsymbol{x} \in \mathrm{M}$ (cf. Theorem, 9.1 of Chapter III). By comparing the $\mathrm{g}(\mathrm{x})$-component and the $\mathrm{B}(\mathrm{x})$-component of the equality $\nabla_{\boldsymbol{Y}}\left(A_{X}\right)=\nabla_{Y}\left(B_{X}\right)+$ $\nabla_{Y}\left(S_{X}\right)$, we see that $\nabla_{Y}\left(B_{X}\right)$ belongs to $g(x)$ also. Hence $\nabla_{Y}\left(B_{X}\right)=0$, concluding the proof of the lemma.,

We shall show that $B_{\boldsymbol{X}}=0$. We set $\mathrm{Y}=B_{\boldsymbol{X}} X$. By Green's theorem (cf. Appendix 6), we have (assuming that M is orientable for the moment)

$$
\int_{M} \operatorname{div} \mathrm{Y} d v=0 \quad(\mathrm{dv}: \text { the volume element })
$$

Since div \boldsymbol{Z} is equal. to the trace of the linear mapping $V \rightarrow \nabla_{V} Y$ at each point x , we have (Lemma and Proposition 2.5)

$$
\begin{aligned}
\operatorname{div} \mathrm{Y} & =\operatorname{trace}\left(V \rightarrow \nabla_{V}\left(B_{X} X\right)\right)=\operatorname{trace}\left(V \rightarrow B_{X}\left(\nabla_{V} X\right)\right) \\
& =-\operatorname{trace}\left(B_{X} A_{X}\right)=-\operatorname{trace}\left(B_{X} B_{X}\right)-\operatorname{trace}\left(B_{X} S_{X}\right) \\
& =-\operatorname{trace}\left(B_{X} B_{X}\right) \geqq 0
\end{aligned}
$$

Thus

$$
\int_{M} \operatorname{trace}\left(B_{X} B_{X}\right) d v=0
$$

which implies trace $B_{X} B_{X}=0$ and hence $B_{X}=0$. If M 'is not orientable, we lift X to an infinitesimal isometry X^{*} of the twofold orientable covering space M^{*} of M. Then $B_{X^{*}}=0$ implies $B_{X}=0$.

Q E D .
As an application of Theorem 4.5, we prove a result of H. C. Wang [I].

Theorem 4.6. If M is a compact Riemannian manifold, then
(1) Every parallel tensor field K on M is invariant by the identity component $\mathfrak{J}^{0}(M)$ of the group of isometries of M ;
(2) A t each point x,' the linear isotropy group of $\mathfrak{I}^{0}(M)$ is contained in the linear holonomy group $Y(x)$

Proof. (1) Let X be an arbitrary infinitesimal isometry of M. By Proposition 4.1 and Theorem 4.5, the 1-parameter group C_{t} of linear transformations of $T_{x}(M)$ is contained in $\Psi(x)$. When C_{t} is extended to a l-parameter group of automorphisms of the tensor algebỉa over $T_{x}(M)$, it leaves K invariant. Thus $\varphi_{t}\left(K_{x}\right)=$ $\tau_{t}^{0} K_{x}=K_{x_{t}}$ for every t, where φ_{t} is the 1-parameter group of isometries generated by \boldsymbol{X}. Since $\mathfrak{J}^{0}(M)$ is connected, it leaves K invariant.
t. -4
(2) Let φ be any element of $\mathfrak{J}^{0}(M)$ such that $\varphi(x)=x$. Since $\mathfrak{J}^{0}(\boldsymbol{M})$ is a compact connected Lie group, there exists a l-parameter subgroup φ_{t} such that $\varphi=\dot{\varphi}_{t_{0}}$ for some' t_{0}. In the proof of (I), we saw that C_{t} (obtained from φ_{t}) is in $\Psi(x)$. On the other hand, since $\varphi_{t_{n}}(x)=x, \tau_{i_{0}}^{0}$ is also in $\ddot{\Psi}(x)$. Hence $\varphi_{t_{0}}=\tau_{t_{0}}^{0} \circ C_{i_{0}}$ belongs to $\Psi(x)$.

Q E D.

5. Ricci tensor and infinitesimal isometries

Let M be a manifold with a linear connection Γ. The Ricci tensor field S is the covariant tensor field of degree 2 defined as follows :

$$
\left\{(X, \mathrm{Y})=\text { trace of the map } V \rightarrow \mathrm{R}(\mathrm{~V}, \mathrm{X}) \mathrm{Y} \text { of } T_{x}(M)\right.
$$

where $X, Y, V \in T,(M)$. If M is a Riemannian manifold and if V_{1}, \ldots, V_{n} is an orthonormal basis of $T_{x}(\boldsymbol{M})$, then

$$
\begin{aligned}
S(X, Y) & =\sum_{i=1}^{n} g\left(R\left(V_{i}, X\right) Y, V_{i}\right) \\
& =\sum_{i=1}^{n} R\left(V_{i}, Y, V_{i}, X\right), X, Y \in T_{x}(M),
\end{aligned}
$$

where R in the last equation denotes the Riemannian curvature tensor (cf. \$2 of Chapter V). Property (d) of the Riemannian curvature tensor (cf. $\S 1$ of Chapter V) implies $S(X, \mathrm{Y})=$ $S(Y, \mathrm{X})$, that is, S is symmetric.

- Próposition 5.1: If X is an infinitesimal affine transformation of a Riemannian manifold M, then

$$
\operatorname{div}\left(A_{X} Y\right)=-S(X, Y)-\operatorname{trace}\left(A_{X} A_{Y}\right)
$$

for every vector field Y on M. In particular,

$$
\operatorname{div}\left(A_{X} X\right)=-S(X, X)-\operatorname{trace}\left(A_{N} A_{X}\right)
$$

Proof. By Proposition 2.6, we have $\mathrm{R}(V, \mathrm{X}) \stackrel{\perp}{=}-R\left(X, \mathrm{I}^{\prime}\right)=$ $\therefore \nabla_{\dot{V}}\left(A_{X}\right)$ for any vector field V on M. Herice

$$
\begin{aligned}
R(V, X) Y & =-\left(\nabla_{V}\left(A_{X}\right)\right) Y=-\nabla_{V}\left(A_{X} Y\right)+A_{X}\left(\nabla_{V} Y\right) \\
& =-\nabla_{V}\left(A_{X} Y\right)-A_{X} A_{Y} V
\end{aligned}
$$

Our proposition follows from the fact that $S(X, Y)$ is the trace of $V \rightarrow \mathrm{R}(\boldsymbol{V}, \mathrm{X}) \mathrm{Y}$ and that $\operatorname{div}\left(A_{X} Y\right)$ is'the trace of $V \rightarrow \nabla_{V}\left(A_{X} Y\right)$.

QED.
Proposition 5.2. For an infinitesimal isometry X of a Riemanniain manifold M, consider the function $f=\frac{1}{2} g(X, X)$ an M. Then

- (1) $V f=g\left(V, A_{X} X\right)$ for every tangent vector V;
(2) $\boldsymbol{V}^{2} f=g\left(V, \nabla_{V}\left(A_{\boldsymbol{X}} \boldsymbol{X}\right)\right)$ for every vector field \boldsymbol{V} such that $\nabla_{V} V=0$
(3) div $\left(A_{X} X\right) \geqq 0$ at any point where f attains a relative minimum;
$\operatorname{div}\left(A_{X} X\right) \leqq 0$ at any point where f attains a relative maximum.
Proof. Since g is parallel, we have

$$
Z(g(X, Y))_{r} \doteq \nabla_{Z}(g(X, Y))=g\left(\nabla_{Z} X, I^{\prime}\right)+g\left(X, \nabla_{Z} Y\right)
$$

for arbitrary vector fields X, Y and Z on M. Applying this formula to the case where $X=Y$ and $Z=V$, we obtain

$$
V f=\dot{g}\left(\nabla_{V} X, X\right)=-g\left(A_{X} V, X\right)=g\left(V, A_{X} X\right)
$$

by virtue of Proposition 2.5 and the skew-symmetry of A, (cf. Proposition 3.2). This proves (1). If V is a vector field such that $\nabla_{V} V=0$, then

$$
\begin{aligned}
V^{2} f=V\left(g\left(V, A_{X} X\right)\right) & =g\left(\nabla_{V} V, A_{X} X\right)+g\left(V, \nabla_{V}\left(A_{X} X\right)\right) \\
& =g\left(V, \nabla_{V}\left(A_{X} X\right)\right)
\end{aligned}
$$

proving (2). To prove (3), let V_{1}, \ldots, V_{n} be an orthonormal basis for $T_{x}(M)$. For each i , let $\tau_{i}=x_{i}(t)$ be the geodesic with the initial condition (x, V_{i}) so that $V_{i}=\dot{x}_{i}(0)$. We extend each V_{i} to a vector field which coincides with $\dot{x}_{i}(t)$ at $x_{i}(t)$ for small values of t. Then we have

$$
\begin{aligned}
d^{2} f\left(x_{i}(t)\right) / d t^{2} & =V_{i}^{2} f=g\left(\nabla_{V_{i}} V_{i}, A_{X} X\right)+g\left(V_{i}, \nabla_{V_{i}}\left(A_{X} X\right)\right) \\
& =g\left(V_{i}, \nabla_{V_{i}}\left(A_{X} X\right)\right)
\end{aligned}
$$

Since div $\left(A_{X} X\right)$ is the trace of-the linear mapping $V \rightarrow \nabla_{V}\left(A_{X} X\right)$, we have

$$
\operatorname{div}\left(A_{X} X\right)_{x}=\Sigma_{i=1}^{n}\left(V_{i}^{2} f\right)_{x}
$$

Now (3) follows from the fact that, iffattains a relative minimum (resp. maximum) at x, then $\left(V_{i}^{2} f\right)_{x} \geqq 0$ (rep.] $\leqq 0$). QED.

As an application of these two propositions, we prove the following, result of Bochner [1].
тheorem 5.3; Let M be a connected Riemannian manifold whose Ricci tensor field S is negative definite everywhere on M. If the length of an infinitesimal isometry X attains a relative maximum at some point of M, then X vanishes identically on M.

Proof. Assume the length of X attains a relative maximum at x. By Proposition 5.2, we have $\operatorname{div}\left(!_{X} X\right) \leqq 0$ at x. By Proposition 5.1, we obtain $-S(X, X)-\operatorname{trace}\left(A_{X} A_{X}\right) \leqq 0$, But $S(X, X) \leqq 0$ by assumption, and trace $\left(A_{X} A_{X}\right) \leqq 0$.since A_{X} is skew-symmetric. Thus we have $S(X, X)=0$ and $\mathrm{A},=0$ at x. Since S is negative definite, $X=0$ at x. Since the length of X attains a relative maximum at x, X vanishes in a neighborhood x. If \tilde{u} is any point of $O^{\prime}(M)$ such that $\pi(u)=x$, then the natural lift \tilde{X} of Xvanishes in a neighborhood of u. As we have seen in the proof of Theorem 3.3, X vanishes identically on M.

QED.

Corolimary 5.4. If M is a compact Riemannian manifold with negative definite Ricci tensor field, then the group $\Im(M)$ of isometries of M is finite.

Proof. By Theorem 5.3, $J^{0}(M)$ reduces to the identity; Since $\mathfrak{I}(M)$ is compact (cf. Theorem 3.f), it is finite.
(2ED).
Remark. Corollary 5.1 can be derived from Proposition 5.1 by means of Green's theorem in the following way.

We may assume that M is orientable; otherwise, we have only to consider the orientable twofold covering space of M. From Proposition 5.1 and Green's theorem, we obtain

$$
\int_{M}^{*}\left[S(X, X)+\operatorname{trace}\left(A_{X} A_{X}\right)\right] d v=0
$$

Since $S(X, \mathrm{X}) \leqq 0$. and trace $\left(A_{N_{N}}\right) \leqq 0$, we must have $S(X, X)=0$ and trace $\left(A_{X} A_{X}\right)=0$ everywhere on M. Since S is negative definite, we have $X=0$ everywhere 'on M. This proof gives also

Corollary 5.5. If M is a compact Riemannian manifold with vanishing Ricci tensor field; then every infinitesimal isometry of M is a parallel vector field...

Proof. By Proposition 2.5, we have $.0=A_{X} V=-\Gamma_{I} X$ for every vector field V on M.

QED.
From Corollary 5.5, we obtain the following result of Lichn

Corollary 5.6. Ij a connected compact homogeneous Riemannian manifold: M has zero Ricci tensor, then M is a Euclidean "torus.

Proof. By Theorem 5.1 of Chapter III and Corollary 5.5, we have

$$
[X, \mathrm{Y}]=\nabla_{X} Y \rightarrow \nabla_{Y} X=0
$$

for any infinitesimal. isometries X, Y. Thus $\mathfrak{J}^{0}(M)$ is a compact abelian group. Since $\mathfrak{J}^{0}(M)$ acts effectively on M, the isotrops subgroup of $\mathcal{T}^{0}(\mathbf{M})$ at every point M reduces to the identity element. As we have seen in Example 4.1 of Chapter V, M is a Euclidean torus.

CED.
As another application of Proposition 5.2, we prove

Proposition 5.7. Let φ_{i} be the I-parameter group of isometries generated by an infinitesimal isometry \mathbf{X} of a Riemannian manifold M. If x is a critical point of the length function $g(X, X)^{\frac{1}{2}}$, then the orbit $\varphi_{t}(x)$ is a geodesic.

Proof. If x is a critical point of $g(X, X)^{*}$, it is a critical point of the function $f=\frac{1}{2} g(X, X)$ also. By (1) of Proposition 5.2, we have $g\left(V, A_{X} X\right)=0$ for every vector V at x. Hence $A_{X} X=0$ at x, that is, $\nabla_{X} X=0$ at x. Since $\varphi_{t}\left(X_{x}\right)=X_{\varphi_{t}(x)}$ by (1) of Proposition 1.2, we have $\nabla_{X} X=0$ along the orbit $\varphi_{t}(x)$. This shows that the orbit $\varphi_{i}(x)$ is a-geodesic.

QED.

6. Extension of local isomorphisms

Let M be a real analytic manifold with an analytic linear connection Γ. The bundle $L(M)$ of linear frames is an analytic manifold and the connection form ω is analytic. The distribution Q which assigns the horizontal subspace Q_{u} to each point $u \in L(M)$ is analytic in the sense that each point u has a neighbbrhood and a local basis for the distribution Q consisting of analytic vector fields. The same is true for the distribution on the tangent bundle $T(N)$ which defines the notion of parallel displacement in the bundle $T(M)$ (for the notion of horizontal subspaces in an associated fibre bundle, see $\S 7$ of Chapter II).

The main object of this section is to prove the following theorem.

тheorem 6.1. Let M be a connected, simply connected analytic manifold with an analytic linear connection. Let M^{\prime} be an analytic manifold with a complete 'analytic linear connection. Then every afine mapping f_{U} of a connected open subset U of M into M^{\prime} can be uniquely extended to an affine mapping f of M into M^{\prime}.

The proof is preceded by several lemmas.
Lemma 1. Let \mathbf{f} and g be analytic mappings of a connected analytic manifold M into an analytic manifold M^{\prime}. Iff andg coincide on a non-empty open subset of M, then they coincide on M.

Proof of Lemma 1. Let x be any point of \boldsymbol{M} and let $\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{\boldsymbol{n}}$ be an analytic local coordinate system in a neighborhood of \boldsymbol{x}. Let y^{1}, \ldots, y^{m} be an analytic local coordinate system in a neighborhood of the point $\boldsymbol{f}(\boldsymbol{x})$. The mapping \mathbf{f} can be expressed by
a set of analytic functions

$$
y^{i}=f^{i}\left(x^{1}, \ldots, x^{n}\right), \quad i=1, \ldots, \mathrm{~m}
$$

These functions can be exnanded at x into convergent power series of $\boldsymbol{x}^{\mathbf{1}}, \ldots, \boldsymbol{x}^{\boldsymbol{n}}$. Similarly for 'the mapping g. Let N be the set of points $x \in M$ such that $f(x)=g(x)$ and 'that the power series expansions off and g at \boldsymbol{x} coincide. Then N is clearly a closed subset of M. From tht well known properties of power series, it follows that N is open in M. Since M is connected, $N=M$.

Lemma: 2. Let S and S^{\prime} be analytic distributions on analytic manifolds M and M^{\prime}. Let f be an analytic mapping of M into M^{\prime} such that

$$
\begin{equation*}
f\left(S_{x}\right) \subset S_{f(x)}^{\prime} \tag{*}
\end{equation*}
$$

or every point x of an open subset of M. If M is connected, then (*) is satisfied at every point \boldsymbol{x} of M .

Proof of Lemma 2. Let N be the set of all points x - M súch that $(*)$ is satisfied in a neighborhood of x. Then N is clearly a non-empty open subset of M. Since M is connected, it suffices to show that Nis closed. Let $x_{k} \in \mathrm{~N}$ and $\boldsymbol{x}_{\boldsymbol{k}} \rightarrow x_{\mathbf{0}}$. Let $\boldsymbol{y}^{1}, \ldots, y^{\boldsymbol{m}}$ be an analytic local coordinate system in a neighborhood V off $\left(x_{0}\right)$. Let Z_{1}, \ldots, Z_{n} be-a local basis for the distribution S^{\prime} in V. From $\partial / \partial y^{1}, \ldots, \partial / \partial y^{m}$; choose m - A vector fields, say, $Z_{n+1}, \ldots Z_{m}$ such that $Z_{1}, \ldots, Z_{h}, Z_{h+1}, \ldots, Z_{m}$ are linearly independent at $f\left(x_{0}\right)$ and hence in a neighborhood V^{\prime} off $\left(x_{0}\right)$. Let U be a connected neighborhood of x_{0} with an analytic local coordinate system $x^{\mathbf{1}}, \ldots, x^{n}$ such that $f(U) \subset V^{\prime}$ and that \boldsymbol{F} has a local basis $\mathrm{X}, \ldots, X_{k}$ consisting of analytic vector fields defined on U. Since f is analytic, we have

$$
f\left(X_{i}\right)_{x}=\sum_{j=1}^{m} f_{i}^{j}(x) \cdot Z_{y}, \quad i=1, \cdots, k
$$

where $f_{i}^{j}(\boldsymbol{x})$ are analytic functions of $\boldsymbol{x}^{\mathbf{1}}, \ldots, \boldsymbol{x}^{n}$. Since $\boldsymbol{x}_{\boldsymbol{k}} \in \mathrm{N}$ and $x_{k} \rightarrow x_{0}$, there exists a neighborhood. U_{1} of some x_{k} such that $U_{1} \subset U$ and that (*) is satisfied at every point x of U_{1}. In other words, $f_{i}^{j}(x)=0$ on. U_{1} for $1 \leqq i \leqq k$ and $h+1 \leqq j \leqq m$. It follows that $f_{i}^{j}=0$ on U for the same i and j. This proves that (*) is satisfied at every point x of U.
Lemma 3. Let M and $M^{\prime \prime}$ 'be analytic manifolds with analytic linear connections and f an analytic mapping of M into \dot{M}^{\prime}. If the
resitricion of f to an open subset U of M is an affine mapping and if M is comected, then f is an affine mapping of M into M^{\prime}.

Proof of Lemma 3. Let F be the analytic mapping of the tangent bundle $T(M)$ into $T\left(M^{\prime}\right)$ induced by f . By assumption, F ma ps the horizontal subspace at each point of $\pi^{-1}(U)$ into a horizontal subspace in $T\left(M^{\prime}\right)$ (here, π denotes the projection of $T(M)$ onto M. Applying Lemma 2 to the mapping F, we see that f is an affine mapping of M into M^{\prime}.

Lemma 4. Let \bar{M} and M^{\prime} be differentiable manifolds -with linear connections and let f and g be affine mappings of M into M^{\prime}. If $\mathrm{f}(X)=$ $g(X)$ for ever $X_{-} \mathrm{X} \in T_{r}(M)$ at some point $x \in \mathrm{M}$ and if M is connected, then f and g coincide on M.

Proof of Lemma 4. Let N be the set of all points $x \in \mathrm{M}$ such that $f(X)=g(X)$ for $X \in T_{f^{\prime}}(M)$. Then N is' clearly a non-empty closed subset of M. Since f and g commute with the exponential mappings (Proposition 1.1), $x \in \mathrm{~N}$ iinpiies that a normal coordinate neighborhood of x is in N . Thus N is open. Since M is connected, we have $\mathrm{N}=M$.

We are now in position to prove Theorem 6.1. Under the assumptions in Theorem 6.1, let $\mathrm{x}(\mathrm{t}), 0 \leq t \leq 1$, be a curve in M such that $x(0) \in U$. An analytic continuation off,, along the curve $x(t)$ is, by definition, a family of affine mappings $f_{t}, 0 \leq \mathrm{t} \leftrightarrows 1$, satisfying the following conditions:
(1) For each $t ; f_{t}$ is an affine mapping of a nkighborhbod U_{t} of the point X . (t) into M^{\prime};
(2) For each t, there exists a positive number δ such that if $|s-t|<\delta$, then $\mathrm{x}(\mathrm{s}) \in U_{t}$ and f_{s} coincides with f_{t} in a neighborhood of $\mathrm{x}(\mathrm{s})$;
(3) $f_{0}=f_{U}$.

It follows easily from Lemma 4 that an analytic continuation of $\boldsymbol{f}_{r^{*}}$ along the curve. $\mathrm{x}(\mathrm{t})$ is unique if it exists: We now show that it exists. Let t_{0} be the supremum of $t_{1}>0$ such that an analytic continuation f_{1} exists for $0 \leqq t \leqq t_{1}$. Let W be a convex neighborhood of the point $x\left(t_{0}\right)$ as in Theorem 8.7 of Chapter III such that every point of W has a normal coordinate neighborhood containing W. Take t_{1} such that $t_{1}<t_{0}$ and that $x\left(t_{1}\right)$ e. W. Let V be a normal coordinate neighborhood of $x\left(t_{1}\right)$ which contains W. Since there exists an analytic continuation f_{t} of f_{U} for $0 \leqq t \leqq t_{1}$,
we have the affine mapping $f_{t_{1}}$ of a neighborhood $x\left(t_{1}\right)$ into M^{\prime}. We extend' $f_{t_{1}}$ to an, analytic mapping, say g, of V into \mathcal{M}^{\prime} as follows. Since the exponential mapping gives a diffeomorphism of an open neighborhood V^{*} of the origin in $T_{x(t)}(1 /)$ onto V, each point $y \in V$ determines a unique element. $X \in V^{*} \subset T_{x\left(t_{1}\right)}(M)$ such thaty $=\exp X$. Set $X^{\prime}=f_{t_{1}}(X)$ so that X^{\prime} is a vector at $f_{t_{1}}\left(x^{\prime} \alpha_{1}\right)$. Since M^{\prime} is complete, $\exp X^{\prime}$ is well defined and we set $g(y)=$ $\exp X^{\prime}$. The extension g of $f_{t_{1}}$ thus defined commutes with the egponntial mappings. Since the exponential mappings are analytic, g is also analytic. By Lemma $3, \ddot{g}$ is an affine mapping of Vinto M^{\prime}. We can easily define the continuation f_{t} beyond t_{1} by using this affine mapping g. We have thus proved the existence of ' an analytic continuation f_{t} along the whole curve $\hat{x}(t), 0 \leq t \leq 1$.

To complete the proof of Théorem 6.1, let x bean arbitrarily fixed point of U. For each point y of M, let $x(t), 0 \stackrel{t}{\leftrightarrows} 1$, be a curve from x to y. The affine mapping f_{U} can be analytically continued 'along the curve $\dot{x}(t)$ and gives rise to an affine mapping g of a neighborhood of y into M^{t}. We Show, that $g(y)$ is independent of the choice of a curve from x to y. For this, it is sufficient to observe that if $x(t)$ is a closed curve, then the analytic continuation f_{t} of f_{U} along $x(t)$ givès risé to the affine mapping f_{1} which coincides with f_{U} in a neighborhood x . Since M is simply connected, the curve $\mathrm{x}(\mathrm{t})$ 'is homotopic to zero and our assertion follows readily from the factorization lemma (cf. Appendix 7.) and from the uniqueness of an analytic continuation we have already proved. It follows that the given mapping f_{C} can be extended to an aftine mapping f of M into M^{\prime}. The uniqueness off follows from Lemma 4.

QED.
Corollary 6.2. Let M and M^{\prime} be connected and simply connected analytic manifolds with complete analytic linear connections. Then every affine isomorphism between connected open subsets of .II and ' W^{\prime} can be uniquely extended to an affine isomorphism between M and M^{\prime}.,

We have the corresponding results for analytic Ricmannian manifolds. The Ricmannian connection of an analytic Riemannian metric is analytic; this follows from Corollary 2.f of Chapter IV.

Theorem 6.3. Let M and $1 I^{\prime}$ be analvic Riemannian manifolds. If M is connected and simply 'ominitl and if M is complete, then every
isometric immersion f_{U} of a connected open subset U of M into M^{\prime} can be uniquely extended to an isometric immersion f of M into M^{\prime}.

Proof. The proof is quite similar to that of Theorem 6.1. We indicate only the necessary changes. Lemma 1 can be used without any change. Lemma 2 was necessary only to derive Lemma 3. In the present case, we prove the following Lemma 3' directly.

