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Preface

This book is an outgrowth of my course entitled “Introduction to Digital Audio
Signal Processing and the Discrete Fourier Transform (DFT)1 which I have given
at the Center for Computer Research in Music and Acoustics (CCRMA) every
year for the past 18 years. The course was created primarily as a first course
in digital signal processing for entering Music Ph.D. students. As a result, the
only prerequisite is a good high-school math background. Calculus exposure is
desirable, but not required.

Outline

Below is an overview of the chapters.

1. Introduction to the DFT — introduces the DFT and points out the
mathematical elements which will be discussed in this book.

2. Introduction to Complex Numbers — factoring polynomials, the
quadratic formula, the complex plane, Euler’s formula, and an overview of
numerical facilities for complex numbers in Matlab and Mathematica.

3. Proof of Euler’s Identity — Euler’s Identity is an important tool for
working with complex numbers. It is one of the critical elements of the
DFT definition we need to understand. This chapter derives Euler’s iden-
tity in detail.

4. Logarithms, Decibels, and Number Systems — logarithms (real and
complex), decibels, and number systems such as binary integer fixed-point,

1http://www-ccrma.stanford.edu/CCRMA/Courses/320/

xiii
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fractional fixed-point, one’s complement, two’s complement, logarithmic
fixed-point, µ-law, and floating-point number formats.

5. Sinusoids and Exponentials — also complex sinusoids, t60, in-phase
and quadrature sinusoidal components, the analytic signal, positive and
negative frequencies, constructive and destructive interference, invariance
of sinusoidal frequency in linear time-invariant systems, circular motion as
the vector sum of in-phase and quadrature sinusoidal motions, sampled si-
nusoids, generating sampled sinusoids from powers of z, and plot examples
using Mathematica.

6. The Discrete Fourier Transform (DFT) Derived — the DFT is
derived as a projection of a length N signal x(·) onto the set of N sampled
complex sinusoids generated by the N roots of unity.

7. Fourier Theorems for the DFT — symmetry relations, shift theo-
rem, convolution theorem, correlation theorem, power theorem, and theo-
rems pertaining to interpolation and downsampling. Applications related
to certain theorems are outlined, including linear time-invariant filtering,
sampling rate conversion, and statistical signal processing.

8. Example Applications of the DFT — practical examples of FFT anal-
ysis in Matlab. The various Fourier theorems provide a “thinking vocab-
ulary” for understanding elements of spectral analysis.

9. A Basic Tutorial on Sampling Theory — aliasing due to sampling of
continuous-time signals is characterized mathematically. Shannon’s sam-
pling theorem is proved. A pictorial representation of continuous-time
signal reconstruction from discrete-time samples is given.
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Chapter 1

Introduction to the DFT

This chapter introduces the Discrete Fourier Transform (DFT) and points out
the elements which will be discussed in this book. It is assumed that the reader
already knows why the DFT is worth studying. If not, see the application
examples in Chapter 9 starting on page 193.

1.1 DFT Definition

The Discrete Fourier Transform (DFT) of a signal x may be defined1 by

X(ωk)
∆=
N−1∑
n=0

x(tn)e−jωktn , k = 0, 1, 2, . . . , N − 1

and its inverse (the IDFT) is given by

x(tn) =
1
N

N−1∑
k=0

X(ωk)ejωktn , n = 0, 1, 2, . . . , N − 1

1The symbol “
∆
=” means “equals by definition.”

1



Page 2 1.2. MATHEMATICS OF THE DFT

where

x(tn)
∆= input signal amplitude (real or complex) at time tn (sec)

tn
∆= nT = nth sampling instant (sec)

n
∆= sample number (integer)

T
∆= sampling period (sec)

X(ωk)
∆= Spectrum of x (complex amplitude), at radian frequency ωk (rad/sec)

ωk
∆= kΩ = kth frequency sample (rad/sec)

Ω ∆=
2π
NT

= radian-frequency sampling interval (rad/sec)

fs
∆= 1/T = sampling rate (samples/sec, or Hertz (Hz))

N = number of samples in both time and frequency (integer)

1.2 Mathematics of the DFT

In the signal processing literature, it is common to write the DFT in the more
pure form below, obtained by setting T = 1 in the previous definition:

X(k) ∆=
N−1∑
n=0

x(n)e−j2πnk/N , k = 0, 1, 2, . . . , N − 1

x(n) =
1
N

N−1∑
k=0

X(k)ej2πnk/N , n = 0, 1, 2, . . . , N − 1

where x(n) denotes the input signal at time (sample) n, and X(k) denotes
the kth spectral sample.2 This form is the simplest mathematically, while the
previous form is easier to interpret physically.

There are two remaining symbols in the DFT that we have not yet defined:

j
∆=

√−1
e

∆= lim
n→∞

(
1 +

1
n

)n
= 2.71828182845905 . . .

2Note that the definition of x() has changed unless the sampling rate fs really is 1, and
the definition of X() has changed no matter what the sampling rate is, since when T = 1,
ωk = 2πk/N , not k.
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CHAPTER 1. INTRODUCTION TO THE DFT Page 3

The first, j =
√−1, is the basis for complex numbers. As a result, complex

numbers will be the first topic we cover in this book (but only to the extent
needed to understand the DFT).

The second, e = 2.718 . . ., is a transcendental real number defined by the
above limit. We will derive e and talk about why it comes up.

Note that not only do we have complex numbers to contend with, but we
have them appearing in exponents, as in

sk(n)
∆= ej2πnk/N .

We will systematically develop what we mean by imaginary exponents in order
that such mathematical expressions are well defined.

With e, j, and imaginary exponents understood, we can go on to prove
Euler’s Identity :

ejθ = cos(θ) + j sin(θ)

Euler’s Identity is the key to understanding the meaning of expressions like

sk(tn)
∆= ejωktn = cos(ωktn) + j sin(ωktn)

We’ll see that such an expression defines a sampled complex sinusoid, and we’ll
talk about sinusoids in some detail, from an audio perspective.

Finally, we need to understand what the summation over n is doing in the
definition of the DFT. We’ll learn that it should be seen as the computation of
the inner product of the signals x and sk, so that we may write the DFT, using
inner-product notation, as

X(k) ∆= 〈x, sk〉

where sk(n)
∆= ej2πnk/N is the sampled complex sinusoid at (normalized) radian

frequency ωk = 2πk/N , and the inner product operation 〈 · , · 〉 is defined by

〈x, y〉 ∆=
N−1∑
n=0

x(n)y(n).

We will show that the inner product of x with the kth “basis sinusoid” sk is a
measure of “how much” of sk is present in x and at “what phase” (since it is a
complex number).
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Page 4 1.2. MATHEMATICS OF THE DFT

After the foregoing, the inverse DFT can be understood as the sum of pro-
jections of x onto {sk}N−1

k=0 , i.e., we’ll show

x(n) =
N−1∑
k=0

X̃ksk(n), n = 0, 1, 2, . . . , N − 1

where
X̃k

∆=
X(k)
N

is the coefficient of projection of x onto sk. Introducing the notation x
∆= x(·) to

mean the whole signal x(n) for all n, the IDFT can be written more simply as

x =
∑
k

X̃ksk.

Note that both the basis sinusoids sk and their coefficients of projection X̃k are
complex valued in general.

Having completely understood the DFT and its inverse mathematically, we
go on to proving various Fourier Theorems, such as the “shift theorem,” the
“convolution theorem,” and “Parseval’s theorem.” The Fourier theorems provide
a basic thinking vocabulary for working with signals in the time and frequency
domains. They can be used to answer questions such as

What happens in the frequency domain if I do [x] in the time domain?

Finally, we will study a variety of practical spectrum analysis examples, using
primarily Matlab to analyze and display signals and their spectra.
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CHAPTER 1. INTRODUCTION TO THE DFT Page 5

1.3 DFT Math Outline

In summary, understanding the DFT takes us through the following topics:

1. Complex numbers

2. Complex exponents

3. Why e?

4. Euler’s formula

5. Projecting signals onto signals via the inner product

6. The DFT as the coefficient of projection of a signal x onto a sinusoid

7. The IDFT as a sum of sinusoidal projections

8. Various Fourier theorems

9. Elementary time-frequency pairs

10. Practical spectrum analysis in matlab

We will additionally discuss practical aspects of working with sinusoids, such
as decibels (dB) and signals/spectra display techniques.
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Chapter 2

Complex Numbers

This chapter introduces complex numbers, factoring polynomials, the quadratic
formula, the complex plane, Euler’s formula, and an overview of numerical fa-
cilities for complex numbers in Matlab and Mathematica.

2.1 Factoring a Polynomial

Remember “factoring polynomials”? Consider the second-order polynomial

p(x) = x2 − 5x+ 6

It is second-order because the highest power of x is 2 (only non-negative integer
powers of x are allowed in this context). The polynomial is also monic because
its leading coefficient, the coefficient of x2, is 1. Since it is second order, there are
at most two real roots (or zeros) of the polynomial. Suppose they are denoted
x1 and x2. Then we have p(x1) = 0 and p(x2) = 0, and we can write

p(x) = (x− x1)(x− x2)

This is the factored form of the monic polynomial p(x). (For a non-monic
polynomial, we may simply divide all coefficients by the first to make it monic,
and this doesn’t affect the zeros.) Multiplying out the symbolic factored form
gives

p(x) = (x− x1)(x− x2) = x2 − (x1 + x2)x+ x1x2

7
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Comparing with the original polynomial, we find we must have

x1 + x2 = 5
x1x2 = 6

This is a system of two equations in two unknowns. Unfortunately, it is a
nonlinear system of two equations in two unknowns.1 Nevertheless, because it
is so small, the equations are easily solved. In beginning algebra, we did them by
hand. However, nowadays we can use a computer program such as Mathematica:

In[]:=
Solve[{x1+x2==5, x1 x2 == 6}, {x1,x2}]

Out[]:
{{x1 -> 2, x2 -> 3}, {x1 -> 3, x2 -> 2}}

Note that the two lists of substitutions point out that it doesn’t matter which
root is 2 and which is 3. In summary, the factored form of this simple example
is

p(x) = x2 − 5x+ 6 = (x− x1)(x− x2) = (x− 2)(x− 3).
Note that polynomial factorization rewrites a monic nth-order polynomial as
the product of n first-order monic polynomials, each of which contributes one
zero (root) to the product. This factoring business is often used when working
with digital filters [1].

2.2 The Quadratic Formula

The general second-order polynomial is

p(x) ∆= ax2 + bx+ c (2.1)

1“Linear” in this context means that the unknowns are multiplied only by constants—they
may not be multiplied by each other or raised to any power other than 1 (e.g., not squared or
cubed or raised to the 1/5 power). Linear systems of N equations in N unknowns are very easy
to solve compared to nonlinear systems of N equations in N unknowns. For example, Matlab
or Mathematica can easily handle them. You learn all about this in a course on Linear Algebra
which is highly recommended for anyone interested in getting involved with signal processing.
Linear algebra also teaches you all about matrices which we will introduce only briefly in this
book.
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CHAPTER 2. COMPLEX NUMBERS Page 9

where the coefficients a, b, c are any real numbers, and we assume a 	= 0 since
otherwise it would not be second order. Some experiments plotting p(x) for
different values of the coefficients leads one to guess that the curve is always a
scaled and translated parabola. The canonical parabola centered at x = x0 is
given by

y(x) = d(x− x0)2 + e (2.2)

where d determines the width (and up or down direction) and e provides an
arbitrary vertical offset. If we can find d, e, x0 in terms of a, b, c for any quadratic
polynomial, then we can easily factor the polynomial. This is called “completing
the square.” Multiplying out the right-hand side of Eq. (2.2) above, we get

y(x) = d(x− x0)2 + e = dx2 − 2dx0x+ dx2
0 + e. (2.3)

Equating coefficients of like powers of x to the general second-order polynomial
in Eq. (2.1) gives

d = a

−2dx0 = b ⇒ x0 = −b/(2a)
dx2

0 + e = c ⇒ e = c− b2/(4a).

Using these answers, any second-order polynomial p(x) = ax2 + bx + c can be
rewritten as a scaled, translated parabola

p(x) = a
(
x+

b

2a

)2

+
(
c− b

2

4a

)
.

In this form, the roots are easily found by solving p(x) = 0 to get

x =
−b±√b2 − 4ac

2a

This is the general quadratic formula. It was obtained by simple algebraic ma-
nipulation of the original polynomial. There is only one “catch.” What happens
when b2−4ac is negative? This introduces the square root of a negative number
which we could insist “does not exist.” Alternatively, we could invent complex
numbers to accommodate it.
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Page 10 2.3. COMPLEX ROOTS
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Figure 2.1: An example parabola defined by p(x) = x2 + 4.

2.3 Complex Roots

As a simple example, let a = 1, b = 0, and c = 4, i.e.,

p(x) = x2 + 4

As shown in Fig. 2.1, this is a parabola centered at x = 0 (where p(0) = 4) and
reaching upward to positive infinity, never going below 4. It has no zeros. On
the other hand, the quadratic formula says that the “roots” are given formally
by x = ±√−4 = ±2√−1. The square root of any negative number c < 0 can
be expressed as

√|c|√−1, so the only new algebraic object is √−1. Let’s give
it a name:

j
∆=
√−1

Then, formally, the roots of of x2 + 4 are ±2j, and we can formally express the
polynomial in terms of its roots as

p(x) = (x+ 2j)(x− 2j)
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We can think of these as “imaginary roots” in the sense that square roots of
negative numbers don’t really exist, or we can extend the concept of “roots” to
allow for complex numbers, that is, numbers of the form

z = x+ jy

where x and y are real numbers, and j2 ∆= −1.
It can be checked that all algebraic operations for real numbers2 apply equally

well to complex numbers. Both real numbers and complex numbers are examples
of a mathematical field. Fields are closed with respect to multiplication and
addition, and all the rules of algebra we use in manipulating polynomials with
real coefficients (and roots) carry over unchanged to polynomials with complex
coefficients and roots. In fact, the rules of algebra become simpler for complex
numbers because, as discussed in the next section, we can always factor poly-
nomials completely over the field of complex numbers while we cannot do this
over the reals (as we saw in the example p(x) = x2 + 4).

2.4 Fundamental Theorem of Algebra

Every nth-order polynomial possesses exactly n complex roots.

This is a very powerful algebraic tool.3 It says that given any polynomial

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a2x2 + a1x+ a0

∆=
n∑
i=0

aix
i

2multiplication, addition, division, distributivity of multiplication over addition, commuta-
tivity of multiplication and addition.

3Proofs for the fundamental theorem of algebra have a long history involv-
ing many of the great names in classical mathematics. The first known rigor-
ous proof was by Gauss based on earlier efforts by Euler and Lagrange. (Gauss
also introduced the term “complex number.”) An alternate proof was given by
Argand based on the ideas of d’Alembert. For a summary of the history, see
http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Fund theorem of algebra.html

(the first Google search result for “fundamental theorem of algebra,” as of July 2002).
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Page 12 2.5. COMPLEX BASICS

we can always rewrite it as

p(x) = an(x− zn)(x− zn−1)(x− zn−2) · · · (x− z2)(x− z1)
∆= an

n∏
i=1

(x− zi)

where the points zi are the polynomial roots, and they may be real or complex.

2.5 Complex Basics

This section introduces various notation and terms associated with complex
numbers. As discussed above, complex numbers are devised by introducing the
square-root of −1 as a primitive new algebraic object among real numbers and
manipulating it symbolically as if it were a real number itself:

j
∆=
√−1

Mathemeticians and physicists often use i instead of j as
√−1. The use of j is

common in engineering where i is more often used for electrical current.
As mentioned above, for any negative number c < 0, we have

√
c =

√
(−1)(−c) =

j
√|c|, where |c| denotes the absolute value of c. Thus, every square root of a
negative number can be expressed as j times the square root of a positive num-
ber.

By definition, we have

j0 = 1
j1 = j

j2 = −1
j3 = −j
j4 = 1

· · ·

and so on. Thus, the sequence x(n) ∆= jn, n = 0, 1, 2, . . . is a periodic sequence
with period 4, since jn+4 = jnj4 = jn. (We’ll learn later that the sequence jn is
a sampled complex sinusoid having frequency equal to one fourth the sampling
rate.)
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CHAPTER 2. COMPLEX NUMBERS Page 13

Every complex number z can be written as

z = x+ jy

where x and y are real numbers. We call x the real part and y the imaginary
part . We may also use the notation

re {z} = x (“the real part of z = x+ jy is x”)
im {z} = y (“the imaginary part of z = x+ jy is y”)

Note that the real numbers are the subset of the complex numbers having a zero
imaginary part (y = 0).

The rule for complex multiplication follows directly from the definition of the
imaginary unit j:

z1z2
∆= (x1 + jy1)(x2 + jy2)
= x1x2 + jx1y2 + jy1x2 + j2y1y2
= (x1x2 − y1y2) + j(x1y2 + y1x2)

In some mathematics texts, complex numbers z are defined as ordered pairs of
real numbers (x, y), and algebraic operations such as multiplication are defined
more formally as operations on ordered pairs, e.g., (x1, y1) · (x2, y2)

∆= (x1x2 −
y1y2, x1y2 + y1x2). However, such formality tends to obscure the underlying
simplicity of complex numbers as a straightforward extension of real numbers
to include j ∆=

√−1.
It is important to realize that complex numbers can be treated algebraically

just like real numbers. That is, they can be added, subtracted, multiplied,
divided, etc., using exactly the same rules of algebra (since both real and complex
numbers are mathematical fields). It is often preferable to think of complex
numbers as being the true and proper setting for algebraic operations, with real
numbers being the limited subset for which y = 0.

To explore further the magical world of complex variables, see any textbook
such as [2, 3].

2.5.1 The Complex Plane

We can plot any complex number z = x + jy in a plane as an ordered pair
(x, y), as shown in Fig. 2.2. A complex plane (or Argand diagram) is any 2D
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Figure 2.2: Plotting a complex number as a point in the complex plane.

graph in which the horizontal axis is the real part and the vertical axis is the
imaginary part of a complex number or function. As an example, the number j
has coordinates (0, 1) in the complex plane while the number 1 has coordinates
(1, 0).

Plotting z = x + jy as the point (x, y) in the complex plane can be viewed
as a plot in Cartesian or rectilinear coordinates. We can also express complex
numbers in terms of polar coordinates as an ordered pair (r, θ), where r is the
distance from the origin (0, 0) to the number being plotted, and θ is the angle
of the number relative to the positive real coordinate axis (the line defined by
y = 0 and x > 0). (See Fig. 2.2.)

Using elementary geometry, it is quick to show that conversion from rectan-
gular to polar coordinates is accomplished by the formulas

r =
√
x2 + y2

θ = tan−1(y/x).

The first equation follows immediately from the Pythagorean theorem , while
the second follows immediately from the definition of the tangent function.
Similarly, conversion from polar to rectangular coordinates is simply

x = r cos(θ)
y = r sin(θ).

These follow immediately from the definitions of cosine and sine, respectively,
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2.5.2 More Notation and Terminology

It’s already been mentioned that the rectilinear coordinates of a complex number
z = x + jy in the complex plane are called the real part and imaginary part,
respectively.

We also have special notation and various names for the radius and angle of
a complex number z expressed in polar coordinates (r, θ):

r
∆= |z| =

√
x2 + y2

= modulus, magnitude, absolute value, norm, or radius of z

θ
∆= � z = tan−1(y/x)
= angle, argument , or phase of z

The complex conjugate of z is denoted z and is defined by

z
∆= x− jy

where, of course, z ∆= x+ jy. Sometimes you’ll see the notation z∗ in place of z,
but we won’t use that here.

In general, you can always obtain the complex conjugate of any expression
by simply replacing j with −j. In the complex plane, this is a vertical flip about
the real axis; in other words, complex conjugation replaces each point in the
complex plane by its mirror image on the other side of the x axis.

2.5.3 Elementary Relationships

From the above definitions, one can quickly verify

z + z = 2 re {z}
z − z = 2j im {z}
zz = |z|2

Let’s verify the third relationship which states that a complex number multiplied
by its conjugate is equal to its magnitude squared:

zz
∆= (x+ jy)(x− jy) = x2 − (jy)2 = x2 + y2 ∆= |z|2,
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2.5.4 Euler’s Formula

Since z = x + jy is the algebraic expression of z in terms of its rectangular
coordinates, the corresponding expression in terms of its polar coordinates is

z = r cos(θ) + j r sin(θ).

There is another, more powerful representation of z in terms of its polar
coordinates. In order to define it, we must introduce Euler’s Formula:

ejθ = cos(θ) + j sin(θ) (2.4)

A proof of Euler’s identity is given in the next chapter. Just note for the moment
that for θ = 0, we have ej0 = cos(0)+ j sin(0) = 1+ j0 = 1, as expected. Before,
the only algebraic representation of a complex number we had was z = x+ jy,
which fundamentally uses Cartesian (rectilinear) coordinates in the complex
plane. Euler’s identity gives us an alternative algebraic representation in terms
of polar coordinates in the complex plane:

z = rejθ

This representation often simplifies manipulations of complex numbers, espe-
cially when they are multiplied together. Simple rules of exponents can often
be used in place of more difficult trigonometric identities. In the simple case of
two complex numbers being multiplied,

z1z2 =
(
r1e

jθ1
)(
r2e

jθ2
)
= (r1r2)

(
ejθ1ejθ2

)
= r1r2ej(θ1+θ2)

A corollary of Euler’s identity is obtained by setting θ = π to get

ejπ + 1 = 0

This has been called the “most beautiful formula in mathematics” due to the ex-
tremely simple form in which the fundamental constants e, j, π, 1, and 0, together
with the elementary operations of addition, multiplication, exponentiation, and
equality, all appear exactly once.

For another example of manipulating the polar form of a complex number,
let’s again verify zz = |z|2, as we did above, but this time using polar form:

zz = rejθre−jθ = r2e0 = r2 = |z|2.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



CHAPTER 2. COMPLEX NUMBERS Page 17

We can now easily add a fourth line to that set of examples:

z/z =
rejθ

re−jθ
= ej2θ = ej2� z

Thus, |z/z| = 1 for every z 	= 0.
Euler’s identity can be used to derive formulas for sine and cosine in terms

of ejθ:

ejθ + ejθ = ejθ + e−jθ

= [cos(θ) + j sin(θ)] + [cos(θ)− j sin(θ)]
= 2 cos(θ),

Similarly, ejθ − ejθ = 2j sin(θ), and we have

cos(θ) = e
jθ + e−jθ
2

sin(θ) = e
jθ − e−jθ
2j

2.5.5 De Moivre’s Theorem

As a more complicated example of the value of the polar form, we’ll prove De
Moivre’s theorem:

[cos(θ) + j sin(θ)]n = cos(nθ) + j sin(nθ)

Working this out using sum-of-angle identities from trigonometry is laborious.
However, using Euler’s identity, De Moivre’s theorem simply “falls out”:

[cos(θ) + j sin(θ)]n =
[
ejθ

]n
= ejθn = cos(nθ) + j sin(nθ)

Moreover, by the power of the method used to show the result, n can be any
real number, not just an integer.

2.6 Numerical Tools in Matlab

In Matlab, root-finding is always numerical:4

4unless you have the optional Maple package for symbolic mathematical manipulation
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>> % polynomial = array of coefficients in Matlab
>> p = [1 0 0 0 5 7]; % p(x) = x^5 + 5*x + 7
>> format long; % print double-precision
>> roots(p) % print out the roots of p(x)

ans =
1.30051917307206 + 1.10944723819596i
1.30051917307206 - 1.10944723819596i
-0.75504792501755 + 1.27501061923774i
-0.75504792501755 - 1.27501061923774i
-1.09094249610903

Matlab has the following primitives for complex numbers:

>> help j

J Imaginary unit.
The variables i and j both initially have the value sqrt(-1)
for use in forming complex quantities. For example, the
expressions 3+2i, 3+2*i, 3+2i, 3+2*j and 3+2*sqrt(-1).
all have the same value. However, both i and j may be
assigned other values, often in FOR loops and as subscripts.