LEMMA 3'. Let M and M^{\prime} be analytic manifolds with analytic Riemannian metrics g and \boldsymbol{g}^{\prime}, respectively, and let f be an axalytic mapping 'of M into M '. If the restriction 'off to an open subset \boldsymbol{U} of \boldsymbol{M} is an isometric immersion and if M is connected, then f is an isometric immersion of M into M^{\prime}.

Proof of Lemma 3'. Compare g and $f *\left(g^{\prime}\right)$. 'Since they coincide on U, the argument similar to the one used in the proof of Lemma 1 shows that they coincide on the whole of M.

In Lemma 4, we replace "affine mappings" by "isometric immersions." Since an isometric immersion maps every geodesic

* into a geodesic and hence commutes with: the exponential mappings,, the proof of Lemma 4 is still valid.
'In the rest of the proof of Theorem 6.1, we replace "affine mapping" by "isometric immersion." Then the proof goes through without any other change.

Remark. Since an isometric immersion $f: M \rightarrow M$ is not necessarily an affine mapping, Theorem 6.3 does not follow from Theorem 6.1. If' $\operatorname{dim} M=\operatorname{dim} M^{\prime}$, then every isometric immersion $f: M \rightarrow M^{\prime}$ is an affine mapping (cf. Proposition 2.6 of Chapter IV). Hence the following corollary follows from Corollary 6.2 as well as from Theorem 6.3.

Corollary 6.4. Let M and M^{\prime} be connected and simply comrected, complete analytic Riemannian manifolds. Then every isometry between connected open 'subsets of M and M ' can be uniquely extended to an isometry between M and M^{\prime}.

7. Equivalence problem

Let M be a manifold with a linear connection. Let $\boldsymbol{x}^{\mathbf{1}}, \ldots, \boldsymbol{x}^{\boldsymbol{n}}$ be a normal coordinate system at a point x_{0} and let U be a neighborhood of x_{0} given by $\left|x^{i}\right|<6, \mathrm{i}=1, \cdot \ldots, \mathrm{n}$. Let u_{0} be the tines
frame at the origin x_{0} given by $\left(\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right)$. We define a cross section $\sigma: U \rightarrow \mathrm{~L}(\mathrm{M})$ as follows. If x is a point of U with coordinates $\left(a^{1}, \ldots, a^{n}\right)$, then $\sigma(x)$ is the frame obtained by the parallel displacement of u_{0} along the geodesic given by $x^{i}=t a^{i}$, $0 \leqq t \leqq 1$. We call σ the cross section adapted to the normal coordinate system x^{1}, \ldots, x^{n}.

The first objective of this section: is to prove the following theorem.

тheorem 7.1. Le M and $M L$ be manifolds with linear connections. Let U (resp. V) be a normal coordinate neighborhood of a point $x_{0} \in \mathrm{M}$
(resp. $y_{0} \in \mathrm{M}^{\prime}$) with a normal coordinate system x^{1}, . . , x^{n} (resp. $\left.y^{\prime}, \ldots, y^{n}\right)$ and let a: $U \rightarrow L(M)\left(\right.$ resp. $\left.\boldsymbol{\sigma}^{\prime}: V \rightarrow L(M)\right)$ be the cross section adapted to x^{1}, \ldots, x^{n} (resp. y^{1}, \ldots, v^{n}. A diffeomorphism f of U onto V is an affine isomorphism if it satisfies the following two ponditions:
(1) f maps the frame $a(x)$ into the frame $\sigma^{\prime}(f(x))$ for each point $x \in U$;
(2) f preserves the torsion and curvature tensor fields.

Proof. Let $\boldsymbol{\theta}=\left(\boldsymbol{\theta}^{i}\right)$ and $\boldsymbol{\omega}=\left(\omega_{i}^{i}\right)$ be the canonical form and the connection form on $L(M)$ respectively. We set
(1) $\bar{\theta}^{i}=\sigma^{*} \theta^{i}=\Sigma_{j} A_{j}^{i} d x^{j}, \quad \mathrm{i}=1, \ldots, n$,
(2) $\bar{\omega}_{j}^{i}=\sigma^{*} \omega_{j}^{i}=\Sigma_{k} B_{j k}^{i} d x^{k}, \quad i, j=1, \ldots, n_{i}$

Lemma 1. For any $\left(a^{1}, \ldots, a^{n}\right) \neq(\mathbf{0}, \ldots, 0)$ with $\left|a^{i}\right|<\delta$, we have
(3) $\Sigma_{j} A_{j}^{i}(t a) a^{j}=a^{i}, \quad 0 \leqq t \leqq 1, \quad i=1, \ldots, n$,
(4) $\Sigma_{k} B_{j k}^{i}(t a) a^{k}=0, \quad 0 \leqq t \leqq 1, \quad i, j=1 ; \ldots, n$, where ta stands for $\left(t a^{1}, . . ., t a n\right)$,

Proof of Lemma 1. For a fixed $a=\left(a^{i}\right)$, consider the geodesic $\boldsymbol{x}_{\boldsymbol{i}}$ given by $\boldsymbol{x}^{\boldsymbol{i}}=t a^{i}$, $0 \mathrm{~S} t \leqq 1, i=1, \ldots, \mathrm{n}$. Let $u_{t}=\boldsymbol{\sigma}\left(x_{i}\right)$, which is the horizontal lift of x_{i} starting from u_{0}. Since the frames $u_{t}^{\sigma}\left(x_{i}\right)$, u_{t} are parallel along x_{t}, we have

$$
\vec{\theta}^{i}\left(\dot{x}_{t}\right)=\theta^{i}\left(\dot{u}_{t}\right)=a^{i}
$$

On the other hand, we have

$$
\dot{x}_{t}=\Sigma_{j} a^{j}\left(\partial / \partial x^{j}\right) \quad \text { and } \quad \bar{\theta}^{i}\left(\dot{x}_{t}\right)=\Sigma_{j} \quad(t a) a^{j}
$$

This proves (3). Simflarly, (4) follows from the fact that $(1)\left(\dot{u}_{0}\right)=0$.

We set［cf． 87 of Chapter III）

（j） $\bar{\Theta}^{i}=\sigma^{*} \Theta^{i}=\Sigma_{j, k} \frac{1}{\square} \bar{T}_{j k}^{i} \bar{\theta}^{j} \wedge \bar{\theta}^{k} \quad\left(\bar{T}_{j k}^{j}=\sigma^{*} \tilde{T}_{j k}^{i}\right)$,
（6）$\Omega_{j}^{i}=\sigma^{*} \Omega_{j}^{i}=\Sigma_{k, l} \frac{1}{2} \bar{R}_{j k l}^{j} \bar{\theta}^{k} \wedge \bar{\theta}^{l} \quad\left(\bar{R}_{j k l}^{i}=\sigma^{*} \dot{R}_{j k l}^{j}\right)$ ．
Lemma 2．For an arbitrarily fixed（ a^{\prime}, ，，，，a＂），we set

$$
\begin{array}{ll}
\hat{A}_{j}^{i}(t)=t A_{j}^{i}(t a), & \hat{B}_{j k}^{i}(t)=t B_{j k}^{i}(t a), \\
\hat{T}_{j k}^{i}(t)=\bar{T}_{j k}^{i}(t a), & \hat{R}_{j k l}^{i}(t)=\bar{R}_{j k l}^{i}(t a) .
\end{array}
$$

Then the functions $\hat{A_{j}^{i}}(t)$ and $\hat{B}_{j k}^{i}(t)$ satisfy the following system of ordinary linear differential equations：
（7）$d \hat{A}_{j}^{i}(t) / d t=\delta_{j}^{i}+\Sigma_{l} \hat{B}_{l j}^{i}(t) a^{l}+\Sigma_{l, m} \hat{T}_{l m}^{i}(t) A_{j}^{m}(t) a^{l}$ ，
（8）$d \hat{B}_{j k}^{i}(t) / d t=\Sigma_{l, m} \hat{R}_{j k l}^{i}(t) \hat{A}_{k}^{m \prime}(t) a_{l}^{l}$ ．
with the initial conditions：
＊（9）$\hat{\hat{A}_{j}}(0)=0, \hat{R}_{j k}^{i}(0)=0$ ．
Proof of Lemma 2．We consider the open set \ddot{Q} of \mathbf{R}^{n+1} defined by $Q=\left\{\left(t, a^{1}, \ldots, a^{n}\right) ;\left|t a^{i}\right|<\delta\right.$ for $\left.i=1, \ldots, n\right\}$ ．Let ρ be the mapping of Q into U defined by

$$
\rho\left(t, \mathbf{a}^{\prime}, ., \cdot, \mathbf{a}^{\prime \prime \prime}\right)=\left(t a^{1}, \ldots, t a^{n}\right) .
$$

We set

$$
\overline{\bar{\theta}}^{i}=\rho^{*} \bar{\theta}^{i}, \overline{\bar{\omega}}_{j}^{i}=\rho^{*} \overline{\bar{\omega}}_{j}^{i}, \overline{\bar{\Theta}}^{-}=\rho^{*} \bar{\Theta}^{i}, \overline{\bar{\Omega}}_{j}^{i}=\rho^{*} \Gamma_{j}^{i} .
$$

From Lemma 1，we obtain
（10）$\overline{\bar{\theta}}^{i}=\Sigma_{j} t A_{j}^{i}(t a) d a^{j}+a^{i} \mathrm{dt}$ ，
（ $\left.\begin{array}{ll}1 & 1\end{array}\right) \overline{\bar{\omega}}_{j}^{j}=\Sigma_{k} t B_{j k}^{i}(t a) d a^{k}$.
From（5）and（6），we obtain
（12）$\overline{\bar{\Theta}}^{i}=\Sigma_{j, k} \frac{1}{\underline{2}} T_{j k}^{i}(t a) \overline{\bar{\theta}}^{j} \wedge \overline{\bar{\theta}}^{k}$,
（13）$\overline{\bar{\Omega}}_{j}^{i}=\sum_{k, l} \frac{1}{2} \vec{R}_{j k l}^{i}(t a) \overline{\bar{\theta}}^{k} \wedge \overline{\bar{\theta}}^{l}$ ：
From（10）and（11）；we obtain
$(1-\mathrm{k}) d \overline{\bar{\theta}}^{i}=-\Sigma_{j}\left[\frac{\partial}{\partial t}\left(t \cdot d_{j}^{i}(t a)\right)-\delta_{j}^{i}\right] d a^{j} \wedge \mathrm{dt}+\cdots$,
（15）$d_{(1)_{j}}^{=j}=-\Sigma_{k}\left[\frac{\partial}{\partial t}\left(t B_{j k}^{i}(t a)\right)\right] d a^{k} \wedge d t+\cdots$,
where the dots denqte the terms not involving dt．

From（10），（11），（12）and（13），＇tie obtain

$$
\begin{aligned}
& (16)-\Sigma_{j} \overline{\bar{\omega}}_{j}^{i} \wedge \overline{\bar{\theta}}^{j}+\overline{\bar{\Theta}}^{i} \\
& =-\Sigma_{j}\left[\Sigma_{l} t B_{l}^{i}(t a) a^{l}+\Sigma_{l} T_{l m}^{i}(t a)\left(t A_{j}^{m}(t a)\right) a^{l}\right] d a^{j} \mathrm{~A} d t+\ldots \\
& (17)-\Sigma_{k} \overline{\bar{\omega}}_{k}^{i} \mathrm{~A} \overline{\bar{\omega}}_{j}^{k}+\overline{\bar{\Omega}}_{i}^{i} \\
& \quad=-\Sigma_{k}\left[\Sigma_{l, m} \bar{R}_{j l m}^{i}(t a)\left(t A_{k}^{m}(t a)\right) a^{l}\right] d a^{k} \wedge d t+\cdots
\end{aligned}
$$

where the dots denote the terms not involving $d t$ ．Now（7） follows from（14），（16）and the first structure equation．Similarly， （8）follows from（15），（17）and the second structure equation． Finally，（9）is obvious from the definition of $\hat{A}_{j}^{i}(t)$ and $\hat{B}_{j k}^{i}(t)$ ．This proves Lemma 2，
From Lemma 2 and from the uniqueness theorem on systems of prdinary linear differential equations（cf．Appendix，．！，），it follows that the functions $\hat{A_{j}^{i}}(t)$ and $\hat{B}_{j k}^{i}(t)$ àre uniquely determined by $\hat{T}_{i k}^{i}(t)$ and $\hat{R}_{j k l}^{i}(t)$ ．On the other hand，the functions $\hat{T}_{j k}^{i}(t)$ and $\hat{R}_{j k t}^{i}(t)$－are uniquely determined by the torsion tensorifields T and the curvature tensor fields R and also by the cross section（for each fixed $\left(a^{1}, \ldots, \ldots, a^{n}\right)$ ）．From（1）we see that the connection form ω is uniquely，determined by T, R and σ ．

QED．
In the case of a real analytic\＆near connection，the torsion and curvatüre tensor fields and their successive covariant derivatives at a point determine the connection uniquely．More precisely，we have

Theorem 7．2．Left M and M^{\prime} be analytic manifolds with analytic linear connections．Let T, R and ∇（ress．．T^{\prime}, R^{\prime} and ∇＇＇be the torsion， the curvature and the covariant differentiation of M（resp．$\left.M^{\prime}\right)$ ．If a linear isomorphism F：$T_{x_{0}}(M) \rightarrow T_{y_{n}}\left(M_{-}^{\prime}\right)$ maps the tensors $\left(\nabla^{m} T\right)_{x_{0}}$ and $\left(\nabla^{m} R\right)_{x_{0}}$ into the tensors $\left(\nabla^{\prime m} T^{*}\right)_{v_{0}}$ and $\left(\nabla^{\prime m} R^{\prime}\right)_{\nu_{0}}$ ，respectively，for $-m=0,1,2, \ldots$, ，then there is an affine isomorphism f of a neighborhood U of x_{0} onto a neighborhood $V{ }_{V}$ of y_{0} such that $\mathrm{f}\left(x_{0}\right)=y_{0}$ and that the differential of fat x_{0} is F ．

Proof．Let $\left.x_{1}^{9}\right\} . \therefore x^{n}\left|x^{i}\right|$＇34，be＇a normal coordinate system in a teigfiborhood U of x_{0} ．Let $y^{1}, \ldots, y^{n},\left|y^{4}\right|<\theta$ ，be a normal coordinate system in a neighbortood V of y_{0} such that $\left(\partial \mid \partial y^{i}\right)_{v_{0}}=F\left(\left(\partial / \partial \dot{x}^{1}\right)_{x_{0}}\right), i=1, \vdots, n$, ，sútw normal coordinate
system exists and is unique. Letf be the analytic homeomorphism of U onto V defined by

$$
y^{i} \circ f=x^{i}, \quad i=1, \ldots, n .
$$

Clearly the differential off at x_{0} coincides with F . We shall show that f is an affine isomorphism of U onto V.

We use the same notation as in the proof of Theorem 7.1. It suffices to prove the following five 'statements. If the normal coordinate system $\dot{x}^{1}, \ldots, x^{n}$ is fixed, then
(i) The tensors $\left(\nabla^{m} T\right)_{x_{0}}, m^{\prime}=0,1,2, \ldots$, determine t-he functions $\hat{T}_{j k}^{j}(t), 0 \leqq t \leqq 1$;
(ii) The tensors $\left(\nabla^{m} R\right)_{x_{0}}$, $m=0,1,2, \ldots$, determine the functions $\hat{R}_{j k l}^{i}(t), 0 \leqq t \leqq 1$;
(iii) The functions $\hat{T}_{j k}^{i}(t)$ and $\hat{R}_{j k l}^{j}(t)$ determine the forms ' ${ }^{i}{ }^{i}$ and $\bar{\omega}_{j}^{2}$;
(iv) The forms $\overline{0}^{i}$ determine the cross section a;
(v) The cross section σ and the forms $\bar{\omega}_{j}^{i}$ determine the, connection form ω.
To prove (i) and (ii) we need the following lemma.
Lemma 1. Let $u_{t}, 0 \leqq t \leqq 1$, be \boldsymbol{a} horizontal lift of a curve $\boldsymbol{x}_{\boldsymbol{t}}$, $0 \leqq t \leq 1$, to $L(M)$. Let \mathbf{T}_{s}^{*} be the tensar spade of type (r, s) over \mathbf{R}^{n}. Given a tensor field K of $t y p e ~(~ r, s)$:along x_{i}, let $; \tilde{K}$ be the \mathbf{T}_{z}^{\top}-valued function defined along $u_{t} b y$

$$
K\left(\tilde{u}_{t}\right)=u_{t}^{-1}\left(K_{x_{i}}\right), \quad 0 \leqq t \leqq 1,
$$

where u_{i} is considered as a linear mapping of \mathbf{T}_{s}^{\prime} onto the tensor' space $\mathbf{T}_{s}^{r}\left(x_{t}\right)$ at x_{t} af $t y p e(r, s)$. Then we have

$$
\quad \frac{d \tilde{K_{(}}\left(u_{t}\right)}{d t}=u_{t}^{-1}\left(\nabla_{t_{t}} K\right), \quad 0 \leqq t \leqq 1 .
$$

Proof of 'Lemma 1. This is a special case of Proposition I. 3 of Chapter III. The tensor field K and the function \tilde{K} here correspond to the cross section φ and the fuqctionf there; Although φ in Proposition 1.3. of Chapter III is defined on the whole of \boldsymbol{M}, the proof goes through when φ is defined on a curve in M (cf. the temma for; Proposition 1.1 of Chapter HI).

To prove (i), we apply Lemma 1 to the torsion T, the geodesic x_{t} given by- $x^{i}=t a^{i}, i=1, \ldots, \mathrm{n}$, and the horizontal lift u_{t} of x_{t}
with $u_{0}=\left(\left(\partial / \partial x^{1}\right)_{x_{0}}, \ldots,\left(\partial / \partial x^{n}\right)_{x_{0}}\right)$. Then Lemma 1 (applied m times) implies that, for each $t, u_{i}^{-1}\left(\left(\Gamma_{j}\right)^{m} T\right)$ is the element of the tensor space \mathbf{T}_{2}^{1} with components $d^{m} \hat{T}_{j k}^{j}(t) / d t^{m}$. In particular, setting $t=0$, we see that, once the coordinate system x^{1}, \ldots, x " and $\left(a^{1}, \ldots, a^{n}\right)$ are fixed, $\left(d^{m} \hat{T}_{j k}^{i} / d t^{m}\right)_{t=0}, \mathrm{~m}=0,1,2, \ldots$, are all determined by $\left(\nabla^{m} T\right)_{x_{0}}$. (Actually, it is not hard to see that

$$
\left(d^{m} \hat{T}_{j k}^{j} / d t^{m}\right)_{l=0}=\sum_{l_{1}, \ldots, l_{m}} T_{j k ; l_{1} ; \ldots: l_{m}}^{i}\left(x_{0}\right) a^{l_{1}} \cdots a^{l_{m}},
$$

where $T_{j k i l_{1}}^{i} \lambda_{n}: l_{m}$ are the components of $\nabla^{m} T$ with respect to $\left.x^{1}, \ldots, x^{n}:\right)$ Since each $\hat{T}_{j k}^{j}(t)$ is an analytic function of t, it is determined by (VT),, $m=0,1,2, \ldots$ This proves (i). The proof of (ii) is similar.

Lemma 2 for Theorem 7.1 implies that the functions $\hat{T}_{j k}^{i}(t)$ and $\hat{R}_{j k l}^{i}(t)$ determine the functions $\hat{A}_{j}^{i}(t)$ and $\hat{B}_{j k}^{i}(t)$. Now (iii) follows from the formula (1) and (2) in the proof of Theorem 7.1.
(iv) follows from the following lemma.

Lemma 2. Let σ and σ^{\prime} be two cross sections of $L(M)$ over an open subset U of M . If $\sigma^{*} \theta=\sigma^{*} \theta$ on U, then $\sigma=\mathrm{a}^{\prime}$.

Proof of Lemma 2. For each $\mathrm{X} \in \mathrm{T},(\mathrm{M})$, where $x \in \mathcal{U}$, we have

$$
\left(\sigma^{*} \theta\right)(X)=\theta(\sigma X)=\sigma(x)^{-1}(\pi(\sigma X))=\sigma(x)^{-1} X
$$

where $\sigma(x) \in \mathrm{L}(\mathrm{M})$ is considered as a linear isomorphism of \mathbf{R}^{n} onto T,(M). Using the same equation for σ^{\prime}, we obtain

$$
a(x)-{ }^{\prime} x=a^{\prime}(x)-x .
$$

Since this holds for every X in $\mathrm{T},(\mathrm{M})$, we obtain $\sigma(x)=\sigma^{\prime}(x)$. Finally, (v) is evident from the definition of $\bar{\omega}_{j}^{i}$. QED.
Corollary '7.3. In Theorem 7.2, if M and M^{\prime} are, moreover, connected, simply connected analytic manifolds with complete analytic linear connections, then there exists a unique affine \& morphism \mathbf{f} of M onto M^{\prime} whose differential at x_{0} coincides with F .

Proof. This is an immediate consequence of Corollary 6.2 and Theorem 7.2

QED.
Theorem 7.4. Let M and M^{\prime} be differentiable manifolds with linear connections. Let T, R and V (resp. $\mathrm{T}^{\prime}, R^{\prime}$ and C^{\prime}) be the torsion, the curvature and the covhriant differentiation of 11^{\prime} (min. (1'). Assume
$\mathrm{VT}=0, \nabla R=0, \mathrm{~V}^{\prime} \mathrm{T}^{\prime}=0$ and $\mathrm{V}^{\prime} \mathrm{R}^{\prime}=0$. If F is a linear isomorphism of, $T_{x_{0}}(M)$ onto $T_{v_{0}}\left(M^{\prime}\right)$ and maps the tensors $T_{x_{0}}^{\prime}$ and $R_{x_{0}}$ at x_{0} into the tensors $T_{y_{0}}^{\prime}$ and $R_{\nu_{0}}^{\prime}$ aty, respectively, then thele is an affine isomorphismf of a neighborhood U of x_{0} onto a neighborrhoód V of y_{0} such that $f\left(x_{0}\right)=y_{0}$ and that the differential off at x_{0} coincides with F .

Proof. We follow the notation and the argument in the proof of Theorem 7.2. By Lemma 1 in the proof of Theorem 7.2, the functions $\hat{T}_{j k}^{i}(t)$ and $\hat{R}_{j k l}^{i}(t)$ are constant functions and hence are determined by $T_{x_{0}}$ and $R_{x_{0}}$ (and the coordinate system x^{1}, \ldots, x^{n}). Our theorem now follows from (iii), (iv) and (v) in the proof of Theorem 7.2.

QED.
Corollary 7.5. Let M be a differentiable manifold with a linear connection such that $\mathrm{VT}=0$ and $\mathrm{VR}=0$. Then, for any two points x andy of \dot{M}, there exists an affine isomorphism of a neighborhood of x onto a neighborhood ofy.

Proof. Let τ be an arbitrary curve from x toy. Since VT $=\mathrm{C}$ and $\mathrm{VR}=0$, the parallel displacement $\tau: \mathrm{T},(\mathrm{M}) \rightarrow \mathrm{T},(\mathrm{M})$ maps the tensors T_{x} and R_{x} at x into the tensors T_{y} and R_{y}, at y. By Theorem 7.4, there exists a local affine isomorphism f such that $f(x)=y$ and that the differential off at x coincides with τ. QED.

Let M be a manifold with a linear connection I^{\prime}. The connection I^{\prime} is said to be invariant by parallelism if, for arbitrary points x and y of M and for an arbitrary curve τ from x to \mathcal{y}, there exists a (unique) local affine isomorphism foch that $f(x)=y$ and that the differential off at x coincides with the parallel displacement $\tau: T,(M) \rightarrow T,(M)$. In the proof of Corollary 7.5 , we saw that if $\nabla T=0$ and $\mathrm{VR}=0$, then the connection is invariant by parallelism. The converse is also true. Namely, we have

Corollary 7.6. A linear connection is invariant -by parallelism if and only if $\nabla T=0$ and $\nabla R=0$.
Proof. Assuming that the connection is invariant by parallelis n , let τ be an arbitrary curve from x toy. Letfbe a local affine isomorphism such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$ and that the differential off at x coincides with the parallel displacement $\boldsymbol{\tau}$. Then f maps T_{x} and R_{x} into T_{y} and R_{y} respectively. Hence the parallel displacement τ maps T_{x} and R_{x} into T_{y} and R_{y}, respectively. This means that T and R are parallel tensor fields.

QED.