See also I.
Built-in function.
Copyright (c) 1984-92 by The MathWorks, Inc.

>> sqrt(-1)

ans =
0 + 1.0000i

>> help real

REAL Complex real part.
REAL(X) is the real part of X.

See also IMAG, CONJ, ANGLE, ABS.
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>> help imag

IMAG Complex imaginary part.
IMAG(X) is the imaginary part of X.
See I or J to enter complex numbers.

See also REAL, CONJ, ANGLE, ABS.

>> help conj

CONJ Complex conjugate.
CONJ(X) is the complex conjugate of X.

>> help abs

ABS Absolute value and string to numeric conversion.
ABS(X) is the absolute value of the elements of X. When
X is complex, ABS(X) is the complex modulus (magnitude) of
the elements of X.

See also ANGLE, UNWRAP.

ABS(S), where S is a MATLAB string variable, returns the
numeric values of the ASCII characters in the string.
It does not change the internal representation, only the
way it prints.
See also SETSTR.

>> help angle

ANGLE Phase angle.
ANGLE(H) returns the phase angles, in radians, of a matrix with
complex elements.

See also ABS, UNWRAP.
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Page 20 2.6. NUMERICAL TOOLS IN MATLAB

Note how helpful the “See also” information is in Matlab.
Let’s run through a few elementary manipulations of complex numbers in

Matlab:

>> x = 1; % Every symbol must have a value in Matlab
>> y = 2;
>> z = x + j * y

z =
1.0000 + 2.0000i

>> 1/z

ans =
0.2000 - 0.4000i

>> z^2

ans =
-3.0000 + 4.0000i

>> conj(z)

ans =
1.0000 - 2.0000i

>> z*conj(z)

ans =
5

>> abs(z)^2

ans =
5.0000

>> norm(z)^2
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ans =
5.0000

>> angle(z)

ans =
1.1071

Now let’s do polar form:

>> r = abs(z)

r =
2.2361

>> theta = angle(z)

theta =
1.1071

Curiously, e is not defined by default in Matlab (though it is in Octave).
It can easily be computed in Matlab as e=exp(1). Below are some examples
involving imaginary exponentials:

>> r * exp(j * theta)

ans =
1.0000 + 2.0000i

>> z

z =
1.0000 + 2.0000i

>> z/abs(z)

ans =
0.4472 + 0.8944i
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>> exp(j*theta)

ans =
0.4472 + 0.8944i

>> z/conj(z)

ans =
-0.6000 + 0.8000i

>> exp(2*j*theta)

ans =
-0.6000 + 0.8000i

>> imag(log(z/abs(z)))

ans =
1.1071

>> theta

theta =
1.1071

>>

Some manipulations involving two complex numbers:

>> x1 = 1;
>> x2 = 2;
>> y1 = 3;
>> y2 = 4;
>> z1 = x1 + j * y1;
>> z2 = x2 + j * y2;
>> z1
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z1 =
1.0000 + 3.0000i

>> z2

z2 =
2.0000 + 4.0000i

>> z1*z2

ans =
-10.0000 +10.0000i

>> z1/z2

ans =
0.7000 + 0.1000i

Another thing to note about Matlab is that the transpose operator ’ (for
vectors and matrices) conjugates as well as transposes. Use .’ to transpose
without conjugation:

>>x = [1:4]*j

x =
0 + 1.0000i 0 + 2.0000i 0 + 3.0000i 0 + 4.0000i

>> x’

ans =
0 - 1.0000i
0 - 2.0000i
0 - 3.0000i
0 - 4.0000i

>> x.’

ans =
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0 + 1.0000i
0 + 2.0000i
0 + 3.0000i
0 + 4.0000i

>>

2.7 Numerical Tools in Mathematica

In Mathematica, we can find the roots of simple polynomials in closed form, while
larger polynomials can be factored numerically in either Matlab or Mathematica.
Look to Mathematica to provide the most sophisticated symbolic mathematical
manipulation, and look for Matlab to provide the best numerical algorithms, as
a general rule.

One way to implicitly find the roots of a polynomial is to factor it in Math-
ematica:

In[1]:
p[x_] := x^2 + 5 x + 6

In[2]:
Factor[p[x]]

Out[2]:
(2 + x)*(3 + x)

Factor[] works only with exact Integers or Rational coefficients, not with Real
numbers.

Alternatively, we can explicitly solve for the roots of low-order polynomials
in Mathematica:

In[1]:
p[x_] := a x^2 + b x + c

In[2]:
Solve[p[x]==0,x]

Out[2]:
{{x -> (-(b/a) + (b^2/a^2 - (4*c)/a)^(1/2))/2},
{x -> (-(b/a) - (b^2/a^2 - (4*c)/a)^(1/2))/2}}

Closed-form solutions work for polynomials of order one through four. Higher
orders, in general, must be dealt with numerically, as shown below:
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In[1]:
p[x_] := x^5 + 5 x + 7

In[2]:
Solve[p[x]==0,x]

Out[2]:
{ToRules[Roots[5*x + x^5 == -7, x]]}

In[3]:
N[Solve[p[x]==0,x]]

Out[3]:
{{x -> -1.090942496109028},

{x -> -0.7550479250175501 - 1.275010619237742*I},
{x -> -0.7550479250175501 + 1.275010619237742*I},
{x -> 1.300519173072064 - 1.109447238195959*I},
{x -> 1.300519173072064 + 1.109447238195959*I}}

Mathematica has the following primitives for dealing with complex numbers
(The “?” operator returns a short description of the symbol to its right):

In[1]:
?I

Out[1]:
I represents the imaginary unit Sqrt[-1].

In[2]:
?Re

Out[2]:
Re[z] gives the real part of the complex number z.

In[3]:
?Im

Out[3]:
Im[z] gives the imaginary part of the complex number z.

In[4]:
?Conj*

Out[4]:
Conjugate[z] gives the complex conjugate of the complex number z.

In[5]:
?Abs

Out[5]:
Abs[z] gives the absolute value of the real or complex number z.
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In[6]:
?Arg

Out[6]:
Arg[z] gives the argument of z.
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Chapter 3

Proof of Euler’s Identity

This chapter outlines the proof of Euler’s Identity, which is an important tool
for working with complex numbers. It is one of the critical elements of the DFT
definition that we need to understand.

3.1 Euler’s Theorem

Euler’s Theorem (or “identity” or “formula”) is

ejθ = cos(θ) + j sin(θ) (Euler’s Identity)

To “prove” this, we must first define what we mean by “ejθ.” (The right-hand
side is assumed to be understood.) Since e is just a particular number, we only
really have to explain what we mean by imaginary exponents. (We’ll also see
where e comes from in the process.) Imaginary exponents will be obtained as
a generalization of real exponents. Therefore, our first task is to define exactly
what we mean by ax, where x is any real number, and a > 0 is any positive real
number.

3.1.1 Positive Integer Exponents

The “original” definition of exponents which “actually makes sense” applies only
to positive integer exponents:

an
∆= a · a · a · · · · · a︸ ︷︷ ︸

n times

27
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where a > 0 is real.
Generalizing this definition involves first noting its abstract mathematical

properties, and then making sure these properties are preserved in the general-
ization.

3.1.2 Properties of Exponents

From the basic definition of positive integer exponents, we have

(1) an1an2 = an1+n2

(2) (an1)n2 = an1n2

Note that property (1) implies property (2). We list them both explicitly for
convenience below.

3.1.3 The Exponent Zero

How should we define a0 in a manner that is consistent with the properties of
integer exponents? Multiplying it by a gives

a0 · a = a0a1 = a0+1 = a1 = a

by property (1) of exponents. Solving a0 · a = a for a0 then gives

a0 = 1 .

3.1.4 Negative Exponents

What should a−1 be? Multiplying it by a gives

a−1 · a = a−1a1 = a−1+1 = a0 = 1

Solving a−1 · a = 1 for a−1 then gives

a−1 =
1
a

Similarly, we obtain

a−M =
1
aM

for all integer values of M , i.e., ∀M ∈ Z.
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3.1.5 Rational Exponents

A rational number is a real number that can be expressed as a ratio of two
integers:

x =
L

M
, L ∈ Z, M ∈ Z

Applying property (2) of exponents, we have

ax = aL/M =
(
a

1
M

)L
Thus, the only thing new is a1/M . Since(

a
1
M

)M
= a

M
M = a

we see that a1/M is the Mth root of a. This is sometimes written

a
1
M

∆= M
√
a

The Mth root of a real (or complex) number is not unique. As we all know,
square roots give two values (e.g.,

√
4 = ±2). In the general case of Mth roots,

there are M distinct values, in general.
How do we come up with M different numbers which when raised to the

Mth power will yield a? The answer is to consider complex numbers in polar
form. By Euler’s Identity, the real number a > 0 can be expressed, for any
integer k, as a · ej2πk = a · cos(2πk) + j · a · sin(2πk) = a + j · a · 0 = a. Using
this form for a, the number a1/M can be written as

a
1
M = a

1
M ej2πk/M , k = 0, 1, 2, 3, . . . ,M − 1

We can now see that we get a different complex number for each k = 0, 1, 2, 3, . . . ,M−
1. When k = M , we get the same thing as when k = 0. When k = M + 1, we
get the same thing as when k = 1, and so on, so there are only M cases using
this construct.

Roots of Unity

When a = 1, we can write

1k/M = ej2πk/M , k = 0, 1, 2, 3, . . . ,M − 1
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The special case k = 1 is called the primitive M th root of unity , since integer
powers of it give all of the others:

ej2πk/M =
(
ej2π/M

)k
The Mth roots of unity are so important that they are often given a special
notation in the signal processing literature:

W k
M

∆= ej2πk/M , k = 0, 1, 2, . . . ,M − 1,

where WM denotes the primitive Mth root of unity. We may also call WM the
generator of the mathematical group consisting of the Mth roots of unity and
their products.

We will learn later that the Nth roots of unity are used to generate all the
sinusoids used by the DFT and its inverse. The kth sinusoid is given by

W kn
N = ej2πkn/N ∆= ejωktn = cos(ωktn) + j sin(ωktn), n = 0, 1, 2, . . . , N − 1

where ωk
∆= 2πk/NT , tn

∆= nT , and T is the sampling interval in seconds.

3.1.6 Real Exponents

The closest we can actually get to most real numbers is to compute a rational
number that is as close as we need. It can be shown that rational numbers are
dense in the real numbers; that is, between every two real numbers there is a
rational number, and between every two rational numbers is a real number. An
irrational number can be defined as any real number having a non-repeating
decimal expansion. For example,

√
2 is an irrational real number whose decimal

expansion starts out as
√
2 = 1.414213562373095048801688724209698078569671875376948073176679737 . . .

(computed via N[Sqrt[2],80] in Mathematica). Every truncated, rounded, or
repeating expansion is a rational number. That is, it can be rewritten as an
integer divided by another integer. For example,

1.414 =
1414
1000
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and, using overbar to denote the repeating part of a decimal expansion,

x = 0.123

⇒ 1000x = 123.123 = 123 + x

⇒ 999x = 123

⇒ x =
123
999

Other examples of irrational numbers include

π = 3.1415926535897932384626433832795028841971693993751058209749 . . .
e = 2.7182818284590452353602874713526624977572470936999595749669 . . .

Let x̂n denote the n-digit decimal expansion of an arbitrary real number x.
Then x̂n is a rational number (some integer over 10n). We can say

lim
n→∞ x̂n = x

Since ax̂n is defined for all n, it is straightforward to define

ax
∆= lim
n→∞ a

x̂n

3.1.7 A First Look at Taylor Series

Any “smooth” function f(x) can be expanded in the form of a Taylor series:

f(x) = f(x0) +
f ′(x0)
1

(x− x0) +
f ′′(x0)
1 · 2 (x− x0)2 +

f ′′′(x0)
1 · 2 · 3 (x− x0)3 + · · · .

This can be written more compactly as

f(x) =
∞∑
n=0

f (n)(x0)
n!

(x− x0)n.

An informal derivation of this formula for x0 = 0 is given in §3.2 and §3.3.
Clearly, since many derivatives are involved, a Taylor series expansion is only
possible when the function is so smooth that it can be differentiated again and
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again. Fortunately for us, all audio signals can be defined so as to be in that
category. This is because hearing is bandlimited to 20 kHz, and any sum of
sinusoids up to some maximum frequency, i.e., any audible signal, is infinitely
differentiable. (Recall that sin′(x) = cos(x) and cos′(x) = − sin(x), etc.). See
§3.6 for more on this topic.

3.1.8 Imaginary Exponents

We may define imaginary exponents the same way that all sufficiently smooth
real-valued functions of a real variable are generalized to the complex case—
using Taylor series. A Taylor series expansion is just a polynomial (possibly
of infinitely high order), and polynomials involve only addition, multiplication,
and division. Since these elementary operations are also defined for complex
numbers, any smooth function of a real variable f(x) may be generalized to a
function of a complex variable f(z) by simply substituting the complex variable
z = x+ jy for the real variable x in the Taylor series expansion.

Let f(x) ∆= ax, where a is any positive real number. The Taylor series expan-
sion expansion about x0 = 0 (“Maclaurin series”), generalized to the complex
case is then

az
∆= f(0) + f ′(0)(z) +

f ′′(0)
2
z2 +

f ′′′(0)z3

3!
+ · · · · · ·

which is well defined (although we should make sure the series converges for
every finite z). We have f(0) ∆= a0 = 1, so the first term is no problem. But
what is f ′(0)? In other words, what is the derivative of ax at x = 0? Once we
find the successive derivatives of f(x) ∆= ax at x = 0, we will be done with the
definition of az for any complex z.

3.1.9 Derivatives of f(x) = ax

Let’s apply the definition of differentiation and see what happens:

f ′(x0)
∆= lim

δ→0

f(x0 + δ)− f(x0)
δ

∆= lim
δ→0

ax0+δ − ax0

δ
= lim
δ→0
ax0
aδ − 1
δ

= ax0 lim
δ→0

aδ − 1
δ

Since the limit of (aδ − 1)/δ as δ → 0 is less than 1 for a = 2 and greater than
1 for a = 3 (as one can show via direct calculations), and since (aδ − 1)/δ is a
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continuous function of a, it follows that there exists a positive real number we’ll
call e such that for a = e we get

lim
δ→0

eδ − 1
δ

∆= 1.

For a = e, we thus have (ax)′ = (ex)′ = ex.
So far we have proved that the derivative of ex is ex. What about ax for

other values of a? The trick is to write it as

ax = eln(ax) = ex ln(a)

and use the chain rule, where ln(a) ∆= loge(a) denotes the log-base-e of a. For-
mally, the chain rule tells us how to differentiate a function of a function as
follows:

d

dx
f(g(x))|x=x0 = f

′(g(x0))g′(x0)

In this case, g(x) = x ln(a) so that g′(x) = ln(a), and f(y) = ey which is its own
derivative. The end result is then (ax)′ =

(
ex ln a

)′ = ex ln(a) ln(a) = ax ln(a), i.e.,

d

dx
ax = ax ln(a)

3.1.10 Back to e

Above, we defined e as the particular real number satisfying

lim
δ→0

eδ − 1
δ

∆= 1.

which gave us (ax)′ = ax when a = e. From this expression, we have, as δ → 0,

eδ − 1 → δ

⇒ eδ → 1 + δ
⇒ e → (1 + δ)1/δ,

or,

e
∆= lim
δ→0

(1 + δ)1/δ

This is one way to define e. Another way to arrive at the same definition is
to ask what logarithmic base e gives that the derivative of loge(x) is 1/x. We
denote loge(x) by ln(x).
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3.1.11 Sidebar on Mathematica

Mathematica is a handy tool for cranking out any number of digits in transcen-
dental numbers such as e:

In[]:
N[E,50]

Out[]:
2.7182818284590452353602874713526624977572470937

Alternatively, we can compute (1 + δ)1/δ for small δ:

In[]:
(1+delta)^(1/delta) /. delta->0.001

Out[]:
2.716923932235594

In[]:
(1+delta)^(1/delta) /. delta->0.0001

Out[]:
2.718145926824926

In[]:
(1+delta)^(1/delta) /. delta->0.00001

Out[]:
2.718268237192297

What happens if we just go for it and set delta to zero?

In[]:
(1+delta)^(1/delta) /. delta->0

1
Power::infy: Infinite expression - encountered.

0
Infinity::indt:

ComplexInfinity
Indeterminate expression 1 encountered.

Indeterminate

3.1.12 Back to ejθ

We’ve now defined az for any positive real number a and any complex number z.
Setting a = e and z = jθ gives us the special case we need for Euler’s identity.
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Since ez is its own derivative, the Taylor series expansion for f(x) = ex is one
of the simplest imaginable infinite series:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+ · · ·

The simplicity comes about because f (n)(0) = 1 for all n and because we chose
to expand about the point x = 0. We of course define

ejθ
∆=

∞∑
n=0

(jθ)n

n!
= 1 + jθ − θ2/2− jθ3/3! + · · ·

Note that all even order terms are real while all odd order terms are imaginary.
Separating out the real and imaginary parts gives

re
{
ejθ

}
= 1− θ2/2 + θ4/4!− · · ·

im
{
ejθ

}
= θ − θ3/3! + θ5/5!− · · ·

Comparing the Maclaurin expansion for ejθ with that of cos(θ) and sin(θ)
proves Euler’s identity. Recall that

d

dθ
cos(θ) = − sin(θ)
d

dθ
sin(θ) = cos(θ)

so that

dn

dθn
cos(θ)

∣∣∣∣
θ=0

=
{
(−1)n/2, n even
0, n odd

dn

dθn
sin(θ)

∣∣∣∣
θ=0

=
{
(−1)(n−1)/2, n odd
0, n even
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Plugging into the general Maclaurin series gives

cos(θ) =
∞∑
n=0

f (n)(0)
n!

θn

=
∞∑

n≥0
n even

(−1)n/2
n!

θn

sin(θ) =
∞∑

n≥0

n odd

(−1)(n−1)/2

n!
θn

Separating the Maclaurin expansion for ejθ into its even and odd terms (real
and imaginary parts) gives

ejθ
∆=

∞∑
n=0

(jθ)n

n!
=

∞∑
n≥0

n even

(−1)n/2
n!

θn + j
∞∑

n≥0

n odd

(−1)(n−1)/2

n!
θn = cos(θ) + j sin(θ)

thus proving Euler’s identity.

3.2 Informal Derivation of Taylor Series

We have a function f(x) and we want to approximate it using an nth-order
polynomial :

f(x) = f0 + f1x+ f2x2 + · · ·+ fnxn +Rn+1(x)

where Rn+1(x), which is obviously the approximation error, is called the “re-
mainder term.” We may assume x and f(x) are real, but the following derivation
generalizes unchanged to the complex case.

Our problem is to find fixed constants {fi}ni=0 so as to obtain the best ap-
proximation possible. Let’s proceed optimistically as though the approximation
will be perfect, and assume Rn+1(x) = 0 for all x (Rn+1(x) ≡ 0), given the right
values of fi. Then at x = 0 we must have

f(0) = f0
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That’s one constant down and n− 1 to go! Now let’s look at the first derivative
of f(x) with respect to x, again assuming that Rn+1(x) ≡ 0:

f ′(x) = 0 + f1 + 2f2x+ 3f2x2 + · · ·+ nfnxn−1

Evaluating this at x = 0 gives
f ′(0) = f1

In the same way, we find

f ′′(0) = 2 · f2
f ′′′(0) = 3 · 2 · f3

· · ·
f (n)(0) = n! · fn

where f (n)(0) denotes the nth derivative of f(x) with respect to x, evaluated at
x = 0. Solving the above relations for the desired constants yields

f0 = f(0)

f1 =
f ′(0)
1

f2 =
f ′′(0)
2 · 1

f3 =
f ′′′(0)
3 · 2 · 1· · ·

fn =
f (n)(0)
n!

Thus, defining 0! ∆= 1 (as it always is), we have derived the following polynomial
approximation:

f(x) ≈
n∑
k=0

f (k)(0)
k!

xk

This is the nth-order Taylor series expansion of f(x) about the point x = 0. Its
derivation was quite simple. The hard part is showing that the approximation
error (remainder term Rn+1(x)) is small over a wide interval of x values. Another
“math job” is to determine the conditions under which the approximation error
approaches zero for all x as the order n goes to infinity. The main point to note
here is that the form of the Taylor series expansion itself is simple to derive.
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3.3 Taylor Series with Remainder

We repeat the derivation of the preceding section, but this time we treat the
error term more carefully.

Again we want to approximate f(x) with an nth-order polynomial :

f(x) = f0 + f1x+ f2x2 + · · ·+ fnxn +Rn+1(x)

Rn+1(x) is the “remainder term” which we will no longer assume is zero.
Our problem is to find {fi}ni=0 so as to minimize Rn+1(x) over some interval

I containing x. There are many “optimality criteria” we could choose. The one
that falls out naturally here is called “Padé” approximation. Padé approxima-
tion sets the error value and its first n derivatives to zero at a single chosen
point, which we take to be x = 0. Since all n + 1 “degrees of freedom” in the
polynomial coefficients fi are used to set derivatives to zero at one point, the
approximation is termed “maximally flat” at that point. Padé approximation
comes up often in signal processing. For example, it is the sense in which But-
terworth lowpass filters are optimal. (Their frequency reponses are maximally
flat at dc.) Also, Lagrange interpolation filters can be shown to maximally flat
at dc in the frequency domain.

Setting x = 0 in the above polynomial approximation produces

f(0) = f0 +Rn+1(0) = f0

where we have used the fact that the error is to be exactly zero at x = 0.
Differentiating the polynomial approximation and setting x = 0 gives

f ′(0) = f1 +R′
n+1(0) = f1

where we have used the fact that we also want the slope of the error to be exactly
zero at x = 0.

In the same way, we find

f (k)(0) = k! · fk +R(k)
n+1(0) = k! · fk

for k = 2, 3, 4, . . . , n, and the first n derivatives of the remainder term are all
zero. Solving these relations for the desired constants yields the nth-order Taylor
series expansion of f(x) about the point x = 0

f(x) =
n∑
k=0

f (k)(0)
k!

xk +Rn+1(x)
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as before, but now we better understand the remainder term.
From this derivation, it is clear that the approximation error (remainder

term) is smallest in the vicinity of x = 0. All degrees of freedom in the poly-
nomial coefficients were devoted to minimizing the approximation error and its
derivatives at x = 0. As you might expect, the approximation error generally
worsens as x gets farther away from 0.

To obtain a more uniform approximation over some interval I in x, other
kinds of error criteria may be employed. This is classically called “economization
of series,” but nowadays we may simply call it polynomial approximation under
different error criteria. In Matlab, the function polyfit(x,y,n) will find the
coefficients of a polynomial p(x) of degree n that fits the data y over the points
x in a least-squares sense. That is, it minimizes

‖Rn+1 ‖2 ∆=
nx∑
i=1

|y(i)− p(x(i))|2

where nx
∆= length(x).

3.4 Formal Statement of Taylor’s Theorem

Let f(x) be continuous on a real interval I containing x0 (and x), and let f (n)(x)
exist at x and f (n+1)(ξ) be continuous for all ξ ∈ I. Then we have the following
Taylor series expansion:

f(x) = f(x0) +
1
1
f ′(x0)(x− x0)

+
1
1 · 2f

′′(x0)(x− x0)2

+
1

1 · 2 · 3f
′′′(x0)(x− x0)3

+ · · ·

+
1
n!
f (n+1)(x0)(x− x0)n

+ Rn+1(x)
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where Rn+1(x) is called the remainder term. There exists ξ between x and x0

such that

Rn+1(x) =
f (n+1)(ξ)
(n+ 1)!

(x− x0)n+1

In particular, if |f (n+1)| ≤M in I, then

Rn+1(x) ≤ M |x− x0|n+1

(n+ 1)!

which is normally small when x is close to x0.
When x0 = 0, the Taylor series reduces to what is called a Maclaurin series.

3.5 Weierstrass Approximation Theorem

Let f(x) be continuous on a real interval I. Then for any ε > 0, there exists an
nth-order polynomial Pn(f, x), where n depends on ε, such that

|Pn(f, x)− f(x)| < ε

for all x ∈ I.
Thus, any continuous function can be approximated arbitrarily well by means

of a polynomial. Furthermore, an infinite-order polynomial can yield an error-
free approximation. Of course, to compute the polynomial coefficients using a
Taylor series expansion, the function must also be differentiable of all orders
throughout I.

3.6 Differentiability of Audio Signals

As mentioned earlier, every audio signal can be regarded as infinitely differ-
entiable due to the finite bandwidth of human hearing. One of the Fourier
properties we will learn later in this book is that a signal cannot be both time
limited and frequency limited. Therefore, by conceptually “lowpass filtering” ev-
ery audio signal to reject all frequencies above 20 kHz, we implicitly make every
audio signal last forever! Another way of saying this is that the “ideal lowpass
filter ‘rings’ forever”. Such fine points do not concern us in practice, but they
are important for fully understanding the underlying theory. Since, in reality,
signals can be said to have a true beginning and end, we must admit in practice
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that all signals we work with have infinite-bandwidth at turn-on and turn-off
transients.1

1One joke along these lines, due, I’m told, to Professor Bracewell, is that “since the telephone
is bandlimited to 3kHz, and since bandlimited signals cannot be time limited, it follows that
one cannot hang up the telephone”.
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Chapter 4

Logarithms, Decibels, and
Number Systems

This chapter provides an introduction to logarithms (real and complex), deci-
bels, and number systems such as binary integer fixed-point, fractional fixed-
point, one’s complement, two’s complement, logarithmic fixed-point, µ-law, and
floating-point number formats.

4.1 Logarithms

A logarithm y = logb(x) is fundamentally an exponent y applied to a specific
base b. That is, x = by. The term “logarithm” can be abbreviated as “log”.
The base b is chosen to be a positive real number, and we normally only take
logs of positive real numbers x > 0 (although it is ok to say that the log of 0 is
−∞). The inverse of a logarithm is called an antilogarithm or antilog .

For any positive number x, we have

x = blogb(x)

for any valid base b > 0. This is just an identity arising from the definition of
the logarithm, but it is sometimes useful in manipulating formulas.

When the base is not specified, it is normally assumed to be 10, i.e., log(x) ∆=
log10(x). This is the common logarithm.
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Base 2 and base e logarithms have their own special notation:

ln(x) ∆= loge(x)

lg(x) ∆= log2(x)

(The use of lg() for base 2 logarithms is common in computer science. In math-
ematics, it may denote a base 10 logarithm.) By far the most common bases
are 10, e, and 2. Logs base e are called natural logarithms. They are “natural”
in the sense that

d

dx
ln(x) =

1
x

while the derivatives of logarithms to other bases are not quite so simple:

d

dx
logb(x) =

1
x ln(b)

(Prove this as an exercise.) The inverse of the natural logarithm y = ln(x) is of
course the exponential function x = ey, and ey is its own derivative.

In general, a logarithm y has an integer part and a fractional part. The
integer part is called the characteristic of the logarithm, and the fractional part
is called the mantissa. These terms were suggested by Henry Briggs in 1624.
“Mantissa” is a Latin word meaning “addition” or “make weight”—something
added to make up the weight [4].

The following Matlab code illustrates splitting a natural logarithm into its
characteristic and mantissa:

>> x = log(3)
x = 1.0986

>> characteristic = floor(x)
characteristic = 1

>> mantissa = x - characteristic
mantissa = 0.0986

>> % Now do a negative-log example
>> x = log(0.05)

x = -2.9957
>> characteristic = floor(x)

characteristic = -3
>> mantissa = x - characteristic

mantissa = 0.0043
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Logarithms were used in the days before computers to perform multiplication
of large numbers. Since log(xy) = log(x) + log(y), one can look up the logs
of x and y in tables of logarithms, add them together (which is easier than
multiplying), and look up the antilog of the result to obtain the product xy.
Log tables are still used in modern computing environments to replace expensive
multiplies with less-expensive table lookups and additions. This is a classic
tradeoff between memory (for the log tables) and computation. Nowadays, large
numbers are multiplied using FFT fast-convolution techniques.

4.1.1 Changing the Base

By definition, x = blogb(x). Taking the log base a of both sides gives

loga(x) = logb(x) loga(b)

which tells how to convert the base from b to a, that is, how to convert the log
base b of x to the log base a of x. (Just multiply by the log base a of b.)

4.1.2 Logarithms of Negative and Imaginary Numbers

By Euler’s formula, ejπ = −1, so that

ln(−1) = jπ

from which it follows that for any x < 0, ln(x) = jπ + ln(|x|).
Similarly, ejπ/2 = j, so that

ln(j) = j
π

2

and for any imaginary number z = jy, ln(z) = jπ/2 + ln(y), where y is real.
Finally, from the polar representation z = rejθ for complex numbers,

ln(z) ∆= ln(rejθ) = ln(r) + jθ

where r > 0 and θ are real. Thus, the log of the magnitude of a complex number
behaves like the log of any positive real number, while the log of its phase term
ejθ extracts its phase (times j).
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Page 46 4.2. DECIBELS

As an example of the use of logarithms in signal processing, note that the
negative imaginary part of the derivative of the log of a spectrum X(ω) is defined
as the group delay1 of the signal x(t):

Dx(ω)
∆= −im

{
d

dω
ln(X(ω))

}

Another usage is in Homomorphic Signal Processing [6, Chapter 10] in which the
multiplicative formants in vocal spectra are converted to additive low-frequency
variations in the spectrum (with the harmonics being the high-frequency vari-
ation in the spectrum). Thus, the lowpass-filtered log spectrum contains only
the formants, and the complementarily highpass-filtered log spectrum contains
only the fine structure associated with the pitch.

Exercise: Work out the definition of logarithms using a complex
base b.

4.2 Decibels

A decibel (abbreviated dB) is defined as one tenth of a bel . The bel2 is an
amplitude unit defined for sound as the log (base 10) of the intensity relative to
some reference intensity,3 i.e.,

Amplitude in bels = log10

(
Signal Intensity

Reference Intensity

)

The choice of reference intensity (or power) defines the particular choice of dB
scale. Signal intensity, power, and energy are always proportional to the square

1Group delay and phase delay are covered in the CCRMA publication [1] as well as in
standard signal processing references [5]. In the case of an AM or FM broadcast signal which
is passed through a filter, the carrier wave is delayed by the phase delay of the filter, while the
modulation signal is delayed by the group delay of the filter. In the case of additive synthesis,
group delay applies to the amplitude envelope of each sinusoidal oscillator, while the phase
delay applies to the sinusoidal oscillator waveform itself.

2The “bel” is named after Alexander Graham Bell, the inventor of the telephone.
3Intensity is physically power per unit area. Bels may also be defined in terms of energy ,

or power which is energy per unit time. Since sound is always measured over some area
by a microphone diaphragm, its physical power is conventionally normalized by area, giving
intensity. Similarly, the force applied by sound to a microphone diaphragm is normalized by
area to give pressure (force per unit area).
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of the signal amplitude. Thus, we can always translate these energy-related
measures into squared amplitude:

Amplitude in bels = log10

(
Amplitude2

Amplitude2ref

)
= 2 log10

( |Amplitude|
|Amplituderef|

)

Since there are 10 decibels to a bel, we also have

AmplitudedB = 20 log10

( |Amplitude|
|Amplituderef|

)
= 10 log10

(
Intensity
Intensityref

)

= 10 log10

(
Power
Powerref

)
= 10 log10

(
Energy
Energyref

)
A just-noticeable difference (JND) in amplitude level is on the order of a

quarter dB. In the early days of telephony, one dB was considered a reasonable
“smallest step” in amplitude, but in reality, a series of half-dB amplitude steps
does not sound very smooth, while quarter-dB steps do sound pretty smooth. A
typical professional audio filter-design specification for “ripple in the passband”
is 0.1 dB.

Exercise: Try synthesizing a sawtooth waveform which increases by
1/2 dB a few times per second, and again using 1/4 dB increments.
See if you agree that quarter-dB increments are “smooth” enough
for you.

4.2.1 Properties of DB Scales

In every kind of dB, a factor of 10 in amplitude gain corresponds to a 20 dB
boost (increase by 20 dB):

20 log10

(
10 ·A
Aref

)
= 20 log10(10)︸ ︷︷ ︸

20 dB

+20 log10

(
A

Aref

)

and 20 log10(10) = 20, of course. A function f(x) which is proportional to 1/x
is said to “fall off” (or “roll off”) at the rate of 20 dB per decade. That is, for
every factor of 10 in x (every “decade”), the amplitude drops 20 dB.

Similarly, a factor of 2 in amplitude gain corresponds to a 6 dB boost:

20 log10

(
2 ·A
Aref

)
= 20 log10(2)︸ ︷︷ ︸

6 dB

+20 log10

(
A

Aref

)
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and
20 log10(2) = 6.0205999 . . . ≈ 6 dB.

A function f(x) which is proportional to 1/x is said to fall off 6 dB per octave.
That is, for every factor of 2 in x (every “octave”), the amplitude drops close to
6 dB. Thus, 6 dB per octave is the same thing as 20 dB per decade.

A doubling of power corresponds to a 3 dB boost :

10 log10

(
2 ·A2

A2
ref

)
= 10 log10(2)︸ ︷︷ ︸

3 dB

+10 log10

(
A2

A2
ref

)

and
10 log10(2) = 3.010 . . . ≈ 3 dB.

Finally, note that the choice of reference merely determines a vertical offset
in the dB scale:

20 log10

(
A

Aref

)
= 20 log10(A)− 20 log10(Aref)︸ ︷︷ ︸

constant offset

4.2.2 Specific DB Scales

Since we so often rescale our signals to suit various needs (avoiding overflow,
reducing quantization noise, making a nicer plot, etc.), there seems to be little
point in worrying about what the dB reference is—we simply choose it implicitly
when we rescale to obtain signal values in the range we want to see. Nevertheless,
a few specific dB scales are worth knowing about.

DBm Scale

One common dB scale in audio recording is the dBm scale in which the reference
power is taken to be a milliwatt (1 mW) dissipated by a 600 Ohm resistor. (See
Appendix 4.6 for a primer on resistors, voltage, current, and power.)

DBV Scale

Another dB scale is the dBV scale which sets 0 dBV to 1 volt. Thus, a 100-volt
signal is

20 log10

(
100V
1V

)
= 40 dBV
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and a 1000-volt signal is

20 log10

(
1000V
1V

)
= 60 dBV

Note that the dBV scale is undefined for current or power, unless the voltage is
assumed to be across a standard resistor value, such as 600 Ohms.

DB SPL

Sound Pressure Level (SPL) is defined using a reference which is approximately
the intensity of 1000 Hz sinusoid that is just barely audible (0 “phons”). In
pressure units:

0 dB SPL ∆= 0.0002 µbar (micro-barometric pressure4)
= 20 µPa (micro-Pascals)
= 2.9× 10−9 PSI (pounds per square inch)

= 2× 10−4 dynes
cm2

(CGS units)

= 2× 10−5 nt
m2

(MKS units)

In intensity units:

I0 = 10−16 W
cm2

which corresponds to a root-mean-square (rms) pressure amplitude of 20.4 µPa,
or about 20 µPa, as listed above. The wave impedance of air plays the role of “re-
sistor” in relating the pressure- and intensity-based references exactly analogous
to the dBm case discussed above.

Since sound is created by a time-varying pressure, we compute sound levels
in dB-SPL by using the average intensity (averaged over at least one period of
the lowest frequency contained in the sound).

Table 4.1 gives a list list of common sound levels and their dB equivalents5

[7]: In my experience, the “threshold of pain” is most often defined as 120 dB.
The relationship between sound amplitude and actual loudness is complex

[8]. Loudness is a perceptual dimension while sound amplitude is physical. Since

5Adapted from S. S. Stevens, F. Warshofsky, and the Editors of Time-Life Books, Sound
and Hearing, Life Science Library, Time-Life Books, Alexandria, VA, 1965, p. 173.
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Sound dB-SPL
Jet engine at 3m 140
Threshold of pain 130
Rock concert 120
Accelerating motorcycle at 5m 110
Pneumatic hammer at 2m 100
Noisy factory 90
Vacuum cleaner 80
Busy traffic 70
Quiet restaurant 50
Residential area at night 40
Empty movie house 30
Rustling of leaves 20
Human breathing (at 3m) 10
Threshold of hearing (good ears) 0

Table 4.1: Ballpark figures for the dB-SPL level of common sounds.

loudness sensitivity is closer to logarithmic than linear in amplitude (especially
at moderate to high loudnesses), we typically use decibels to represent sound
amplitude, especially in spectral displays.

The sone amplitude scale is defined in terms of actual loudness perception
experiments [8]. At 1kHz and above, loudness perception is approximately log-
arithmic above 50 dB SPL or so. Below that, it tends toward being more linear.

The phon amplitude scale is simply the dB scale at 1kHz [8, p. 111]. At other
frequencies, the amplitude in phons is defined by following the equal-loudness
curve over to 1 kHz and reading off the level there in dB SPL. In other words,
all pure tones have the same loudness at the same phon level, and 1 kHz is used
to set the reference in dB SPL. Just remember that one phon is one dB-SPL
at 1 kHz. Looking at the Fletcher-Munson equal-loudness curves [8, p. 124],
loudness in phons can be read off along the vertical line at 1 kHz.

Classically, the intensity level of a sound wave is its dB SPL level, measur-
ing the peak time-domain pressure-wave amplitude relative to 10−16 watts per
centimeter squared (i.e., there is no consideration of the frequency domain here
at all).

Another classical term still encountered is the sensation level of pure tones:
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The sensation level is the number of dB SPL above the hearing threshold at that
frequency [8, p. 110].

For further information on “doing it right,” see, for example,
http://www.measure.demon.co.uk/Acoustics Software/loudness.html.

DB for Display

In practical signal processing, it is common to choose the maximum signal mag-
nitude as the reference amplitude. That is, we normalize the signal so that the
maximum amplitude is defined as 1, or 0 dB. This convention is also used by
“sound level meters” in audio recording. When displaying magnitude spectra,
the highest spectral peak is often normalized to 0 dB. We can then easily read
off lower peaks as so many dB below the highest peak.

Figure 4.1b shows a plot of the Fast Fourier Transform (FFT) of ten periods
of a “Kaiser-windowed” sinusoid at 440 Hz. (FFT windows will be discussed
later in this book. For now, just think of the window as selecting and tapering
a finite-duration section of the signal.) Note that the peak dB magnitude has
been normalized to zero, and that the plot has been clipped at -100 dB.

Below is the Matlab code for producing Fig. 4.1. Note that it contains several
elements (windows, zero padding, spectral interpolation) that we will not cover
until later. They are included here as “forward references” in order to keep
the example realistic and practical, and to give you an idea of “how far we
have to go” before we know how to do practical spectrum analysis. Otherwise,
the example just illustrates plotting spectra on an arbitrary dB scale between
convenient limits.

% Example practical display of the FFT of a synthesized sinusoid

fs = 44100; % Sampling rate
f = 440; % Sinusoidal frequency = A-440
nper = 10; % Number of periods to synthesize
dur = nper/f; % Duration in seconds
T = 1/fs; % Sampling period
t = 0:T:dur; % Discrete-time axis in seconds
L = length(t) % Number of samples to synthesize
ZP = 5; % Zero padding factor (for spectral interpolation)
N = 2^(nextpow2(L*ZP)) % FFT size (power of 2)
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Figure 4.1: Windowed sinusoid (top) and its FFT magnitude (bottom).
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x = cos(2*pi*f*t); % A sinusoid at A-440 (a "row vector")
w = kaiser(L,8); % We’ll learn a bit about "FFT windows" later
xw = x .* w’; % Need to transpose w to get a row vector
sound(xw,fs); % Might as well listen to it
xzp = [xw,zeros(1,N-L)];% Zero-padded FFT input buffer
X = fft(xzp); % Spectrum of xw, interpolated by factor ZP

Xmag = abs(X); % Spectral magnitude
Xdb = 20*log10(Xmag); % Spectral magnitude in dB

XdbMax = max(Xdb); % Peak dB magnitude
Xdbn = Xdb - XdbMax; % Normalize to 0dB peak

dBmin = -100; % Don’t show anything lower than this
Xdbp = max(Xdbn,dBmin); % Normalized, clipped, dB magnitude spectrum
fmaxp = 2*f; % Upper frequency limit of plot, in Hz
kmaxp = fmaxp*N/fs; % Upper frequency limit of plot, in bins
fp = fs*[0:kmaxp]/N; % Frequency axis in Hz

% Ok, plot it already!

subplot(2,1,1);
plot(1000*t,xw);
xlabel(’Time (ms)’);
ylabel(’Amplitude’);
title(sprintf(’a) %d Periods of a %3.0f Hz Sinusoid, Kaiser Windowed’,nper,f));

subplot(2,1,2);
plot(fp,Xdbp(1:kmaxp+1)); grid;
% Plot a dashed line where the peak should be:

hold on; plot([440 440],[dBmin,0],’--’); hold off;
xlabel(’Frequency (Hz)’);
ylabel(’Magnitude (dB)’);
title(sprintf([’b) Interpolated FFT of %d Periods of ’,...
’%3.0f Hz Sinusoid’],nper,f));

The following more compact Matlab produces essentially the same plot, but
without the nice physical units on the horizontal axes:
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x = cos([0:2*pi/20:10*2*pi]); % 10 periods of a sinusoid, 20 samples/cycle
L = length(x);
xw = x’ .* kaiser(L,8);
N = 2^nextpow2(L*5);
X = fft([xw’,zeros(1,N-L)]);

subplot(2,1,1); plot(xw);
xlabel(’Time (samples)’); ylabel(’Amplitude’);
title(’a) 10 Periods of a Kaiser-Windowed Sinusoid’);

subplot(2,1,2); kmaxp = 2*10*5; Xl = 20*log10(abs(X(1:kmaxp+1)));
plot([10*5+1,10*5+1],[-100,0],[0:kmaxp],max(Xl - max(Xl),-100)); grid;
xlabel(’Frequency (Bins)’); ylabel(’Magnitude (dB)’);
title(’b) Interpolated FFT of 10 Periods of Sinusoid’);

4.2.3 Dynamic Range

The dynamic range of a signal processing system can be defined as the maximum
dB level sustainable without overflow (or other distortion) minus the dB level
of the “noise floor”.

Similarly, the dynamic range of a signal can be defined as its maximum
decibel level minus its average “noise level” in dB. For digital signals, the limiting
noise is ideally quantization noise.

Quantization noise is generally modeled as a uniform random variable be-
tween plus and minus half the least significant bit (since rounding to the nearest
representable sample value is normally used). If q denotes the quantization in-
terval, then the maximum quantization-error magnitude is q/2, and its variance
(“noise power”) is σ2

q = q
2/12 (see Appendix 4.5 for a derivation of this value).

The rms level of the quantization noise is therefore σq = q/(2
√
3) ≈ 0.3q, or

about 60% of the maximum error.
The number system and number of bits chosen to represent signal samples

determines their available dynamic range. Signal processing operations such as
digital filtering may use the same number system as the input signal, or they
may use extra bits in the computations, yielding an increased “internal dynamic
range”.

Since the threshold of hearing is near 0 dB SPL, and since the “threshold
of pain” is often defined as 120 dB SPL, we may say that the dynamic range of
human hearing is approximately 120 dB.

The dynamic range of magnetic tape is approximately 55 dB. To increase
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the dynamic range available for analog recording on magnetic tape, companding
is often used. “Dolby A” adds approximately 10 dB to the dynamic range that
will fit on magnetic tape (by compressing the signal dynamic range by 10 dB),
while DBX adds 30 dB (at the cost of more “transient distortion”).6 In general,
any dynamic range can be mapped to any other dynamic range, subject only to
noise limitations.

4.3 Linear Number Systems for Digital Audio

This section discusses the most commonly used number formats for digital audio.

4.3.1 Pulse Code Modulation (PCM)

The “standard” number format for sampled audio signals is officially called
Pulse Code Modulation (PCM). This term simply means that each signal sample
is interpreted as a “pulse” (e.g., a voltage or current pulse) at a particular
amplitude which is binary encoded, typically in two’s complement binary fixed-
point format (discussed below). When someone says they are giving you a
soundfile in “raw binary format”, they pretty much always mean (nowadays) 16-
bit, two’s-complement PCM data. Most mainstream computer soundfile formats
consist of a “header” (containing the length, etc.) followed by 16-bit two’s-
complement PCM.

You can normally convert a soundfile from one computer’s format to another
by stripping off its header and prepending the header for the new machine (or
simply treating it as raw binary format on the destination computer). The
UNIX “cat” command can be used for this, as can the Emacs text editor (which
handles binary data just fine). The only issue usually is whether the bytes have
to be swapped (an issue discussed further below).

4.3.2 Binary Integer Fixed-Point Numbers

Most prevalent computer languages only offer two kinds of numbers, floating-
point and integer fixed-point. On present-day computers, all numbers are en-

6Companders (compresser-expanders) essentially “turn down” the signal gain when it is
“loud” and “turn up” the gain when it is “quiet”. As long as the input-output curve is mono-
tonic (such as a log characteristic), the dynamic-range compression can be undone (expanded).
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coded using binary digits (called “bits”) which are either 1 or 0.7 In C, C++,
and Java, floating-point variables are declared as float (32 bits) or double (64
bits), while integer fixed-point variables are declared as short int (typically 16
bits and never less), long int (typically 32 bits and never less), or simply int
(typically the same as a long int, but sometimes between short and long). For
an 8-bit integer, one can use the char datatype (8 bits).

Since C was designed to accommodate a wide range of hardware, including
old mini-computers, some lattitude was historically allowed in the choice of
these bit-lengths. The sizeof operator is officially the “right way” for a C
program to determine the number of bytes in various data types at run-time, e.g.
sizeof(long). (The word int can be omitted after short or long.) Nowadays,
however, shorts are always 16 bits (at least on all the major platforms), ints
are 32 bits, and longs are typically 32 bits on 32-bit computers and 64 bits
on 64-bit computers (although some C/C++ compilers use long long int to
declare 64-bit ints). Table 4.2 gives the lengths currently used by GNU C/C++
compilers (usually called “gcc” or “cc”) on 64-bit processors.8

Java, which is designed to be platform independent, defines a long int
as equivalent in precision to 64 bits, an int as 32 bits, a short int as 16
bits, and additionally a byte int as an 8-bit int. Similarly, the “Structured
Audio Orchestra Language” (SAOL9) (pronounced “sail”)—the sound-synthesis
component of the new MPEG-4 audio compression standard—requires only that
the underlying number system be at least as accurate as 32-bit floats. All ints

7Computers use bits, as opposed to the more familiar decimal digits, because they are more
convenient to implement in digital hardware. For example, the decimal numbers 0, 1, 2, 3,
4, 5 become, in binary format, 0, 1, 10, 11, 100, 101. Each bit position in binary notation
corresponds to a power of 2, e.g., 5 = 1 · 22+0 · 21+1 · 20; while each digit position in decimal
notation corresponds to a power of 10, e.g., 123 = 1 · 102 + 2 · 101 + 3 · 100. The term “digit”
comes from the same word meaning “finger.” Since we have ten fingers (digits), the term
“digit” technically should be associated only with decimal notation, but in practice it is used
for others as well. Other popular number systems in computers include octal which is base 8
(rarely seen any more, but still specifiable in any C/C++ program by using a leading zero, e.g.,
0755 = 7 · 82 +5 · 81 +5 · 80 = 493 decimal = 111,101,101 binary), and hexadecimal (or simply
“hex”) which is base 16 and which employs the letters A through F to yield 16 digits (specifiable
in C/C++ by starting the number with “0x”, e.g., 0x1ED = 1 · 162 + 15 · 161 + 14 · 160 = 493
decimal = 1,1110,1101 binary). Note, however, that the representation within the computer is
still always binary; octal and hex are simply convenient groupings of bits into sets of three bits
(octal) or four bits (hex).