тнeorem 7.7. Let M be a differentiable manifold with a linear connection such that $\mathrm{VT}=0$ and $\mathrm{VR}=0$. With respect to the atlas consisting of normal coordinate systems, M is an analytic manifold and the connection is analytic.
Proof. Let x^{1}, \ldots, x^{n} be a normal coordinate system in an open set U. We introduce a coordinate system $\left(x_{i}^{i}, Y_{k}^{?}\right)_{i, j, t=i, \ldots, n}$ in $\pi^{-1}(U) \subset \mathrm{L}(\mathrm{M})$ in a natural way as in $\$ 7$ of Chapter IIJ. (cf. Example 5.2 of Chapter I). If we denote by (U_{k}^{j}) the inverse matrix of (Xi), then the canonical form and the connection form can be expressed as follows (cf. Propositions 7.1 and 7.2 of Chapter III) :

```
(18) \(\theta^{i}=\Sigma_{j} U_{j}^{i} d x^{j}, \quad \mathrm{i}=1, \ldots, n\);
(19) \(\omega_{j}^{i}=\Sigma_{k} U_{k}^{i}\left(d X_{j}^{k}+\Sigma_{l, m} \Gamma_{m l}^{k} X_{j}^{l} d x^{m}\right), \quad i, j=1, \ldots, \mathrm{n}\).
```

The forms θ^{i} are analytic with respect to $\left(x^{i}, X_{k}^{j}\right)$. We show that the forms ω_{j}^{i} are also analytic with respect to ($x^{i} ; X_{k}^{j}$). Clearly it is sufficient to show that- the components $\Gamma_{j k}^{i}$ of the connection are analytic in x^{1}, \ldots, x^{n}. We use the same notation as in the proof of Theorem 7.1. Since the functions $\hat{T}_{j k}^{i}(t)$ and $\hat{R}_{j k l}^{i}(t)$ are constants which do not depend on $\left(a^{1}, \ldots, a^{n}\right)$ by virtue of the assumption that $\mathrm{VT}=0$ and $\mathrm{VR}=0$, Lemma 2 in the proof of Theorem 7.1 implies (cf. Appendix 1) that the functions $\hat{A}_{j}^{i}(t)$ and $\hat{B}_{j k l}^{i}(t)$ are analytic in t and depend analytically on $\left(a^{1}, \ldots, a^{n}\right)$. Hence the functions \hat{A}_{j}^{i} and $\hat{B}_{j k}^{i}{ }^{\text {a }}$ are analytic in $x^{1}, \ldots, \dot{x}^{n}$. From (1) in the proof of Theorem 7.1, we see that the cross section $\sigma: U \rightarrow \mathrm{~L}(\mathrm{M})$ is given by
(20) $U_{j}^{i}=A_{j}^{i}, \quad i, j=1_{1}, \ldots, n$.

Let $\left(C_{j}^{i}\right)$ be the inverse matrix of $\left(A_{j}^{i}\right)$. From (19) and (20), we obtain
(21) $\sigma^{*} \omega_{j}^{i}=\bar{\omega}_{i}^{i}=\Sigma_{k} A_{k}^{i}\left(d C_{j}^{k}+\Sigma_{l, m} \Gamma_{m l}^{k} C_{j}^{l} d x^{m}\right)$.

By comparing (21) with (2) in the proof of Theorem 7.1, we obtain
(22) $B_{j \dot{m}}^{i} \not \Sigma_{k} \dot{A}_{k}^{i}\left(\partial C_{j}^{k} / \partial x^{m}+\Sigma_{l} \Gamma_{m l}^{k} C_{j}^{l}\right)$.

Transforming (22) we obtain
(23) $\Gamma_{m l}^{k}=\Sigma_{j}\left(\Sigma_{i} C_{i}^{k} B_{j m}^{i}-\partial C_{j}^{k} / \partial x^{m}\right) A_{l}^{j}$,
which shows that the components $\Gamma_{j \boldsymbol{k}}^{i}$ are analytic functions of $\boldsymbol{x}^{\mathbf{1}}, \ldots, \boldsymbol{x}^{\boldsymbol{n}}$.

Since the $n^{2}+n$ 1-forms θ^{i} and ω_{k}^{j} are analytic with respect to $\left(x^{i}, X_{k}^{j}\right)$ and define an absolute parallelism (Proposition 2.5 of Chapter III), the following lemma implies that $\mathrm{L}(\mathrm{M})$ is an analytic manifold with respect to the atlas consisting of the coordinate system (x^{i}, X_{j}^{i}) induced from the normal coordinate systems ($x^{1}, \ldots, x^{\prime \prime}$) of M.
lemma. Let $\omega^{1}, \ldots, \omega^{m}$ be 1 -forms defining an absolute parallelism on a manifold P of dimension m. Let $\boldsymbol{u}^{1}, \ldots, \boldsymbol{u}^{m}\left(\right.$ resp. $\left.\boldsymbol{v}^{1}, \ldots, v^{m}\right)$ be a local coordinate system valid in an open set U (resp. V). If the form $\omega^{\mathbf{1}}, \ldots, \omega^{m}$ are analytic with respect to both $u^{\mathbf{1}}, \ldots, u^{m}$ and $\boldsymbol{v}^{\mathbf{1}}, \ldots, v^{m}$, then the functions

$$
v^{i}=f^{i}\left(u^{i}, \ldots, u^{m}\right), \quad i=1, \ldots, m
$$

which define the coordinate change are analytic.
Proof of Lemma. We write

$$
\omega^{i}=\Sigma_{j} a_{j}^{i}(u) d u^{j}=\Sigma_{j} b_{j}^{i}(v) d v^{j}
$$

where the functions $a_{j}^{i}(u)$ (resp. $\left.b_{j}^{i}(v)\right)$ are analytic in u^{1}, \ldots, u^{m} (resp. $\left.v^{1}, \ldots, v^{m}\right)$. Let $\left(c_{j}^{i}(v)\right)$ be the inverse matrix of, $\left(b_{j}^{i}(v)\right)$. Then the system offunctions $v^{i}=f^{i}\left(u^{1}, \ldots, u^{m}\right), i=1, \ldots, m$, is a solution of the following system of linear partial differential equations :

$$
\partial v^{i} / \partial u^{j}=\Sigma_{k} c_{k}^{i}(v) a_{i}^{k}(u), \quad i, j=1, \ldots, \mathrm{n}
$$

Since the functions $c_{k}^{i}(v)$ and $a_{i}^{k}(u)$ are analytic in v^{1}, \ldots, v^{m} and $\boldsymbol{u}^{\mathbf{1}}, \ldots, \boldsymbol{u}^{\boldsymbol{m}}$ respectively, the functions $f^{i}\left(\boldsymbol{u}^{\mathbf{1}}, \ldots, \boldsymbol{u}^{\boldsymbol{m}}\right)$ are analytic in u^{1}, \ldots, u^{m} (cf. Appendix 1). This proves the lemma.

Let $x^{1}, \ldots, x "$ and y^{1}, \ldots, y^{n} be two normal coordinate systems in M. Let $\left(x^{i}, X_{k}^{j}\right)$ and $\left(y^{i}, Y_{k}^{j}\right)$ be the local coordinate systems in $L(M$ induced by these normal coordinate systems. By the lemma just proved, y^{1}, \ldots, y^{n} are analytic functions: of x^{i} and X_{k}^{j}. Since $y^{\mathbf{1}}, \ldots, y^{n}$ are clearly $*_{\text {independent }} X_{k}^{j}$, they are analytic functions of x^{1}, \ldots, x^{n}. This proves the first assertion of Theorem 7.7. Since we have already proved that the forms, ω_{j}^{i} are analytic with respect to $\left(x^{i}, X_{k}^{j}\right)$, the connection is analytic. QED.

As an application of Theorem 7.7 we have ${ }^{י}$

тheorem 7.8. In Theorem 7.4, if M and M^{\prime} are, moreover, connected, simply connected and complete then there exists a unique affine isomorphism f of M onto M^{\prime} such that $\mathrm{f}\left(x_{0}\right)=y_{0}$ and that the' differential off at x_{0} coincides with F .

Proof. This is an immediate consequence of Corollary 6.2, Theorem 7.4, and Theorem 7.7.

QED.
Corollary 7.9. Let M be a connected, simply connected manifold with a complete linear connection such that $\mathrm{V} T=0$ and $\nabla R=0$. If F is a linear isomorphism of $T_{x_{0}}(M)$ onto $T_{y_{0}}(M)$ which maps the tensors $T_{x_{0}}$ and $R_{x_{0}}$ into $T_{y_{0}}$ and $R_{y_{0}}$, respectively, then there is a unique affine transformation f of M such that $f\left(x_{0}\right)=y_{0}$ and that the differential of f at x_{0} is F.

In particular, the group $\mathfrak{A}(M)$ of affine transformations of M is transitive on M.

Proof. The first assertion is clear. The second assertion follows from Corollary 7.5 and Theorem 7.8.

QED.
In $\S 3$ of Chapter V, we constructed, for each real number k, a connected, simply connected complete Riemannian manifold of constant curvature k. Any connected, simply connected complete space of constant curvature k is isometric to the model we constructed. Namely, we have
theorem 7.10. Any two connected, simply connected complete Riemannian manifolds of constant curvature k are isometric to each other,

Proof. By Corollary 2.3 of Chapter V, for a space of constant curvature, we have $V R=0$. Our assertion now follows from Theorem 7.8 and from the fact that, if both M and M^{\prime} have the same sectional curvature k, then any linear isomorphism $\mathrm{F}: T_{x_{0}}(M) \rightarrow T_{\nu_{0}}\left(M^{\prime}\right)$ mapping the metric tensor $g_{x_{0}}$ at x_{0} into the metric tensor $g_{y_{0}}^{\prime}$ at y_{0} necessarily maps the curvature tensor $R_{x_{0}}$ at x_{0} into the curvature tensor $R_{y_{0}}^{\prime}$ at y_{0} (cf. Proposition 1.2 of Chapter V).

QED.

APPENDIX 1

Ordinary linear differential equations

The 'purpose of this appendix is to state the fundamental theorem on ordinary linear differential equations in the form needed in the text. The proof will be found in various text books on differential equations

For the sake of simplicity, we use the following abbreviated notation :

$$
\begin{aligned}
& 3^{\prime}=\left(y^{1}, \ldots, y^{n}\right), \quad \eta=\left(\eta^{1}, \ldots, \eta^{n}\right), \mathrm{f}=\left(f^{1}, \ldots, f^{n}\right), \\
& \uparrow=\left(\gamma^{1}, \ldots, \varphi^{n}\right), \quad \mathrm{s}=\left(s^{1}, \ldots, s^{m}\right), \quad \mathrm{x}=\left(x^{1}, \ldots, x^{m}\right) .
\end{aligned}
$$

Then we have
Theorem. Let $f(t, y, \mathrm{~s})$ be a family of n functions dejined in $|t|<\delta$ and ($y, s j \in D$, where D is an open set in \mathbf{R}^{n+m}. If $f(t, y, s)$ is continuous in t ad differentiable of class C^{1} in y , then there exists a unique family $\gamma(t, \eta, \mathrm{~s})$ of n functions defined in $|t|<\delta^{\prime}$ and $(\eta, \mathrm{s}) \in \mathrm{D}^{\prime}$, where $0 \ldots \delta^{\prime}<\delta$ and D^{\prime} is an open subset of D, such that
(1) $q(t ; \eta, s)$ is differentiable of class C^{1} in t and η;
(2) $\partial_{q}(t, \eta, s) / \partial t=f(t, q(t, \eta, s), s)$;
(3) $\varphi(0, \eta, s)=\eta$.

If $f(t, y, s)$ is differentiable of class $C^{p}, 0 \quad p<\boldsymbol{\omega}$, in t and of class $C^{\prime \prime}, 1 \leq q \leq \omega$, in y and s, then $\varphi(t, \eta, s)$ is differentiable of class C^{p+1} in t and of class $C^{\prime \prime}$ in η and s.

Consider the system of differential equations :

$$
d y / d t=\mathrm{f}(t, y, \mathrm{~s})
$$

which depend on the parameters s. Then $y=\varphi(t, \eta, s)$ is called the solution satisfying the initial condition:

```
y = \eta when t=0.
```

Consider now a system of partial differential equations:

$$
\partial y^{i} / \partial x^{j}=f_{j}^{i}(x, y), \quad i=1, \ldots, n ; j=1, \ldots, m
$$

It follows from the theorem that if the functions $f_{j}^{i}(x, y)$ are differentiable of class $C^{r}, 0 \leqq r \leqq . \omega$, then every solution $\mathrm{y}=\dot{\psi}(x)$ is differentiable of class C^{r+1}. This fact is used in the proof of Theorem 7.7 of Chapter VI.

APPENDIX 2

A connected, locally compact metric space is separable

We recall that a topological space M is separable if there exists a dense subset D which contains at most countably many points. It is called locally separable if every point of M has a neighborhood which is separable. Note that, for a metric space, the separability is equivalent to the second axiom of countability (cf. Kelley [l, p. 120]). The proof of the statement in the title is divided into the following three lemmas.

Lemma 1. A compact meric space is separable.
For the proof, see Kelley [1, p. 138].
Lemma 2. A locally compact metric space is locally separable
This is a trivial consequence of Lemma 1.
The following lemma is due to Sierpinski [1].
LEMMA 3. A connected, locally separable metric space is separable.
Proof of Lemma' 3. 'Let d be the metric of a connected, locally separable metric space M. For every point $\boldsymbol{x} \in M$ and every positive number \boldsymbol{r}, let $\boldsymbol{U}(\boldsymbol{x} ; \boldsymbol{r})$ be the Interior of the sphere of center \boldsymbol{x}, and radius \boldsymbol{r}, that is, $\boldsymbol{U}(\boldsymbol{x} ; \boldsymbol{r})=\{y \in \mathrm{M} ; \boldsymbol{d}(\boldsymbol{x}, \mathrm{y})<r\}$. We Say that two points \boldsymbol{x} and y of \boldsymbol{M} are R-related and write $x \boldsymbol{R} \boldsymbol{y}$, If there exist a separable $U(x ; r)$ containing y and a separable $U\left(y ; r^{\prime}\right)$ 'containing x. Evidently, $x R x$ for every $x \in M$.WWe have also $x R y$ if and only if $y R x$.

For every subset A of M, we denote by $S A$ the set of points which are R-related to a point of $A: S A=\{y \in M ; y R x$ for some $x \in A\}$. Set $\boldsymbol{S}^{n} A=S \boldsymbol{S}^{n-1} A, n=2,3, \ldots$ If $\{x\}$ is the set consisting of a single point x, we write $S x$ for $S\{x\}$. We see easily that y $\in S^{n} \boldsymbol{x}$ if
and only if $\mathrm{x} \in S^{n} y$. We prove the following three statements:
(a) S_{x} is open for every $x \in M$;
(b) If A is separable, so is $S A$;
(c) Set $\mathrm{U}(\mathrm{x})=\bigcup^{\infty} S^{n} x$ for each $x \in M$. Then, for any $x, y \in M$, either $U(x) \cap U(y)$ is empty or $\mathrm{U}(\mathrm{x})=U(y)$.

Proof of (a). Let y be a point of $S x$. Since $x R y$, there exist positive numbers r and r^{\prime} such that $U(x ; r)$ and $U\left(y ; r^{\prime}\right)$ are separable and that $y \in U(x ; r)$ and $x \in U\left(y ; \mathrm{r}^{\prime}\right)$. Since $d(x, y)<r^{\prime}$, there is a positive number r_{1} such that

$$
d(x, y)<r_{1}<\mathrm{r}^{\prime} .
$$

Let r_{0} be any positive number such that

$$
r_{0}<r^{\prime}=r_{1}, \quad r_{0}<r-d(x, y), \quad r_{0}<r_{1}-d(x, y)
$$

'It suffices to show that $U\left(y, r_{0}\right)$ is contained in $S x$. If $z \in U\left(y ; r_{0}\right)$, -then

$$
d(x, z) \leqq d(x, y)+d(y, z)<d(x, y)+r_{0}<\mathrm{m} \text { i } \mathrm{n} \quad\left\{r, r_{1}\right\}
$$

Hence z is in $U(x ; r)$ which is separable and x is in $U\left(z ; \dot{r}_{1}\right)$. To prove that $U\left(z ; r_{1}\right)$ is separable, we shall show that $U\left(z ; r_{1}\right)$ is contained in $U\left(y ; r^{\prime}\right)$ which is separable. Let $w \in U\left(z ; r_{1}\right)$ so that $d(z, w)<r_{1}$. Then
$d(y, \mathbf{w}) \leqq d(y, z)+d(z, \mathbf{w})<\mathrm{d}(\mathbf{y}, z)+r_{1}<r_{\theta}+r_{1}<r^{\prime}$.
Hence $w \in U\left(y ; r^{\prime}\right)$. This proves that $z R x$ for every $z \in U\left(y ; r_{0}\right)$, that is, $U\left(y ; r_{0}\right) \subseteq S x$.
Proof ef (B). Let A be a separable subset of M and D a countable dense subset of A. It suffices to prove that every $x \in S . A$ is contained in, a separable sphere whose center is a point of a) D and whose radius is a rational number, because there are only countably many such spheres and the union of these spheres is separable. Let $\mathrm{x} \in S A$. Then there is $y \in A$ such that $x R y$ and 'there is a separable sphere $\dot{U}(\dot{j} ; r)$ containing \dot{x}. Let r_{0} be a positive rational number such that $d(x, y)<r_{0}<r$. Since D is dense in A, there is $z \in D$ such that

$$
d(z, y)<\min \left\{r_{0} \quad d(x, y), r \rightarrow r_{0}\right\}_{\div}
$$

It suffices to show that $U\left(z ; r_{0}\right)$ contains x and is separable. From

$$
d(x, z): d(x, y)-d\left(y, \mathrm{z} \quad<r_{0}\right.
$$

it follows that $x \in U\left(z ; r_{0}\right)$. To prove that $U\left(z ; r_{0}\right)$ is separable, we show that $U\left(z ; r_{0}\right)$ is' contained in $U(y ; 7)$ which is separable. If $w \in U\left(z ; r_{0}\right)$, then

$$
d(w, y) \leqq d(w, \mathrm{z} \quad) \quad+d(z, y)<r_{0}+d(z, y)<r,
$$

and hence $w \in U(y ;$ r).
Proof of (c). Assume that $U(x) \mathrm{n} U(y)$ is non-empty and let $z \in U(x) \cap U(y)$. Then $z \in S^{m} x$ and $z \in S^{n} y$ for some m and n. From $\mathrm{z} \in S^{m} x$, we obtain $\mathrm{x} \in S^{m} z$. Hence $x \in S^{m} z \subset S^{m+n} y$. This implies $S^{k} x \subset S^{k+\dot{m}+n} y$ for every k and hence $U(x) \subset U(y)$. Similarly, we have $U(y) \subset U(x)$-, thus proving (c).

By (a), $S A=\bigcup_{x \in A} S x$ is open for any subset A of M. Hence $U(x)$ is open. for every $x \in M$. By (b), $S^{n} x$ is separable for every n. Hence $U(x)$ is separable. Since A4 is connected and since each. $U(x)$ is open, (c) implies $M=U(\mathrm{x})$ for every $\mathrm{x} \in \mathrm{M}$. Hence M is separable, thus completing the proof of the statement in the title.

We are now in position to prove
theorem. For a connected differentiable manifold M, the following conditions are mutually equivalent
(1) There exists a Riemannian metric on M;
(2) M is metrizable;
(3) M satisffes the second axiom of countability;
(4) M is paracompact.

Proof. The implication (1) \rightarrow (2) was proved in Proposition 3.5 of Chapter IV. As we stated at the beginning, for a metric space, the second axiom of countability is equivalent to the separability. The implication (2) \rightarrow (3) is therefore a consequence of the statement in the title. If (3) holds, then M is metrizable by Urysohn's metrization theorem (cf. Kelley [1, p. 125]) and, hence, M is paracompact (cf. Kelley [I, p. 156]). This shows that (3) implies' (4). The implication (4) \rightarrow (1) follows from Proposition 1.4 of Chapter III.

QED..

APPENDIX 3

Partition of unity

Let $\left\{U_{i}\right\}_{i \in I}$ be a locally finite open covering of a differentiable manifold M, i.e., every point of M has a neighborhood which intersects only finitely many U_{i} 's. A family of differentiable functions $\left\{f_{i}\right\}$ on M is called a partition of unity subordinate to the covering $\left\{U_{i}\right\}$, if the following conditions are satisfied:
(1) $0 \leqq f_{i} \leqq 1 \quad$ on M for every $i \in$;
(2) The support of each f_{i}, i.e., the closure of the set $\left\{x \in M ; f_{i}(x) \neq 0\right\}$, is contained in the corresponding U_{i};
(3) $\Sigma_{i} f_{i}(x)=1$.

Note that in (3), for each point $x \in M, f_{i}(x)=0$ except for a finite number of i 's so that $\Sigma_{i} f_{i}(x)$ is a finite sum for each x. We first prove

тheorem 1. Let $\left\{U_{i}\right\}$ be a locally finite open covering of a paracompact manifold M such that each U_{i} has compact closure \bar{U}_{i}. Then there exists a partition of unity $\left\{f_{i}\right\}$ subordinate to $\left\{U_{i}\right\}$.

Proof. We first prove the following three lemmas. The first two are valid without the assumption that M is paracompact whereas the third holds'for any paracompact topological space.

Lemma 1. For each point $\boldsymbol{x} \in \mathrm{M}$ and for each neighborhood \boldsymbol{U} of \boldsymbol{x}, there exists a differentiable function f (of class C^{∞}) on M such that (1) $0 \leqq f \leqq 1$ on M ; (2) $\mathrm{f}(\mathrm{x})=1$; and (3) $f=0$ outside U .

Proof of Lemma 1. This can be easily reduced to the case where $M=\mathbf{R}^{n}, x=0$ and $U=\left\{\left\{|x|, \ldots, x^{n}\right) ;\left|x^{i}\right|<a\right\}$. Then, for each $\mathrm{j}, \mathrm{j}=1, . \ldots, \mathrm{n}$, we let $f_{j}\left(x^{j}\right)$ be a differentiable function such that $f_{j}(0)=1$ and that $f_{j}\left(x^{j}\right)=0$ for $\left|x^{j}\right| \geqq$ a. We set $f\left(x^{1}, \ldots, x^{n}\right)=$ $f_{1}\left(x^{1}\right) \cdots f_{n}\left(x^{n}\right)$. This proves Lemma 1.

Lemma 2. For every compact subset K of M and for every neighborhood U of K , there exists a differentiable function f on M such that (1) $f \geqq 0$ on M; (2) $f>0$ on K ; and (3) $f=0$ outside U.

Proof of Lemma 2. For each point x of K, let f_{x} be a differentiable function on M with the property off in Lemma 1. Let V_{x} be the neighborhood of x defined by $f_{x}>\frac{1}{2}$. Since K is compact, there exist a finite number of points $x_{1}, \therefore \therefore, x_{k}$ of K such that $V_{x_{1}} \cup \cdots \cup V_{x_{k}} \supset K$. Then we set

$$
f=f_{x_{1}}+\cdots+\dot{f}_{x_{k}} .
$$

This completes the proof of Lemma 2.
Lemma 3. Let $\left\{U_{i}\right\}$ be a locally finite open covering of M . Then there exists a locally finite open refinement $\left\{V_{i}\right\}$ (with. the same index set) of $\left\{U_{i}\right\}$ such that $\bar{V}_{i} \subset U_{i}$ for every i .
Proof of Lemma 3. For each point $\boldsymbol{x} \in \mathrm{M}$, let W_{x} be an open neighborhood of x such that \bar{W}_{x} is contained in some U_{i}. Let $\left\{W_{\alpha}^{\prime}\right\}$ be a locally finite refinement of $\left\{W_{x} ; x \in \mathrm{M}\right\}$. For each i , let V_{i} be the union of all W_{α}^{\prime} whose closures are contained in U_{i}. Since $\left\{W_{\alpha}^{\prime}\right\}$ is locally finite, we have $\bar{V}_{i}=\bigcup \bar{W}_{\alpha}^{\prime}$, where the union is taken over all a such that $\bar{W}_{\alpha}^{\prime} \subset U_{i}$. We thus obtained 'an open covering $\left\{V_{i}\right\}$ with the required property.

We are now in position to complete the proof of Theorem 1. Let $\left\{V_{i}\right\}$ be as in Lemma 3. For each i, let W_{i} be an open set such that $\bar{V}_{i} \subset W_{i} \subset \bar{W}_{i} \subset U_{i}$. By Lemma 2, there exists, for each i , a differentiable function g_{i} on M such that (1) $g_{i} \geqq 0$ on M ; (2) $g_{i}>0$ on $\bar{\nabla}_{i}$; and (3) $g_{i}=0$ outside W_{i}. Since the support of each g_{i} contains ∇_{i} and is contained in U_{i} and since $\left\{U_{i}\right\}$ is locally finite, the sum $\mathrm{g}=\Sigma_{i} g_{i}$ is defined and differentiable on M . Since $\left\{V_{i}\right\}$ is an open covering of $\mathrm{M}, \mathrm{g}>0$ on M . We set, for each i ,

$$
f_{i}=g_{i} / g
$$

Then $\left\{f_{i}\right\}$ is a partition of unity subordinate to $\left\{U_{i}\right\}$.
QED.
Let f be a function defined on a subset F of a manifold M. We say that f is differentiable on F if, for each point $x \in F$, there exists a differentiable function f_{x} on an open neighborhood V_{x} of x such that $f=f_{x}$ on $\boldsymbol{K} \cap V_{x}$.

тheorem 2. Let F be a closed subset of a paracompact manifold M . Then every differentiable function f defined on F can be extended to a differentiable function on M

Proof. For each $x \in \mathrm{~F}$, let f_{x} be a differentiable function on an open neighborhood V_{x} of x such that $f_{x}=\boldsymbol{f}$ on $\mathrm{F} \cap V_{x}$. Let U_{i} be a locally finite open refinement of the covering of M consisting of $\mathrm{M}-\mathrm{F}$ and $V_{x}, x \in \mathrm{~F}$. For each i, we define a differentiable function g_{i} on U_{i} as follows. If U_{i} is contained in some V_{x}, we choose such a V_{x} and set

$$
g_{i}=\text { restriction of } f_{x} \text { to } U_{i}
$$

If there is no V_{x} which contains U_{i}, then we set

$$
g_{i}=0
$$

Let $\left\{f_{i}\right\}$ be a partition of unity subordinate to $\left\{U_{i}\right\}$. We define

$$
g=\Sigma_{i} f_{i} g_{i}
$$

Since $\left\{U_{i}\right\}$ is locally finite, every point of M has a neighborhood in which $\Sigma_{i} f_{i} g_{i}$ is really a finite sum. Thus g is differentiable ogED. It is easy to see that g is an extension off.