8This information is subject to change without notice. Check your local compiler documen-
tation.

9http://sound.media.mit.edu/mpeg4
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Type Bytes Notes
char 1
short 2
int 4
long 8 (4 bytes on 32-bit machines)

long long 8 (may become 16 bytes)
type * 8 (any pointer)
float 4
double 8

long double 8 (may become 10 bytes)
size t 8 (type of sizeof())
T* - T* 8 (pointer arithmetic)

Table 4.2: Byte sizes of GNU C/C++ data types for 64-bit architectures.

discussed thus far are signed integer formats. C and C++ also support unsigned
versions of all int types, and they range from 0 to 2N − 1 instead of −2N−1 to
2N−1 − 1, where N is the number of bits. Finally, an unsigned char is often
used for integers that only range between 0 and 255.

One’s Complement Fixed-Point Format

One’s Complement is a particular assignment of bit patterns to numbers. For
example, in the case of 3-bit binary numbers, we have the assignments shown in
Table 4.3.

In general, N -bit numbers are assigned to binary counter values in the “ob-
vious way” as integers from 0 to 2N−1 − 1, and then the negative numbers are
assigned in reverse order, as shown in the example.

The term “one’s complement” refers to the fact that negating a number in
this format is accomplished by simply complementing the bit pattern (inverting
each bit).

Note that there are two representations for zero (all 0s and all 1s). This is
inconvenient when testing if a number is equal to zero. For this reason, one’s
complement is generally not used.
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Binary Decimal
000 0
001 1
010 2
011 3
100 -3
101 -2
110 -1
111 -0

Table 4.3: Three-bit one’s-complement binary fixed-point numbers.

Two’s Complement Fixed-Point Format

In two’s complement, numbers are negated by complementing the bit pattern
and adding 1, with overflow ignored. From 0 to 2N−1 − 1, positive numbers are
assigned to binary values exactly as in one’s complement. The remaining assign-
ments (for the negative numbers) can be carried out using the two’s complement
negation rule. Regenerating the N = 3 example in this way gives Table 4.4.

Binary Decimal
000 0
001 1
010 2
011 3
100 -4
101 -3
110 -2
111 -1

Table 4.4: Three-bit two’s-complement binary fixed-point numbers.

Note that according to our negation rule, −(−4) = −4. Logically, what has
happened is that the result has “overflowed” and “wrapped around” back to
itself. Note that 3 + 1 = −4 also. In other words, if you compute 4 somehow,
since there is no bit-pattern assigned to 4, you get -4, because -4 is assigned
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the bit pattern that would be assigned to 4 if N were larger. Note that nu-
merical overflows naturally result in “wrap around” from positive to negative
numbers (or from negative numbers to positive numbers). Computers normally
“trap” overflows as an “exception.” The exceptions are usually handled by a
software “interrupt handler,” and this can greatly slow down the processing by
the computer (one numerical calculation is being replaced by a rather sizable
program).

Note that temporary overflows are ok in two’s complement; that is, if you
add 1 to 3 to get −4, adding −1 to −4 will give 3 again. This is why two’s
complement is a nice choice: it can be thought of as placing all the numbers on
a “ring,” allowing temporary overflows of intermediate results in a long string of
additions and/or subtractions. All that matters is that the final sum lie within
the supported dynamic range.

Computers designed with signal processing in mind (such as so-called “Dig-
ital Signal Processing (DSP) chips”) generally just do the best they can with-
out generating exceptions. For example, overflows quietly “saturate” instead of
“wrapping around” (the hardware simply replaces the overflow result with the
maximum positive or negative number, as appropriate, and goes on). Since the
programmer may wish to know that an overflow has occurred, the first occur-
rence may set an “overflow indication” bit which can be manually cleared. The
overflow bit in this case just says an overflow happened sometime since it was
last checked.

Two’s-Complement, Integer Fixed-Point Numbers

Let N denote the (even) number of bits. Then the value of a two’s complement
integer fixed-point number can be expressed in terms of its bits {bi}N−1

i=0 as

x = −b0 · 2N−1 +
N−2∑
i=1

bi · 2N−1−i, bi ∈ {0, 1} (4.1)

We visualize the binary word containing these bits as

x = [b0b1 · · · bN−1]

Each bit bi is of course either 0 or 1. Check that the N = 3 table above is
computed correctly using this formula. As an example, the numer 3 is expressed
as

3 = [011] = −0 · 4 + 1 · 2 + 1 · 1
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while the number -3 is expressed as

−3 = [101] = −1 · 4 + 0 · 2 + 1 · 1

and so on.
The most-significant bit in the word, b0, can be interpreted as the “sign bit”.

If b0 is “on”, the number is negative. If it is “off”, the number is either zero or
positive.

The least-significant bit is bN−1. “Turning on” that bit adds 1 to the number,
and there are no fractions allowed.

The largest positive number is when all bits are on except b0, in which case
x = 2N−1−1. The largest (in magnitude) negative number is 10 · · · 0, i.e., b0 = 1
and bi = 0 for all i > 0. Table 4.5 shows some of the most common cases.

N xmin xmax
8 -128 127
16 -32768 32767
24 -8,388,608 8,388,607
32 -2,147,483,648 2,147,483,647

Table 4.5: Numerical range limits in N -bit two’s-complement.

4.3.3 Fractional Binary Fixed-Point Numbers

In “DSP chips” (microprocessors explicitly designed for digital signal processing
applications), the most commonly used fixed-point format is fractional fixed
point, also in two’s complement.

Quite simply, fractional fixed-point numbers are obtained from integer fixed-
point numbers by dividing them by 2N−1. Thus, the only difference is a scaling
of the assigned numbers. In the N = 3 case, we have the correspondences shown
in Table 4.6.

4.3.4 How Many Bits are Enough for Digital Audio?

Armed with the above knowledge, we can visit the question “how many bits are
enough” for digital audio. Since the threshold of hearing is around 0 db SPL, the
“threshold of pain” is around 120 dB SPL, and each bit in a linear PCM format
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Binary Decimal
000 0 (0/4)
001 0.25 (1/4)
010 0.5 (2/4)
011 0.75 (3/4)
100 -1 (-4/4)
101 -0.75 (-3/4)
110 -0.5 (-2/4)
111 -0.25 (-1/4)

Table 4.6: Three-bit fractional fixed-point numbers.

is worth about 6 dB of dynamic range, we find that we need 120/6 = 20 bits to
represent the full dynamic range of audio in a linear fixed-point format. This is a
simplestic analysis because it is not quite right to equate the least-significant bit
with the threshold of hearing; instead, we would like to adjust the quantization
noise floor to just below the threshold of hearing. Since the threshold of hearing
is non-uniform, we would also prefer a shaped quantization noise floor (a feat that
can be accomplished using filtered error feedback10 Nevertheless, the simplistic
result gives an answer similar to the more careful analysis, and 20 bits is a good
number. However, this still does not provide for headroom needed in a digital
recording scenario. We also need both headroom and guard bits on the lower
end when we plan to carry out a lot of signal processing operations, especially
digital filtering. As an example, a 1024-point FFT (Fast Fourier Transform)
can give amplitudes 1024 times the input amplitude (such as in the case of a
constant “dc” input signal), thus requiring 10 headroom bits. In general, 24
fixed-point bits are pretty reasonable to work with, although you still have to
scale very carefully, and 32 bits are preferable.

10Normally, quantization error is computed as e(n) = x(n)− x̂(n), where x(n) is the signal
being quantized, and x̂(n) = Q[x(n)] is the quantized value, obtained by rounding to the
nearest representable amplitude. Filtered error feedback uses instead the formula x̂(n) =
Q[x(n)+L{e(n−1)}], where L{ } denotes a filtering operation which “shapes” the quantization
noise spectrum. An excellent article on the use of round-off error feedback in audio digital filters
is [9].
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4.3.5 When Do We Have to Swap Bytes?

When moving a soundfile from one computer to another, such as from a “PC”
to a “Mac” (Intel processor to Motorola processor), the bytes in each sound
sample have to be swapped. This is because Motorola processors are big endian
(bytes are numbered from most-significant to least-significant in a multi-byte
word) while Intel processors are little endian (bytes are numbered from least-
significant to most-significant).11 Any Mac program that supports a soundfile
format native to PCs (such as .wav files) will swap the bytes for you. You
only have to worry about swapping the bytes yourself when reading raw binary
soundfiles from a foreign computer, or when digging the sound samples out an
“unsupported” soundfile format yourself.

Since soundfiles typically contain 16 bit samples (not for any good reason,
as we now know), there are only two bytes in each audio sample. Let L denote
the least-significant byte, and M the most-significant byte. Then a 16-bit word
is most naturally written [M,L] =M · 256 +L, i.e., the most-significant byte is
most naturally written to the left of the least-significant byte, analogous to the
way we write binary or decimal integers. This “most natural” ordering is used
as the byte-address ordering in big-endian processors:

M,L, M,L, M,L, ..., M,L (Big Endian)

Little-endian machines, on the other hand, store bytes in the order

L,M, L,M, L,M, ..., L,M. (Little Endian)

These orderings are preserved when the sound data are written to a disk file.
Since a byte (eight bits) is the smallest addressable unit in modern day

processor families, we don’t have to additionally worry about reversing the bits
in each byte. Bits are not given explicit “addresses” in memory. They are
extracted by means other than simple addressing (such as masking and shifting
operations, table look-up, or using specialized processor instructions).

Table 4.7 lists popular present-day processors and their “endianness”:12 When
compiling C or C++ programs under UNIX, there may be a BYTE ORDER
macro in endian.h or bytesex.h. In other cases, there may be a defined macro
INTEL , LITTLE ENDIAN , BIG ENDIAN , or the like.
11Remember that byte addresses in a big endian word start at the big end of the word, while

in a little endian architecture, they start at the little end of the word.
12Thanks to Bill Schottstaedt for help with this table.
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Processor Family Endian
Pentium (Intel) Little
Alpha (DEC/Compaq) Little
680x0 (Motorola) Big
PowerPC (Motorola & IBM) Big
SPARC (Sun) Big
MIPS (SGI) Big

Table 4.7: Byte ordering in the major computing platforms.

4.4 Logarithmic Number Systems for Audio

Since hearing is approximately logarithmic, it makes sense to represent sound
samples in a logarithmic or semi-logarithmic number format. Floating-point
numbers in a computer are partially logarithmic (the exponent part), and one
can even use an entirely logarithmic fixed-point number system. The µ-law
amplitude-encoding format is linear at small amplitudes and becomes logarith-
mic at large amplitudes. This section discusses these formats.

4.4.1 Floating-Point Numbers

Floating-point numbers consist of an “exponent,” “significand”, and “sign bit”.
For a negative number, we may set the sign bit of the floating-point word and
negate the number to be encoded, leaving only nonnegative numbers to be con-
sidered. Zero is represented by all zeros, so now we need only consider positive
numbers.

The basic idea of floating point encoding of a binary number is to normalize
the number by shifting the bits either left or right until the shifted result lies
between 1/2 and 1. (A left-shift by one place in a binary word corresponds to
multiplying by 2, while a right-shift one place corresponds to dividing by 2.)
The number of bit-positions shifted to normalize the number can be recorded as
a signed integer. The negative of this integer (i.e., the shift required to recover
the original number) is defined as the exponent of the floating-point encoding.
The normalized number between 1/2 and 1 is called the significand, so called
because it holds all the “significant bits” of the number.

Floating point notation is exactly analogous to “scientific notation” for dec-
imal numbers, e.g., 1.2345 × 10−9; the number of significant digits, 5 in this
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example, is determined by counting digits in the “significand” 1.2345, while the
“order of magnitude” is determined by the power of 10 (-9 in this case). In
floating-point numbers, the significand is stored in fractional two’s-complement
binary format, and the exponent is stored as a binary integer.

Since the significand lies in the interval [1/2, 1),13 its most significant bit is
always a 1, so it is not actually stored in the computer word, giving one more
significant bit of precision.

Let’s now restate the above a little more precisely. Let x > 0 denote a number
to be encoded in floating-point, and let x̃ = x · 2−E denote the normalized value
obtained by shifting x either E bits to the right (if E > 0), or |E| bits to the
left (if E < 0). Then we have 1/2 ≤ x̃ < 1, and x = x̃ · 2E . The significand
M of the floating-point representation for x is defined as the binary encoding of
x̃.14 It is often the case that x̃ requires more bits than are available for exact
encoding. Therefore, the significand is typically rounded (or truncated) to the
value closest to x̃. Given NM bits for the significand, the encoding of x̃ can be
computed by multiplying it by 2NM (left-shifting it NM bits), rounding to the
nearest integer (or truncating toward minus infinity—the as implemented by the
floor() function), and encoding the NM -bit result as a binary (signed) integer.

As a final practical note, exponents in floating-point formats may have a
bias. That is, instead of storing E as a binary integer, you may find a binary
encoding of E −B where B is the bias.15

These days, floating-point formats generally follow the IEEE standards set
out for them. A single-precision floating point word is 32 bits (four bytes) long,
consisting of 1 sign bit, 8 exponent bits, and 23 significand bits, normally laid
out as

S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM

where S denotes the sign bit, E an exponent bit, and M a significand bit. Note
13The notation [a, b) denotes a half-open interval which includes a but not b.
14Another term commonly heard for “significand” is “mantissa.” However, this use of the

term “mantissa” is not the same as its previous definition as the fractional part of a logarithm.
We will therefore use only the term “significand” to avoid confusion.

15By choosing the bias equal to half the numerical dynamic range of E (thus effectively
inverting the sign bit of the exponent), it becomes easier to compare two floating-point numbers
in hardware: the entire floating-point word can be treated by the hardware as one giant integer
for numerical comparison purposes. This works because negative exponents correspond to
floating-point numbers less than 1 in magnitude, while. positive exponents correspond to
floating-point numbers greater than 1 in magnitude.
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that in this layout, ordinary integer comparison can be used in the hardware.
A double-precision floating point word is 64 bits (eight bytes) long, consist-

ing of 1 sign bit, 11 exponent bits, and 52 significand bits. In the Intel Pentium
processor, there is also an extended precision format, used for intermediate re-
sults, which is 80 bits (ten bytes) containing 1 sign bit, 15 exponent bits, and 64
significand bits. In Intel processors, the exponent bias is 127 for single-precision
floating-point, 1023 for double-precision, and 16383 for extended-precision. The
single and double precision formats have a “hidden” significand bit, while the
extended precision format does not. Thus, the most significant significand bit is
always set in extended precision.

The MPEG-4 audio compression standard (which supports compression us-
ing music synthesis algorithms) specifies that the numerical calculations in any
MPEG-4 audio decoder should be at least as accurate as 32-bit single-precision
floating point.

4.4.2 Logarithmic Fixed-Point Numbers

In some situations it makes sense to use logarithmic fixed-point. This number
format can be regarded as a floating-point format consisting of an exponent and
no explicit significand. However, the exponent is not interpreted as an integer as
it is in floating point. Instead, it has a fractional part which is a true mantissa.
(The integer part is then the “characteristic” of the logarithm.) In other words,
a logarithmic fixed-point number is a binary encoding of the log-base-2 of the
signal-sample magnitude. The sign bit is of course separate.

An example 16-bit logarithmic fixed-point number format suitable for digital
audio consists of one sign bit, a 5-bit characteristic, and a 10-bit mantissa:

S CCCCC MMMMMMMMMM

The 5-bit characteristic gives a dynamic range of about 6 dB ×25 = 192 dB.
This is an excellent dynamic range for digital audio. (While 120 dB would seem
to be enough for audio, consider that when digitally modeling a brass musical
instrument, say, the internal air pressure near the “virtual mouthpiece” can be
far higher than what actually reaches the ears in the audience.)

A nice property of logarithmic fixed-point numbers is that multiplies sim-
ply become additions and divisions become subtractions. The hard elementary
operation are now addition and subtraction, and these are normally done using
table lookups to keep them simple.
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One “catch” when working with logarithmic fixed-point numbers is that you
can’t let “dc” build up. A wandering dc component will cause the quantization
to be coarse even for low-level “ac” signals. It’s a good idea to make sure dc is
always filtered out in logarithmic fixed-point.

4.4.3 Mu-Law Companding

A companding operation compresses dynamic range on encode and expands dy-
namic range on decode. In digital telephone networks and voice modems (cur-
rently in use everywhere), standard CODEC 16 chips are used in which audio is
digitized in a simple 8-bit µ-law format (or simply “mu-law”).

Given an input sample x(n) represented in some internal format, such as a
short, it is converted to 8-bit mu-law format by the formula [10]

x̂µ
∆= Qµ [log2 (1 + µ |x(n)|)]

where Qµ[] is a quantizer which produces a kind of logarithmic fixed-point num-
ber with a 3-bit characteristic and a 4-bit mantissa, using a small table lookup
for the mantissa.

As we all know from talking on the telephone, mu-law sounds really quite
good for voice, at least as far as intelligibility is concerned. However, because
the telephone bandwidth is only around 3 kHz (nominally 200–3200 Hz), there
is very little “bass” and no “highs” in the spectrum above 4 kHz. This works out
fine for intelligibility of voice because the first three formants (envelope peaks)
in typical speech spectra occur in this range, and also because the difference
in spectral shape (particularly at high frequencies) between consonants such as
“sss”, “shshsh”, “fff”, “ththth”, etc., are sufficiently preserved in this range. As
a result of the narrow bandwidth provided for speech, it is sampled at only 8
kHz in standard CODEC chips.

For “wideband audio”, we like to see sampling rates at least as high as 44.1
kHz, and the latest systems are moving to 96 kHz (mainly because oversampling
simplifies signal processing requirements in various areas, not because we can
actually hear anything above 20 kHz). In addition, we like the low end to extend
at least down to 20 Hz or so. (The lowest note on a normally tuned bass guitar
is E1 = 41.2 Hz. The lowest note on a grand piano is A0 = 27.5 Hz.)

16CODEC is an acronym for “COder/DECoder”.
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4.5 Appendix A: Round-Off Error Variance

This section shows how to derive that the noise power of quantization error is
q2/12, where q is the quantization step size.

Each round-off error in quantization noise e(n) is modeled as a uniform
random variable between −q/2 and q/2. It therefore has the probability density
function (pdf)

pe(x) =
{ 1

q , |x| ≤ q
2

0, |x| > q
2

Thus, the probability that a given roundoff error e(n) lies in the interval [x1, x2]
is given by ∫ x2

x1

pe(x)dx =
x2 − x1

q

assuming of course that x1 and x2 lie in the allowed range [−q/2, q/2]. We might
loosely refer to pe(x) as a probability distribution, but technically it is a prob-
ability density function, and to obtain probabilities, we have to integrate over
one or more intervals, as above. We use probability distributions for variables
which take on discrete values (such as dice), and we use probability densities
for variables which take on continuous values (such as round-off errors).

The mean of a random variable is defined as

µe
∆=

∫ ∞

−∞
xpe(x)dx = 0

In our case, the mean is zero because we are assuming the use of rounding (as
opposed to truncation, etc.).

The mean of a signal e(n) is the same thing as the expected value of e(n),
which we write as E{e(n)}. In general, the expected value of any function f(v)
of a random variable v is given by

E{f(v)} ∆=
∫ ∞

−∞
f(x)pv(x)dx

Since the quantization-noise signal e(n) is modeled as a series of independent,
identically distributed (iid) random variables, we can estimate the mean by
averaging the signal over time. Such an estimate is called a sample mean.
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Probability distributions are often be characterized by their moments. The
nth moment of the pdf p(x) is defined as∫ ∞

−∞
xnp(x)dx

Thus, the mean µx = E{e(n)} is the first moment of the pdf. The second moment
is simply the expected value of the random variable squared, i.e., E{e2(n)}.

The variance of a random variable e(n) is defined as the second central
moment of the pdf:

σ2
e

∆= E{[e(n)− µe]2} =
∫ ∞

−∞
(x− µe)2pe(x)dx

“Central” just means that the moment is evaluated after subtracting out the
mean, that is, looking at e(n) − µe instead of e(n). In the case of round-off
errors, the mean is zero, so subtracting out the mean has no effect. Plugging
in the constant pdf for our random variable e(n) which we assume is uniformly
distributed on [−q/2, q/2], we obtain the variance

σ2
e =

∫ q/2

−q/2
x2 1
q
dx =

1
q

1
3
x3

∣∣∣∣q/2
−q/2

=
q2

12

Note that the variance of e(n) can be estimated by averaging e2(n) over time,
that is, by computing the mean square. Such an estimate is called the sample
variance. For sampled physical processes, the sample variance is proportional to
the average power in the signal. Finally, the square root of the sample variance
(the rms level) is sometimes called the standard deviation of the signal, but this
term is only precise when the random variable has a Gaussian pdf.

Some good textbooks in the area of statistical signal processing include [11,
12, 13].

4.6 Appendix B: Electrical Engineering 101

The state of an ideal resistor is completely specified by the voltage across it (call
it V volts) and the current passing through it (I Amperes, or simply “amps”).
The ratio of voltage to current gives the value of the resistor (V/I = R =
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resistance in Ohms). The fundamental relation between voltage and current in
a resistor is called Ohm’s Law :

V (t) = R · I(t) (Ohm’s Law)

where we have indicated also that the voltage and current may vary with time
(while the resistor value normally does not).

The electrical power in watts dissipated by a resistor R is given by

P = V · I = V
2

R
= R · I2

where V is the voltage and I is the current. Thus, volts times amps gives watts.
Also, volts squared over ohms equals watts, and so on.
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Chapter 5

Sinusoids and Exponentials

This chapter provides an introduction to sinusoids, exponentials, complex sinu-
soids, t60, in-phase and quadrature sinusoidal components, the analytic signal,
positive and negative frequencies, constructive and destructive interference, in-
variance of sinusoidal frequency in linear time-invariant systems, circular motion
as the vector sum of in-phase and quadrature sinusoidal motions, sampled sinu-
soids, generating sampled sinusoids from powers of z, and plot examples using
Mathematica.

5.1 Sinusoids

A sinusoid is any function of time having the following form:

x(t) = A sin(ωt+ φ)

where all variables are real numbers, and

A = Peak Amplitude (nonnegative)
ω = Radian Frequency (rad/sec)

= 2πf (f in Hz)
t = Time (sec)
f = Frequency (Hz)
φ = Phase (radians)

71
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The term “peak amplitude” is often shortened to “amplitude,” e.g., “the
amplitude of the sound was measured to be 5 Pascals.” Strictly speaking, how-
ever, the “amplitude” of a signal x is its instantaneous value x(t) at any time
t. The peak amplitude A satisfies x(t) ≤ A. The “instantaneous magnitude” or
simply “magnitude” of a signal x(t) is given by |x(t)|, and the peak magnitude
is the same thing as the peak amplitude.

Note that Hz is an abbreviation for Hertz which physically means “cycles
per second.” You might also encounter the older (and clearer) notation “c.p.s.”
for cycles per second.

Since sin(θ) is periodic with period 2π, the phase φ± 2π is indistinguishable
from the phase φ. As a result, we may restrict the range of φ to any length 2π
interval. When needed, we will choose

−π ≤ φ < π,
i.e., φ ∈ [−π, π). You may also encounter the convention φ ∈ [0, 2π).

5.1.1 Example Sinusoids

Figure 5.1 plots the sinusoid A sin(2πft+φ), for A = 10, f = 2.5, φ = π/4, and
t ∈ [0, 1]. Study the plot to make sure you understand the effect of changing
each parameter (amplitude, frequency, phase), and also note the definitions of
“peak-to-peak amplitude” and “zero crossings.”

The Mathematica code for generating this figure is listed in §5.4.
A “tuning fork” vibrates approximately sinusoidally. An “A-440” tuning fork

oscillates at 440 cycles per second. As a result, a tone recorded from an ideal
A-440 tuning fork is a sinusoid at f = 440 Hz. The amplitude A determines
how loud it is and depends on how hard we strike the tuning fork. The phase
φ is set by exactly when we strike the tuning fork (and on our choice of when
time 0 is). If we record an A-440 tuning fork on an analog tape recorder, the
electrical signal recorded on tape is of the form

x(t) = A sin(2π440t+ φ)

As another example, the sinusoid at amplitude 1 and phase π/2 (90 degrees)
is simply

x(t) = sin(ωt+ π/2) = cos(ωt)

Thus, cos(ωt) is a sinusoid at phase 90-degrees, while sin(ωt) is a sinusoid at
zero phase. Note, however, that we could just as well have defined cos(ωt) to
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10 Sin[2 Pi 2.5 t + Pi/4]
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Figure 5.1: An example sinusoid.

be the zero-phase sinusoid rather than sin(ωt). It really doesn’t matter, except
to be consistent in any given usage. The concept of a “sinusoidal signal” is
simply that it is equal to a sine or cosine function at some amplitude, frequency,
and phase. It does not matter whether we choose sin() or cos() in the “official”
definition of a sinusoid. You may encounter both definitions. Using sin() is nice
since “sinusoid” in a sense generalizes sin(). However, using cos() is nicer when
defining a sinusoid to be the real part of a complex sinusoid (which we’ll talk
about later).

5.1.2 Why Sinusoids are Important

Sinusoids are fundamental in a variety of ways.
One reason for the importance of sinusoids is that they are fundamental in

physics. Anything that resonates or oscillates produces quasi-sinusoidal motion.
See simple harmonic motion in any freshman physics text for an introduction
to this topic.

Another reason sinusoids are important is that they are eigenfunctions of
linear systems (which we’ll say more about later). This means that they are
important for the analysis of filters such as reverberators, equalizers, certain
(but not all) “effects”, etc.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



Page 74 5.1. SINUSOIDS

Perhaps most importantly, from the point of view of computer music re-
search, is that the human ear is a kind of spectrum analyzer. That is, the
chochlea of the inner ear physically splits sound into its (near) sinusoidal com-
ponents. This is accomplished by the basilar membrane in the inner ear: a
sound wave injected at the oval window (which is connected via the bones of
the middle ear to the ear drum), travels along the basilar membrane inside the
coiled cochlea. The membrane starts out thick and stiff, and gradually becomes
thinner and more compliant toward its apex (the helicotrema). A stiff mem-
brane has a high resonance frequency while a thin, compliant membrane has
a low resonance frequency (assuming comparable mass density, or at least less
of a difference in mass than in compliance). Thus, as the sound wave travels,
each frequency in the sound resonates at a particular place along the basilar
membrane. The highest frequencies resonate right at the entrance, while the
lowest frequencies travel the farthest and resonate near the helicotrema. The
membrane resonance effectively “shorts out” the signal energy at that frequency,
and it travels no further. Along the basilar membrane there are hair cells which
“feel” the resonant vibration and transmit an increased firing rate along the
auditory nerve to the brain. Thus, the ear is very literally a Fourier analyzer
for sound, albeit nonlinear and using “analysis” parameters that are difficult to
match exactly. Nevertheless, by looking at spectra (which display the amount of
each sinusoidal frequency present in a sound), we are looking at a representation
much more like what the brain receives when we hear.

5.1.3 In-Phase and Quadrature Sinusoidal Components

From the trig identity sin(A+B) = sin(A) cos(B) + cos(A) sin(B), we have

x(t) = A sin(ωt+ φ) = A sin(φ+ ωt)
= [A sin(φ)] cos(ωt) + [A cos(φ)] sin(ωt)
∆= A1 cos(ωt) +A2 sin(ωt)

From this we may conclude that every sinusoid can be expressed as the sum of
a sine function (phase zero) and a cosine function (phase π/2). If the sine part
is called the “in-phase” component, the cosine part can be called the “phase-
quadrature” component. In general, “phase quadrature” means “90 degrees out
of phase,” i.e., a relative phase shift of ±π/2.

It is also the case that every sum of an in-phase and quadrature component
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can be expressed as a single sinusoid at some amplitude and phase. The proof
is obtained by working the previous derivation backwards.

Figure 5.2 illustrates in-phase and quadrature components overlaid. Note
that they only differ by a relative 90 degree phase shift. (See §5.4 for the
Mathematica code for this figure.)

0.2 0.4 0.6 0.8 1  Time (Sec)

-1

-0.5

0.5

1
Amplitude

Figure 5.2: In-phase and quadrature sinusoidal components.

5.1.4 Sinusoids at the Same Frequency

An important property of sinusoids at a particular frequency is that they are
closed with respect to addition. In other words, if you take a sinsusoid, make
many copies of it, scale them all by different gains, delay them all by different
amounts, and add them up, you always get a sinusoid at the same original
frequency. This is a nontrivial property. It obviously holds for any constant
signal x(t) = c (which we may regard as a sinusoid at frequency f = 0), but
it is not obvious for f 	= 0 (see Fig. 5.2 and think about the sum of the two
waveforms shown being precisely a sinusoid).

Since every linear, time-invariant (LTI1) system (filter) operates by copying,
scaling, delaying, and summing its input signal(s) to create its output signal(s),
it follows that when a sinusoid at a particular frequency is input to an LTI
system, a sinusoid at that same frequency always appears at the output. Only

1A system S is said to be linear if for any two input signals x1(t) and x2(t), we have
S[x1(t) + x2(t)] = S[x1(t)] + S[x2(t)]. A system is said to be time invariant if S[x(t − τ)] =

y(t − τ), where y(t)
∆
= S[x(t)]. This subject is developed in detail in [1].
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the amplitude and phase can be changed by the system. We say that sinusoids
are eigenfunctions of LTI systems. Conversely, if the system is nonlinear or
time-varying, new frequencies are created at the system output.

To prove the important invariance property of sinusoids, we may simply
express all scaled and delayed sinusoids in the “mix” in terms of their in-phase
and quadrature components and then add them up. For example, consider the
case of two sinusoids arbitrarily scaled by gains g1, g2 and arbitrarily delayed
by time-delays t1, t2:

y(t) ∆= g1x(t− t1) + g2x(t− t2)
= g1A sin[ω(t− t1) + φ] + g2A sin[ω(t− t2) + φ]

Focusing on the first term, we have

g1A sin[ω(t− t1) + φ] = g1A sin[ωt+ (φ− ωt1)]
= [g1A sin(φ− ωt1)] cos(ωt) + [g1A cos(φ− ωt1)] sin(ωt)
∆= A1 cos(ωt) +B1 sin(ωt)

We similarly compute

g2A sin[ω(t− t2) + φ] = A2 cos(ωt) +B2 sin(ωt)

and add to obtain

y(t) = (A1 +A2) cos(ωt) + (B1 +B2) sin(ωt)

This result, consisting of one in-phase and one quadrature signal component,
can now be converted to a single sinusoid at some amplitude and phase (and
frequency ω), as discussed above.

5.1.5 Constructive and Destructive Interference

Sinusoidal signals are analogous to monochromatic laser light. You might have
seen “speckle” associated with laser light, caused by destructive inteference of
multiple reflections of the light beam. In a room, the same thing happens with
sinusoidal sound. For example, play a simple sinusoidal tone (e.g., “A-440”
which is a sinusoid at frequency f = 440 Hz) and walk around the room with
one ear plugged. If the room is reverberant you should be able find places where
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the sound goes completely away due to destructive interference. In between
such places (which we call “nodes” in the soundfield), there are “antinodes”
at which the sound is louder by 6 dB (amplitude doubled) due to constructive
interference. In a diffuse reverberant soundfield, the distance between nodes
is on the order of a wavelength (the “correlation distance” within the random
soundfield).

The way reverberation produces nodes and antinodes for sinusoids in a room
is illustrated by the simple comb filter.2 There is also shown in Fig. 5.3. A
unit-amplitude sinusoid is present at the input, and the output must also be
sinusoidal, since the comb filter is linear and time-invariant. The feedforward
path of the comb filter has a gain of 0.5, and the delay is one period in one
case and half a period in the other. With the delay set to one period, the unit
amplitude sinusoid coming out of the delay line constructively interferes with the
amplitude 0.5 sinusoid from the feed-forward path, and the output amplitude
is therefore 1 + 0.5 = 1.5. In the other case, with the delay set to half period,
the unit amplitude sinusoid coming out of the delay line destructively interferes
with the amplitude 0.5 sinusoid from the feed-forward path, and the output
amplitude therefore drops to |−1 + 0.5| = 0.5.

Consider a fixed delay of τ seconds for the delay line. Constructive interfer-
ence happens at all frequencies for which an exact integer number of periods fits
in the delay line, i.e., fτ = 0, 1, 2, 3, . . ., or f = n/τ , for n = 0, 1, 2, 3, . . .. On the
other hand, destructive interference happens at all frequencies for which number
of periods in the delay line is an integer plus a half, i.e., fτ = 1.5, 2.5, 3.5, etc.,
or, f = (n+1/2)/τ , for n = 0, 1, 2, 3, . . .. It is quick to verify that frequencies of
constructive interference alternate with frequencies of destructive interference,
and therefore the amplitude response of the comb filter (a plot of gain versus
frequency) looks as shown in Fig. 5.4.

The ampitude response of a comb filter has a “comb” like shape, hence

2Technically, this is the feedforward comb filter, also called the “inverse comb filter” [14].
The longer names are meant to distinguish it from the feedback comb filter (defined as “the”
comb filter in Dodge and Jerse [15]). In the feedback comb filter, the delay output is fed
back around the delay line and summed with the delay input instead of the input being fed
forward around the delay line and summed with its output. The frequency response of the
feedforward comb filter is the inverse of that of the feedback comb filter (one will cancel the
effect of the other), hence the name “inverse comb filter.” When the delay in the feedforward
comb filter is varied slowly over time, the flanger effect is obtained. Flanging was originally
achieved by mixing the outputs of two LP record turntables and changing their relative speeds
by alternately touching the “flange” of each turntable to slow it down.
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Figure 5.3: A comb filter with a sinusoidal input.
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Figure 5.4: Comb filter amplitude response when delay τ = 1 sec.
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the name.3 Note that if the feedforward gain is increased from 0.5 to 1, the
comb-filter gain ranges between 0 (complete cancellation) and 2. Negating the
feedforward gain inverts the gain curve, placing a minumum at dc4 instead of a
peak.

5.2 Exponentials

The canonical form of an exponential function, as typically used in signal pro-
cessing, is

a(t) = Ae−t/τ , t ≥ 0
where τ is called the time constant of the exponential. A is the peak amplitude,
as before. The time constant is the time it takes to decay by 1/e, i.e.,

a(τ)
a(0)

=
1
e

A normalized exponential decay is depicted in Fig. 5.5.

t = τ

t = t
60
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Figure 5.5: The decaying exponential Ae−t/τ .

5.2.1 Why Exponentials are Important

Exponential decay occurs naturally when a quantity is decaying at a rate which is
proportional to how much is left. In nature, all linear resonators, such as musical
instrument strings and woodwind bores, exhibit exponential decay in their re-
sponse to a momentary excitation. As another example, reverberant energy in a

3While there is no reason it should be obvious at this point, the comb-filter gain varies in
fact sinusoidally between 0.5 and 1.5. It looks more ”comb” like on a dB amplitude scale,
which is more appropriate for audio applications.

4“dc” means “direct current” and is an electrical engineering term for “frequency 0”.
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room decays exponentially after the direct sound stops. Essentially all undriven
oscillations decay exponentially (provided they are linear and time-invariant).
Undriven means there is no ongoing source of driving energy. Examples of un-
driven oscillations include the vibrations of a tuning fork, struck or plucked
strings, a marimba or xylophone bar, and so on. Examples of driven oscillations
include horns, woodwinds, bowed strings, and voice. Driven oscillations must be
periodic while undriven oscillations normally are not, except in idealized cases.

Exponential growth occurs when a quantity is increasing at a rate propor-
tional to the current amount. Exponential growth is unstable since nothing can
grow exponentially forever without running into some kind of limit. Note that a
positive time constant corresponds to exponential decay, while a negative time
constant corresponds to exponential growth. In signal processing, we almost
always deal exclusively with exponential decay (positive time constants).

Exponential growth and decay are illustrated in Fig. 5.6.

0.2 0.4 0.6 0.8 1Time (sec)

0.5

1

1.5

2

2.5

Amp

e−t

et

Figure 5.6: Growing and decaying exponentials.

5.2.2 Audio Decay Time (T60)

In audio, a decay by 1/e is too small to be considered a practical “decay time.”
In architectural acoustics (which includes the design of concert halls), a more
commonly used measure of decay is “t60” (or T60), which is defined as the time
to decay by 60 dB.5 That is, t60 is obtained by solving the equation

a(t60)
a(0)

= 10−60/20 = 0.001

Using the definition of the exponential a(t) = Ae−t/τ , we find

t60 = ln(1000)τ ≈ 6.91τ
5Recall that a gain factor g is converted to decibels (dB) by the formula 20 log10(g).
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Thus, t60 is about seven time constants. See where t60 is marked on Fig. 5.5
compared with τ .

5.3 Complex Sinusoids

Recall Euler’s Identity,
ejθ = cos(θ) + j sin(θ)

Multiplying this equation by A ≥ 0 and setting θ = ωt + φ, we obtain the
definition of the complex sinusoid :

s(t) ∆= Aej(ωt+φ) = A cos(ωt+ φ) + jA sin(ωt+ φ)

Thus, a complex sinusoid consists of an in-phase component for its real part, and
a phase-quadrature component for its imaginary part. Since sin2(θ)+ cos2(θ) =
1, we have

|s(t)| ≡ A
That is, the complex sinusoid is constant modulus. (The symbol “≡” means
“identically equal to,” i.e., for all t.) The phase of the complex sinusoid is

� s(t) = ωt+ φ

The derivative of the phase of the complex sinusoid gives its frequency
d

dt
� s(t) = ω = 2πf

5.3.1 Circular Motion

Since the modulus of the complex sinusoid is constant, it must lie on a circle in
the complex plane. For example,

x(t) = ejωt

traces out counter-clockwise circular motion along the unit circle in the complex
plane, while

x(t) = e−jωt

is clockwise circular motion.
We call a complex sinusoid of the form ejωt, where ω > 0, a positive-frequency

sinusoid. Similarly, we define a complex sinusoid of the form e−jωt, with ω > 0,
to be a negative-frequency sinusoid. Note that a positive- or negative-frequency
sinusoid is necessarily complex.
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5.3.2 Projection of Circular Motion

We have

re
{
ejωt

}
= cos(ωt)

im
{
ejωt

}
= sin(ωt)

Interpreting this in the complex plane tells us that sinusoidal motion is the
projection of circular motion onto any straight line. Thus, the sinusoidal motion
cos(ωt) is the projection of the circular motion ejωt onto the x (real-part) axis,
while sin(ωt) is the projection of ejωt onto the y (imaginary-part) axis.

Figure 5.7 shows a plot of a complex sinusoid versus time, along with its
projections onto coordinate planes. This is a 3D plot showing the z-plane versus
time. The axes are the real part, imaginary part, and time. (Or we could have
used magnitude and phase versus time.)

Figure 5.7: A complex sinusoid and its projections.

Note that the left projection (onto the z plane) is a circle, the lower projection
(real-part vs. time) is a cosine, and the upper projection (imaginary-part vs.
time) is a sine. A point traversing the plot projects to uniform circular motion
in the z plane, and sinusoidal motion on the two other planes.
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5.3.3 Positive and Negative Frequencies

Earlier, we used Euler’s Identity to show

cos(θ) = e
jθ + e−jθ

2

sin(θ) = e
jθ − e−jθ

2j

Setting θ = ωt+φ, we see that both sine and cosine (and hence all real sinusoids)
consist of a sum of equal and opposite circular motion. Phrased differently, every
real sinusoid consists of an equal contribution of positive and negative frequency
components. This is true of all real signals. When we get to spectrum analysis,
we will find that every real signal contains equal amounts of positive and negative
frequencies, i.e., if X(ω) denotes the spectrum of the real signal x(t), we will
always have |X(−ω)| = |X(ω)|.

Note that, mathematically, the complex sinusoid Aej(ωt+φ) is really simpler
and more basic than the real sinusoid A sin(ωt + φ) because ejωt consists of
one frequency ω while sin(ωt) really consists of two frequencies ω and −ω. We
may think of a real sinusoid as being the sum of a positive-frequency and a
negative-frequency complex sinusoid, so in that sense real sinusoids are “twice
as complicated” as complex sinusoids. Complex sinusoids are also nicer because
they have a constant modulus. “Amplitude envelope detectors” for complex
sinusoids are trivial: just compute the square root of the sum of the squares
of the real and imaginary parts to obtain the instantaneous peak amplitude at
any time. Frequency demodulators are similarly trivial: just differentiate the
phase of the complex sinusoid to obtain its instantaneous frequency. It should
therefore come as no surprise that signal processing engineers often prefer to
convert real sinusoids into complex sinusoids before processing them further.

5.3.4 The Analytic Signal and Hilbert Transform Filters

A signal which has no negative-frequency components is called an analytic sig-
nal.6 Therefore, in continuous time, every analytic signal z(t) can be represented

6In complex variables, “analytic” just means differentiable of all orders. Therefore, one
would expect an “analytic signal” to simply be any signal which is differentiable of all orders
at any point in time, i.e., one that admits a fully valid Taylor expansion about any point in time.
However, all bandimited signals (being sums of finite-frequency sinusoids) are analytic in the
complex-variables sense. Therefore, the signal processing term “analytic signal” is somewhat
of a misnomer. It is included in this chapter only because it is a commonly used term in
engineering practice.
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as
z(t) =

1
2π

∫ ∞

0
Z(ω)ejωtdω

where Z(ω) is the complex coefficient (setting the amplitude and phase) of the
positive-freqency complex sinusoid exp(jωt) at frequency ω.

Any sinusoid A cos(ωt + φ) in real life may be converted to a positive-
frequency complex sinusoid A exp[j(ωt + φ)] by simply generating a phase-
quadrature component A sin(ωt+ φ) to serve as the “imaginary part”:

Aej(ωt+φ) = A cos(ωt+ φ) + jA sin(ωt+ φ)

The phase-quadrature component can be generated from the in-phase compo-
nent by a simple quarter-cycle time shift.7

For more complicated signals which are expressible as a sum of many sinu-
soids, a filter can be constructed which shifts each sinusoidal component by a
quarter cycle. This is called a Hilbert transform filter. Let Ht{x} denote the
output at time t of the Hilbert-transform filter applied to the signal x(·). Ide-
ally, this filter has magnitude 1 at all frequencies and introduces a phase shift
of −π/2 at each positive frequency and +π/2 at each negative frequency. When
a real signal x(t) and its Hilbert transform y(t) = Ht{x} are used to form a
new complex signal z(t) = x(t) + jy(t), the signal z(t) is the (complex) analytic
signal corresponding to the real signal x(t). In other words, for any real signal
x(t), the corresponding analytic signal z(t) = x(t) + jHt{x} has the property
that all “negative frequencies” of x(t) have been “filtered out.”

To see how this works, recall that these phase shifts can be impressed on a
complex sinusoid by multiplying it by exp(±jπ/2) = ±j. Consider the positive
and negative frequency components at the particular frequency ω0:

x+(t)
∆= ejω0t

x−(t)
∆= e−jω0t

7This operation is actually used in some real-world AM and FM radio receivers (particularly
in digital radio receivers). The signal comes in centered about a high “carrier frequency” (such
as 101 MHz for radio station FM 101), so it looks very much like a sinusoid at frequency 101
MHz. (The frequency modulation only varies the carrier frequency in a relatively tiny interval
about 101 MHz. The total FM bandwidth including all the FM “sidebands” is about 100 kHz.
AM bands are only 10kHz wide.) By delaying the signal by 1/4 cycle, a good approximation
to the imaginary part of the analytic signal is created, and its instantaneous amplitude and
frequency are then simple to compute from the analytic signal.
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Now let’s apply a −90 degrees phase shift to the positive-frequency component,
and a +90 degrees phase shift to the negative-frequency component:

y+(t) = e−jπ/2ejω0t = −jejω0t

y−(t) = ejπ/2e−jω0t = je−jω0t

Adding them together gives

z+(t)
∆= x+(t) + jy+(t) = ejω0t − j2ejω0t = 2ejω0t

z−(t)
∆= x−(t) + jy−(t) = e−jω0t + j2e−jω0t = 0

and sure enough, the negative frequency component is filtered out. (There is
also a gain of 2 at positive frequencies which we can remove by defining the
Hilbert transform filter to have magnitude 1/2 at all frequencies.)

For a concrete example, let’s start with the real sinusoid

x(t) = 2 cos(ω0t) = exp(jω0t) + exp(−jω0t).

Applying the ideal phase shifts, the Hilbert transform is

y(t) = exp(jω0t− jπ/2) + exp(−jω0t+ jπ/2)
= −j exp(jω0t) + j exp(−jω0t) = 2 sin(ω0t)

The analytic signal is then

z(t) = x(t) + jy(t) = 2 cos(ω0t) + j2 sin(ω0t) = 2ejω0t,

by Euler’s identity. Thus, in the sum x(t)+jy(t), the negative-frequency compo-
nents of x(t) and jy(t) cancel out in the sum, leaving only the positive-frequency
component. This happens for any real signal x(t), not just for sinusoids as in
our example.