In the terminologies of the sheaf theory, Theorem 2 means that the sheaf of germs of differentiable functions on a paracompact manifold M is soft ("mou" in Codement [1]).

APPENDIX 4

On arcwise connected subgroups of a Lie group

Kuranishi and Yamabe proved that every arcwise connected subgroup of a Lie group is a Lie subgroup (see Yamabe [I]). We shall prove here the following weaker theorem, which is sufficient for our purpose (cf. Theorem 4.2 of Chapter II). This result is essentially due to Freudenthal [I].

Theorem. Let G be a Lie group and H a subgroup of G such that every element of H can be joined to the identity e by a piecewise differentiable curve of class C^{1} which is contained in H . Then H is a Lie subgroup of \boldsymbol{G}.

Proof. Let S be the set of vectors $X \in \mathrm{~T},(\mathrm{G})$ which are tangent to differentiable curves of class C^{1} contained in H . We identify $\mathrm{T},(\mathrm{G})$ with the Lie algebra g of G . Then

lemma. $\quad S$ is a subalgebra of \mathfrak{g}.

Proof of Lemma. Given a curve x_{t} in G, we denote by \dot{x}_{t} the vector tangent to the curve at the point x_{i}. Let r be any real number and set $z_{t}=x_{r i}$. Then $\dot{z}_{0}=r \dot{x}_{0}$. This shows that if $\mathrm{X} \in \mathrm{S}$, then $r X \in \mathrm{~S}$. Let x_{t} and y_{t} be curves. in G such that $x_{0}=$ $y_{0}=$ e. If we set $y_{t}=x_{t} y_{t}$, then $\dot{y}_{0}=\dot{x}_{0}+\dot{y}_{0}$ (cf. Chevalley [1, pp. 120-122]). This shows that if $X, \underset{Y}{Y} \in S$, then $X+$ YeS. There exists a curve w_{t} such that $w_{t^{2}}=x_{t} y_{t} x_{t}^{-1} y_{t}^{-1}$ and we have $\dot{w}_{0}=\left[\dot{x}_{0}, \dot{y}_{0}\right]$ (cf. Chevalley [1, pp. 120-122] or Pontrjagin [1, p. 238]). This shows that if $X, Y \in S$, then $[X, Y] \in S$, thus completing the proof of the lemma.
Since $S \subset \mathrm{~T},(\mathrm{G})=\mathfrak{g}$ is a subalgebra of \mathfrak{g}, the distribution $x \rightarrow L_{x} S, x \in \mathrm{G}$, is involutive (where L_{x} is the left translation by x) and its maximal integral manifold through e, denoted by K, is the Lie subgroup of G corresponding to the subalgebra S . We shall show that $H=K$.

We first prove that $K \supset \mathrm{H}$. Let a be any point of H and $\tau=x_{t}$, $0 \leqq t \leqq 1$, a curve from e to a so that $\mathrm{e}=x_{0}$ and $\mathrm{a}=x_{1}$. We claim
that the vector \dot{x}_{t} is in $L_{x_{t}} S$ for all t. In fact, for each fixed t, $L_{x_{t}}^{-1}\left(\dot{x}_{t}\right)$ is the vector tangent to the curve $L_{x_{t}}^{-1}(\tau)$ at ℓ and hence lies in S, thus proving our assertion. Since $\dot{x}_{t} \in L_{x} S$ for all t and $x_{0}=e$, the curve x_{t} lies in the maximal integral manifold K of the distribution $x \rightarrow L_{x} S$ (cf. Lemma 2 for Theorem 7.2 of Chapter II). Hence $\mathbf{a} \in K$, showing that $K \supset H$.

To prove that $H \supset \mathrm{~K}$, let ℓ_{1}, \ldots, e_{k} be a basis for S and $x_{i}^{1} \cdot \cdots x_{t}^{k}, 0 \leqq t \leqq 1$, be curves in H such that $x_{0}^{2}=e$ and $\dot{x}_{0}^{i}=e_{i}$ for $i=1, \ldots, k$. Consider the mapping f of a neighborhood U of the origin in R^{k} into K defined by $f\left(t_{1}, \ldots ., t_{k}\right)=$ $x_{t_{1}}^{1} \cdots x_{t_{k}}^{k},\left(t_{1}, \ldots, t_{k}\right) \in U$. Since $\dot{x}_{0}^{1}, \ldots, \dot{x}_{0}^{k}$ form a basis for S, the differential off: $U \rightarrow \mathrm{~K}$ at the origin is non-singular, 「aking U sufficiently small, we may assume that f is a diffeomorphism of U onto an open subset $f(U)$ of K . From the definition off, we have $f(U) \subset H$. This shows that a neighborhood of e in QKis. contained in H. Since K is connected, $K \subset H$.

APPENDIX 5

Irreducible subgroups of $O(n)$

We prove the following two theorems.
Theorem 1. Let G be a subgroup of $O(n)$ which acts irreducibly on the n-d'imensional real vetor space \mathbf{R}^{n}. Then every symmetric bilinear form on \mathbf{R}^{n} which is invariant by G is a multiple of the standard inner product $(x, y)=\sum_{i=1}^{n} x^{i} y^{i}$.

Theorem 2. Let G be a connected Lie subgroup of $\operatorname{SO}(n)$ which acts irreducibly on \mathbf{R}^{n}. Then G is closed in $\mathrm{SO}(\mathrm{n})$.

We begin with the following lemmas.
Lemma 1. Let G be a subgroup of $G L(n ; \mathbf{R})$ which acts irreducibly on \mathbf{R}^{n}. Let A be a linear transformation of \mathbf{R}^{n} which commuites with every element of G. Then
(1) If A is nilpotent, then $A=0$.
(2) The minimal polynomial of A is irreducible pver \mathbf{R}.
(3) Either $\mathrm{A}=a I_{n}$ (a : real number, I_{n} : the identity transformation of \mathbf{R}^{n}, or $\mathrm{A}=a I_{n}+\mathrm{b}$, where a and b are real numbers, $b \neq 0$, J is a linear transformation such that $J^{2}=-I_{n}$, and n is even.

Proof. (1) Let. k be the smallest integer such that $A^{k}=0$. Assuming that $\mathrm{k} \geqq 2$, we derive a contradiction. Let $W=$ $\left\{x \in \mathbf{R}^{\mathrm{n}} ; \boldsymbol{A} \boldsymbol{x}=0\right\}$. Since \boldsymbol{W} is invariant by G, we have either $W=$ \mathbf{R}^{n} or $\boldsymbol{W}=(0)$. In the first case $\boldsymbol{A}=0$. In the second case, A is non-singular and $A^{k-1}=A^{-1} \cdot A^{k}=0$.
(2) If the minimal polynomial $\boldsymbol{f}(\boldsymbol{x})$ of A is a product $f_{1}(x) \cdot f_{2}(x)$ with $\left(f_{1}, f_{2}\right)=1$; then $\mathbf{R}^{n}=W_{1}+W_{2}$ (direct sum), where W_{i} 口 $\left\{x \cdot \mathbf{R}^{n} ; f_{i}(A) x=0\right\}$, Since every element of G commutes with A and hence with $f_{i}(A)$, it follows that W_{i} are both invariant by G, contradicting the assumption of irreducibility. Thus
$\mathrm{f}(\mathrm{x})=g(x)^{k}$, where $\mathrm{g}(x)$ is irreducible. Applying (1) to $\mathrm{g}(\mathrm{A})$, we see that $f(A)=g(A)^{k}=0$ implies $\mathrm{g}(\mathrm{A})=0$. Thus $f=\mathrm{g}$.
(3) By (2), the minimal polynomial $f(x)$ of A is either ($\mathrm{x}-a$) or $(x-a)^{2}+b^{2}$ with $b \neq 0$. In the first case, $\mathrm{A}=a I_{n}$. In the second case, let $J=\left(\mathrm{A}-a I_{n}\right) \mid b$. Then $J^{2}=-I$, , and $A=a I_{n}+$ $b J$. We have $(-1) "=\operatorname{det} J^{2}=(\operatorname{det} J)^{2}>0$ so that n is even.

Lemma 2. Let G be a subgroup of $O(n)$ which acts irreducibly on \mathbf{R}^{n}. Let A, B, \ldots be linear transformations 'of $\mathbf{R}^{\boldsymbol{n}}$ which commute with G.
(1) If A is symmetric, i.e., $(A x, y)=(x, A y)$, then $A=a I_{n}$.
(2) If A is skew-symmetric, i.e., $(A x, y)+(x, A y)=0$, then $A=0$ or $A=b J$, where $J^{2}=-I$, and $n=2 m$.
(3) If $A \neq 0$ and B are skew-symmetric and $A B=B A$, then $B=c A$.
Proof. (1) By (3) of Lemma 1, $A=a I_{n}+b J$, possibly with $b=0$. If A is symmetric, so is-b J. If $b \neq 0, J$ is symmetric so that $(J x, J x)=\left(x, J^{2} x\right)=-(x, x), N$ ic is a contradiction for $x \neq 0$.
(2) Since the eigenvalues of skew-symmetric A are 0 or purely imaginary, the minimal polynomial of A is either x or $x^{2}+b^{2}$, $b \neq 0$. In the first case, $A=0$. In the second case, $A=-b J$ with $J^{2}=-I_{n}$.
(3) Let $A=b J$ and $B=b^{\prime} K$, where $J^{2}=K^{2}=-I$, . We have $J K=K J$. We show that $\mathbf{R}^{n}=W_{1}+W_{2}$ (direct sum), where. $W_{1}=\left\{x \in \mathbf{R}^{n} ; J x=K x\right\}$ and $W_{2}=\left\{x \in \mathbf{R}^{n} ; J x=-K x\right\}$. Clearly, $W_{1} \cap W_{2}=(0)$. Every $x \in \mathbf{R}^{n}$ is of the form $y+z$ with $\mathrm{y} \in W_{1}$ and $z \in W_{2}$, as we see by setting $\mathrm{y}=(\mathrm{x}-J K x) / 2$ and $z=(x+J \tilde{K} x) / 2 . W_{1}$ and W_{2} are invariant by G, because J and K commute with every element of G. Since G is irreducible, we have either $W_{1}=\mathbf{R}^{n}$ or $W_{2}=\mathbf{R}^{n}$; that is, either $K=J$ or $K=-J$. This means th! $\mathrm{t} B=c A$ for some c.

Proof of Theorem 1. For any symmetric bilinear form $f(x, y)$, there is a symmetric linear transformation A such that $f(x, j)=$ $(A x, y)$. Iff is invariant by G , then A commutes with every element of G. By (1) of Lemma $2, A=a I_{n}$ and hence $f(x, y)=a(x, y)$.

Proof of Theorem 2. We first show that the center 3 of the Lie algebra \mathfrak{g} of G is at most l -dimensional. Let $A \neq 0$ and $B \in 3$. Since A, B are skew-symmetric linear transformations. which commute with every element $\cdot \mathrm{fG}$, (3) of Lemma 2 implies that $B=c A$ for some c. Thus $\operatorname{dim} 3 \leqq 1$. If $\operatorname{dim} \mathfrak{z}=1$, then $3=\{c J ; c$ real $\}$, where

Jis a certain skew-symmetric linear transformation with $J^{2}=-I_{n}$. Now J is representable by a matrix which is a block form, each block being $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$, with respect to a certain orthonormal basis of R". The 1-parameter subgroup exp $t J$ consists of matrices of a
 morphic with the circle group.
Since \mathfrak{g} is the subalgebra of the Lie algebra of all skew-symmetric matrices, g has a positive definite inner product $(A, B)=$ -trace ($A B$) whichisinvariant by ad (G). It follows that the orthogonal complement \mathfrak{s} of the center 3 in \mathfrak{g} with respect to this inner product is an ideal of \mathfrak{g} and $\mathfrak{g}=3+\mathfrak{s}$ is the direct sum. If \mathfrak{s} contains a proper ideal, say, s_{1}, then the orthogonal comptement \mathfrak{s}^{\prime} of \mathfrak{s}_{1} in \mathfrak{s} is an ideal of \mathfrak{s} (in fact of \mathfrak{g}) and $\mathfrak{s}=\mathfrak{s}_{1}+\mathfrak{s}^{\prime}$. Thus we see that \mathfrak{s} is a direct sum of simple ideals: $\mathfrak{s}=\mathfrak{s}_{1}+\cdots+\mathfrak{s}_{k}$. We have already seen that the connected Lie subgroup generated by 3 is closed in $S O(n)$. We now show that the connected Lie subgroup generated by \boldsymbol{s} is closed in $S O(n)$. This will finish the proof of Theorem 2.
We first remark that Yosida [1] proved the following result. Every connected semisimple Lie subgroup G of $G L(n ; \mathrm{C})$ is closed in $G L(n ; C)$. His proof, based on a theorem of Weyl that any representation of a semisimple Lie algebra is completely reducible, also works when we replace $G L(n ; C)$ by $G L(n ; \mathrm{R})$. In the case of a subgroup G of $S O(n)$, we need not use the Weyl theorem. We now prove the following result by the same method as Yosida's.
A connected semisimple Lie subgroup G of $S O(n)$ is closed in $S O(n)$.
Proof. Since \mathfrak{g} is a direct sum of simple ideals $\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{k}$ of dimension >1 and since $\mathfrak{g}_{i}=\left[\mathfrak{g}_{i}, \mathfrak{g}_{i}\right]$ for each i, it follows that $\mathfrak{g}=[\mathrm{g}, \mathrm{g}]$. Now consider $S O(n)$ and hence its subgroup G as acting on the complex vector space \mathbf{C}^{n} with standard hermitian inner product which is left invariant by $S O(n)$. Then \mathbf{C}^{n} is the direct sum of complex subspaces V_{1}, \ldots, V_{r} which are invariant and irreducible by G. Assuming that G is not closed in $\operatorname{SO}(n)$, let \bar{G} be its closure: Since \bar{G} is a connected closed subgroup of $\operatorname{SO}(n)$, it is a Lie subgroup. Let $\overline{\mathfrak{g}}$ be its Lie algebra. Obviously, $\mathfrak{g} \subset \overline{\mathfrak{g}}$. Since ad $(G) \mathfrak{g} \subset \mathfrak{g}$, we have ad $(\bar{G}) \mathfrak{g} \subset \mathfrak{g}$, which implies that \mathfrak{g} is
an ideal of $\overline{\mathfrak{g}}$. Since the Lie algebra of $\mathrm{SO}(\mathrm{n})$ has a positive definite inner product invariant by ad ($\mathrm{SO}(\mathrm{n})$) as we already noted, it follows that $\overline{\mathfrak{g}}$ is the direct sum of \mathfrak{g} and the orthogonal complement \mathfrak{u} of \mathfrak{g} in \mathfrak{g}. Each summand V_{i} of \mathbf{C}^{n} is also' invariant by \bar{G} and hence by $\overline{\mathfrak{g}}$ acting on \mathbf{C}^{n}. For any $\mathrm{d} \in \overline{\mathrm{g}}$, denote by A_{i} its action on V_{i} for each i. For any A, $B \in g$, we have obviously trace $\left[A_{i}, \mathrm{~B},\right]=0$.Since $A \rightarrow \mathrm{~A}$, is a representation of \mathfrak{g} on V_{i} and since $\mathfrak{g}=[\mathfrak{g}, \mathfrak{g}]$, we have trace $A_{i}=0$ for every $A \in \mathfrak{g}$. Thus the restriction of $a \in \mathrm{G}$ on each V_{i} has determinant 1 (cf. Corollary 1 of Chevafley [1; p. 6]). By continuity, the restriction of a $\epsilon \bar{d}$ on each V_{i} has determinant 1 . This means that trace $A_{i}=0$ for every $A \in \mathfrak{g}$ and for each i. Now let $B \in$ it. Its action B_{i} on V_{i} commutes with the actions of $\left\{A_{i} ; \mathrm{A} \in \mathfrak{g}\right\}$. By Schur's Lemma (which is an obvious consequence of Lemma 1, (2), which is valid for any field instead of R), we have $B_{i}=b_{i} I$, where I is the identity transformation of V_{i}. Since trace $B_{i}=0$, it follows that $b_{i}=0$, that is, $\mathbf{B},=0$. This being the case for each i, we have $B=0$. This means that $\mathfrak{u}=(0)$ and $\overline{\mathfrak{y}}=\mathbf{g}$. This proves that $\vec{G}=\mathrm{G}$, that is, G is closed in $S O(n)$.

APPENDIX 6

Green's theorem

Let \mathbf{M} be an oriented \mathbf{n}-dimensional differentiable manifold. An n-form ω on M is called a volume element, if $\omega\left(\partial / \partial x^{1}\right.$, . . , $\left.\partial / \partial x^{n}\right)>0$ for each oriented local coordinate system x^{1}, \ldots, x^{n}. With a fixed volume element ω (which will be also denoted by a more intuituye notation $d v$), the integral $\int_{M} f \mathrm{dv}$ of any continuous function f with compact support can be defined (cf. Chevalley [I, pp.. 161-167]).

For eachvector field X on M with a fixed volume element ω, the divergence of X, denoted by $\operatorname{div} X$, is a function on M defined by

$$
(\operatorname{div} X) \omega=L_{X} \omega
$$

where L_{X} is the Lie differentiation in the direction of X.
Green's Theorem. Let M be an otiented compact manifold with a fixed volume element $\omega=\mathrm{dv}$. For every vector field X on M, we have

$$
\int_{M} \operatorname{div} X d v=0
$$

Proof. Let φ_{t} be the 'l-parameter group of transformations generated by X (cf. Proposition 1.6 of Chapter I). Since we have (cf. Chevalley [1, p. 165])

$$
\int_{M} \varphi_{i}^{-1 *} \omega=\int_{M} \omega
$$

$\int_{M} \varphi_{t}^{-1 *} \omega$, considered as a function oft, is a constant. By definition
of L_{X}, we have $\left[\frac{d}{d t}\left(\gamma_{t}^{-1 *} \omega\right)\right]_{t=0}=-L_{X^{(1)}}$. Hence

$$
\begin{aligned}
0 & =\left[\frac{d}{d t} \int_{M} \mathscr{F}_{t}^{-1 *} \omega\right]_{t=0}=\int_{M}\left[\frac{d}{d t}\left(\psi_{t}^{-1 *} \omega\right)\right]_{t=0} \\
& =-\int_{M} L_{X}(\omega)=-\int_{M} \operatorname{div} \mathrm{X} d \mathrm{v} .
\end{aligned}
$$

QED.
Remark 1. The above formula is valid for a non-compact manifold M as long as X has a compact support.

Remark 2. The above formula follows also from Stokes' formula. In fact, since $d \omega=0$, we have $L_{X^{(1)}}=\mathrm{d} \circ \iota_{X}(\theta)+\iota_{X} \circ d(\omega)=d \circ \iota_{X}(\omega$. We then have

$$
\int_{M} L_{\left.X^{(}\right)}=\int_{\partial M}{ }^{\iota_{X}}(t)=0
$$

proposition. Let M be an oriented manifold with a fixed volume element $\omega=\mathrm{dv}$. If Γ is an affine connection with no torsion on M such that ω is parallel with respect to Γ, then, for every vector field X on M, we have

$$
(\operatorname{div} X),=\operatorname{trace} \mathbf{O f} \text { the endomorphism } V \rightarrow \nabla_{V} X, \quad V \in T,(M) .
$$

Proof. Let A , be the tensor field of type $(1,1)$ defined by $A_{X}=L_{X}-\nabla_{X}$ as in $\$ 2$ of Chapter VI. Let X_{1}, \ldots, X_{n} be a basis o. $\mathrm{T},(\mathrm{M})$. Since $\nabla_{\boldsymbol{X}} \omega=0$ and since A_{X}, as a derivation, maps every function into zero, we have

$$
\begin{aligned}
& \left(L_{X} \omega\right)\left(X_{1}, \ldots, X_{n}\right)=\left(A_{X_{X}} \omega\right)\left(X_{1}, \ldots, X_{n}\right) \\
& \quad=A_{X}\left(\omega\left(X_{1}, \ldots, X_{n}\right)\right)-\Sigma_{i} \omega\left(X_{1}, \ldots, A_{X} X_{i}, \ldots, X_{n}\right) \\
& \quad=-\Sigma_{i} \omega\left(X_{1}, \ldots, A_{X} X_{i}, \ldots, X_{n}\right) \\
& \quad=-\left(\operatorname{trace} \cdot A_{X}\right)_{x} \omega\left(X_{1}, \ldots, X_{n}\right) .
\end{aligned}
$$

This shows that

$$
\operatorname{div} X=-\operatorname{trace} A,
$$

Our assertion follows from the formula (cf. Proposition 2.5 of Chapter VI) :

$$
A_{X} Y=-\nabla_{Y} X-\mathrm{T}(X, Y)
$$

and from the assumption that $\mathrm{T}=0$.

Remark 3. The formula $\operatorname{div} \mathrm{X}=$-trace A_{X} holds without the assumption $\mathrm{T}=0$.

Let M be an oriented Riemannian manifold. We define a natural volume element $d v$ on M. At an arbitrary point \boldsymbol{x} of \boldsymbol{M}, let X_{1}, \ldots, X_{n} be an orthonormal basis of T ,(M) compatible with the orientation of M. We define an n -form dv by

$$
d v\left(X_{1}, \ldots, X_{n}\right)=1
$$

It is easy to verify that $d v$ is defined independently of the frame $\mathrm{X}_{1}, \ldots, X_{n}$ chosen. In terms of an allowable local coordinate system $\boldsymbol{x}^{1}, \ldots, x^{n}$ and the components $g_{i j}$ of the metric tensor g , we have

$$
d v=\sqrt{G} d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{n}, \text { w h e r e } G=\operatorname{det}\left(g_{i j}\right) .
$$ In fact, let $\left(\partial / \partial x^{i}\right)_{x}=\boldsymbol{\Sigma}_{k} C_{i}^{k} X_{k}$ so that $g_{i j}=\boldsymbol{\Sigma}_{k} C_{i}^{k} C_{j}^{k}$ and $G=$ $\operatorname{det}\left(C_{i}^{k}\right)^{2}$ at x. Since $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$ and X_{1}, \ldots, X_{n} have the same orientation, we have $\operatorname{det}\left(C_{i}^{k}\right)=\sqrt{G}>0$. Hence, at x, we have

$$
\begin{aligned}
d v\left(\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right) & =\Sigma_{i_{1}}, \ldots, i_{n} \varepsilon C_{1_{1}}^{i_{1}}, 1 C_{n}^{i_{n}} d v\left(X_{i_{1}}, \ldots, X_{i_{n}}\right) \\
& =\operatorname{det}\left(C_{i}^{k}\right)=\sqrt{G}
\end{aligned}
$$

where ε is 1 or -1 according as $\left(i_{1}, \ldots, i_{n}\right)$ is an even or odd permutation of $(1, \ldots, \boldsymbol{n})$.
Since the parallel displacement along any curve τ of M maps every orthonormal frame into an orthonormal frame and preserves the orientation, the volume element $d v$ is parallel. Thus the proposition as well as Green's theorem is valid for the volume element $d v$ of a Riemannian manifold.

APPENDIX 7

Factorization lemma

Let A4 be a differentiable manifold. Two continuous curves $\mathrm{x}(\mathrm{t})$ and $y(t)$ defined on the unit interval $\mathrm{Z}=[0,1]$ with $x(0)=$ $y(0)$ and $x(1)=y(1)$ are said to be homotopic to each other if there exists a continuous. mapping $f:(t, s) \in \mathrm{Z} \times \mathrm{Z} \rightarrow f(t, s) \in \mathrm{A} 4$ such thatf $(\mathrm{t}, 0) \neq x(t), f(t, 1)=y(t), f(0, s)=x(0)=y(0)$ and $f(1, s)=\mathrm{x}(1)=y(1)$ for every t and s in I. When $x(t)$ and $y(t)$ are piecewise differentiable curves of class C^{k} (briefly, piecewise C^{k} curves), they are piecerwise C^{k}-homotopic, if the mapping. \boldsymbol{f} can be chosen in such a way that it is piecewise $C^{\boldsymbol{k}}$ on $\mathrm{Z} \times \mathrm{Z}$, that is, for a certain subdivision $\mathrm{Z}=\sum_{i=1}^{\boldsymbol{r}} I_{i}, \boldsymbol{f}$ is a differentiable mapping of class C^{k} of $I_{i} \times \mathrm{Z}$, into M for each (i, j).

Lemma. If two piecewise C^{k}-curves $x(t)$ and $y(t)$ are homotopic to each other, then they are piecewise C^{k}-homotopic.

Proof. We can take a suitable subdivision $\mathrm{Z}=\sum_{i=1}^{n} I_{i}$ so that $f\left(I_{i} \times Z\right.$,) is contained in some coordinate neighborhood for each pair ($\mathrm{i}, \boldsymbol{j}$). By modifying the mapping \boldsymbol{f} in the small squares $I_{i} \times \mathrm{Z}$, we can obtain a piecewise C^{k}-homotopy between $\boldsymbol{x}(t)$ and $y(t)$.