Figure 5.8 illustrates what is going on in the frequency domain. While we
haven’t “had” Fourier analysis yet, it should come as no surprise that the spec-
trum of a complex sinusoid exp(jω0t) will consist of a single “spike” at the
frequency ω = ω0 and zero at all other frequencies. (Just follow things intu-
itively for now, and revisit Fig. 5.8 after we’ve developed the Fourier theorems.)
From the identity 2 cos(ω0t) = exp(jω0t)+exp(−jω0t), we see that the spectrum
contains unit-amplitude “spikes” at ω = ω0 and ω = −ω0. Similarly, the iden-
tity 2 sin(ω0t) = [exp(jω0t)−exp(−jω0t)]/j = −j exp(jω0t)+ j exp(−jω0t) says
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Re{X(ω)}

ω0

x(t) = cos(ω0 t)

Im{X(ω)}

ω0−ω0

Re{Y(ω)}

ω0

y(t) = sin(ω0 t)

Im{Y(ω)}

ω0−ω0

Re{ j Y(ω)}

ω0

j y(t) = j sin(ω0 t)

Im{ j Y(ω)}

ω0

−ω0

Re{Z(ω)}

ω0

z(t) = x(t) + j y(t) = cos(ω0 t) +  j sin(ω0 t)

Im{Z(ω)}
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b)

c)

d)

(analytic)

Figure 5.8: Creation of the analytic signal z(t) = ejω0t from the real
sinusoid x(t) = cos(ω0t) and the derived phase-quadrature sinusoid
y(t) = sin(ω0t), viewed in the frequency domain. a) Spectrum of x.
b) Spectrum of y. c) Spectrum of jy. d) Spectrum of z = x+ jy.
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that we have an amplitude −j spike at ω = ω0 and an amplitude +j spike at
ω = −ω0. Multiplying y(t) by j results in j sin(ω0t) = exp(jω0t) − exp(−jω0t)
which is a unit-amplitude “up spike” at ω = ω0 and a unit “down spike” at
ω = −ω0. Finally, adding together the first and third plots, corresponding to
z(t) = x(t) + jy(t), we see that the two up-spikes add in phase to give an amp-
litude 2 up-spike (which is 2 exp(jω0t)), and the negative-frequency up-spike
in the cosine is canceled by the down-spike in j times sine at frequency −ω0.
This sequence of operations illustrates how the negative-frequency component
exp(−jω0t) gets filtered out by the addition of 2 cos(ω0t) and j2 sin(ω0t).

As a final example (and application), let x(t) = A(t) cos(ωt), where A(t)
is a slowly varying amplitude envelope (slow compared with ω). This is an
example of amplitude modulation applied to a sinusoid at “carrier frequency”
ω (which is where you tune your AM radio). The Hilbert transform is almost
exactly y(t) ≈ A(t) sin(ωt)8, and the analytic signal is z(t) ≈ A(t)ejωt. Note
that AM demodulation9 is now nothing more than the absolute value. I.e.,
A(t) = |z(t)|. Due to this simplicity, Hilbert transforms are sometimes used in
making amplitude envelope followers for narrowband signals (i.e., signals with
all energy centered about a single “carrier” frequency). AM demodulation is
one application of a narrowband envelope follower.

5.3.5 Generalized Complex Sinusoids

We have defined sinusoids and extended the definition to include complex si-
nusoids. We now extend one more step by allowing for exponential amplitude
envelopes:

y(t) ∆= Aest

where A and s are complex, and further defined as

A = Aejφ

s = σ + jω

8If A(t) were constant, this would be exact.
9Demodulation is the process of recovering the modulation signal. For amplitude modula-

tion (AM), the modulated signal is of the form y(t) = A(t) cos(ωct), where ωc is the “carrier
frequency”, A(t) = [1 + µx(t)] ≥ 0 is the amplitude envelope (modulation), x(t) is the mod-
ulation signal we wish to recover (the audio signal being broadcast in the case of AM radio),
and µ is the modulation index for AM.
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When σ = 0, we obtain

y(t) ∆= Aejωt = Aejφejωt = Aej(ωt+φ)

which is the complex sinusoid at amplitude A, radian frequency ω, and phase φ.
More generally, we have

y(t) ∆= Aest
∆= Aejφe(σ+jω)t

= Ae(σ+jω)t+jφ

= Aeσtej(ωt+φ)

= Aeσt [cos(ωt+ φ) + j sin(ωt+ φ)]

Defining τ = −1/σ, we see that the generalized complex sinusoid is just the
complex sinusoid we had before with an exponential envelope:

re {y(t)} = Ae−t/τ cos(ωt+ φ)
im {y(t)} = Ae−t/τ sin(ωt+ φ)

5.3.6 Sampled Sinusoids

In discrete-time audio processing, such as we must do on a computer, we work
with samples of continuous-time signals. Let Fs denote the sampling rate in
Hz. For audio, we typically have Fs > 40 kHz, since the audio band nominally
extends to 20 kHz. For compact discs (CDs), Fs = 44.1 kHz (or very close to
that—I once saw Sony device using a sampling rate of 44, 025 Hz), while for
digital audio tape (DAT), Fs = 48 kHz.

Let T ∆= 1/Fs denote the sampling period in seconds. Then to convert from
continuous to discrete time, we replace t by nT , where n is an integer interpreted
as the sample number.

The sampled generalized complex sinusoid (which includes all other cases) is
then

y(nT ) = AesnT = A [
esT

]n
∆= Aejφe(σ+jω)nT

= AeσnT [cos(ωnT + φ) + j sin(ωnT + φ)]
= A

[
eσT

]n
[cos(ωnT + φ) + j sin(ωnT + φ)]
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5.3.7 Powers of z

Choose any two complex numbers z0 and z1, and form the sequence

x(n) ∆= z0zn1 , n = 0, 1, 2, 3, . . . (5.1)

What are the properties of this signal? Expressing the two complex numbers as

z0 = Aejφ

z1 = esT = e(σ+jω)T

we see that the signal x(n) is always a discrete-time generalized complex sinusoid,
i.e., an exponentially enveloped complex sinusoid.

Figure 5.9 shows a plot of a generalized (exponentially decaying) complex
sinusoid versus time.

Figure 5.9: Exponentially decaying complex sinusoid and its projections.

Note that the left projection (onto the z plane) is a decaying spiral, the lower
projection (real-part vs. time) is an exponentially decaying cosine, and the upper
projection (imaginary-part vs. time) is an exponentially enveloped sine wave.

5.3.8 Phasor & Carrier Components of Complex Sinusoids

If we restrict z1 in Eq. (5.1) to have unit modulus, then we obtain a discrete-time
complex sinusoid.

x(n) ∆= z0zn1 =
(
Aejφ

)
ejωnT = Aej(ωnT+φ), n = 0, 1, 2, 3, . . . (5.2)
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where we have defined

z0
∆= Aejφ, and

z1
∆= ejωT .

It is common terminology to call z0 = Aejφ the sinusoidal phasor , and zn1 =
ejωnT the sinusoidal carrier .

For a real sinusoid

xr(n)
∆= A cos(ωnT + φ)

the phasor is again defined as z0 = Aejφ and the carrier is zn1 = e
jωnT . However,

in this case, the real sinusoid is recovered from its complex sinusoid counterpart
by taking the real part:

xr(n) = re {z0zn1 }

The phasor magnitude |z0| = A is the amplitude of the sinusoid. The phasor
angle � z0 = φ is the phase of the sinusoid.

When working with complex sinusoids, as in Eq. (5.2), the phasor represen-
tation of a sinusoid can be thought of as simply the complex amplitude of the
sinusoid Aejφ. I.e., it is the complex constant that multiplies the carrier term
ejωnT .

Why Phasors are Important

LTI systems perform only four operations on a signal: copying, scaling, delaying,
and adding. As a result, each output is always a linear combination of delayed
copies of the input signal(s). (A linear combination is simply a weighted sum.)
In any linear combination of delayed copies of a complex sinusoid

y(n) =
N∑
i=1

gix(n− di)

where gi is a weighting factor, di is the ith delay, and

x(n) = ejωnT
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is a complex sinusoid, the “carrier term” ejωnT can be “factored out” of the
linear combination:

y(n) =
N∑
i=1

gie
j[ω(n−di)T ] =

N∑
i=1

gie
jωnT e−jωdiT

= ejωnT
N∑
i=1

gie
−jωdiT = x(n)

N∑
i=1

gie
−jωdiT

The operation of the LTI system on a complex sinusoids is thus reduced to a
calculation involving only phasors, which are simply complex numbers.

Since every signal can be expressed as a linear combination of complex sinu-
soids, this analysis can be applied to any signal by expanding the signal into its
weighted sum of complex sinusoids (i.e., by expressing it as an inverse Fourier
transform).

5.3.9 Why Generalized Complex Sinusoids are Important

As a preview of things to come, note that one signal y(·)10 is projected onto an-
other signal x(·) using an inner product. The inner product 〈y, x〉 computes the
coefficient of projection11 of y onto x. If x(n) = ejωknT , n = 0, 1, 2, . . . , N − 1 (a
sampled, unit-amplitude, zero-phase, complex sinusoid), then the inner product
computes the Discrete Fourier Transform (DFT), provided the frequencies are
chosen to be ωk = 2πkFs/N . For the DFT, the inner product is specifically

〈y, x〉 ∆=
N−1∑
n=0

y(n)x(n) =
N−1∑
n=0

y(n)e−j2πnk/N ∆= DFTk(y)
∆= Y (ωk)

Another commonly used case is theDiscrete Time Fourier Transform (DTFT)
which is like the DFT, except that the transform accepts an infinite number of
samples instead of only N . In this case, frequency is continuous, and

〈y, x〉 =
∞∑
n=0

y(n)e−jωnT ∆= DTFTω(y)

10The notation y(n) denotes a single sample of the signal y at sample n, while the notation
y(·) or simply y denotes the entire signal for all time.

11The coefficient of projection of a signal y onto another signal x can be thought of as a
measure of how much of x is present in y. We will consider this topic in some detail later on.
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The DTFT is what you get in the limit as the number of samples in the DFT
approaches infinity. The lower limit of summation remains zero because we are
assuming all signals are zero for negative time. This means we are working with
unilateral Fourier transforms. There are also corresponding bilateral transforms
for which the lower summation limit is −∞.

If, more generally, x(n) = zn (a sampled complex sinusoid with exponential
growth or decay), then the inner product becomes

〈y, x〉 =
∞∑
n=0

y(n)z−n

and this is the definition of the z transform. It is a generalization of the DTFT:
The DTFT equals the z transform evaluated on the unit circle in the z plane.
In principle, the z transform can also be recovered from the DTFT by means
of “analytic continuation” from the unit circle to the entire z plane (subject to
mathematical disclaimers which are unnecessary in practical applications since
they are always finite).

Why have a z tranform when it seems to contain no more information than
the DTFT? It is useful to generalize from the unit circle (where the DFT and
DTFT live) to the entire complex plane (the z transform’s domain) for a number
of reasons. First, it allows transformation of growing functions of time such as
unstable exponentials; the only limitation on growth is that it cannot be faster
than exponential. Secondly, the z transform has a deeper algebraic structure
over the complex plane as a whole than it does only over the unit circle. For
example, the z transform of any finite signal is simply a polynomial in z. As
such, it can be fully characterized (up to a constant scale factor) by its zeros in
the z plane. Similarly, the z transform of an exponential can be characterized
by a single point of the transform (the point which generates the exponential);
since the z transform goes to infinity at that point, it is called a pole of the
transform. More generally, the z transform of any generalized complex sinusoid
is simply a pole located at the point which generates the sinusoid. Poles and
zeros are used extensively in the analysis of recursive digital filters. On the most
general level, every finite-order, linear, time-invariant, discrete-time system is
fully specified (up to a scale factor) by its poles and zeros in the z plane.

In the continuous-time case, we have the Fourier transform which projects y
onto the continuous-time sinusoids defined by x(t) = ejωt, and the appropriate
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inner product is

〈y, x〉 =
∫ ∞

0
y(t)e−jωtdt ∆= Y (ω)

Finally, the Laplace transform is the continuous-time counterpart of the z
transform, and it projects signals onto exponentially growing or decaying com-
plex sinusoids:

〈y, x〉 =
∫ ∞

0
y(t)e−stdt ∆= Y (s)

The Fourier transform equals the Laplace transform evaluated along the “jω
axis” in the s plane, i.e., along the line s = jω, for which σ = 0. Also, the Laplace
transform is obtainable from the Fourier transform via analytic continuation.
The usefulness of the Laplace transform relative to the Fourier transform is
exactly analogous to that of the z transform outlined above.

5.3.10 Comparing Analog and Digital Complex Planes

In signal processing, it is customary to use s as the Laplace transform variable
for continuous-time analysis, and z as the z-transform variable for discrete-time
analysis. In other words, for continuous-time systems, the frequency domain is
the “s plane”, while for discrete-time systems, the frequency domain is the “z
plane.” However, both are simply complex planes.

Figure 5.10 illustrates the various sinusoids est represented by points in the
s plane. The frequency axis is s = jω, called the “jω axis,” and points along
it correspond to complex sinusoids, with dc at s = 0 (e0t = 1). The upper-half
plane corresponds to positive frequencies (counterclockwise circular or corkscrew
motion) while the lower-half plane corresponds to negative frequencies (clockwise
motion). In the left-half plane we have decaying (stable) exponential envelopes,
while in the right-half plane we have growing (unstable) exponential envelopes.
Along the real axis (s = σ), we have pure exponentials. Every point in the s
plane can be said to correspond to some generalized complex sinusoids, x(t) =
Aest, t ≥ 0 with special cases being complex sinusoids Aejωt, exponentials Aeσt,
and the constant function x(t) = 1 (dc).

Figure 5.11 shows examples of various sinusoids zn = [esT ]n represented
by points in the z plane. The frequency axis is the “unit circle” z = ejωT ,
and points along it correspond to sampled complex sinusoids, with dc at z = 1
(1n = [e0T ]n = 1). As in the s plane, the upper-half plane corresponds to positive
frequencies while the lower-half plane corresponds to negative frequencies. Inside
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Figure 5.10: Generalized complex sinusoids represented by points in the
s plane.
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Figure 5.11: Generalized complex sinusoids represented by points in the
z plane.
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the unit circle, we have decaying (stable) exponential envelopes, while outside
the unit circle, we have growing (unstable) exponential envelopes. Along the
positive real axis (z > 0, im {z} = 0), we have pure exponentials, but along the
negative real axis (z < 0, im {z} = 0), we have exponentially enveloped sampled
sinusoids at frequency Fs/2 (exponentially enveloped alternating sequences).
The negative real axis in the z plane is normally a place where all signal z
transforms should be zero, and all system responses should be highly attenuated,
since there should never be any energy at exactly half the sampling rate (where
amplitude and phase are ambiguously linked). Every point in the z plane can
be said to correspond to some sampled generalized complex sinusoids x(n) =
Azn = A[esT ]n, n ≥ 0, with special cases being sampled complex sinusoids
AejωnT , exponentials AeσnT , and the constant function x = [1, 1, 1, . . .] (dc).

In summary, the exponentially enveloped (“generalized”) complex sinusoid
is the fundamental signal upon which other signals are “projected” in order to
compute a Laplace transform in the continuous-time case, or a z transform in
the discrete-time case. As a special case, if the exponential envelope is elimi-
nated (set to 1), leaving only a complex sinusoid, then the projection reduces to
the Fourier transform in the continuous-time case, and either the DFT (finite
length) or DTFT (infinite length) in the discrete-time case. Finally, there are
still other variations, such as short-time Fourier transforms (STFT) and wavelet
transforms, which utilize further modifications such as projecting onto windowed
complex sinusoids. Music 42012 delves into these topics.

5.4 Mathematica for Selected Plots

The Mathematica code for producing Fig. 5.1 (minus the annotations which
were done using NeXT Draw and EquationBuilder from Lighthouse Design) is

Plot[10 Sin[2 Pi 2.5 t + Pi/4],{t,0,1},
PlotLabel->"10 Sin[2 Pi 2.5 t + Pi/4]",
PlotPoints->500,
AxesLabel->{" Sec", "Amp."}];

The Mathematica code for Fig. 5.2 is

Show[

12http://www-ccrma.stanford.edu/CCRMA/Courses/420/Welcome.html
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Plot[Sin[2 Pi 2.5 t],{t,-0.1,1.1},
PlotPoints->500,
AxesLabel->{‘‘ Time (Sec)’’, ‘‘Amplitude’’}],

Plot[Cos[2 Pi 2.5 t],{t,-0.1,1.1},
PlotPoints->500,
PlotStyle->Dashing[{0.01,0.01}]

];

For the complex sinusoid plots (Fig. 5.7 and Fig. 5.9), see the Mathematica
notebook ComplexSinusoid.nb13 on Craig Sapp’s web page14 of Mathematica
notebooks. (The package SCMTheory.m15 is required.)
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13http://www-ccrma.stanford.edu/CCRMA/Software/SCMP/SCMTheory/ComplexSinusoid.nb.gz
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15http://www-ccrma.stanford.edu/CCRMA/Software/SCMP/SCMTheory/SCMTheory.m

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



Page 98 5.5. ACKNOWLEDGEMENT

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



Chapter 6

Geometric Signal Theory

This chapter provides an introduction to the elements of geometric signal theory,
including vector spaces, norms, inner products, orthogonality, projection of one
signal onto another, and elementary vector space operations.

6.1 The DFT

For a lengthN complex sequence x(n), n = 0, 1, 2, . . . , N−1, the discrete Fourier
transform (DFT) is defined by

X(ωk)
∆=
N−1∑
n=0

x(n)e−jωktn =
N−1∑
n=0

x(n)e−j2πkn/N , k = 0, 1, 2, . . . N − 1

tn
∆= nT = nth sampling instant (sec)

ωk
∆= kΩ = kth frequency sample (rad/sec)

T
∆= 1/fs = time sampling interval (sec)

Ω ∆= 2πfs/N = frequency sampling interval (sec)

We are now in a position to have a full understanding of the transform kernel :

e−jωktn = cos(ωktn)− j sin(ωktn)
The kernel consists of samples of a complex sinusoid at N discrete frequencies
ωk uniformly spaced between 0 and the sampling rate ωs

∆= 2πfs. All that
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remains is to understand the purpose and function of the summation over n of the
pointwise product of x(n) times each complex sinusoid. We will learn that this
can be interpreted as an inner product operation which computes the coefficient
of projection of the signal x onto the complex sinusoid cos(ωktn) + j sin(ωktn).
As such, X(ωk), the DFT at frequency ωk, is a measure of the amplitude and
phase of the complex sinusoid at that frequency which is present in the input
signal x. This is the basic function of all transform summations (in discrete
time) and integrals (in continuous time) and their kernels.

6.2 Signals as Vectors

For the DFT, all signals and spectra are length N . A length N sequence x can
be denoted by x(n), n = 0, 1, 2, . . . N − 1, where x(n) may be real (x ∈ RN ) or
complex (x ∈ CN ). We now wish to regard x as a vector x1 in an N dimensional
vector space. That is, each sample x(n) is regarded as a coordinate in that space.
A vector x is mathematically a single point in N -space represented by a list of
coordinates (x0, x1, x2, . . . , xN−1) called an N -tuple. (The notation xn means
the same thing as x(n).) It can be interpreted geometrically as an arrow in
N -space from the origin 0 ∆= (0, 0, . . . , 0) to the point x ∆= (x0, x1, x2, . . . , xN−1).

We define the following as equivalent:

x
∆= x ∆= x(·) ∆= (x0, x1, . . . , xN−1)

∆= [x0, x1, . . . , xN−1]
∆= [x0 x1 · · · xN−1]

where xn
∆= x(n) is the nth sample of the signal (vector) x. From now on, unless

specifically mentioned otherwise, all signals are length N .

An Example Vector View: N = 2

Consider the example two-sample signal x = (2, 3) graphed in Fig. 6.1.
Under the geometric interpretation of a length N signal, each sample is a

coordinate in the N dimensional space. Signals which are only two samples long
are not terribly interesting to hear, but they are easy to plot geometrically.

1We’ll use an underline to emphasize the vector interpretation, but there is no difference
between x and x. For purposes of this course, a signal is the same thing as a vector.
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1 2 3 4

1

2

3

4

x = (2,3)

Figure 6.1: A length 2 signal x = (2, 3) plotted as a vector in 2D space.

6.3 Vector Addition

Given two vectors in RN , say x = (x0, x1, . . . , xN−1) and y = (y0, y1, . . . , yN−1),
the vector sum is defined by elementwise addition. If we denote the sum by
w

∆= x+ y, then we have w(n) = x(n) + y(n) for n = 0, 1, 2, . . . , N − 1.
The vector diagram for the sum of two vectors can be found using the par-

allelogram rule, as shown in Fig. 6.2 for N = 2, x = (2, 3), and y = (4, 1).

5 6 7 8

1

2

3

4 x = (2,3)

y = (4,1)

x+y = (6,4)

1 2 3 40

Figure 6.2: Geometric interpretation of a length 2 vector sum.

Also shown are the lighter construction lines which complete the parallelo-
gram started by x and y, indicating where the endpoint of the sum x + y lies.
Since it is a parallelogram, the two construction lines are congruent to the vec-
tors x and y. As a result, the vector sum is often expressed as a triangle by
translating the origin of one member of the sum to the tip of the other, as shown
in Fig. 6.3.

In the figure, x was translated to the tip of y. It is equally valid to translate
y to the tip of x, because vector addition is commutative, i.e., x+ y = y + x.
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5 6 7 8

1

2

3

4

x = (2,3)  [translated]

y = (4,1)

x+y = (6,4)

1 2 3 40

Figure 6.3: Vector sum with translation of one vector to the tip of the
other.

6.4 Vector Subtraction

Figure 6.7 illustrates the vector difference w = x − y between x = (2, 3) and
y = (4, 1). From the coordinates, we compute w = x− y = (−2, 2).

1

2

3

4 x = (2,3)

y = (4,1)

w = x-y = (-2,2)
w translated

-3 -2 -1 0 1 2 3 4

Figure 6.4: Geometric interpretation a difference vector.

Note that the difference vector w may be drawn from the tip of y to the
tip of x rather than from the origin to the point (−2, 2); this is a customary
practice which emphasizes relationships among vectors, but the translation in
the plot has no effect on the mathematical definition or properties of the vector.
Subtraction, however, is not commutative.

To ascertain the proper orientation of the difference vector w = x−y, rewrite
its definition as x = y + w, and then it is clear that the vector x should be the
sum of vectors y and w, hence the arrowhead is on the correct endpoint.

6.5 Signal Metrics

This section defines some useful functions of signals.
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The mean of a signal x (more precisely the “sample mean”) is defined as its
average value:

µx
∆=
1
N

N−1∑
n=0

xn (mean of x)

The total energy of a signal x is defined the sum of squared moduli :

Ex ∆=
N−1∑
n=0

|xn|2 (energy of x)

Energy is the “ability to do work.” In physics, energy and work are in units
of “force times distance,” “mass times velocity squared,” or other equivalent
combinations of units. The energy of a pressure wave is the integral over time
of the squared pressure divided by the wave impedance the wave is traveling in.
The energy of a velocity wave is the integral over time of the squared velocity
times the wave impedance. In audio work, a signal x is typically a list of pressure
samples derived from a microphone signal, or it might be samples of force from a
piezoelectric transducer, velocity from a magnetic guitar pickup, and so on. In all
of these cases, the total physical energy associated with the signal is proportional
to the sum of squared signal samples. (Physical connections in signal processing
are explored more deeply in Music 4212.)

The average power of a signal x is defined the energy per sample:

Px ∆=
Ex
N
=
1
N

N−1∑
n=0

|xn|2 (average power of x)

Another common description when x is real is the “mean square.” When x is
a complex sinusoid, i.e., x(n) = Aej(ωnT+φ), then Px = A2; in other words, for
complex sinusoids, the average power equals the instantaneous power which is
the amplitude squared.

Power is always in physical units of energy per unit time. It therefore makes
sense to define the average signal power as the total signal energy divided by its
length. We normally work with signals which are functions of time. However,
if the signal happens instead to be a function of distance (e.g., samples of dis-
placement along a vibrating string), then the “power” as defined here still has
the interpretation of a spatial energy density. Power, in contrast, is a temporal
energy density.

2http://www-ccrma.stanford.edu/CCRMA/Courses/421/
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The root mean square (RMS) level of a signal x is simply
√Px. However,

note that in practice (especially in audio work) an RMS level may be computed
after subtracting out the mean value. Here, we call that the variance.