Now let \mathfrak{U} be an arbitrary open covering. We shall say that a closed curve $\boldsymbol{\tau}$ at a point \boldsymbol{x} is a \mathfrak{U}-lasso if it can be decomposed into three curves $\boldsymbol{\tau}=\boldsymbol{\mu}^{-\mathbf{1}} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\mu}$, where $\boldsymbol{\mu}$ is a curve from \boldsymbol{x} to a point y and $\boldsymbol{\sigma}$ is a closed curve aty which is contained in an open set of \mathfrak{U}. Two curves $\boldsymbol{\tau}$ and $\boldsymbol{\tau}^{\prime}$ are said to be equivalent, if $\boldsymbol{\tau}^{\prime}$ can be obtained from $\boldsymbol{\tau}$ by replacing a finite number of times a portion of the curve of the form μ^{-1}, μ by a trivial curve consisting of a single point or vice versa. With these definitions, we prove

Factorization Lemma. Let \mathfrak{u} be an arbitrary open covering of M.
(a) Any closed curve which is homotopic to zero is equivalent to a product of a finite number of \mathfrak{U}-lassos.
(b) $Z f$ the curve is moreover piecewise $C^{\boldsymbol{k}}$, then each U-lasso in the product can be chosen to be of the form $\boldsymbol{\mu}^{\mathbf{- 1}} \cdot \boldsymbol{\sigma} \boldsymbol{\mu}$, where $\boldsymbol{\mu}$ is a piecewise C^{k}-curve and $\boldsymbol{\sigma}$ is a C^{k}-curve.

Proof. (a) Let $\tau=x(t), 0 \leqq t \leqq 1$, so that $x=x(0)=x(1)$. Letf be a homotopy $\mathrm{Z} \times I \rightarrow \mathrm{M}$ such that $f(t, 0)=x(t), f(t, 1)$ $=x, f(0, s)=f(1, s)=x$ for every t and s in I. We divide the square $\mathrm{Z} \times \mathrm{Z}$ into $\boldsymbol{m}^{\mathbf{2}}$ equal squares so that the image of each small square by f lies in some open set of the covering \mathfrak{U}. For each pair of integers (i, j), $1 \leqq \mathrm{i}, \mathrm{j} \leqq m$, let $\lambda(i, j)$ be the closed curve in the square Z x Z consisting of line segments joining lattice points in the following order:

$$
\begin{aligned}
& (0,0) \rightarrow(0, j / m) \rightarrow((i-1) / m, j / m) \rightarrow \\
& \quad((i-1) / m,(j-1) / m) \rightarrow(i / m,(j-1) / m) \rightarrow(i / m, j / m) \rightarrow \\
& \quad((i-1) / m, j / m) \rightarrow(0, j / m) \rightarrow(0,0) .
\end{aligned}
$$

Geometrically, $\lambda(i, j)$ looks like a lasso. Let $\tau(i, j)$ be the image of $\lambda(i, j)$ by the mapping \boldsymbol{f}. Then $\boldsymbol{\tau}$ is equivalent to the product of U-lassos

$$
\tau(m, \mathrm{~m}) \cdots \tau(1, \mathrm{~m}) \cdots \tau(m, 2) \cdots \tau(1,2) \cdot \tau(m, 1) \cdots \tau(1,1) .
$$

(b) By the preceding lemma, we may assume that the homotopy mapping f is piecewise C^{k}. By choosing m larger if necessary, we may also assume that f is C^{k} on each of the \boldsymbol{m}^{2} small squares. Then each lasso $\tau(i, j)$ has the required property.

QED.
The factorization lemma is taken from Lichnerowicz [2, p. 513.

NOTES

Note 1. Connections and holonomy groups

1. Although differential geometry of surfaces in the 3-dimensional Euclidean space goes back to Gauss, the notion of a Riemannian space originates with Riemann's Habilitationsschrift [l] in 1854. The Christoffel symbols were introduced by Christoffel [1] in 1869. Tensor calculus,: founded and developed in a series of papers by Ricci, was given a systematic account in Levi-Civita and Ricci [1] in 1901. Covariant differentiation which'was formally introduced in this tensor calculus was given a geometric interpretation by Levi-Civita [1] who introduced in 1917 the notion of parallel displacement for the surfaces. This discovery led Weyl $[1,2]$ and E. Cartan [$1,2,4,5,8,9]$ to the introduction of affine, projective' and conformal connections. Although the approach of Cartan is the most' natural. one and reveals best 'the geometric nature of the connections, it was not until 1950 that Ehresmann [2] clarified the general notion of connections from the point of view of contemporary mathematics. His paper was followed by Chern [1, 2], Ambrose-Singer [1], Kobayashi [6], Nomizu [7], Lichnerowicz [2] and others.

Ehresmann [2] defined, for the first time, a connection in an arbitrary fibre bundle as a field of horizontal subspaces and proved the existence of connections in any bundle. He introduced also a connection form ω and defined the curvature form Ω by means of the structure equation. The definition of Ω given in this book is due to Ambrose and Singer [1] who proved also the structure equation (Theorem 5.2 of Chapter II). Chern [1, 2] defined a connection by means of a set of differential forms ω_{α} on U_{α} with values in the Lie algebra of the structure group, where $\left\{U_{\alpha}\right\}$ is an open covering of the base manifold (see Proposition 1.4 of Chapter II).

Ehresmann [2] also defined the notion of a Cartan connection, whose examples include affine, projective and conformal connections. See also Kobayashi [6] and Takizawa [1]. We have
given in the text a detailed account of the relationship between linear and affine connections.
2. The notion of holonomy group is due, to E. Cartan [1, 6]. The fact that the holonomy group is a Lie group was taken for granted even for a Riemannian connection until Borel and Lichnerowicz [1] proved it explicitly. The holonomy theorem (Theorem 8.1 of Chapter II) of E. Cartan was rigorously proved first by Ambrose-Singer [1]. The proof was simplified. by Nomizu [7] and Kobayashi [6] by first proving the. reduction theorem (Theorem 7.1, of Chapter II), which is essentially due to, Cartan and Ehresmann. Kobayashi [6] showed that Theorem 8.1 is essentially equivalent. to the following fact. For a principal fibre bundle $P(M, G)$, consider the pripcipal fibre bundle $T(\mathrm{P})$ over $T(M)$ with group $T(G)$, where $T($.$) denotes the tangent bundle.$ For any connection Γ in P, there is a naturally induced connection $T(\Gamma)$ in $T(P)$ whose holonomy group is $T(\Phi)$, where Φ is the holonomy group of Γ.
The result of Hano and Oreki [1] and Nomizu [5] (Theorem 8.2 of Chapter II) to the effect that the structure group G of $P(M$, G) can be reduced to a subgroup H if and only if there exists a connection in P whose holonomy group is exactly H means that the holonomy group by itself does not give any information other than thosebbtainable by topological methods, However, combined with other. conditions (such as a "torsion-free linear connection"), the holonomy group is of considerable interest.
3. Chern [3] defined the notion of a G-structure on a differentiable manifold M,' where \boldsymbol{G} is a certain Lie subgroup of $G L(n ; \mathbf{R})$ with $\boldsymbol{n}=\operatorname{dim} \boldsymbol{M}$. 'In our terminologies, a G-structure on M is a reduction of the bundle of linear frames $t(M)$ to the subgroup G. For $\subseteq O(n)$, a G-structure is nothing but a Riemannian metric given on M (see Example 5.7 of Chapter I). For a general theory of G-structures, see Chern [3], Bernard [1] and Fujimoto [1]. We mention some other special cases.

Weyl [3]and E. Cartan [3] proved the following. For a closed subgroup \boldsymbol{G} of $\mathrm{GL}(\mathrm{n} ; \mathbf{R}), \mathrm{n} \geqq 3$, the following two conditions are equivalent
(1) G is the group of all matrices which preserve a certain non-degenerate quadratic form of any signature:
(2) For every n-dimensional manifold M and for every reduced subbundle P of $L(M)$ with group G, there is a unique torsion-free connection in P. The implication (1) \rightarrow (2) is clear from Theorem 2.2 of Chapter IV (in which g can be an indefinite Riemannian metric) ; in fact, if \boldsymbol{G} is such a group, any G-structure on \boldsymbol{M} corresponds to an indefinite Riemannian metric on M in a similar way to Example 5.7 of Chapter I. The implication (2) \rightarrow (1) is nontrivial. See also Klingenberg [1].

Let G be the subgroup of $G L(n ; R)$ consisting of all matrices which leave the r-dimensional subspace \mathbf{R}^{r} of \mathbf{R}^{n} invariant. A G structure on an n-dimensional manifold M is nothing but an r dimensional 'distribution. Walker [3] proved that an r-dimensional distribution is parallel with respect to a certain torsion-free linear connection if and only if the distribution is integrable. See also Willmore [I, 2].

Let \boldsymbol{G} be $G L(n ; \mathbf{C})$ regarded as a subgroup of $\boldsymbol{G L}(2 \boldsymbol{n} ; \mathbf{R})$ in a natural manner. A G-structure on a $2 n$-dimensional manifold M is nothing but an almost complex 'structure on M. This structure will be treated in Volume II.
4. The notions of local and infinitesimal holonomy groups were introduced systematically by Nijenhuis [2]. The results in $\$ 10$ of Chapter II were obtained by him in the case of a linear connection ($\S 9$ of Chapter III). Nijenhuis' results were generalized by Ozeki [1] to the general case as presented in $\S 10$ of Chapter II. See also Nijenhuis [3]. Chevalley also obtained Corollary 10.7 of Chapter II in the case of a linear connection (unpublished) and his result was used by Nomizu [2] who discussed invariant linear connections on homogeneous spaces. His results were generalized by Wang [1] as in \$11 of Chapter II.
5. By making use of a connection, one can define characteristic classes of any principal fibre bundle. This will be treated in Volume II. See Chem [2], H. Cartan [2, 3]. We shall here state a result of Narasimhan and Ramanan [I] which is closely related to the notion of a universal bundle (cf. Steenrod [1, p: 101]).

тнеовем. Given a compact Lie group G and a positive integer n, there exists a principal bundle $E(N, G)$ and a connection Γ_{0} on E such that any connection Γ in any principal bundle $P(M, G)$, dim $M \leqq n$, can be obtained as the inverse image of $\boldsymbol{\Gamma}_{\mathbf{0}}$ by a certain homomorphism of P into E
(that is, $\omega=f * \omega_{0}$, where ω and ω_{0} are the connection forms of Γ and Γ_{0}, respectively, see Proposition 6.2 of Chapter II).

The connection $\Gamma_{\mathbf{0}}$ is therefore called a universal connection for G (and n). For example, the canonical connection in a Stiefel manifold with structure group $\mathrm{O}(\mathrm{k})$ is universal for $\mathrm{O}(\mathrm{k})$. For the canonical connections in the Stiefel manifolds, see also Kobayashi [5] who gave an interpretation of the Riemannian connections of manifolds imbedded in Euclidean spaces (see Volume II).
6. The holonomy groups of linear and Riemannian connections were studied in detail by Berger [1]. By a careful examination of the curvature tensor,/ he obtained a list of groups which can be restricted linear holonomy groups of irreducible Riemannian manifolds with non-parallel curvature tensor. His list coincides with the list of connected orthogonal groups acting transitively on spheres. Simons [1] proved directly that the linear holonomy group of an irreducible Riemannian manifold with non-parallel curvature tensor is transitive on the unit sphere in the tangent space. See Note 7 (symmetric spaces).
7. The local decomposition of a Riemannian manifold (Proposition 5.2 of Chapter IV) has been treated by a number of authors. The global decomposition (Theorem 6.2 of Chapter IV) was proved by de Rham [1];. the same problem was also treated by Walker [2]. A more general situation than the direct product has been studied by Reinhart [1], Nagano [2] and Hermann [1].

It is worthwhile noting that even the local decomposition is a strongly metric property. Ozeki gave an exampleof a torsion-free linear connection with the following property. The linear holonomy group is completely reducible (that is, the tangent space is the direct sum of invariant irreducible subspaces) but the linear connection is not a direct product even locally. His example is as follows: On \mathbf{R}^{2} with coordinates $\left(x^{1}, x^{2}\right)$, take the linear connection given by the Christoffel symbols $\Gamma_{11}^{1}\left(x^{1}, x^{2}\right)=x^{2}$ and other $\Gamma_{j k}^{i}=0$. The holonomy group is $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) ; a>0\right\}$.
8. The restricted linear holonomy group of an arbitrary Riemannian manifold is a closed subgroup of the orthogonal group. Hano and Ozeki [l] gave an example of a torsion-free linear connection whose restricted linear holonomy group is not
closed in the general linear group. The linear holonomy group of an arbitrary Riemannian manifold is not in general compact, as Example 4.3 of Chapter V shows. For a compact flat Riemannian manifold, it is compact (Theorem 4.2 of Chapter V). Recently, Wolf [6] proved that this is also the case for a compact locally symmetric Riemannian manifold.

dote 2. Complete affine and Riemannian connections

Hopf and Rinow [1] proved Theorem 4.1 (the equivalence of (1), (2) and (3)), Theorem 4.2 and Theorem 4.4 of Chapter IV. Theorem 4.2 goes back to Hilbert [1]; his proof can be also found in E. Cartan's book [8]. In $\$ 4$ of Chapter IV, we followed the appendix of de Rham [1]. Condition (4) of Theorem 4.1 of Chapter IV was given as the definition of completeness by Ehresmann [1, 2].

For a complete affine connection, it does not hold in general that every pair of points can be joined by a geodesic. To construct counterexamples, consider an affine connection on a connected Lie group G such that the geodesics emanating from the identity are precisely the 1-parameter groups of G. Such connections will be studied in Volume II. For our present purpose, it suffices to consider the affine connection which makes every left invariant vector field parallel; the existence and the uniqueness of such a connection is easy to see. Then the question is whether every element of G is on a l-parameter subgroup. The answer-is yes, if G is compact (well known) or if G is nilpotent (cf. Matsushima [1]). For a solvable group G, this is no longer true in general; Saito [1] gave a necessary and sufficient condition in terms of the Lie algebra of G for the answer to be affirmative when G is a simply connected solvable group. For some linear real algebraic groups, this question was studied by Sibuya [1]. Even for a simple group, the answer is not affirmative in general. For instance, a direct computation shows that an element

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad(a d-b c=1)
$$

of $S L(2 ; \mathrm{R})$ lies on some 1 -parameter subgroup if and only if
either $a+d>-2$ or a $=\mathbf{d}=-1$ and $b=\boldsymbol{c}=0$. This means that, for every element A of $S L(2 ; R)$, either A or .A (possibly both) lies on a ' 1 -parameter subgroup. Thus the answer to our question is negative for $S L(2 ; \mathrm{R})$ and is affirmative for $\operatorname{SL}(2 ; \mathbf{R})$ modulo its center. Smith [1] also constructed a Lorentz metric, i.e., an indefinite Riemannian metric, on a 2 -dimensional manifold such that the (Riemannian) connection is complete, and that not every pair of points can be connected by a geodesic. It is not known whether every pair of points of a compact, connected manifold with a complete affine connection can be joined by a geodesic.
An affine connection on a compact manifold is not necessarily complete as the following example of Auslander and Markus [1] shows. Consider the Riemannian connection on the real line \mathbf{R}^{1} defined by the metric $d s^{2}=\boldsymbol{e}^{*} d x^{2}$, where x is the natural coordinate system in $\mathbf{R}^{\mathbf{1}}$; it is flat. It is not complete as the length of the geodesic from $\boldsymbol{x}=0$ to $\boldsymbol{x}=-\infty$ is equal to 2 . The translation $\boldsymbol{x} \rightarrow \boldsymbol{x}+1$ is an affine transformation as it sends the metric $e^{x} d x^{2}$ into $e e^{x} d x^{2}$. Thus the real line modulo 1, i.e., a circle, has a non-complete flat affine connection. This furnishes anon-complete, compact, homogeneous affineiy connected manifold. An example of a non-complete affine connection on a simply connected compact manifold is obtained by defining the above affine connection on the equator of a sphere and' extending it on the whole sphere so that the equator is a geodesic.
It is known that every metrizable space admits a complete uniform structure (compatible with the topology) (Dieudonné [I]). Nomizu and Ozeki [I] proved that, given a Riemannian metric g on a manifold M, there exists a positive functionfon M such that $\mathrm{f}-\mathrm{g}$ is a complete Riemannian metric.

Note 3. Ricci tensor and scalar curvature

Analogous to the theorem of Schur (Theorem 2.2 of Chapter .V), we have the following classical result.

Theorem 1. Let M bea connected Riemannian manifold with metric tensor g and Ricci tensor S. If $S=\lambda g$, where $\boldsymbol{\lambda}$ is a function on M , then $\boldsymbol{\lambda}$ is necessarily a constant provided that $\mathrm{n}=\operatorname{dim} \mathbf{M} \geqq 3$.
Proof. The simplest proof is probably by means of the
classical tensor calculus. Let $\boldsymbol{g}_{i j \boldsymbol{j}} \boldsymbol{R}_{\boldsymbol{i j k \boldsymbol { k }}}$ and $\boldsymbol{R}_{\boldsymbol{i} \boldsymbol{j}}$ be the components of the metric tensor g , the Riemannian curvature tensor R and the Ricci tensor S, respectively, with respect to a local coordinate system $\boldsymbol{x}^{\mathbf{1}}, \ldots, \boldsymbol{x}^{\mathbf{n}}$. Then Bianchi's second identity (Theorem 5.3 of Chapter III) is expressed by

$$
R_{i j k l ; m}+R_{i j m ; k}+R_{i j m b ; l}=0 .
$$

Multiplying by $g^{i \mathbf{k}}$ and $\boldsymbol{g}^{\boldsymbol{j}}$, summing with respect to $\mathrm{i}, \mathrm{j}, k$ and \boldsymbol{l} and finally using the following formulas

$$
R_{i j k l}=-R_{j i k l}=-R_{i j k}, \quad \Sigma_{i, k} g^{i k} R_{i j k l}=R_{j l}=\lambda g_{j l}
$$

we obtain

$$
(n-2) \lambda_{; m}=0 .
$$

Hence $\boldsymbol{\lambda}$ is a constant.
QED.
A Riemannian manifold is called an Einstein manifold if $\mathrm{S}=\lambda g$, where λ is a constant.
The following proposition is due to Schouten and Struik [1].
Propostrion 2. If M is a 3 -dimensional Einstein manifold, then it is a space of constant curvature.

Proof. Let p be any plane in $\mathrm{T},(\mathrm{M})$ and let X_{1}, X_{2}, X_{3} be an orthonormal basis for $T_{x}(M)$ such that p is spanned by $X_{1}, X_{\mathbf{2}}$. Let $p_{i j}$ be the plane spanned by X_{i} and $X_{j}(i \neq j)$ so that $p_{i j}=\boldsymbol{p}_{i i}$. Then

$$
\begin{aligned}
S\left(X_{1}, X_{1}\right) & =K\left(p_{12}\right)+K\left(p_{13}\right) \\
S\left(X_{2}, X_{2}\right) & =K\left(p_{21}\right)+ \\
S\left(X_{3}, X_{3}\right) & =K\left(p_{31}\right)+K\left(p_{22}\right),
\end{aligned}
$$

where $K\left(p_{i j}\right)$-denotes the sectional curvature determined by the plane $P_{i j}$. Hence we have

$$
S\left(X_{1}, X_{1}\right)+S\left(X_{2}, X_{2}\right)-S\left(X_{3}, X_{3}\right)=2 K\left(p_{12}\right)=2 K(p)
$$

Since $S\left(X_{i}, X_{i}\right)=1$, we have $\boldsymbol{K}(\boldsymbol{p})=\frac{1}{2} \lambda .7$ QED.
Remark. The above formula implies also that, if $0<c<$ $S(X, \mathrm{X})<2 c$ for all unit vectors $X \in T_{x}(M)$, then $\mathrm{K}(\mathrm{p})>0$ for all planes p in $T_{s}(M)$. Similarly, if $2 \mathrm{c}<\boldsymbol{S}(\boldsymbol{X}, X)<c<0$ for all unit vectors $X \bullet T_{s}(M)$, then $K(p)<0$ for all planes p in $T_{s}(M)$.

Going back to the general case where $\mathrm{n}=\operatorname{dim} \mathrm{M}$ is arbitrary, let X,,... , X_{n} be an orthonormal basis for T,(M). Then $S\left(X_{1}, X_{1}\right)+\cdots+S\left(X_{n}, X_{n}\right)$ is independent of the choice of orthonormal basis and is called the scalar curvature at x . In terms of the components $R_{i j}$ and $g_{i j}$ of S and g , respectively, the scalar curvature is given by $\Sigma_{i, j} g^{i j} R_{i j}$.

Note 4. Spaces of constant positive curvature

Let M be an n -dimensional, connected, complete Riemannian manifold of constant curvature $1 / a^{2}$. Then, by Theorem 3.2 of Chapter V and Theorem 7.10 of Chapter VI, the universal covering manifold of M is isometric to the sphere S^{n} of radius a in \mathbf{R}^{n+1} given by $\left(x^{1}\right)^{2}+\cdots+\left(x^{n+1}\right)^{2}=a^{2}$, that is, $\mathrm{M}=S^{n} / G$, where G is a finite subgroup of $O(n+1)$ which acts freely on S^{n}.

In the case where n is even, the determination of these groups G is extremely simple. Let $\chi(M)$ denote the Euler number of M . Then we have (cf. Hu [1; p. 277]) 4

$$
2=\chi\left(S^{n}\right)=\chi(M) \times \text { order of } \mathrm{G} \quad \text { (if } \mathrm{n} \text { is even). }
$$

Hence, G consists of either the identity I only or Z and another element A of $O(n+1)$ such that $A^{2}=I$. Clearly, the eigen-values of A are ± 1. Since A can not have any fixed point on S^{n}, the eigenvalues of A are all equal to -1 . Hence, $A=-I$. We thus obtained
тнеовем 1. Every connected, complete Riemannian manifold M of even dimension n with constant curvature $1 / a^{2}$ is isometric either to the sphere S^{n} of radius a or to the real projective space $S^{n} /\{ \pm I\}$.
The case where n is odd has not been solved completely. The most general result in this direction is due to Zassenhaus [2].

тнеовem 2. Let G be a finite subgroup of $O(n+1)$ which acts freely on S^{n}. Then, any subgroup of G of order $p q$ (where p and q^{q} are prime numbers, not necessarily distinct) is cyclic.
Proof. It suffices to prove that if G is order $p q$, then G is cyclic. First, consider the case G is of order \boldsymbol{p}^{2}. Then, G is either cyclic or a direct product of two cyclic groups G_{1} and G_{2} of order p (cf. Hall [1, p. 49]). Assuming the latter, let. A and B be generators of
G_{1} and G_{2}, respectively. Since every element $\mathrm{T} \neq \mathrm{I}$ of G is bf order p, we have $T\left(\Sigma_{i=0}^{p-1} T^{i} y\right)=\Sigma_{i=0}^{p-1} T^{i} y$ for each y $\in \mathbf{R}^{n+1}$. Since T has no fixed point on S^{n}, we have

$$
\Sigma_{i=0}^{p-1} T^{i} y=0 \quad \text { for } y \in \mathbf{R}^{n+1}
$$

By setting $\mathrm{T}=A^{i} B$ and $\mathrm{y}=\mathrm{x}$, we obtain

$$
\Sigma_{j=0}^{p-1}\left(A^{i} B\right)^{j} x=0 \quad \text { for } x \in \mathbf{R}^{n+1} \quad \text { and } \quad i=0,1, \ldots p-1
$$

and hence

$$
0=\sum_{i=0}^{p-1} \sum_{j=0}^{p-1}\left(A^{i} B\right)^{j} x=\sum_{j=0}^{p-1} \sum_{i=0}^{p-1} A^{i j} B^{i} x \quad \text { for } \mathrm{x} \in \mathbf{R}^{n+1} .
$$

On the other hand, by setting $\mathrm{T}=A^{j}$ and $\mathrm{y}=B^{j} x$, we obtain

$$
\Sigma_{i=0}^{p-1} A^{i j} B^{i} x=0 \quad \text { for } x \in \mathbf{R}^{n+1} \text { and } \quad j=1,2, \ldots, \mathrm{p}-1
$$

Hence, we have

$$
0=\Sigma_{j=0}^{p-1} \sum_{i=0}^{p-1} A^{i j} B^{i} x=\sum_{i=0}^{p-1} A^{0} B^{0} x=p x \quad \text { for } \mathrm{x} \in \mathbf{R}^{n+1}
$$

which is obviously a contradiction. Thus, G must be cyclic.
Second, consider the case where $p<q$. Then G is either cyclic or non-abeiian. Assuming that G is non-abelian, let S and A be elements of order p and q, respectively. Then, we have (cf. Hall [1, p. 511)

$$
S A S^{-1}=A^{t}
$$

where $1<t<q$ and $t^{p} \equiv 1 \bmod \mathrm{q}$, and every element of G can be written uniquely as $A^{\prime} S^{\prime \prime}$, where $0 \leqq i \leqq q-1$ and $0 \leqq k \leqq$ $p-1$. For each integer k, define an integer $f(k)$ by $f(k)=$ $1+t+t^{2}+\cdots+t^{k-1}$. We then have
(a) $f(p) \equiv 0 \bmod q$;
(b) $f(k) \equiv 1 \bmod q$, if $k \equiv 1 \bmod p$;
(c) $\left(A^{i} S\right)^{k}=A^{i \cdot f(k)} S^{k}$.