The variance (more precisely the sample variance) of the signal x is defined
as the power of the signal with its sample mean removed:

σ2
x

∆=
1
N

N−1∑
n=0

|xn − µx|2 (variance of x)

It is quick to show that, for real signals, we have

σ2
x = Px − µ2

x

which is the “mean square minus the mean squared.” We think of the vari-
ance as the power of the non-constant signal components (i.e., everything but
dc). The terms “sample mean” and “sample variance” come from the field of
statistics, particularly the theory of stochastic processes. The field of statistical
signal processing [12] is firmly rooted in statistical topics such as “probability,”
“random variables,” “stochastic processes,” and “time series analysis.” In this
book, we will only touch lightly on a few elements of statistical signal processing
in a self-contained way.

The norm of a signal x is defined as the square root of its total energy:

‖x‖ ∆=
√
Ex =

√√√√N−1∑
n=0

|xn|2 (norm of x)

We think of ‖x‖ as the length of x in N -space. Furthermore, ‖x−y‖ is regarded
as the distance between x and y. The norm can also be thought of as the
“absolute value” or “radius” of a vector.3

Example: Going back to our simple 2D example x = [2, 3], we can compute
its norm as ‖x‖ = √22 + 32 = √13. The physical interpretation of the norm as
a distance measure is shown in Fig. 6.5.

Example: Let’s also look again at the vector-sum example, redrawn in
Fig. 6.6.

3You might wonder why the norm of x is not written as |x|. There would be no problem
with this since |x| is undefined. However, the historically adopted notation is instead ‖x‖.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



CHAPTER 6. GEOMETRIC SIGNAL THEORY Page 105

1 2 3 4

1

2

3

4

x = (2,3)
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Figure 6.5: Geometric interpretation of a signal norm in 2D.
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x = (2,3)  [translated]

y = (4,1)

x+y = (6,4)

1 2 3 40

Length = | | | |
�

=+ yx 312

| | | |
�

=x 312Length =

Length = | | | |
�

=y 71

Figure 6.6: Length of vectors in sum.

The norm of the vector sum w = x+ y is

‖w‖ ∆= ‖x+ y‖ ∆= ‖(2, 3) + (4, 1)‖ = ‖(6, 4)‖ =
√
62 + 42 =

√
52 = 2

√
13

while the norms of x and y are
√
13 and

√
17, respectively. We find that ‖x+y‖ <

‖x‖+ ‖y‖ which is an example of the triangle inequality. (Equality occurs only
when x and y are colinear, as can be seen geometrically from studying Fig. 6.6.)

Example: Consider the vector-difference example diagrammed in Fig. 6.7.

1 2 3 4

1

2

3

4 x = (2,3)
Length =

y = (4,1)x-y

∥ ∥
�

=− yx 22

Figure 6.7: Length of a difference vector.

The norm of the difference vector w = x− y is

‖w‖ ∆= ‖x− y‖ ∆= ‖(2, 3)− (4, 1)‖ = ‖(−2, 2)‖ =
√
(−2)2 + (2)2 = 2

√
2
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Other Norms

Since our main norm is the square root of a sum of squares, we are using what
is called an L2 norm and we may write ‖x‖2 to emphasize this fact.

We could equally well have chosen a normalized L2 norm:

‖x‖2̃
∆=

√
Px =

√√√√ 1
N

N−1∑
n=0

|xn|2 (normalized L2 norm of x)

which is simply the “RMS level” of x.
More generally, the Lp norm of x ∈ CN is defined

‖x‖p ∆=

(
N−1∑
n=0

|xn|p
)1/p

The most interesting Lp norms are

• p = 1: The L1, “absolute value,” or “city block” norm.

• p = 2: The L2, “Euclidean,” “root energy,” or “least squares” norm.

• p = ∞: The L∞, “Chebyshev,” “supremum,” “minimax,” or “uniform”
norm.

Note that the case p =∞ is a limiting case which becomes

‖x‖∞ = max
0≤n<N

|xn|

There are many other possible choices of norm. To qualify as a norm on CN ,
a real-valued signal function f(x) must satisfy the following three properties:

1. f(x) = 0⇔ x = 0
2. f(x+ y) ≤ f(x) + f(y)
3. f(cx) = |c| f(x), ∀c ∈ C

The first property, “positivity,” says only the zero vector has norm zero. The sec-
ond property is “subadditivity” and is sometimes called the “triangle inequality”
for reasons which can be seen by studying Fig. 6.3. The third property says the
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norm is “absolutely homogeneous” with respect to scalar multiplication (which
can be complex, in which case the phase of the scalar has no effect).

Mathematically, what we are working with so far is called a Banach space
which a normed linear vector space. To summarize, we defined our vectors as
any list of N real or complex numbers which we interpret as coordinates in the
N -dimensional vector space. We also defined vector addition in the obvious way.
It turns out we have to also define scalar multiplication, that is, multiplication
of a vector by a scalar which we also take to be an element of the field of real
or complex numbers. This is also done in the obvious way which is to multiply
each coordinate of the vector by the scalar. To have a linear vector space, it
must be closed under vector addition and scalar multiplication. That means
given any two vectors x ∈ CN and y ∈ CN from the vector space, and given
any two scalars c1 ∈ C and c2 ∈ C from the field of scalars, then any linear
combination c1x + c2y must also be in the space. Since we have used the field
of complex numbers C (or real numbers R) to define both our scalars and our
vector components, we have the necessary closure properties so that any linear
combination of vectors from CN lies in CN . Finally, the definition of a norm
(any norm) elevates a vector space to a Banach space.

6.6 The Inner Product

The inner product (or “dot product”) is an operation on two vectors which
produces a scalar. Adding an inner product to a Banach space produces a
Hilbert space (or “inner product space”). There are many examples of Hilbert
spaces, but we will only need {CN , C} for this book (complex length N vectors
and complex scalars).

The inner product between two (complex) N -vectors x and y is defined by

〈x, y〉 ∆=
N−1∑
n=0

x(n)y(n)

The complex conjugation of the second vector is done in order that a norm
will be induced by the inner product:

〈x, x〉 =
N−1∑
n=0

x(n)x(n) =
N−1∑
n=0

|x(n)|2 ∆= Ex = ‖x‖2
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As a result, the inner product is conjugate symmetric:

〈y, x〉 = 〈x, y〉

Note that the inner product takes CN × CN to C. That is, two length N
complex vectors are mapped to a complex scalar.

Example: For N = 3 we have, in general,

〈x, y〉 = x0y0 + x1y1 + x2y2

Let

x = [0, j, 1]
y = [1, j, j]

Then

〈x, y〉 = 0 · 1 + j · (−j) + 1 · (−j) = 0 + 1 + (−j) = 1− j

6.6.1 Linearity of the Inner Product

Any function f(x) of a vector x ∈ CN (which we may call an operator on CN )
is said to be linear if for all x1 ∈ CN and x2 ∈ CN , and for all scalars c1 and c2
in C, we have

f(c1x1 + c2x2) = c1f(x1) + c2f(x2)

A linear operator thus “commutes with mixing.”
Linearity consists of two component properties,

• additivity : f(x1 + x2) = f(x1) + f(x2), and

• homogeneity : f(c1x1) = c1f(x1).

The inner product 〈x, y〉 is linear in its first argument, i.e.

〈c1x1 + c2x2, y〉 = c1 〈x1, y〉+ c2 〈x2, y〉
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This is easy to show from the definition:

〈c1x1 + c2x2, y〉 ∆=
N−1∑
n=0

[c1x1(n) + c2x2(n)] y(n)

=
N−1∑
n=0

c1x1(n)y(n) +
N−1∑
n=0

c2x2(n)y(n)

= c1

N−1∑
n=0

x1(n)y(n) + c2
N−1∑
n=0

x2(n)y(n)

∆= c1 〈x1, y〉+ c2 〈x2, y〉

The inner product is also additive in its second argument, i.e.,

〈x, y1 + y2〉 = 〈x, y1〉+ 〈x, y2〉

but it is only conjugate homogeneous in its second argument, since

〈x, c1y1〉 = c1 〈x, y1〉 	= c1 〈x, y1〉

The inner product is strictly linear in its second argument with respect to
real scalars:

〈x, r1y1 + r2y2〉 = r1 〈x, y1〉+ r2 〈x, y2〉 , ri ∈ R

Since the inner product is linear in both of its arguments for real scalars, it
is often called a bilinear operator in that context.

6.6.2 Norm Induced by the Inner Product

We may define a norm on x ∈ CN using the inner product:

‖x‖ ∆=
√
〈x, x〉

It is straightforward to show that properties 1 and 3 of a norm hold. Property
2 follows easily from the Schwarz Inequality which is derived in the following
subsection. Alternatively, we can simply observe that the inner product induces
the well known L2 norm on CN .
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6.6.3 Cauchy-Schwarz Inequality

The Cauchy-Schwarz Inequality (or “Schwarz Inequality”) states that for all
x ∈ CN and y ∈ CN , we have ∣∣〈x, y〉∣∣ ≤ ‖x‖ · ‖y‖
with equality if and only if x = cy for some scalar c.

We can quickly show this for real vectors x ∈ RN , y ∈ RN , as follows: If
either x or y is zero, the inequality holds (as equality). Assuming both are

nonzero, let’s scale them to unit-length by defining the normalized vectors x̃ ∆=
x/‖x‖, ỹ ∆= y/‖y‖, which are unit-length vectors lying on the “unit ball” in RN

(a hypersphere of radius 1). We have

0 ≤ ‖x̃− ỹ‖2 = 〈x̃− ỹ, x̃− ỹ〉
= 〈x̃, x̃〉 − 〈x̃, ỹ〉 − 〈ỹ, x̃〉+ 〈ỹ, ỹ〉
= ‖x̃‖2 −

[
〈x̃, ỹ〉+ 〈x̃, ỹ〉

]
+ ‖ỹ‖2

= 2− 2re {〈x̃, ỹ〉}
= 2− 2 〈x̃, ỹ〉

which implies
〈x̃, ỹ〉 ≤ 1

or, removing the normalization,

re
{〈
x, y

〉} ≤ ‖x‖ · ‖y‖
The same derivation holds if x is replaced by −x yielding

−re{〈x, y〉} ≤ ‖x‖ · ‖y‖
The last two equations imply ∣∣〈x, y〉∣∣ ≤ ‖x‖ · ‖y‖
The complex case can be shown by rotating the components of x and y such
that re {〈x̃, ỹ〉} becomes equal to |〈x̃, ỹ〉|.
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6.6.4 Triangle Inequality

The triangle inequality states that the length of any side of a triangle is less than
or equal to the sum of the lengths of the other two sides, with equality occurring
only when the triangle degenerates to a line. In CN , this becomes

‖x+ y‖ ≤ ‖x‖+ ‖y‖
We can show this quickly using the Schwarz Inequality.

‖x+ y‖2 =
〈
x+ y, x+ y

〉
= ‖x‖2 + 2re{〈x, y〉}+ ‖y‖2
≤ ‖x‖2 + 2 ∣∣〈x, y〉∣∣+ ‖y‖2
≤ ‖x‖2 + 2‖x‖ · ‖y‖+ ‖y‖2

=
(‖x‖+ ‖y‖)2

=⇒ ‖x+ y‖ ≤ ‖x‖+ ‖y‖

6.6.5 Triangle Difference Inequality

A useful variation on the triangle inequality is that the length of any side of a
triangle is greater than the absolute difference of the lengths of the other two
sides:

‖x− y‖ ≥ ∣∣‖x‖ − ‖y‖∣∣
Proof:

‖x− y‖2 = ‖x‖2 − 2re{〈x, y〉}+ ‖y‖2
≥ ‖x‖2 − 2 ∣∣〈x, y〉∣∣+ ‖y‖2
≥ ‖x‖2 − 2‖x‖ · ‖y‖+ ‖y‖2

=
[‖x‖ − ‖y‖]2

=⇒ ‖x− y‖ ≥ ∣∣‖x‖ − ‖y‖∣∣
6.6.6 Vector Cosine

The Cauchy-Schwarz Inequality can be written∣∣〈x, y〉∣∣
‖x‖ · ‖y‖ ≤ 1
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In the case of real vectors x, y, we can always find a real number θ which satisfies

cos(θ) ∆=

〈
x, y

〉
‖x‖ · ‖y‖

We thus interpret θ as the angle between two vectors in RN . In CN we can
similarly define |cos(θ)|.

6.6.7 Orthogonality

The vectors (signals) x and y are said to be orthogonal if 〈x, y〉 = 0, denoted
x ⊥ y. That is to say

x ⊥ y ⇔ 〈x, y〉 = 0.
Note that if x and y are real and orthogonal, the cosine of the angle between

them is zero. In plane geometry (N = 2), the angle between two perpendicular
lines is π/2, and cos(π/2) = 0, as expected. More generally, orthogonality
corresponds to the fact that two vectors in N -space intersect at a right angle
and are thus perpendicular geometrically.

Example (N = 2):
Let x = [1, 1] and y = [1,−1], as shown in Fig. 6.8.

1 2 3

1

2
x = (1,1)

-1
y = (1,-1)

Figure 6.8: Example of two orthogonal vectors for N = 2.

The inner product is 〈x, y〉 = 1 ·1+1 · (−1) = 0. This shows that the vectors
are orthogonal. As marked in the figure, the lines intersect at a right angle and
are therefore perpendicular.

6.6.8 The Pythagorean Theorem in N-Space

In 2D, the Pythagorean Theorem says that when x and y are orthogonal, as in
Fig. 6.8, (i.e., when the triangle formed by x, y, and x+ y, with y translated to
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the tip of x, is a right triangle), then we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

This relationship generalizes to N dimensions, as we can easily show:

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2
= ‖x‖2 + ‖y‖2 + 2re {〈x, y〉}

If x ⊥ y, then 〈x, y〉 = 0 and the Pythagorean Theorem ‖x+ y‖2 = ‖x‖2 + ‖y‖2
holds in N dimensions. If, on the other hand, we assume the Pythagorean
Theorem holds, then since all norms are positive unless x or y is zero, we must
have 〈x, y〉 = 0. Finally, if x or y is zero, the result holds trivially.

Note that we also have an alternate version of the Pythagorean theorem:

‖x− y‖2 = ‖x‖2 + ‖y‖2 ⇐⇒ x ⊥ y.

6.6.9 Projection

The orthogonal projection (or simply “projection”) of y ∈ CN onto x ∈ CN is
defined by

Px(y) ∆=

〈
y, x

〉
‖x‖2 x

The complex scalar
〈
x, y

〉
/‖x‖2 is called the coefficient of projection. When

projecting y onto a unit length vector x, the coefficient of projection is simply
the inner product of y with x.

Motivation: The basic idea of orthogonal projection of y onto x is to “drop
a perpendicular” from y onto x to define a new vector along x which we call the
“projection” of y onto x. This is illustrated for N = 2 in Fig. 6.9 for x = [4, 1]
and y = [2, 3], in which case

Px(y) ∆=

〈
y, x

〉
‖x‖2 x =

(2 · 4 + 3 · 1)
42 + 12

x =
11
17
x =

[
44
17
,
11
17

]

Derivation: (1) Since any projection onto x must lie along the line colinear
with x, write the projection as Px(y) = αx. (2) Since by definition the projection
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Figure 6.9: Projection of y onto x in 2D space.

is orthogonal to x, we must have

(y − αx) ⊥ x

⇔ 〈
y − αx, x〉 = 0

⇔ 〈
y, x

〉
= α 〈x, x〉

⇔ α =

〈
y, x

〉
〈x, x〉 =

〈
y, x

〉
‖x‖2

6.7 Signal Reconstruction from Projections

We now know how to project a signal onto other signals. We now need to learn
how to reconstruct a signal x ∈ CN from its projections onto N different vectors
sk, k = 0, 1, 2, . . . , N − 1. This will give us the inverse DFT operation (or the
inverse of whatever transform we are working with).

As a simple example, consider the projection of a signal x ∈ CN onto the
rectilinear coordinate axes of CN . The coordinates of the projection onto the
0th coordinate axis are simply (x0, 0, . . . , 0). The projection along coordinate
axis 1 has coordinates (0, x1, 0, . . . , 0), and so on. The original signal x is then
clearly the vector sum of its projections onto the coordinate axes:

x = (x0, . . . , xN−1) = (x0, 0, . . . , 0) + (0, x1, 0, . . . , 0) + · · · (0, . . . , 0, xN−1)

To make sure the previous paragraph is understood, let’s look at the details
for the case N = 2. We want to project an arbitrary two-sample signal x =
(x0, x1) onto the coordinate axes in 2D. A coordinate axis can be represented
by any nonzero vector along its length. The horizontal axis can be represented
by any vector of the form (α, 0) while the vertical axis can be represented by
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any vector of the form (0, β). For maximum simplicity, let’s choose the positive
unit-length representatives:

e0
∆= (1, 0)

e1
∆= (0, 1)

The projection of x onto e0 is by definition

Pe0(x)
∆=
〈x, e0〉
‖e0‖2

e0 = 〈x, e0〉 e0 = 〈[x0, x1], [1, 0]〉 e0 = (x0·1+x1·0)e0 = x0e0 = [x0, 0]

Similarly, the projection of x onto e1 is

Pe1(x)
∆=
〈x, e1〉
‖e1‖2

e1 = 〈x, e1〉 e1 = 〈[x0, x1], [0, 1]〉 e1 = (x0·0+x1·1)e1 = x1e1 = [0, x1]

The reconstruction of x from its projections onto the coordinate axes is then the
vector sum of the projections:

x = Pe0(x) + Pe1(x) = x0e0 + x1e1
∆= x0(1, 0) + x1(0, 1) = (x0, x1)

The projection of a vector onto its coordinate axes is in some sense trivial
because the very meaning of the coordinates is that they are scalars xn to be
applied to the coordinate vectors en in order to form an arbitrary vector x ∈ CN

as a linear combination of the coordinate vectors:

x
∆= x0e0 + x1e1 + · · ·+ xN−1eN−1

Note that the coordinate vectors are orthogonal. Since they are also unit length,
‖en‖ = 1, we say that the coordinate vectors {en}N−1

n=0 are orthonormal.
What’s more interesting is when we project a signal x onto a set of vectors

other than the coordinate set. This can be viewed as a change of coordinates
in CN . In the case of the DFT, the new vectors will be chosen to be sampled
complex sinusoids.

6.7.1 An Example of Changing Coordinates in 2D

As a simple example, let’s pick the following pair of new coordinate vectors in
2D

s0
∆= [1, 1]

s1
∆= [1,−1]
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These happen to be the DFT sinusoids for N = 2 having frequencies f0 = 0
(“dc”) and f1 = fs/2 (half the sampling rate). (The sampled complex sinusoids
of the DFT reduce to real numbers only for N = 1 and N = 2.) We already
showed in an earlier example that these vectors are orthogonal. However, they
are not orthonormal since the norm is

√
2 in each case. Let’s try projecting x

onto these vectors and seeing if we can reconstruct by summing the projections.
The projection of x onto s0 is by definition

Ps0(x)
∆=
〈x, s0〉
‖s0‖2

s0 =
〈[x0, x1], [1, 1]〉

2
s0 =

(x0 · 1 + x1 · 1)
2

s0 =
x0 + x1

2
s0

Similarly, the projection of x onto s1 is

Ps1(x)
∆=
〈x, s1〉
‖s1‖2

s1 =
〈[x0, x1], [1,−1]〉

2
s1 =

(x0 · 1− x1 · 1)
2

s1 =
x0 − x1

2
s1

The sum of these projections is then

Ps0(x) + Ps1(x) =
x0 + x1

2
s0 +

x0 − x1

2
s1

∆=
x0 + x1

2
(1, 1) +

x0 − x1

2
(1,−1)

=
(
x0 + x1

2
+
x0 − x1

2
,
x0 + x1

2
− x0 − x1

2

)
= (x0, x1)

∆= x

It worked!
Now consider another example:

s0
∆= [1, 1]

s1
∆= [−1,−1]

The projections of x = [x0, x1] onto these vectors are

Ps0(x) =
x0 + x1

2
s0

Ps1(x) = −x0 + x1

2
s1
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The sum of the projections is

Ps0(x) + Ps1(x) =
x0 + x1

2
s0 −

x0 + x1

2
s1

∆=
x0 + x1

2
(1, 1)− x0 + x1

2
(−1,−1)

=
(
x0 + x1

2
,
x0 + x1

2

)
	= x

Something went wrong, but what? It turns out that a set of N vectors can be
used to reconstruct an arbitrary vector in CN from its projections only if they
are linearly independent. In general, a set of vectors is linearly independent if
none of them can be expressed as a linear combination of the others in the set.
What this means intuituvely is that they must “point in different directions”
in N space. In this example s1 = −s0 so that they lie along the same line in
N -space. As a result, they are linearly dependent : one is a linear combination
of the other.

Consider this example:

s0
∆= [1, 1]

s1
∆= [0, 1]

These point in different directions, but they are not orthogonal. What happens
now? The projections are

Ps0(x) =
x0 + x1

2
s0

Ps1(x) = x1s0

The sum of the projections is

Ps0(x) + Ps1(x) =
x0 + x1

2
s0 + x1s1

∆=
x0 + x1

2
(1, 1) + x1(0, 1)

=
(
x0 + x1

2
,
x0 + 3x1

2

)
	= x

So, even though the vectors are linearly independent, the sum of projections
onto them does not reconstruct the original vector. Since the sum of projections
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worked in the orthogonal case, and since orthogonality implies linear indepen-
dence, we might conjecture at this point that the sum of projections onto a
set of N vectors will reconstruct the original vector only when the vector set is
orthogonal, and this is true, as we will show.

It turns out that one can apply an orthogonalizing process, called Gram-
Schmidt orthogonalization to any N linearly independent vectors in CN so as to
form an orthogonal set which will always work. This will be derived in Section
6.7.3.

Obviously, there must be at least N vectors in the set. Otherwise, there
would be too few degrees of freedom to represent an arbitrary x ∈ CN . That is,
given the N coordinates {x(n)}N−1

n=0 of x (which are scale factors relative to the
coordinate vectors en in CN ), we have to find at least N coefficients of projection
(which we may think of as coordinates relative to new coordinate vectors sk).
If we compute only M < N coefficients, then we would be mapping a set of N
complex numbers to M < N numbers. Such a mapping cannot be invertible in
general. It also turns out N linearly independent vectors is always sufficient.
The next section will summarize the general results along these lines.

6.7.2 General Conditions

This section summarizes and extends the above derivations in a somewhat formal
manner (following portions of chapter 4 of [16]).

Definition: A set of vectors is said to form a vector space if given any two
members x and y from the set, the vectors x+y and cx are also in the set, where
c is any scalar.

Vectors defined as a list of N complex numbers x = (x0, . . . , xN−1) ∈ CN ,
using elementwise addition and multiplication by complex scalars c ∈ C, form
a vector space, where CN denotes the set of all length N complex sequences.
Similarly, real N -vectors x ∈ RN and real scalars α ∈ R form a vector space.

Theorem: The set of all linear combinations of any set of vectors from RN

or CN forms a vector space.
Proof: Let the original set of vectors be denoted s0, . . . , sM−1, where M can

be any integer greater than zero. Then any member x0 of the vector space is by
definition a linear combination of them:

x0 = α0s0 + · · ·+ α0sM−1
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From this we see that cx0 is also a linear combination of the original vectors,
and hence is in the vector space. Also, given any second vector from the space
x1 = α1s0 + · · ·+ α1sM−1, the sum is

x0 + x1 = (α0s0 + · · ·α0sM−1) + (α1s0 + · · ·α1sM−1)
= (α0 + α1)s0 + · · ·+ (α0 + α1)sM−1

which is just another linear combination of the original vectors, and hence is in
the vector space. It is clear here how the closure of vector addition and scalar
multiplication are “inherited” from the closure of real or complex numbers under
addition and multiplication.