Indeed, (a) follows from $t^{p} \equiv 1 \bmod \mathrm{q}$, and (c) follows from $S A S^{-1}=A^{t}$. For each $i, 0 \leqq i \leqq q-1$, let G_{i} be the cyclic subgroup of G^{\prime} generated by $A^{i} S$. Since ($\left.\mathrm{A}^{\prime} \mathrm{S}\right)^{\prime \prime}=A^{i \cdot f(p)} S^{p}=I, G_{i}$ is of order p. Hence we have either $G_{i} \cap G_{j}=\{I\}$ or $G_{i}=\mathrm{G}_{j}$ for $\mathbf{0} \leqq i, \mathrm{j} \leqq \mathrm{q}-1$. We prove that $G_{i} \cap G_{j} \doteq\{Z)$ if $\mathrm{i} \neq \mathrm{j}$, If $G_{i}=G_{i}$, there exists an integer k such that $\left(A^{i} S\right)^{k}=A^{i} S$. By (c), we have $A^{i \cdot f(k)} S^{k}=A^{j}$ Snd, hence, $S^{k}=\mathrm{S}$. This implies $k \equiv 1$ $\bmod p$ and $f(k) \equiv 1 \bmod q$. Hence, we have $A^{i} S^{k}=A^{i} S$, which
implies $i=j$. Let N be the normal subgroup of G generated by 4 . Since N is of order q and since G_{i} is of order p, we have $G_{i} \cap \mathrm{~N} \underset{=}{ }$ $\{I\}$ for each $i, 0 \leqq i \leqq q-1$. By counting the orders of N, G_{0}, $G_{1}, \ldots G_{q-1}$, we see that G is a disjoint union of $\mathrm{N}, G_{0}-$ '(I), $\left.G_{1}-\mathrm{ii}\right\}, \ldots, G_{a-1}-\{I\}$. Therefore we have

$$
\Sigma_{T \in N} T x+\Sigma_{T_{\epsilon} G_{0}} T X+\cdots+\Sigma_{T \epsilon G_{q-1}} T x=\Sigma_{T_{\epsilon} G} T x+q x
$$

On the other hand, for every $T_{0} \in N$, we have

$$
T_{0}\left(\Sigma_{T \in N} T x\right)=\Sigma_{T \epsilon N} T_{0} T x=\Sigma_{T \in N} T x \quad \text { for } x \in \mathbf{R}^{n+1}
$$

Since G acts freely on S^{n}, we have $\Sigma_{T \in N} T x=0$. By the same reasoning, we have $\Sigma_{\boldsymbol{T} \epsilon G_{i}} \mathrm{Tx}=0$ for $i=0,1, \ldots, \mathrm{q}-1$ and $\Sigma_{\boldsymbol{T} \boldsymbol{\epsilon} \boldsymbol{G}} \mathrm{TX}=0$. Hence, we have $q \boldsymbol{x}=0$ for each $\boldsymbol{x} \in \mathbf{R}^{n+1}$, which is obviously a contradiction.

QED.
Recently, Wolf [1] classified the homogeneous Riemannian manifolds of constant curvature $1 / a^{2}$. His result may be stated as follows.

THEOREM 3. Let M $=S^{n} / G$ be a homogeneous Riemannian manifold of constant curvature $1 / \boldsymbol{a}^{\mathbf{2}}$.
(1) $Z f n+1=2 m$ (but not divisible by 4), then

$$
S^{n}=\left\{\left(z^{1}, \ldots, z^{m}\right) \in \mathbf{C}^{m} ;\left|z^{1}\right|^{2}+\cdots+\left|z^{m}\right|^{2}=a^{2}\right\}
$$

and G is a finite group of matrices of the form $A Z_{\text {, }}$,, where $\lambda \in C$ with $|\lambda|=1$ and I_{m} is the $\mathrm{m} \times \mathrm{m}$ identity matrix;

```
(2) If \(n+1=4 m\), then
    \(S^{n}=\left\{\left(q^{\prime}, \ldots, q^{\prime \prime}\right) \bullet \mathbf{Q}^{m} ;\left|q^{1}\right|^{2}+\cdots+\left|q^{m}\right|^{2}=a^{2}\right\}\)
```

(where Q is the field of quaternions), and G is a finite group of matrices of the form ρI_{m}, where $p \in Q$ with $|\rho|=1$.
Conversely, if G is a finite group of the type described in (1) or (2), then $M=S^{n} / G$ is homogeneous.

In view of Theorem 1, we do not have to consider the case where n is even.

The reader interested in the classification problem of elliptic spaces, i.e., spaces of constant positive curvature, is referred to the following papers: Vincent [1], Wolf [5]; for $n=3, \mathbf{H}$. Hopf [1] and Seifert and Threlfall [1]. Milnor [I] partially, generalized

Theorem 2 to the case where G is a group of homeomorphisms acting freely on S^{n}. Calabi and Markus [1] and Wolf [3, 4] studied Lorentz manifolds of constant positive curvature. See also Helgason [1]. For the study of spaces covered by a homogeneous Riemannaan manifold, see Wolf [2].

Note 5. Flat Riemannlan manifolds

Let $\mathrm{M}=\mathbf{R}^{n} / G$ be a compact flat Riemannian manifold, where G is a discrete subgroup of the group of Euclidean motions of \mathbf{R}^{n}. Let N be the subgroup of G consisting of pure translations. Then
(1) N is an abelian normal subgroup of G and- is free on n generators;
(2) N is a maximal abelian subgroup of G ;
(3) G / N is finite;
(4). G has no finite subgroup.

Indeed, (1) and (3) have been proved in (4) of Theorem 4.2 of Chapter V. To prove (2), let K be any abelian subgroup of G containing N . Since G / K is also finite by (2), \mathbf{R}^{n} / K is a compact flat Riemannian manifold. Since K is an abelian normal subgroup of K, K contains nothing but translations by Lemma 6 for Theorem 4.2, of Chapter V. Hence $K=\mathrm{N}$. Finally, (4) follows from the fact that G'acts freely on \mathbf{R}^{n}. In fact, any finite group of Euclidean motions has a fixed point (cf. the proof of Theorem 7.1 of Chapter IV) and hence G has no finite subgroup.

Auslander and Kuranishi [I] proved the converse:
Let G be a group with a subgroup N satisfying the above conditions (1), (2), (3) and (4). Then G can be realized as a group of Euclidean motions of \mathbf{R}^{n} such that \mathbf{R}^{n} / G is a compact fat Riemannian manifold.

Let \mathbf{R}^{n} / G and $\mathbf{R}^{n} / G^{\prime}$ be two compact flat Riemannian manifolds. We say that they are equivalent, if there exists an affine transformation φ such that $\varphi G q^{-1}=\mathrm{G}^{\prime}$, that is, if G and G^{\prime} are conjugate in the group of affine transformations of \mathbf{R}^{n}. In addition to (4) of Theorem 4.2 of Chapter V, Bieberbach [1] obtained the following results :
(a) If G and G^{\prime} are isomorphic as abstract group, then \mathbf{R}^{n} / G and $\mathbf{R}^{n} / G^{\prime}$ are equivalent.
(b) For each n there are only a finite number of equivalence classes of compact fat Riemannian manifoilds \mathbf{R}^{n} / G

We shall sketch here an outline of the proof. We denote by (A, p) an affine transformation of \mathbf{R}^{n} with linear part A and translation part p. Let N be the subgroup of G consisting of pure translations and let (Z, t_{1}),
$\left(I, t_{n}\right)$ be a basis of N, where Z is the identity matrix and $t_{i} \in \mathbf{R}^{n}$. Since $(\mathrm{A}, p)\left(I, t_{i}\right)(\mathrm{A}, p)^{-1}=$ $\left(I, A t_{i}\right) \in \mathrm{N}$ for any $(\mathrm{A}, p) \in \mathrm{G}$, we can write $A t_{i}=\sum_{j=1}^{n} a_{i}^{j} t_{j}$, where each a_{i}^{j} is an integer. Let T be an ($\mathrm{n} \times \mathrm{n}$)-matrix whose i-th column is given by t_{i}, that is, $T=\left(t_{1} \ldots \mathrm{t}\right.$,). Then $\left(a_{i}^{j}\right)=$ $T^{-1} A T$ is unimodular. (A matrix is called unimodular if it is nonsingular and integral together with its inverse.)

To prove (a), let $\left(A^{\prime}, p^{\prime}\right) \in G^{\prime}$ be the element corresponding to $(\mathrm{A}, p) \in \mathrm{G}$ by the isomorphism $\mathrm{G}^{\prime} \approx \mathrm{G}$. Let N^{\prime} be the subgroup of G^{\prime} corresponding to N by $\mathrm{r}^{\prime} \mathrm{e}$ e isomorphism $\mathrm{G}^{\prime} \approx \mathrm{G}$. Then N^{\prime} is normal and maximal abelian in G'. Hence N^{\prime} is the subgroup of G^{\prime} consisting of pure translations. Let (Z, t_{i}^{\prime}) correspond to (Z, t_{i}). Since ($\left.\mathrm{A}^{\prime}, \mathrm{p}^{\prime}\right)\left(\mathrm{Z}, t_{i}^{\prime}\right)\left(\mathrm{A}^{\prime}, p^{\prime}\right)^{-1}=\left(\mathrm{Z}, A^{\prime} t_{i}^{\prime}\right),\left(\mathrm{Z}, A^{\prime} t_{i}^{\prime}\right)$ corresponds to ($\mathrm{Z}, A t_{i}$). Hence we have $A^{\prime} t_{i}^{\prime}=\sum_{j=1}^{n} a_{i}^{j} t_{j}^{\prime}$. In other words, if ${ }^{-}$we set $T^{\prime}=\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)$, then $T^{\prime-1} A^{\prime} T^{\prime}=T^{-1} A T$. Set

$$
G^{*}=\left\{\left(T^{-1} A T, T^{-1} p-T^{\prime-1} p^{\prime}\right) ; \quad(A, p) \in G\right\}
$$

Then G^{*} is a group which contains no pure translations and hence is finite. Let $u \bullet \mathbf{R}^{n}$ be a point left fixed by G^{*}. Then we have

$$
(T, T u)^{-1}(A, p)(T, T u)=\left(T^{\prime}, 0\right)^{-1}\left(A^{\prime}, \underset{\text { for all }}{p^{\prime}}(A, p) \in G .\right.
$$

This completes the proof of (a).
To prove (b), it suffices to show that there are only a finite number of mutually non-isomorphic groups G such that \mathbf{R}^{n} / G are compact flat Riemannian manifolds. Each G determines a group extension

$$
0 \rightarrow N \rightarrow G \rightarrow K \rightarrow 1
$$

where the' finite group $\mathrm{K}=\mathrm{G} / \mathrm{N}$ acts linearly on N when N is considered as a subgroup of \mathbf{R}^{n} Given such a finite groun K. the set of group extensions $0 \rightarrow N \rightarrow G \rightarrow K \rightarrow 1$ is given by $H^{2}(K, N)$. Since K is finite and N is finitely generated, $H^{2}(K, N)$ is finite. As we have seen in the proof of (a), if we identify N with the integral lattice points of \mathbf{R}^{n}, then $K=G / N$ is given by unimodular matrices. Let K and K^{\prime} be two finite groups of unimodular matrices - of degree n which are conjugate in the group $G L(n ; \mathbf{Z})$ of all
unimodular matrices so that $S K S^{-1}=K^{\prime}$ for some $S \in G L(n ; \mathbf{Z})$. The mapping which sends $\ell \in \mathrm{N}$ into $S t \in N$ is an automorphism of N . Hence S induces an isomorphism, $H^{2}(K, N) \approx H^{2}\left(K^{\prime}, \mathrm{N}\right)$, and if $0 \rightarrow N \rightarrow G^{\prime} \rightarrow K^{\prime} \rightarrow 1$ is the element of $H^{2}\left(K^{\prime}, \mathrm{N}\right)$ correspond ing to an element $0 \rightarrow N \rightarrow G \rightarrow K \rightarrow 1$ of $H^{2}(K, N)$, then G and G^{\prime} are isomorphic. Thus our problem is reduced to the following theorem of Iordan :

There are only a finite number of conjugate classes of finite subgroups of $G L(n ; Z)$.

This theorem of Jordan follows from the theory of MinkowskiSiegel. Let H_{n} be the space of all real symmetric positive definite matrices of degree n . Then $G L(n ; \mathbf{Z})$ acts properly discontinuously on H_{n} as follows:
$\mathrm{x} \rightarrow{ }^{t} S X S$ for $X \in H_{n}$ and $S \in G L(n ; \mathbf{Z})$.
Let R be the subset of. H_{n} consisting of reduced matrices in the sense of Minkowski. Denote ${ }^{1} S X S$ by $S[X]$. Then
(i) $\bigcup_{S \in G(A n ; \mathbf{z})} S[R]=H_{n}$;
(ii) The set F defined by $F=\{S \in G L(n ; \mathbf{Z}) ; S[R] \cap R=$ nonempty) is a finite set.

The first property of R implies that any finite subgroup K of $G L(n ; \mathbf{Z})$ is conjugate to a subgroup of $G L(n ; \mathbf{Z})$ contained in F. Indeed, let $X_{0} \in H_{n}$ be a fixed point of K (for instance, set $X_{0}=$ $\left.\Sigma_{A \in K} * A A\right)$. Let $S \in G L(n ; \mathbf{Z})$ be such that $S\left[X_{0}\right] \in R$. Then $S^{-1} K S \subset F$. Since F is finite, there are only a finite number of conjugate classes of finite subgroups of $G L(n ; \mathbf{Z})$.

QED.
As references we mention Minkowski [I], Biebcrbach [2], Bieberbach and Schur [I] and Siegel [l].

Note that (a) implies that two compact flat Riemannian manifolds are equivalent if and only if they are homeomorphic to each other. Although (b) does not hold for non-compact fiat Riemannian manifolds, there are only a finite number of homeomorphism classes of complete flat Riemannian manifolds for each dimension (Bieberbach [3]).

For the classification of 3-dimensional complete flat Riemannian manifolds, see Hantzche and Wendt [1] and Nowacki [1].

Most of the results for flat Riemannian manifolds cannot be generalized to flat affine connections, see, for example, Auslander [I].

Note 6. Parallel displacement of curvature

Let M and M^{\prime} be Riemannian manifolds and $\varphi: M \rightarrow M^{\prime}$ a diffeomorphism which preserves the curvature tensor fields. In general, this does not imply the existence of an isometry of M onto M^{\prime}. For instance, let M be a compact Riemannian manifold obtained by attaching a unit hemisphere to each end of the right circular cylinder $S^{1} \times[0 ; 1]$, where S^{1} is the unit circle, and then smoothing out the corners. Similarly, let M^{\prime} be a compact Riemannian manifold obtained by attaching a unit hemisphere to each end of the right circular cylinder $S^{1} \times[0,2]$ and then smoothing out the corners in the same way. Let $\varphi: M \rightarrow M$ be a diffeomorphism which induces an isometry on the attached hemispheres and their neighborhoods. Since the cylinder parts of M and M^{\prime} are flat, φ preserves the curvature. tensor fields. However, M and M^{\prime} cannot be isometric with each other

Ambrose [1] obtained the following result, which generalizes Theorem 7.4 of Chapter VI in the Riemannian case.

Let M and M^{\prime} be complete, simply connected Riemannian manifolds, x an arbitrarily fixed point of M and x^{\prime} an arbitrarily fixed point of M^{\prime}. Let $f: \mathrm{T},(\mathrm{M}) \rightarrow T_{x^{\prime}}\left(M^{\prime}\right)$ be a fixed orthogonal transformation. Let τ be a simply broken geodesic of M from \boldsymbol{x} to a pointy and $\boldsymbol{\tau}^{\prime}$ the corresponding simply broken geodesic of M^{\prime} from x^{\prime} to a point. y ', the correspondence being given by f through parallel displacement. Let p (resp. p^{\prime}) be a plane in $T,(M)$ (resp. $\left.T_{x^{\prime}}\left(M^{\prime}\right)\right)$ and q (resp. q^{\prime}) the plane in $\left.T_{\text {,,(M }}\right)$ (resp. $T_{\boldsymbol{v}^{\prime}}\left(M^{\prime}\right)$) obtained from p (resp. p^{\prime}) by parallel displacement along $\boldsymbol{\tau}$ (resp. τ^{\prime}). Assume that p^{\prime} corresponds top by f. If the sectional curvature $K(q)$ is equal to the sectional curvature $K^{\prime}\left(q^{\prime}\right)$ for all simply broken geodesics τ and all planes p in $T,(M)$, then there exists a unique isometry $\mathrm{F}: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ whose differential at \boldsymbol{x} coincides with f .

Hicks [I] obtained a similar result in the case of affine connection; his result generalizes Theorem 7.4 of Chapter VI.

Note 7. Symmetric spaces

Although the theory of symmetric spaces, in particular, Riemannian symmetric spaces, will be taken up in detail in Volume II, we shall give here its definition and basic propertues.

Let G be a connected Lie group with an involutive automorphism $\sigma\left(\sigma^{2}=1, \sigma \neq 1\right)$. Let H be a closed subgroup which lies between the (closed) subgroup of all fixed points of σ and its identity component. We shall then say that G / H is a symmetric homogeneous space (defined, by a). Denoting by the same letter $\boldsymbol{\sigma}$ the involutive automorphism of the Lie algebra \mathfrak{g} induced by $\boldsymbol{\sigma}$, we have $\boldsymbol{g}=\mathrm{m}+\mathfrak{h}$ (direct sum), where $\mathfrak{h}= \begin{cases}\text { Xc } & \mathfrak{g} \text {; }\end{cases}$ $\left.X^{\sigma}=X\right\}$ coincides with the subalgebra corresponding to H and $\mathfrak{m}=\left\{X \in \mathrm{~g} ; X^{a}=-X\right\}$. We have obviously $[\mathfrak{b}, \mathrm{m}] \subset \mathrm{m}$ and $[\mathrm{m}, \mathrm{m}] \subset \mathfrak{b}$.
The automorphism a of G also induces an involutive diffeomorphism σ_{o} of G/H such that $\sigma_{o}(\pi x)=\pi\left(x^{a}\right)$ for every $x \in G$, where π is the canonical projection of G onto G / H. The origin $\mathrm{o}=-\mathrm{r}(\mathrm{e})$ of G / H is then an-isolated fixed point of σ_{0}. We call σ_{o} the symmetry around o.
By Theorem 11.1 of Chapter II, the bundle $G(G / H, H)$ admits an invariant connection Γ determined by the subspace m. We call this connection the canonical connection in $G(G / H, \mathrm{H})$.

тнеовем 1. For a symmetric space G / H, the canonical connection Γ in $G(G / H, H)$ has the following properties:
(1) Γ is invariant by the automorphism a of G (which is a bundle automorphism of $G(G / H, H)$). ;
(2) The curvature form is given by $\Omega(X, Y)=-(1 / 2)[X, \mathrm{Y}] \in \mathfrak{h}$, where X and Y are arbitrary left invariant vector fields belonging to m ;
(3) For any $X \in \mathbf{m}$, let $\mathrm{a}_{1}=\exp t X$ and let $x_{t}=\pi\left(a_{t}\right)=a_{t}(o)$. The parallel displacement of the fibre H along the curve x_{t} coincides with the left translation $4 \rightarrow a_{t} h, \mathrm{~h} \in \mathrm{H}$.

Proof. (1) follows easily from $\mathfrak{m}^{\boldsymbol{\sigma}}=\mathrm{m}$. (2) is contained in Theorem 11.1 of Chapter II. (3) follows from the fact that $a_{t} h$ for any fixed $h \in H$ is the horizontal lift through h of the curve x_{t}. QED.
The projection π gives a linear isomorphism of the horizontal subspace m at e of Γ onto the tangent space $T_{o}(G / H)$ at the origin o. Ifh $\epsilon \mathrm{H}$, then ad (h) on m corresponds by this isomorphism to the linear isotropy h, i.e., the linear transformation of $T_{o}(G / H)$ induced by the transformation h of G / H which fixes o.
Now, denoting G / H by M , we define a mapping f of G into the bundle of frames $L(M)$ over M as follows. Let u_{0} be an arbitrarily
fixed frame X_{1}, \ldots, X_{n} at o, which can be identified with a certain basis of m . For any a $\epsilon G, f\left(a^{\prime}\right)$ is the frame at $a(o)$ consisting of the images of X_{i} by the differential of a. In particular, for $h \in H, \mathrm{f}(\mathrm{h})=h \cdot u_{0}=u_{0}, \varphi(h)$, where $\varphi(h) \in G L(n ; \mathrm{R})$ is the matrix which represents the linear transformation of $T_{o}(M)$ induced by h with respect to the basis u_{0}. It is easy to see thatfis a bundle homomorphism of G into $\mathrm{L}(\mathrm{M})$ corresponding to the homomorphism φ of Hinto $G L(n ; \mathrm{R})$. If G is effective on G / H (or equivalently, if H contains no non-trivial invariant subgroup of G), then \boldsymbol{f} and φ are isomorphisms

By Proposition 6.1, of Chapter II, the canonical connection I' in $G(M, \mathrm{H})$ induces a connection in $\mathrm{L}(\mathrm{M})$, which we shall call the canonical linear connection on G / H and denote still by Γ.

тнеогем 2. The canonical linear connection on a symmetric space G / H has the following properties :
(1) Γ is invariant by G as well as the symmetry σ_{o} around 0 ;
(2) Therestricted homogeneous holonomy group of Γ at 0 is contained in the linear isotropy group I?;
(3) For any $X \in \mathfrak{m}$, let $a,=\exp t X$ and $x_{t}=\pi\left(a_{t}\right)=a$,(o). The parallel displacement $\boldsymbol{o f}$ vectors along x_{t} is the same as' the transformation by a_{1}. In particular, $\boldsymbol{x}_{\boldsymbol{t}}$ is a geodesic;
(4) The torsion tensorjeld is 0 ;
(5) Every G-invariant tensorjeld on G/H is parallel with respect to I'. In particular, the curvature tensorjeld R is parallel, i.e., $V R=0$.

Proof. (1), (2) and (3) follow from the corresponding properties in Theorem 1. (4) follows from (1) ; since the torsion tensor field T is invariant by σ_{o}, we have $\mathrm{T}(\mathrm{X}, \mathrm{Y})=\left(T\left(X^{\sigma_{o}}, Y^{\sigma_{o}}\right)\right)^{\sigma_{0}}=$ $-\mathrm{T}(-X,-Y)=-\mathrm{T}(X, Y)$ and hence $T(X, Y)=0$ for any X and Y in $T,(M)$. Thus $T=0$ at o and hence everywhere. (5) follows from (3). In fact, if K is a G-invariant tensor field, then $\nabla_{X_{0}} K=0$ for any $X_{0} \in T_{o}(M)$, since there exists $\mathrm{X} \in \mathrm{m}$ such that x_{t} in (3) has the initial tangent vector X_{0}.

QED.

Remark. $\quad \Gamma$ is the unique linear connection on G / H which has property (1). This justifies the name of canonical linear connection.

Let G / H be a symmetric space with compact H. There exists a G-invariant Riemannian metric on G / H. For any such metric g, the Riemannian connection coincides with I'. In fact, the metric
tensor field g is parallel with respect to I' by (5). Since Γ has zero torsion, it is the Riemannian connection by the uniqueness (Theorem 2.2, Chapter II).

Example. In $\mathrm{G}=S O(n+\mathrm{I})$, let σ be the involutive automorphism A $\in S O(n+1) \rightarrow S A S^{-1} \in S O(n+1)$ where S is the matrix of the form $\left(\begin{array}{rr}-1 & 0 \\ 0 & I_{n}\end{array}\right)$ with identity matrix I^{\prime}, of degree n. The identity component H^{0} of the subgroup H of fixed points of $\boldsymbol{\sigma}$ consists of all matrices of the form $\left(\begin{array}{ll}1 & 0 \\ 0 & B\end{array}\right)$, where B • $\mathrm{SO}(\mathrm{n})$. We shall write $\mathrm{SO}(\mathrm{n})$ for H^{0} with this understanding. The symmetric homogeneous space $S O(n+1) / S \Theta(n)$ is naturally diffeomorphic with the unit sphere S^{n} in \mathbf{R}^{n+1}. In fact, let $e_{0}, \mathrm{e}, \ldots, e_{n}$ be the standard orthonormal basis in \mathbf{R}^{n+1}. The mapping A $\in S O(n+1) \rightarrow$ $A e_{0} \in S^{n}$ induces a diffeomorphism of $S O(n+1) / S O(n)$ onto S^{n}. The set of vectors $A e_{1}, \ldots, A e_{n}$ can be considered as an orthonormal frame at the point $A e_{0}$ of S^{n}. This gives an isomorphism of the bundle $S O(n+1)$ over $S O(n+1) / S O(n)$ onto the bundle of orthonormal frames over S^{n}. The canonical linear connection on $S O(n+1) / S O(n)$ coincides with the Riemannian connection of S^{n} with respect to the Riemannian metric of $S^{n^{*}}$ as imbedded submanifold of \mathbf{R}^{n+1}.

A linear connection I' on a differentiable manifold M is said to be locally symmetric at $x \in M$, if there exists an involutive affine transformation of an open neighborhood U of x which has x as an isolated fixed point. This local symmetry at x , if it exists, must be of the form $\left(x^{i}\right) \rightarrow\left(-x^{i}\right)$ with respect to any normal coordinate system with origin x, since it induces the linear transformation $\mathrm{X} \rightarrow-\mathrm{X}$ in $T_{x}(M)$. We say that Γ is locally symmetric, if it is locally symmetric at every point x of M.
theorem 3. A linear connection Γ on M is locally symmetric if and only if $T=0$ and $V R=0$.

Proof. If I' is locally symmetric, then any tensor field of type (r, s) with odd $r+s$ which is invariant by the local svmmetry at \boldsymbol{x} is 0 at \boldsymbol{x}. Hence $\mathrm{T}=0$ and $\mathrm{VR}=0$ on M. The converse follows from Theorem 7.4 of Chapter VI.

QED,

Using this result and the holonomy theorem (Theorem 8.1 of Chapter II), Wong obtained

Theorem 2. Let Γ be a linear 'connection on M with recurrent curvature tensor R. Then the Lie algebra of its linear holonomy group $\Psi\left(u_{0}\right)$ is spanned by all elements of the form $\Omega_{u_{0}}(X, Y)$, where Ω is the curvature form and X and Y are horizontal vectors at $\boldsymbol{u}_{\mathbf{0}}$. In particular, we have

$$
\operatorname{dim} \Psi\left(u_{0}\right) \leqq \frac{1}{2} n(n-1)
$$

As an application of Theorem 1, we shall sketch the proof of the following
'-' Theorem 3. For a Riemannian manifold M with recurrent curvature tensor whose restricted linear holonomy group is irreducible, the curvature tensor is necessarily parallel provided that $\operatorname{dim} \mathrm{M} \geqq 3$.

Proof. Let $R_{j k l}^{i}$ be the components of the $\mathbf{T}_{3}^{1}\left(\mathbf{R}^{n}\right)$-valued function on $\mathrm{O}(\mathrm{M})$ which corresponds to the curvature tensor field \boldsymbol{R}. We apply Theorem 1 to R. Since $\boldsymbol{\Sigma}_{i, j, k, l}\left(R_{j k l}^{i}\right)^{\mathbf{2}}$ is constant on each fibre of $\mathrm{O}(\mathrm{M}), \varphi^{\mathbf{2}}$ is constanton each fibre of $P\left(u_{0}\right)$. Since φ never vanishes on $P\left(u_{0}\right)$, it is either always positive or always negative. Hence φ itself is constant on each fibre of $P\left(u_{0}\right)$. Let λ be the function on M defined' by' $\lambda(x)=1 / \varphi(u)$, where $x=$ $\pi(u) \in M$. Then AR is a parallel tensor field. If we denote by S the Ricci tensor field, then λS is also parallel. The irreducibility of M implies that $\lambda S=\mathrm{c} \cdot \mathrm{g}$, where c is a constant and g is the metric tensor (cf. Theorem 1 of Appendix 5). If $\operatorname{dim} M \geqq 3$ and if the Ricci tensor S is non\&trivial, then λ is a constant function by Theorem 1 of Note 3 . Since λR is parallel and since λ is a constant, R is parallel.

Next we shall consider the case where the Ricci tensor S vanishes identically. Let $\nabla \mathrm{R}=\mathrm{R} \otimes$ a'and let $R_{j k l}^{i}$ and a,, be the components of R and a with respect to a local coordinate system $\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{n}$. By Bianchi's second identity (Theorem 5.3 of Chapter III; see also Note 3), we have

$$
\cdot R_{j k l}^{i} \alpha_{m}+R_{j l m}^{i} \alpha_{k}+R_{j m k}^{i} \alpha_{l}=0
$$

Multiply by $g^{j m}$ and sum with respect to j and m. Since the Ricci : tensor vanishes identically, we have $\Sigma_{j, m} g^{j m} R_{j m}^{i}=\Sigma_{j, m} g^{j m} R_{j m k}^{i}=0$. Hence,

$$
\Sigma_{j} R_{j k l}^{i} \alpha^{j}=0, . \text { where } \alpha^{j}=\Sigma_{m} g^{j m} \alpha_{m}
$$

This equation has the following geometric implication. Let x be an arbitrarily fixed point of M and let X and Y be any vectors at x. If we denote by V the vector at x with components $\alpha^{j}(x)$, then the linear transformation $R(X, Y): T_{x}(M) \rightarrow T_{x}(M)$ maps V into the zero vector. On the other hand, by the Holonomy Theorem (Theorem 8.1 of Chapter II) and Theorem 1 of this Note (see also Wong [1]), the Lie algebra of the linear holonomy group $\Psi(x)$ is spanned by the set of all endomorphisms of $T_{x}(M)$ given by $R(. Y, Y)$ with $X, Y \in T_{x}(M)$. It follows that V is invariant by $\Psi(x)$ and hence is zero by the irreducibility of $\mathrm{Y}(\mathrm{x})$. Consequently, ∇R vanishes at x. Since x is an arbitrary point of M, R is parallel.

QED.
On the other hand, every non-flat 2-dimensional Riemannian manifold is of recurrent curvature if the sectional curvature does not vanish anywhere.

COROLlary. If M is a complete Riemannian manifold with recurrent curvature tensor, then the universal covering manifold \tilde{M} of M is either a s)mmetric space or a direct product of the Euclidean space \mathbf{R}^{n-2} and a 2dimensional Riemannian manifold.

Proof. Use the decomposition theorem of de Rham (Theorem 6.2 of Chapter IV) and Theorem 3 above together with the following fact which can be verified easily. Let M and M^{\prime} be manifolds with linear connections and let R and R' be their curvature tensors, respectively. If the curvature tensor of $M \times M^{\prime}$ is recurrent, then there are only three possibilities: (1) $\nabla \mathrm{R}=0$ and $\nabla R^{\prime}=0 ;(2) R=0$ and $\nabla R^{\prime} \neq 0$; (3) $\nabla R \neq 0$ and $R^{\prime}=0$. (See also Walker [I].)

Note 9. The automorphism group of a geometric structure

Given a differentiable manifold M, the group of all differentiable transformations of M is a very large group. However, the group of difl'erentiable transformations of M leaving a certain geometric structure is often a Lie group. The first result of this nature was given by H. Cartan [1] who proved that the group of all complex analytic transformations of a bounded domainin \mathbf{C}^{n} is a Lie group. Myers and Steenrod [I] proved that the group of all isometries of a

Riemannian manifold is a Lie group. Bochner and $\$ Iontgomery [1,2|proved that the group of all comples analyid hansformations of a compact comples manifold is a complexlic uroup: they made use of a general theorem concerning 3 locally comprai group of differentiable transformations which is now know in tobre valid, \& the form of Theorem 4.6 , Chapter 1 . The theorem thatific group of all affine transformations of an affincly connceted manitidel is a Lie group was first proved by Nomizu|l|under the assmuption of completeness; this assumption was later removed byH lanoranl Moximoto [1]. Kobayashi (1, 6] proved that the group of all automorphisms of an absolute parallolism is a Lis gromp h iinbedding it into the manifold. This method can be applied to I lw absolute parallelism of the bundle of frames $L(M)$ of an a flimel connected manifold M (cf. Propositic n 2.6 of Chapter III anc Thcorcm 1.5 of Chapter VI).

Automorphisms of a comples structure and a Kählerian structure will be discussed in Yolume II.

A global theory of Lie transformation groups was studied in Palais [17. We shall here state one theorem which has. a direct bearing on us. Let G be a certain group of differentiable tramsformations acting on a differentiable manifold M. Let \mathfrak{g}^{\prime} be the set of all vector fields X on M which generate a global 1 -parameter group of transformations which belong to the given group G. let \mathfrak{g} be the Lie subalgebra of the Lic algebra $\mathfrak{X}(M)$ gencrated by \mathfrak{a}^{\prime}.

тнеоrem. If \mathfrak{g} is finite-dimensiona/, then G admits a lie sroup structure (such that the mapping $\mathrm{G} \times M \rightarrow M$ i s ...differentiable) and $\mathfrak{g} \equiv \mathbf{g}^{\prime}$. The Lie algebra of G is naturally isomorphic with \mathfrak{g}.

We have the following applications of this result. If G is the group of all affine transformations (resp. isometrics) of an affinely connected (resp. Riemannian) manifold M, then g^{\prime} is the set of all infinitesimal affine transformations (resp. infinitesimal isometrics) which are globally integrable (note that if M is complete, these infinitesimal transformations are always globally integrable by Theorem 2.4 of Chapter VI). By virtue of 'Theorem 2.3 (resp. Theorem 3.3) of Chapter VI, it follows thata is finite-dimensional. By the theorem above, G is a Lic group.
"The Lic algebra $i(M)$ of al 1 n f fnitesimal isometrics of a Ricmannian manifold M was studied in-detail by Nomizu| $8,9 /$, At each
point \boldsymbol{x} of M , a certain Lie algebra $\mathrm{i}(\mathrm{x})$ is constructed by using-the curvature tensor field and its covariant differentials. If M is simply connected and analytic together with the metric, then $\mathrm{i}(\mathrm{M})$ is naturally isomorphic with $\mathfrak{i}(x)$, where x is an arbitrary point.

Note 10. Groups of isometries and affine transformations with maximum dimensions

In Theorem 3.3 of Chapter VI, we proved that the group $\mathfrak{I}(M)$ of isometries of a connected, n-dimensional Riemannian manifold M is of dimension at most $\frac{1}{2} n(n+1)$ and that if $\operatorname{dim} 3(M)=$ $\frac{1}{2} n(n+1)$, then M is a space of constant curvature. We shall outline the proof of the following theorem.
theorem 1. Let M be a connected, n-dimensional Riemannian manifold. If $\operatorname{dim} \mathfrak{I}(M)=\frac{1}{2} n(n+1)$, then M is isometric to one of the following spaces of constant curvature:
(a) An n-dimensional Euclidean space \mathbf{R}^{n};
(b) An n-dimensional sphere S^{n};
(c) An n-dimensional real projective space $S^{n} /\{ \pm I\}$;
(d) An n-dimensional, simply connected hyperbolic space.

Proof. From the proof of Theorem 3.3 of Chapter VI, we see that M is homogeneous and hence is complete. The universal covering space \dot{M} of M is isometric to one of (a), (b) and (d) above (cf. Theorem 7.10 of Chapter VI). Every infinitesimal isometry X of M induces an infinitesimal isometry \tilde{X} of M^{5}. Hence, $\frac{1}{2} n(n+1)=\operatorname{dim} 3(M) \leqq \operatorname{dim} 3\left(M^{-}\right) \leqq \frac{1}{2} n(n+1)$, which implies that every infinitesimal isometry 8 of M^{-1} induced by an infinitesimal isometry X of M. If \tilde{M} is isometric to (a) or (d), then there exists an infinitesimal isometry \tilde{X} of M which vanishes only at a single point of \tilde{M}. Hence M is simply connected in case the at a single point of \tilde{M}. Hence \tilde{M} is isometric to a sphere S^{n} for
curvature is nonpositive. If any antipodal points \boldsymbol{x} and \boldsymbol{x}^{\prime}, there exists an infinitesimal isometry \hat{X} of $\tilde{M}=S^{n}$ which vanishes only at x and x^{\prime}. This implies that $M=S^{n}$ or $M=S^{n} /\{ \pm I>$ We see easily that if M is \cdot isometric to the projective space $S^{n} /\{ \pm I\}$, then $3(\mathrm{M})$ is isomorphic to $O(n+1)$ modulo its center and hence of dimension $\frac{1}{2} n(n+$ dED.
$\mathfrak{A}(M)$ of affine transformations of a connected, n -dimensional manifold M with an affine connection is of dimension at most $n^{2}+n$ and that if $\operatorname{dim} \mathfrak{U}(M)=n^{2}+n$, then the connection is flat. We prove
тheorem 2. If $\operatorname{dim} X(M)=n^{2}+n$, then M is an ordinary affine space with the natural flat affine connection.

Proof. Every element of ' $u(M)$ induces a transformation of $L(M)$ leaving the canonical form and the connection form invariant (cf. $\S l$ of Chapter VI). From the fact that $\mathscr{U}(M)$ acts freely: on $L(M)$ and from the assumption that $\operatorname{dim} \mathfrak{H}(M)=$ $n^{2}+n=\operatorname{dim} L(M)$, it follows that $\mathfrak{2}^{0}(\boldsymbol{M})$ is transitive on each connected component of $L(M)$. Th' 'implies that every standard horizontal vector field on $L(M)$ is complete*, the proof is similar to that of Theorem 2.4 of Chapter VI. In other words, the connection is complete. By Theorem 4.2 of Chapter V or by Theorem 7.8 of Chapter VI, the universal covering space \tilde{M} of M is an ordinary affine space. Finally, the fact that $\tilde{M}=M$ can be proved in the same way as Theorem 1 above.

QED.
Theorems 2.3 and 3.3 are classical (see, for instance Eisenhart [$\left.{ }_{2} 1\right]$),
Riemannian manifolds and affine connections admitting very large groups of automorphisms have been studied by Egorov Wang, Yano and others. The reader will find references on thk subject in the book of Yano [2].

Note 11. Conformal transformations of a Riemannian manifold

Let M be a Riemannian manifold with metric tensor g. A transformation φ of M'is said to be conformal if $q^{*} g=\rho g$, where $\cdot \rho$ is a positive function on M. If thetic transformation. If ρ is identically equal to $1, q$ is φ is a homing but an isometry, An infinitesimal transformation X of M is said to be conformal if $L_{x} g=\sigma g$, where σ is a function on M. It is homothetic if σ is a constant function, and it is isometric if $\sigma=0$. The local 1-Parameter group of local transformations generated by an infinitesimal transformation X is conformal if and only if X is conformal.
theorem 1. The group of conformal transformations of a connected, n-dimensional Riemannian manifold M is a Lie transformation group of dimension at most $\frac{1}{2}(n+1)$ ($n \mp 2$), Provided $n \geqq 3$.

This can be proved along the following line. The integrability conditions of $L_{X} g=\sigma g$ imply that the Lie algebra of infinitesimal conformal transformation X is of dimension at most $\frac{1}{2}(n+1)(n+2)$ (cf. for instance, Eisenhart [1, p. 285]). By the theorem of Palais cited in Note 9, the group of conformal transformations is a Lic transformation group.

In $\$ 3$ of Chapter VI we showed that, for almost all Riemannian manifolds M , the largest connected group $\mathfrak{A}^{0}(M)$ of affine transformations of M coincides with the largest connected group $\mathfrak{I}_{0}(M)$ of isometries of M. For the largest connected group $\mathbb{C}^{0}(M)$ of conformal transformations of M, we have the following several results in the same direction.

Theorem 2. Let A4 be a connected n-dimensional Riemannian manifold for which $\mathfrak{C}^{0}(M) \neq \mathfrak{J}^{0}(\mathbb{M})$. Then,
(1) If M is compact, there is no harmonic p-form of constant length for $1 \because p<n$ (Goldberg and Kobayashi [1]);
(2) If M is compact and homogeneous, then M is isometric to a sphere provided $n>3$ (Goldberg and Kobayashi [2]);
(3) If M is a complete Riemannian manifold of dimension $n \geqq 3$ with parallel Ricci tensor, then M is isometric to a sphere (Nagano [1]) ;
(4) M cannot be a compact Riemannian manifold with constant non positize scalar curvature (Yano [2; p. 279] and Lichnerowicz [3; p. 134]).
(3) is an improvement of the result of Nagano and Yano [1] to the effect that if M is a complete Einstein space of dimension ≥ 3 for which $\mathbb{C}^{0}(M) \neq \mathfrak{J}^{0}(M)$, then M is isometric to a sphere. Nagano [I] made use of a result of Tanaka [1].

On the other hand, it is easy to construct Riemannian manifolds (other than spheres) for which $\mathfrak{C}^{0}(M) \neq \mathfrak{J}^{0}(M)$. Indeed, let M be a Ricmannian manifold-with metric tensor g which admits a 1 -parameter group of isometries. Let ρ be a positive function on M which is not invariant by this l-parameter group of isometries. Then, with respect to the new metric ρg, this group is a 1-parameter 'group of non-isometric, conformal transformations.
To show that $\operatorname{dim} \mathbb{C}^{0}(M)=\frac{1}{2}(n+1)(n+2)$ for a sphere M of
dimension n, we imbed M into the real projective space of dimension $n+1$. Let $x^{0}, x^{1}, \ldots, x^{n+1}$ be a homogeneous coordinate system of the real projective space P_{n+1} of dimension $n+1$. Let M be the n-dimensional sphere in \mathbf{R}^{n+1} defined bv $\left(y^{1}\right)^{2}+$. . . $+\left(y^{n+1}\right)^{2}=1$. We imbed M into P_{n+1} by 'means of the mapping defined by
$x_{0}=\frac{-}{\sqrt{2}}\left(1+y^{n+1}\right), x^{1}=y^{1}, \ldots, x^{n}=y^{n}, x^{n+1}=\frac{1}{\sqrt{2}}\left(1-y^{n+1}\right)$.
The image of M in P_{n+1} is given by

$$
\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}-2 x^{0} x^{n+1}=0
$$

Let h be the Riemannian metric on P_{n+1} given by

$$
p^{*} h=2 \frac{\left(\sum_{i=0}^{n+1}\left(x^{i}\right)^{2}\right)\left(\sum_{i=0}^{n+1}\left(d x^{i}\right)^{2}\right)-\left(\sum_{i=0}^{n+1} x^{i} d x^{i}\right)^{2}}{\left(\sum_{i=0}^{n+1}\left(x^{i}\right)^{2}\right)^{2}}
$$

wherep is the natural projection from $\mathbf{R}^{n+2}-(0)$ onto P_{n+1}. Then the imbedding $\mathrm{M} \rightarrow P_{n+\mathbf{1}}$ ' is'ometric. Let G be the group of linear transformations of \mathbf{R}^{n+2} leaving the quadratic form $\left(x^{1}\right)^{2}+\ldots$ $+\left(x^{n}\right)^{2}-2 x^{0} x^{n+1}$ invariant. Then G maps the image of M in P_{n+1} onto itself. It is easy to verify that, considered as a transformation group acting on M, G is a group of conformal transformations of dimension $\frac{1}{2}(n+1)(n+2)$.

The case $n=2$ is exceptional in most of the problems concerning conformal transformations for the following reason. Let M be a complex manifold of complex dimension 1 with a local coordinate system $z=x+i y$. Let g be a Riemannian metric on M which is of the form

$$
f\left(d x^{2}+d y^{2}\right) \xlongequal{f} d z d \bar{z},
$$

where \mathbf{f} is a positive function on M. Then every complex analytic transformation of M is conformal.

SUMMARY O F B A S I C NOTATIONS

We summarize only those basic notations which are used most frequently throughout the book.

1. $\Sigma_{i}, \Sigma_{i . j}, \ldots$, etc., stand for the summation taken over i or i, j, \ldots, where the range of indices is generally clear from the context.
2. R and C denote the real and complex number fields, respectively.
\mathbf{R}^{n} : vector space of n-tuples of real numbers $\left(x^{1}, \ldots, x^{n}\right)$
\mathbf{C}^{n} : vector space of n-tuples of complex numbers $\left(z^{1}, \ldots, z^{n}\right)$
(x, y) : standard inner product $\Sigma_{i} x^{\prime} y^{2}$ in $\mathbf{R}^{\prime \prime}\left(\sum_{i} x^{2} \bar{y}^{\prime}\right.$ in $\left.\mathbf{C}^{n}\right)$
$G L(n ; \mathrm{R})$: general linear group acting on \mathbf{R}^{n}
$\operatorname{gl}(n ; \mathrm{R})$: Lie algebra of $G L(n ; \mathrm{R})$
$G L(n ; C)$: general linear group acting on \mathbf{C}^{n}
$\mathfrak{g l}(n ; C)$: Lie algebra of $G L(n ; C)$
$\mathrm{O}(\mathrm{n})$: orthogonal group
$o(n)$: Lie algebra of $O(n)$
$\mathrm{U}(\mathrm{n})$: unitary group
$\mathrm{u}(\mathrm{n})$: Lie algebra of $\mathrm{U}(\mathrm{n})$
$\mathbf{T}_{s}^{r}(V)$: tensor space of type (r, s) over a vector space V $\mathrm{T}(\mathrm{V})$: tensor algebra over V
$A "$: space \mathbf{R}^{n} regarded as an affine space
$A(n ; \mathrm{R}):$ group of affine transformations of A^{n}
$\mathfrak{a}(n ; \mathrm{R})$: Lie algebra of $A(n ; \mathrm{R})$
3. M denotes an n -dimensional differentiable manifold.
$T_{x}(M)$: tangent space of M at x
$\mathscr{F}(M)$: algebra of differentiable functions on M
$I(M)$: Lie algebra of vector fields on M
$2(M)$: algebra of tensor fields on M
$\mathfrak{D}(M)$: algebra of differential forms on M
$T(M)$: tangent bundle of M
$L(M)$: bundle of linear frames of M
$\mathrm{O}(\mathrm{M})$: bundle of orthonormal frames of M (with respect to a given Riemannian metric)
$\theta=\left(\theta^{i}\right)$: canonical 1-form on $L(M)$ or $\mathrm{O}(\mathrm{M})$
$\mathrm{A}(\mathrm{M})$: bundle of affine frames of M
$T_{s}^{r}(M)$: tensor bundle of type (r, s) of M
f_{*} : differential of a differentiable mappingf
$f^{*} \omega$: the transform of a differential form ω by f
\dot{x}_{t} : tangent vector of a curve $x_{i}, 0 t \leqq 1$, at the point x_{t} $L_{X}:$ Lie differentiation with respect to a vector field X
4. For a Lie group G, G^{0} denotes the identity component and \mathbf{g} the Lie algebra of G.
L,: left translation by a $\in \mathrm{G}$
R_{a} : right translation by a $\in \mathrm{G}$
ad a: inner automorphism by a $\in \mathrm{G}$; also adjoint representation in g
$P(M, \mathrm{G}):$ principal fibre bundle over M with structure group G
A^{*} : fundamental vector field correspding to $\mathrm{A} \in \mathrm{g}$
$\omega=\left(\omega_{j}^{i}\right)$: connection form
$\Omega=\left(\Omega_{j}^{i}\right)$: curvature form
$E(M, F, \mathrm{G}, P)$: bundle associated to $P(M, \mathrm{G})$ with fibre F
5. For an affine (linear) connection I' on M, $\Theta=\left(\Theta_{j}^{i}\right)$: torsion form
$\Gamma_{j k}^{i}$: Christoffel's symbols
$\Psi(x)$: linear holonomy group at $x \in M$
$\Phi(x)$: affinc holonomy group at $x \in M$
∇_{X} : covariant differentiation with respect to a vector (field) X
R : curvature tensor field (with components $R_{\text {jkl }}^{i}$)
T : torsion 'tensor field (with components $T_{j k}^{i}$)
S : Ricci tensor field (with components $R_{i j}$)
$\mathfrak{N}(M)$: group of all affinc transformations
a(M) : Lic algebra of all infinitesimal affine transformations
$\mathcal{T}(M)$: group of all isomriries
$\mathfrak{i}(M)$: Lie algebra of all infinitesimal isometries

BIBLIOGRAPHY

Ambrose, W.
[1] Parallel translation of Riemanmian curvature, Ann. of Math. 64 (1956), 337-363.

Ambrose, W. and Singer. I. M.
[1] A theorem on holonomy, Trans. Imer Math.Soc. 7.5 (1953.428-443. Artin, E.
[1] Geometric Algebra, Interscicice Tracts \#3. Interscience, New York, 1957.

Arens, R.
[1] Topologies for homeomorphism groups, Ann. of Math. 68 (1946), 593610.

Auslander, L.
[1] Examples of locally affine spaces, Ann. of Math. 64 (1956), 2555259. Auslander, L. and Kuranishi, M.
[1] On the holonomy group of locally -Euclidean spaces, Ann. of Math. 65 (1957), 41 I-415.
auslander, L. and Markus, L.
[1] Holonomy of flat affinely connected manifolds, Ann. of Math. 62 (1955), 139-151.

Berger, M.
[1]Sur les groupes d'holonomie des variétés à connexion affline et des variétés riemańniennes, Bull. Soc. Math, France 83 (1953), 279-330.
bernard, D.
[1] Sur la géométrie différentielle des G-structures, Ann. Inst. Fouricr (Grenoble) 10 (1960), 151-270.

Bieberbach, L .

[1] Über die Bewegungsgruppen der Euklidischen Räume I, Math. Ann. 70 (191 1), 297-336; II. 72 (1912), 400-412.
[2] Über die Minkowskische Reduktion der positiven quadratischen Formen und die endlichc Gruppen linearer ganzzahlige Substitutionen, Göttingen Nachr. (1912), 207-216.
Bieberbach, L. and Schur, I.
[1] Über die Minkowskischc Reduktiontheoric der positiven quadratischen Formen, Sitzungsberichte d. Preuss. Akad. Wiss. Berlin 33 (1928). 510-535.

Bochner. S.
[I] Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52 (1946), 776-797.

D

Bochner, S. and Montgomery, D.

[1] Locally compact groups of differentiable transformations, Inn. of Math. 47 (1946!, 639-6.53.
[2] Groups onanalytic manifolds, Ann. of Math. 48 (1947), 659-669.
Borel, A. and Lichnerowicz, A.
[1] Groupes d'holonomie des varietes ricmanniennes, C. R. Acad. Sci. Paris 234 (1952), 1835-1837.
Calabi, E. and Markus, L.
[1] Relativistic space forms, Ann. of Math. 75 (1962), 63-76.

Cartan, E.

[1] Sur les varietes à connexion affine et la théoric de la relativité généralisćc, Ann. Ec. Norm. Sup. 40 (1923), 325-412; 41 (1924), 1-25; 42 (1925), 17-88.
[2] Les espaces à connexion conforme, Ann. Soc. l’ol. Math. 2 (1923), 171-221.
[3] Sur un théorème fondamental de M. H. Weyl, J. Math. Pures Xppl. 2 (1923), 167-192.
[4] Sur les varietes à connexion projective, Full. Soc. Math. France, 52 (1924), 205-241.
[5] La Géométrie des Espaces de Riemann, Mémorial des Sciences Math., Vol. 9, 1925.
[6] Les groupes d'holonomie des espaces généralises, Acta Math. 48 (1926), 1-42.
[7] Sur une class remarquable d'espaces de Ricmann, Bull. Soc. Math. France, 54 (1926), 214-264; 55 (1927), 114-134.
[8] Leçons sur la Géométrie des Espaces de Riemann, Gauthiers-Villars, Paris, 1928; 2nd edition, 1946.
[9] La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés, Actualitds Sci. et Ind., \#194, Hermann, Paris, 1935.

Cartan, H.

[1] Sur les groupes de transformations analytiques, Actualités Sci. et Ind., \#198, Hermann, Paris, 1935.
[2] Notion d'algebre différentielle; applications aux groupes de Lie et aux varietes oh opère un groupe dc Lie, Colloque de Topologie, Bruxelles (19501, 15-27.
[3] La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologic, Bruxelles (1950), 57-71.

Chern, S. S

[1] Differential gcometry of fiber bundles, Proc. Int. Congress (1950), Vol. II, 397-411.
[2] Topics in Differential Geometry, Inst. for Adv. Study, Princeton, 1951.
[3] Pseudo-groupcs continus infinis, Colloque de Géométrie Differentielle, Strasbourg (1953), 119-136.

Ghevalley, C.

[${ }^{1}$] Theory of Lie Groups, Princeton University Press, 1946.
Christoffel, Е. B.
[1] Uber die Transformation der homogenen Differential-ausdrücke zweiten Grades. J. Rcinc Angew. Math. 70 (1869), 46-70.
van Dantzig, D. and van der Waerden, b. L.
[1] Über metrisch homogencn Räume. Abh. Math. Sem. Hamburg 6 (1928), $374-376$

Dieudonné, J.
[1] Sur lcs espaces uniformes complets, Ann. Ec. Sorm. Sup. 56 (1939), 277-291.
'Ehresmann, C.
[1] Sur la notion d'espace complet en géométrie différentielle, C. R. Acad. Sci. Paris 202 (1936), 2033.
[2] Les connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie, Bruxelles (1950), 29-55.
eisenhart, L. P.
[1] Riemannian Geometry. 2nd edition, Princeton University Press, 1949.

Freudenthal, H.

[1] Die Topologie der Lieschrn Gruppefi als algcbraischrs Phänomen I, Ann. of Math. 42 (1941), 1051-1074.

Frobenius, G.

[1] Über die unzerlegbarcn diskreten Bewegungsgruppen, Sitzungsberichte d. König. Preuss. Akad. Wiss. Berlin 29 (1911!,654-665.
Fujimote, A.
[1]On the structure tensor of G-structure, Mem. Coll. Sci. Univ. Kyoto Ser. A, 18 (1960), 157-169.
Godement, R.
[1] Thiorie des, Faisceaux: Actualités Sci. et Ind., \#1252, Hermann, Paris, 1958.
goldberg, S. I. and Kobayash, s.
[1] The conformal transformation group of a compact Riemannian manifold, Proc. Nat. Xcad. Sci. U.S.A. 48 (1962), 25-26; Amer. J. Math. 84 (1962), 170-174.
[2] The conformal transformation group of a compact homogeneous Riemannian manifold, Bull. Amer. Math. Soc. 68 (1962), 378-381.
Goto, M. and Sasaki, S.
[1] Some theorems on holonomy groups of Riemannian manifolds, Trans. Amer.-Math. Soc. 80 (1955), 148-158.
hall, M.
[1] The Theory of Groups, Macmillan, New York, 1959.
Hano, J.
[1] On affine transformations of a Riemannian manifold, Nagoya Math. J. 9 (1955), 99-109.

Hano, J. and Momorimoto, A.
[1] Note on the group of affine transformations of an affinely connected manifold, Nagoya Math. J., 8 (1955), 71-8 1.
Hano, J, and Ozeki, H.
[1] On the holonomy groups of linear connections, Nagoya Math J. 10 (1956), 97-100.

Hantzsche, W. and Wendt, W.
[1] Drei dimensionale euklidische Raumformen, Math Ann., 110(1934), 593-6 11.
Helgason, S .
[1] Some remarks on the exponential mapping for an affine connection, Math. Scand. 9 (1961), 129-146.

Hermann, R.

[1] On the differential geometry of foliations, Ann. of Math. 72 (1960), 445-457.
Hicks, N.
[1] A theorem on affine conncxions, IIInois J. Math. 3 (1959), 242 254.

Hilbert, D.

[1] Über das Dirichletsche Prinzip, J. Reine Angew. Math. 129 (1905), 63-67.

Hopf, H.

[I] Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (1926), 313-339.
Hopf, H. and Rinow, W .
[I] Über den Begriff der vollständigen differentialgeometrischen Flächen. Comm. Math. Helv. 3 (1931), 209-225.
Hu, S. T.
[1] Homotopy Theory, Academic Press, New York, 1959.

Iwasawa, K.

[1] On some types of topological groups, Ann. of Math. 50 (1949), $507-$ 558.

Kelley, J. L.
[1] General Topology, Van Nostrand, Princeton, 1955.
Killing, W.
[1] Die nicht-euklidischen Raumformen in analytische Behandlung, Teubner, Leibzig, 1885.
[2] Über die Clifford-Kleinschen Raumformen, Math. Ann. 39 (1891), 257-278.
Klein, F.
[1] Vergleichende Betrachtungen über neuere geometrische Forchungen, Math. Ann. 43 (1893), 63-100.
[2] Vorlesungen über nicht-euklidische Geometrie, Spriuger, Berlin, 1928.

Klingenberg, W
[1] Eine Kennzeichnung der Riemannschen sowie der Hermitschen Mannigfaitigkeiten, Math. Z. 70 (1959), 300-309.
Kobayashi, S.
[1] Le groupe de transformations qui laissent invariant un parallélisme, Colloque de Topologie, Strasbourg (1954).
[2] Espaces à connexion de Cartan complete, Proc. Japan Acad. Sci. 30 (1954), 709-710.
[3] Espaces à connexions affines et riemanniennes symétriques, Nagoya
, Math. J. 9 (1955), 25-37.
[4] A theorem on the affine transformation group of a Riemannian manifold, Nagoya Math. J. 9 (1955), 39-41
[5] Induced connections and imbedded Riemannian spaces, Nagoya - Math. J. 10 (1956), 15-25.
[6] Theory of connections, Annali di Mat. 43 (1957), 119-194.
Kostant, B.
[1] Holonomy and the Lie algebra in infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc. 80 (1955), 528-542.

Kuiper, N. H.

[1] Sur les surfaces localement affines, Colloque de Géométrie Différentielle, Strasbourg (1953), 79-88
Levi-Civita, T.
[1] Nozione di parallelism0 in una varieta qualunque c consequente specificazione geometrica delta curvature Riemanniana. Rend. Palermo 42 (1917), 73-205.
Levi-Civita, T. and Ricci, G.
[1] Mtthodes de calcul différentiel absolu et leur applications, Math. Ann. 54 (1901), 125-201.
Lichnerowicz, A.
[1] Espaces homogènes kahltriens, Colloque de Géométrie Différentielle, Strasbọurg (1953), 171-201.
[2] 'Théorie Globale des Connexions et des Groupes d'Holonomic. Ed. Cremonesc, Rome, 1955.
[3] Géométrie des Groupes de Transformations, Dunod, Paris, 1958.
Matsushima, Y.
[[1] On the discrete sul, roups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J. 2 (1951), 95-1 10.

Milnor, 3 .

[1] Groups which act on S^{n} without fixed points, Amer. J. Math. 79 (1957) : 623-630.

Minkowski, H .
[1] Diskontinuitätsbéreich fur arithmetische Äquivalenz, J. Reine Angew. Math. 129 (1905), 220-274.

Montgomery, D. and Zippin, L.
[1] Transformation Groups, Interscience Tracts \#l, Interscience, New York, 1955
Myers, S. B. and Steenrod, N.
[1] The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939). 400-416.

Nacano, 'T.
[1] The conformal transformation on a space with parallel Ricci tensor, J. Math. Soc. Japan 11 (1959), 10-14.
[2] On fibered Riemannian manifolds, Sci. Papers, College General Educ. Univ. of Tokyo 10 (1960), 17-27.
Nagano, T. and Yano, K.
[1] Finstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. 69 (1959), 451-461.
Narasimian, M. S. and Ramanan, S .
[1] Existence of universal connections, Amer. J. Math. 83 (1961), 563572.

Nijenheis, 1.
[1] X,-t-forming sets of eigenvectors, Indag. Math. 13 (1951), 200-212.
[2] On the holonomy group of linear connections, Indag. Math. 15 (1953), 233-249; 16 (1954), 17-25.
[3] A note on infinitesimal holonomy groups, Nagoya Math. J. 15 (1957), 145-146.
Nomze, K.
[1] On the group of affine transformations of an affinely connected manifold, Prod. Amer. Math. Soc., 4 (1953), 816-823.
[2] Invariant affine connections on homogeneous spaces, Amer. J. Math., 76 (1954, 33-65.

- [.3] Studies on Riemannian homogeneous spaces, Nagoya Math. J., 9 (1955), 43. 56.
[4] Reduction theorem for connections and its application to the problem of isotropy and holonomy groups of a Riemannian manifold, Nagoya Math. J. 9 (1955), 57-66.
[5] Lin theorème sur les groupes d'holonomie, Nagoya Math. J. 10 (1956), 101-103.
[6] On infinitesimal holonomy and isotropy groups, Nagoya Math. J. 11 (1957), 111-114.
[7] Lie Groups and Differential Geometry, Publ. Math. Soc. Japan, \#2, 1956.
[8] On doaahn g o abe distence of Killing vector fields, Ann. of Math. 72 (1960), 105-120.
[9] Sur les algèbres de Lie de générateurs de Killing et l'homogénéité d'une variété riemannienne, Osaka Math, J. 14 (1962), 45-51.

Nomizu, K. and Ozeki, H
[1] The existence of complete Riemannian metrics, Proc. Amer. Math. Soc. 12 (1961), 889-891.
[2] On the degree of differentiability of curves used in the definition of the holonomy group, Bull. Amer. Math. Soc. 68 (1962), 74-75.
[3] A theorem on curvature tensor fields, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 206-207.

Nowacki, W
[1] Die euklidischen, dreidimensionalen gescholssenen und offenen Raumformen, Comm. Math. Helv. 7 (1934), 81-93.

- Ozeki, H.
[1] Infinitesimal holonomy groups of bundle connections, Nagoya Math. J. 10 (1956), 105-123.

Palais, R. S.
[1] A Global Formulation of the Lie Theory of Transformation Groups. Mem. Amer. Math. Soc., \#22, 1957.
[2] On the differentiability of isometries, Proc. Amer. Math. Soc. 8 (1957), 805-807.
Pontruagin, L.
[1] Topological Groups, Princeton University Press, 1956.

Reinhart, B

[1] Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132.
de Rham, G.
[1] Sur la réductibilité d'un espace de Riemann, Comm. Math. Helv. 26 (1952), 328-344.
' Riemann, B.
[1] Über die Hypothesen, welche de Geometrie zugrunde liegen, Ges. Werke.
Sarto, M.
[1] Sur certains groupes de Lie \&solubles I, Sci. Papers College General Educ. Univ. of Tokyo 7 1957), 1-1 1; II, ibid., 157-168.
Schouten. J. A. and Struik, D. J.
[1] On some properties of general manifolds relating to Einstein's theory of gravitation, Amer. J. Math. 43 (1921), 213-216.
Schur, \mathbf{F}.
[1] Über den Zusammenhang der Räume konstanter Kriimmungsmasses mit den projektiven Räumen, Math Ann. 27 (1886), 537-567.

Seifert, H. and Threlfall, W.

[1] Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidmensionalen sphirischen Räumes, Math. Ann. 104 (1930), 1-70; 107 (1933), 543-586.

Sibuya, Y.
[I] Note on real matrices and linear dynamical systems with periodic coefficients, J. Math. Anal. Appl. 1 (1960), 363-372.
Siegel, C. L.
[1] Einhciten quadratische Formen, Abh. Math. Scm. Hamburg 13 (1940), 209-239.

Sierpinski, W.
[1] Sur les espaces métriques localement separables, Fund. Math. 21 (1933), 107-I 13.

Simons, J.
[1] On transitivity of holonomy systems, Ann. of Math. 76 (1962), 213-234.
Smith, J. W.
[1] Lorentz structures on the plane, Trans. Amer. Math. Soc. 95 (1960), 226-237.
Steenrod, N.
[1] The Topology of Fibre Bundles, Princeton University Press, 1951.
Takizana, N.
[1] On Cartan connexions and their torsions, Mem. Coll. Sci. Univ. Kyoto, ser A, 29 (1955), 199-217.
Tanaka, N.
[I] Conformal connections and conformal transformations, Trans. Amer Math. Soc. 92 (1959), 168-190.
Vincent, G.
[1] Les groupes linéaires finis sans points fixes, Comm. Math. Helv. 20 (1947), 117-171.

Walker, A. G.
[1] On Ruse's spaces of recurrent curvature, Proc. London Math. Soc. (2) 52 (1950), 36-64.
[2] The fibring of Riemannian manifolds, Proc. London Math. Soc. (3) 3 (1953), l-19.
[3] Connexions for parallel distribution in the large, Quart. J. Math. (Oxford) (2) 6 (1955), 301-308; II, 9 (1958), 221-231.
Wang, H.C.
[1] On invariant connectionsover a principal fibre bundle. Nagoya Math. J. 13 (1958); I-19.

WEIL, A .
[1] Sur les théorèmes de de Rham, Comm. Math. Hclv. 26 (1952), 119-145.
Weyd, H .
H1] Rcinc infinitesimalgeometrie, Math. Z. $2\{1918\}, 384-411$.
[2] Zur Infinitesimalgeometrie; Einornung drr projektiven und konformen Auffassung, Göttingen Nachrichten (1912):49-112.
[3] Raum, Zcil, Materic. Springer, Berlin, 1918.

Whitehead, J. H. G.

[I] Convex regions in the geometry of paths, Quart. J. Math. 3 (1932), 33-42.
WiLmore, T.J.
[1] Parallel distributions on manifolds, Proc. London Math. Soc. (3) 6 (1956), 191-204.
[2] Connexions for systems of parallel distributions, Quart. J. Math. (2) 7 (1956), 269-276.
WOLF, J. A.
[1] Sur la classification des varittts riemanniennes homogtnes à courbure constante, C. R. Acad. Sci. Paris 250 (1960), 3443-3445.
[2] The manifolds covered by a Riemannian homogeneous manifold, Amer. J. Math. 82 (1960), 661-688.
[3] Homogeneous manifolds of constant curvature, Comm. Math. Helv. 36 (1961), 112-147.
[4] The Clifford-Klein space forms of indefinite metric, Ann. of Math. 75 (1962), 77-80.
[5] Vincent's conjecture of Clifford translations of the sphere, Comm. Math. Helv. 36 (1961), 33-41.
[6] Discrete groups, symmetric spaces, and global holonomy, Amer. J. Math. 84 (1962), 527-542.
Wong, Y. C.
[1] Recurrent tensors on a linearly connected differentiable manifold, Trans. Amer. Math. Soc. 99 (1961), 325-341.
Yano, K .
[1] On harmonic and Killing vectors, Ann. of Math. 55 (1952), 38-45.
[2] The Theory of Lie Derivatives and Its Applications, North Holland Publishing Co., Amsterdam, 1957.

Yamabe, h.

[1] On an arcwise connected subgroup of a Lie group, Osaka Math. J. 2 (1950), 13-14.

Yosida, K.
[1] A theorem concerning the semi-simple Lie groups, Tohoku Math. J., 43 (Part II) (1937), 81-84.
Zassenhaus, H.
[1] Beweis eines Satzes über diskrete Gruppen, Abh. Math. Sem. Hamburg. 12 (1938), 289-312.
[2] Über endliche Fastkorper, Abh. Math. Sem. Hamburg 11 (1936), 187-220.

INDEX

Absolute parallelism, 122
Adjoint representation, 40 Affine
connection, 129
generalized, 1
frame, 126
holonomy group, 130
mapping, 225
parallel displacement, 130
parameter, 138
space, 125
tangent, 125
transformation, 125, 226 infinitesimal, 230
Alternation, 28
Analytic continuation, 254
Arc-length, 157
Atlas, 2
complete, 2
Automorphism
of a connection, 81
of a Lie algebra, 40
of a Lie group, 40
Bianchi's identities, 78, 121, 135 Bundle
associated, 55
holonomy, 85
homomorphism of, 53
induced, 60
of affine frames, 126
of linear frames, 56
of orthonormal frames, 60 principal fibre, 50
reduced, 53
sub-, 53
tangent, 56
tensor, 56
trivial, 50
vector, 113

Canonical
decomposition (= dc Rham decompor sition), 185, 192
flat connection, 92
form on $L(. M), 118$
invariant connection, 110, 301
invariant Riemannian

$$
\text { metric, } 155
$$

linear connection, 302
metric, 155
1-form on a group, 41
parameter of a grodcsic, 162
Chart, 2
Christoffel's symbols ($\Gamma_{i k}^{i}$), 141
Compact-open topology, 46
Complete,
linear connection, 139
Riemannian manifold, 172
Riemannian metric, 172
vector field, 13
Components
of a linear connection, 141
of a 1 -form, 6
of a tensor (field), 21, 26
of a vector (field), 5
Conformal transformation, 309
infinitesimal, 309
Connection, 63
affine, 129
canonical, 110, 301
canonical flat, 92
canonical linear, 302
flat, 92
flat affine, 209
form, 64
generalized affine, 127
induced, 82
invariant, 81, 103
by parallelism, 262 Levi-Civita, 158

Connection

linear, 119
metric, 117, 158
Riemannian, 158
universal, 230
Constant curvature, 202
space of, 202, 204
Contraction, 22
Contravariant tensor (space), 20
Convex neighborhood, 149, 160
Coordinate neighborhood, 3
Covariant
derivative, 114, 115, 122
differential, 124
differentiation, 115, 116, 123
tensor (space), 20
Covector, 6
Covering space, 61
Cross section, 57
adapted to a normal coordinate system, 257
Cubic neighborhood, 3
Curvature, 132 ,
constant, 202
form, 77
recurrent, 305
scalar, 294
sectional, 202
tensor (field), 132, 145
Riemannian, 201
transformation, 133
Cylinder, 223
Euclidean, 210
twisted, 223

Derivation

of $\mathrm{Z} \backslash(\mathrm{M}), 33$
of $\mathfrak{T}(M), 30$
of the tensor algebra, 25
Development, 131
Diffeomorphism, 9
Differential
covariant, 124
of a function, 8
of a mapping, 8
Discontinuous group, 44 properly, 43

Distance function, 157
Distribution, 10
involutive, 10
Divergence, 281
Effective action of a group, 42
Einstein manifold, 294
Elliptic, 209
Euclidean
cylinder, 210
locally, 197, 209, 210
metric, 154
motion, 215
subspace, 218
tangent space, 193
torus, 210
Exponential mapping, 39, 140, 147

Exterior

covariant derivative, 77
covariant differentiation, 77
derivative, 7,36
differentiation, 7, 36
Fibre, 55
bundle, principal, 50
metric, 116
transitive, 106
Flat
affine connection, 209
connection, 92
canonical, 92
linear connection, 210
Riemannian manifold', 209, 210
Form
curvature, 77
I-form, 6
r-form, 7
tensorial, 75
pseudo-, 75
torsion, 120
Frame
affine, 126
linear, 55
orthonormal, 60
Free action of a group, 42
Frobenius, theorem of, 10
Fundamental vector field, 51

Geodesic, 138, 146

izing, 1

totally, 180
Green's theorem, 281
G-structure, 288
Holomorphic, 2
Holonomy bundle, 85
Holonomy group, 71, 72
affine, 130
homogeneous, 130
infinitesimal, 96, 151
linear, 130
local, 94, 151
restricted, 71, 72
Holonomy theorem, 89
Homogeneous
Riemannian manifold, 155, 176
space (qubtient space), 43 symmetric, 301
Homomorphism of fibre bundles, 53
Homothetic transformation,

$$
242,309
$$

infinitesimal, 309
Homotopic, 284
C^{k}-, 284
Horizontal
component, 63
curve, 68, .88
lift, 64, 68, 88
subspace, 63, 87
vector, 63
Hyperbolic, 209
Hypersurface, 9
Imbedding, 3, 53
isometric, 161
Immersion, 9
isometric, 161
Indefinite Ricmannian metric, 155
Induced
bundle, 60
connection, 82
Ricmannian metric, 154
Inner product, 24
Integral
curve, 12

Integral
manifold, 10
Interior product, 35
Invariant
by parallelism, 262
connection, 81, 103
Riemannian metric, 154
Involutive distribution, 10
Irreducible
group of Euclidean
motions, 218
Riemannian manifold, 179
Isometric, 161
imbedding, 161
immersion, 161
Isometry, 46, 161, 236
infinitesimal, 237
Isotropy
group, linear, 154
subgroup, 49

Killing-Cartan form, 155
Killing vector field, 237
Klein bottle, 223

Lasso, 73, 184, 284
Leibniz's formula, 11
Levi-Civita connection, 158 Lit
algebra, 38
derivative, 29
differentiation, 29
group, 38
subgroup, 39
transformation group,'41
Lift, 64. OR, 88
horizontal, 64, 68, 88
natural, 230
Linear
connection, 11)
frame, 55
holonomy group, 130
isotropy group, 154
Local
basis of a distribution, 10 coordinate system, 3

Locally

affine, 210
Euclidean, 197, 209, 210
symmetric, 303
Lorentz manifold (metric), 292, 297
Manifold, 2, 3
complex analytic, 3
differentiable, 2, 3
oriented, orientable, 3
real analytic, 2
sub-, 9
Maurer-Cartan, equations of, 41
Metric connection, 117, 158
Mobius band, 223

Natural lift of a vector field, 230
Non-prolongable, 178
Normal coordinate system, 148, 162

1 -parameter
group of transformations, 12
subgroup, 39
Orbit, 12
Orientation, 3
Orthonormal frame, 60

Paracompact, 58
Parallel
cross section, 88
displacement, 70, 87, 88 affine, 130
tensor field, 124
Partition of unity, 272
Point field, 131
Projection, covering, 50
Properly discontinuous, 43
Pseudogroup of transformations, 1, 2
Pseudotensorial form, 75

Quotient space, 43, 44

Rank of a mapping, 8
Real projective space, 52
Recurrent
curvature, 305

Recurrent
tensor, 304
Reduced bundle, 53
Reducible connection, 81, 83 Riemannian manifold, 179 structure group, 53
Reduction
of connection, 81, 83
of structure group, 53
Reduction theorem, 83
de Rham decomposition, 185, 192
Ricci tensor (held), 248, 292
Riemarmian
connection, 158
curvature tensor, 201
homogeneous space, 155
manifold, 60, 154
-metric, 27, 154, 155
canonical invariant, 155
indefinite, 155
induced, 154
invariant, 154
Scalar curvature, 294
Schur, theorem of, 202
Sectional curvature, 202
Segment, 168
Simple covering, 168
Skew-derivation, 33
Space form, 209
Standard horizontal vector held, 119 Structure
'constants, 41
equations, $77,78,118,120,129$ group, 50
Subbundle, 53
Submanifold, 9
Symmetric
homogeneous space, 301
locally, 303
Riemannian, 302
Symmetrization, 28
Symmetry, 301
Tangent
affine space, 125

Tangent
bundle, 5
space, 5
vectis; 4
Tensor
algebra, 22, 24
56

contravariabundle,

* covariant, 20
field, 26
product, 17
space, 20, 21
Tensorial form, 75 pseudo-, 75
Torsion
form, 120
of two tensor fields of type $(1,1), 38$ tensor (field), 132, 145
translation, 132
Torus, 62
Euclidean, 210
twisted, 223

Total differential, 6
Totally geodesic, 180
Transformation, 9
Transition functions, 51
Trivial fibre bundle, 51
Twisted
cylinder, 223
torus, 223
Type
ad $\boldsymbol{G}, 77$
of tensor, 21
Universal factorization property, 17
Vector, 4
bundle, 113
field, 5
Vertical
component, 63
subspace, 63, 87
vector, 63
Volume element, 281