Definition: If a vector space consists of the set of all linear combinations
of a finite set of vectors s0, . . . , sM−1, then those vectors are said to span the
space.

Example: The coordinate vectors inCN spanCN since every vector x ∈ CN

can be expressed as a linear combination of the coordinate vectors as

x = x0e0 + x1e1 + · · ·+ xN−1eN−1

where xi ∈ C, and e0 = (1, 0, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), e2 = (0, 0, 1, 0, . . . , 0),
and so on up to eN−1 = (0, . . . , 0, 1).

Theorem: (i) If s0, . . . , sM−1 span a vector space, and if one of them, say
sm, is linearly dependent on the others, then the vector space is spanned by the
set obtained by omitting sm from the original set. (ii) If s0, . . . , sM−1 span a
vector space, we can always select from these a linearly independent set that
spans the same space.
Proof: Any x in the space can be represented as a linear combination of the

vectors s0, . . . , sM−1. By expressing sm as a linear combination of the other
vectors in the set, the linear combination for x becomes a linear combination of
vectors other than sm. Thus, sm can be eliminated from the set, proving (i). To
prove (ii), we can define a procedure for forming the require subset of the original
vectors: First, assign s0 to the set. Next, check to see if s0 and s1 are linearly
dependent. If so (i.e., s1 is a scalar times s0), then discard s1; otherwise assign it
also to the new set. Next, check to see if s2 is linearly dependent on the vectors in
the new set. If it is (i.e., s1 is some linear combination of s0 and s1) then discard
it; otherwise assign it also to the new set. When this procedure terminates after

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



Page 120 6.7. SIGNAL RECONSTRUCTION FROM PROJECTIONS

processing sM−1, the new set will contain only linearly independent vectors
which span the original space.

Definition: A set of linearly independent vectors which spans a vector space
is called a basis for that vector space.

Definition: The set of coordinate vectors in CN is called the natural basis
for CN , where the nth basis vector is

en = (0, . . . , 0, 1︸︷︷︸
nth

, 0, . . . , 0).

Theorem: The linear combination expressing a vector in terms of basis
vectors for a vector space is unique.
Proof: Suppose a vector x ∈ CN can be expressed in two different ways as a

linear combination of basis vectors s0, . . . , sN−1:

x = α0s0 + · · ·αN−1sN−1

= β0s0 + · · ·βN−1sN−1

where αi 	= βi for at least one value of i ∈ [0, N − 1]. Subtracting the two
representations gives

0 = (α0 − β0)s0 + · · ·+ (αN−1 − βN−1)sN−1

Since the vectors are linearly independent, it is not possible to cancel the nonzero
vector (αi−βi)si using some linear combination of the other vectors in the sum.
Hence, αi = βi for all i = 0, 1, 2, . . . , N − 1.

Note that while the linear combination relative to a particular basis is unique,
the choice of basis vectors is not. For example, given any basis set in CN , a new
basis can be formed by rotating all vectors in CN by the same angle. In this
way, an infinite number of basis sets can be generated.

As we will soon show, the DFT can be viewed as a change of coordinates
from coordinates relative to the natural basis in CN , {en}N−1

n=0 , to coordinates

relative to the sinusoidal basis for CN , {sk}N−1
k=0 , where sk(n)

∆= ejωktn . The
sinusoidal basis set for CN consists of length N sampled complex sinusoids at
frequencies ωk = 2πkfs/N, k = 0, 1, 2, . . . , N − 1. Any scaling of these vectors
in CN by complex scale factors could also be chosen as the sinusoidal basis
(i.e., any nonzero amplitude and any phase will do). However, for simplicity,
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we will only use unit-amplitude, zero-phase complex sinusoids as the Fourier
“frequency-domain” basis set. To summarize this paragraph, the time-domain
samples of a signal are its coordinates relative to the natural basis for CN , while
its spectral coefficients are the coordinates of the signal relative to the sinusoidal
basis for CN .

Theorem: Any two bases of a vector space contain the same number of
vectors.
Proof: Left as an exercise (or see [16]).

Definition: The number of vectors in a basis for a particular space is called
the dimension of the space. If the dimension is N , the space is said to be an N
dimensional space, or N -space.

In this book, we will only consider finite-dimensional vector spaces in any
detail. However, the discrete-time Fourier transform (DTFT) and Fourier trans-
form both require infinite-dimensional basis sets, because there is an infinite
number of points in both the time and frequency domains.

Theorem: The projections of any vector x ∈ CN onto any orthogonal basis
set for CN can be summed to reconstruct x exactly.
Proof: Let {s0, . . . , sN−1} denote any orthogonal basis set for CN . Then

since x is in the space spanned by these vectors, we have

x = α0s0 + α1s1 + · · ·+ αN−1sN−1

for some (unique) scalars α0, . . . , αN−1. The projection of x onto sk is equal to

Psk(x) = α0Psk(s0) + α1Psk(s1) + · · ·+ αN−1Psk(sN−1)

(using the linearity of the projection operator which follows from linearity of the
inner product in its first argument). Since the basis vectors are orthogonal, the
projection of sl onto sk is zero for l 	= k:

Psk(sl)
∆=
〈sl, sk〉
‖ sk ‖2

sk =
{
0, l 	= k
sk, l = k

We therefore obtain

Psk(x) = 0 + · · ·+ 0 + αkPsk(sk) + 0 + · · ·+ 0 = αksk
Therefore, the sum of projections onto the vectors sk is just the linear combina-
tion of the sk which forms x.
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6.7.3 Gram-Schmidt Orthogonalization

Theorem: Given a set of N linearly independent vectors s0, . . . , sN−1 from CN ,
we can construct an orthonormal set s̃0, . . . , s̃N−1 which are linear combinations
of the original set and which span the same space.
Proof: We prove the theorem by constructing the desired orthonormal set

{s̃k} sequentially from the original set {sk}. This procedure is known as Gram-
Schmidt orthogonalization.

1. Set s̃0
∆= s0

‖ s0 ‖ .

2. Define y
1
as the s1 minus the projection of s1 onto s̃0:

y
1

∆= s1 − Ps̃0(s1) = s1 − 〈s1, s̃0〉 s̃0
The vector y

1
is orthogonal to s̃0 by construction. (We subtracted out the

part of s1 that wasn’t orthogonal to s̃0.)

3. Set s̃1
∆=

y
1

‖ y
1
‖ (i.e., normalize the result of the preceding step).

4. Define y
2
as the s2 minus the projection of s2 onto s̃0 and s̃1:

y
2

∆= s2 − Ps̃0(s2)− Ps̃1(s2) = s2 − 〈s2, s̃0〉 s̃0 − 〈s2, s̃1〉 s̃1

5. Normalize: s̃2
∆=

y
2

‖ y
2
‖ .

6. Continue this process until s̃N−1 has been defined.

The Gram-Schmidt orthogonalization procedure will construct an orthonor-
mal basis from any set of N linearly independent vectors. Obviously, by skipping
the normalization step, we could also form simply an orthogonal basis. The key
ingredient of this procedure is that each new orthonormal basis vector is ob-
tained by subtracting out the projection of the next linearly independent vector
onto the vectors accepted so far in the set. We may say that each new linearly
independent vector sk is projected onto the subspace spanned by the vectors
{s̃0, . . . , s̃k−1}, and any nonzero projection in that subspace is subtracted out of
sk to make it orthogonal to the entire subspace. In other words, we retain only
that portion of each new vector sk which points along a new dimension. The
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first direction is arbitrary and is determined by whatever vector we choose first
(s0 here). The next vector is forced to be orthogonal to the first. The second is
forced to be orthogonal to the first two, and so on.

This chapter can be considered an introduction to some of the most im-
portant concepts from linear algebra. The student is invited to pursue further
reading in any textbook on linear algebra, such as [16].

6.8 Appendix: Matlab Examples

Here’s how Fig. 6.1 was generated in Matlab:

>> x = [2 3]; % coordinates of x
>> origin = [0 0]; % coordinates of the origin
>> xcoords = [origin(1) x(1)]; % plot() expects coordinate lists
>> ycoords = [origin(2) x(2)];
>> plot(xcoords,ycoords); % Draw a line from origin to x

Mathematica can plot a list of ordered pairs:

In[1]:
(* Draw a line from (0,0) to (2,3): *)
ListPlot[{{0,0},{2,3}},PlotJoined->True];

In Matlab, the mean of the row-vector x can be computed as

x * ones(size(x’))/N

or by using the built-in function mean().
In Matlab, if x = [x1 ... xN] is a row vector, we can compute the total

energy as
Ex = x*x’.

Matlab has a function orth() which will compute an orthonormal basis for
a space given any set of vectors which span the space.

>> help orth

ORTH Orthogonalization.
Q = orth(A) is an orthonormal basis for the range of A.
Q’*Q = I, the columns of Q span the same space as the columns
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of A and the number of columns of Q is the rank of A.

See also QR, NULL.

Below is an example of using orth() to orthonormalize a linearly independent
basis set for N = 3:

% Demonstration of the Matlab function orth() for
% taking a set of vectors and returning an orthonormal set
% which span the same space.
v1 = [1; 2; 3]; % our first basis vector (a column vector)
v2 = [1; -2; 3]; % a second, linearly independent column vector
v1’ * v2 % show that v1 is not orthogonal to v2

ans =

6

V = [v1,v2] % Each column of V is one of our vectors

V =

1 1
2 -2
3 3

W = orth(V) % Find an orthonormal basis for the same space

W =

0.2673 0.1690
0.5345 -0.8452
0.8018 0.5071

w1 = W(:,1) % Break out the returned vectors

w1 =
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0.2673
0.5345
0.8018

w2 = W(:,2)

w2 =

0.1690
-0.8452
0.5071

w1’ * w2 % Check that w1 is orthogonal to w2 (to working precision)

ans =

2.5723e-17

w1’ * w1 % Also check that the new vectors are unit length in 3D

ans =

1

w2’ * w2

ans =

1

W’ * W % faster way to do the above checks (matrix multiplication)

ans =

1.0000 0.0000
0.0000 1.0000
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% Construct some vector x in the space spanned by v1 and v2:
x = 2 * v1 - 3 * v2

x =

-1
10
-3

% Show that x is also some linear combination of w1 and w2:
c1 = x’ * w1 % Coefficient of projection of x onto w1

c1 =

2.6726

c2 = x’ * w2 % Coefficient of projection of x onto w2

c2 =

-10.1419

xw = c1 * w1 + c2 * w2 % Can we make x using w1 and w2?

xw =

-1.0000
10.0000
-3.0000

error = x - xw

error =

1.0e-14 *
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0.1332
0
0

norm(error) % typical way to summarize a vector error

ans =

1.3323e-15

% It works!

% Now, construct some vector x NOT in the space spanned by v1 and v2:
y = [1; 0; 0]; % Almost anything we guess in 3D will work

% Try to express y as a linear combination of w1 and w2:
c1 = y’ * w1; % Coefficient of projection of y onto w1
c2 = y’ * w2; % Coefficient of projection of y onto w2
yw = c1 * w1 + c2 * w2 % Can we make y using w1 and w2?

yw =

0.1000
0.0000
0.3000

yerror = y - yw

yerror =

0.9000
0.0000

-0.3000

norm(yerror)

ans =
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0.9487

% While the error is not zero, it is the smallest possible
% error in the least squares sense.
% That is, yw is the optimal least-squares approximation
% to y in the space spanned by v1 and v2 (w1 and w2).
% In other words, norm(yerror) <= norm(y-yw2) for any other vector yw2 made
% using a linear combination of v1 and v2.
% In yet other words, we obtain the optimal least squares approximation
% of y (which lives in 3D) in some subspace W (a 2D subspace of 3D)
% by projecting y orthogonally onto the subspace W to get yw as above.
%
% An important property of the optimal least-squares approximation
% is that the approximation error is orthogonal to the the subspace
% in which the approximation lies. Let’s show this:

W’ * yerror % must be zero to working precision

ans =

1.0e-16 *

-0.2574
-0.0119
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Chapter 7

Derivation of the Discrete
Fourier Transform (DFT)

This chapter derives the Discrete Fourier Transform (DFT) as a projection of a
length N signal x(·) onto the set of N sampled complex sinusoids generated by
the N roots of unity.

7.1 The DFT Derived

In this section, the Discrete Fourier Transform (DFT) will be derived.

7.1.1 Geometric Series

Recall that for any compex number z1 ∈ C, the signal x(n) ∆= zn1 , n = 0, 1, 2, . . .,
defines a geometric sequence, i.e., each term is obtained by multiplying the
previous term by a (complex) constant. A geometric series is defined as the
sum of a geometric sequence:

SN (z1)
∆=
N−1∑
n=0

zn1 = 1 + z1 + z
2
1 + z

3
1 + · · ·+ zN−1

1

If z1 	= 1, the sum can be expressed in closed form as

SN (z1) =
1− zN1
1− z1

129
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Proof: We have

SN (z1)
∆= 1 + z1 + z21 + z

3
1 + · · ·+ zN−1

1

z1SN (z1) = z1 + z21 + z
3
1 + · · ·+ zN−1

1 + zN1
=⇒ SN (z1)− z1SN (z1) = 1− zN1

=⇒ SN (z1) =
1− zN1
1− z1

7.1.2 Orthogonality of Sinusoids

A key property of sinusoids is that they are orthogonal at different frequencies.
That is,

ω1 	= ω2 =⇒ A1 sin(ω1t+ φ1) ⊥ A2 sin(ω2t+ φ2)

This is true whether they are complex or real, and whatever amplitude and
phase they may have. All that matters is that the frequencies be different.
Note, however, that the sinusoidal durations must be infinity.

For length N sampled sinuoidal signal segments, such as used by the DFT,
exact orthogonality holds only for the harmonics of the sampling rate divided by
N , i.e., only over the frequencies fk = kfs/N, k = 0, 1, 2, 3, . . . , N −1. These are
the only frequencies that have an exact integer number of periods in N samples
(depicted in Fig. 7.2 for N = 8).

The complex sinusoids corresponding to the frequencies fk are

sk(n)
∆= ejωknT , ωk

∆= k
2π
N
fs, k = 0, 1, 2, . . . , N − 1

These sinusoids are generated by the N roots of unity in the complex plane:

W k
N

∆= ejωkT ∆= ejk2π(fs/N)T = ejk2π/N , k = 0, 1, 2, . . . , N − 1

These are called the N roots of unity because each of them satisfies[
W k
N

]N
=

[
ejωkT

]N
=

[
ejk2π/N

]N
= ejk2π = 1

The N roots of unity are plotted in the complex plane in Fig. 7.1 for N = 8.
In general, for any N , there will always be a point at z = 1, and the points
equally subdivide the unit circle. When N is even, there is a point at z = −1
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Figure 7.1: The N roots of unity for N = 8.

(corresponding to a sinusoid at exactly half the sampling rate), while if N is
odd, there is no point at z = −1.

The sampled sinusoids corresponding to the N roots of unity are plotted in
Fig. 7.2. These are the sampled sinusoids (W k

N )
n = ej2πkn/N = ejωknT used by

the DFT. Note that taking successively higher integer powers of the point W k
N

on the unit circle generates samples of the kth DFT sinusoid, giving [W k
N ]
n,

n = 0, 1, 2, . . . , N − 1. The kth sinusoid generator W k
N is in turn the kth power

of the primitive N th root of unity WN
∆= ej2π/N . The notation WN , W k

N , and
Wnk
N are common in the digital signal processing literature.

Note that in Fig. 7.2 the range of k is taken to be [−N/2, N/2− 1] = [−4, 3]
instead of [0, N − 1] = [0, 7]. This is the most “physical” choice since it cor-
responds with our notion of “negative frequencies.” However, we may add any
integer multiple of N to k without changing the sinusoid indexed by k. In other
words, k ±mN refers to the same sinusoid for all integer m.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



Page 132 7.1. THE DFT DERIVED

0 2 4 6 8
-1
0
1

Real Part

k=
3

0 2 4 6 8
-1
0
1

k=
3

Imaginary Part

0 2 4 6 8
-1
0
1

k=
2

0 2 4 6 8
-1
0
1

k=
2

0 2 4 6 8
-1
0
1

k=
1

0 2 4 6 8
-1
0
1

k=
1

0 2 4 6 8
-1
0
1

k=
0

0 2 4 6 8
-1
0
1

k=
0

0 2 4 6 8
-1
0
1

k=
-1

0 2 4 6 8
-1
0
1

k=
-1

0 2 4 6 8
-1
0
1

k=
-2

0 2 4 6 8
-1
0
1

k=
-2

0 2 4 6 8
-1
0
1

k=
-3

0 2 4 6 8
-1
0
1

k=
-3

0 2 4 6 8
-1
0
1

k=
-4

Time (samples)
0 2 4 6 8

-1
0
1

k=
-4

Time (samples)

Figure 7.2: Complex sinusoids used by the DFT for N = 8.
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7.1.3 Orthogonality of the DFT Sinusoids

We now show mathematically that the DFT sinusoids are exactly orthogonal.
Let

sk(n)
∆= ejωknT = ej2πkn/N

denote the kth complex DFT sinusoid. Then

〈sk, sl〉 ∆=
N−1∑
n=0

sk(n)sl(n) =
N−1∑
n=0

ej2πkn/Ne−j2πln/N

=
N−1∑
n=0

ej2π(k−l)n/N =
1− ej2π(k−l)
1− ej2π(k−l)/N

where the last step made use of the closed-form expression for the sum of a
geometric series. If k 	= l, the denominator is nonzero while the numerator is
zero. This proves

sk ⊥ sl, k 	= l
While we only looked at unit amplitude, zero phase complex sinusoids, as used
by the DFT, it is readily verified that the (nonzero) amplitude and phase have
no effect on orthogonality.

7.1.4 Norm of the DFT Sinusoids

For k = l, we follow the previous derivation to the next-to-last step to get

〈sk, sk〉 =
N−1∑
n=0

ej2π(k−k)n/N = N

which proves

‖ sk ‖ =
√
N

7.1.5 An Orthonormal Sinusoidal Set

We can normalize the DFT sinusoids to obtain an orthonormal set:

s̃k(n)
∆=
sk(n)√
N

=
ej2πkn/N√
N
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The orthonormal sinusoidal basis signals satisfy

〈s̃k, s̃l〉 =
{
1, k = l
0, k 	= l

We call these the normalized DFT sinusoids.

7.1.6 The Discrete Fourier Transform (DFT)

Given a signal x(·) ∈ CN , the spectrum is defined by

X(ωk)
∆= 〈x, sk〉 =

N−1∑
n=0

x(n)sk(n), k = 0, 1, 2, . . . , N − 1

or, as is most often written

X(ωk)
∆=
N−1∑
n=0

x(n)e−j
2πkn

N , k = 0, 1, 2, . . . , N − 1

That is, the kth sample X(ωk) of the spectrum of x is defined as the inner
product of x with the kth DFT sinusoid sk. This definition is N times the
coefficient of projection of x onto sk, i.e.,

〈x, sk〉
‖ sk ‖2

=
X(ωk)
N

The projection of x onto sk itself is

Psk(x) =
X(ωk)
N

sk

The inverse DFT is simply the sum of the projections:

x =
N−1∑
k=0

X(ωk)
N

sk

or, as we normally write,

x(n) =
1
N

N−1∑
k=0

X(ωk)ej
2πkn

N

In summary, the DFT is proportional to the set of coefficients of projection
onto the sinusoidal basis set, and the inverse DFT is the reconstruction of the
original signal as a superposition of its sinusoidal projections.
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7.1.7 Frequencies in the “Cracks”

The DFT is defined only for frequencies ωk = 2πkfs/N . If we are analyzing
one or more periods of an exactly periodic signal, where the period is exactly N
samples (or some integer divisor of N), then these really are the only frequencies
present in the signal, and the spectrum is actually zero everywhere but at ω =
ωk. However, we use the DFT to analyze arbitrary signals from nature. What
happens when a frequency ω is present in a signal x that is not one of the
DFT-sinusoid freqencies ωk?

To find out, let’s project a length N segment of a sinusoid at an arbitrary
freqency ω onto the kth DFT sinusoid:

x(n) ∆= ejωnT

sk(n)
∆= ejωknT

Psk(x) =
〈x, sk〉
〈sk, sk〉sk

∆=
X(ωk)
N

sk

The coefficient of projection is proportional to

X(ωk)
∆= 〈x, sk〉 ∆=

N−1∑
n=0

x(n)sk(n)

=
N−1∑
n=0

ejωnT e−jωknT =
N−1∑
n=0

ej(ω−ωk)nT =
1− ej(ω−ωk)NT

1− ej(ω−ωk)T

= ej(ω−ωk)(N−1)T/2 sin[(ω − ωk)NT/2]
sin[(ω − ωk)T/2]

using the closed-form expression for a geometric series sum. As previously
shown, the sum is N at ω = ωk and zero at ωl, for l 	= k. However, the
sum is nonzero at all other frequencies.

Since we are only looking at N samples, any sinusoidal segment can be
projected onto the N DFT sinusoids and be reconstructed exactly by a linear
combination of them. Another way to say this is that the DFT sinusoids form a
basis for CN , so that any length N signal whatsoever can be expressed as linear
combination of them. Therefore, when analyzing segments of recorded signals,
we must interpret what we see accordingly.

The typical way to think about this in practice is to consider the DFT
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operation as a digital filter.1 The frequency response of this filter is what we just
computed,2 and its magnitude is

|X(ωk)| =
∣∣∣∣sin[(ω − ωk)NT/2]sin[(ω − ωk)T/2]

∣∣∣∣
(shown in Fig. 7.3a for k = N/4). At all other integer values of k, the response is
the same but shifted (circularly) left or right so that the peak is centered on ωk.
The secondary peaks away from ωk are called sidelobes of the DFT response,
while the main peak may be called the main lobe of the response. Since we are
normally most interested in spectra from an audio perspective, the same plot
is repeated using a decibel vertical scale in Fig. 7.3b (clipped at −60 dB). We
see that the sidelobes are really quite high from an audio perspective. Sinusoids
with frequencies near ωk±1.5, for example, are only attenuated approximately 13
dB in the DFT output X(ωk).

We see thatX(ωk) is sensitive to all frequencies between dc and the sampling
rate except the other DFT-sinusoid frequencies ωl for l 	= k. This is sometimes
called spectral leakage or cross-talk in the spectrum analysis. Again, there is
no error when the signal being analyzed is truly periodic and we can choose N
to be exactly a period, or some multiple of a period. Normally, however, this
cannot be easily arranged, and spectral leakage can really become a problem.

Note that spectral leakage is not reduced by increasing N . It can be thought
of as being caused by abruptly truncating a sinusoid at the beginning and/or
end of the N -sample time window. Only the DFT sinusoids are not cut off
at the window boundaries. All other frequencies will suffer some truncation
distortion, and the spectral content of the abrupt cut-off or turn-on transient
can be viewed as the source of the sidelobes. Remember that, as far as the DFT
is concerned, the input signal x(n) is the same as its periodic extension. If we
repeat N samples of a sinusoid at frequency ω 	= ωk, there will be a “glitch”
every N samples since the signal is not periodic in N samples. This glitch can
be considered a source of new energy over the entire spectrum.

To reduce spectral leakage (cross-talk from far-away frequencies), we typi-
cally use a window function, such as a “raised cosine” window, to taper the data
record gracefully to zero at both endpoints of the window. As a result of the

1More precisely, DFTk() is a length N finite-impulse-response (FIR) digital filter. See §8.7
for related discussion.

2We call this the aliased sinc function to distinguish it from the sinc function sinc(x)
∆
=

sin(πx)/(πx).
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Figure 7.3: Frequency response magnitude of a single DFT output sam-
ple.
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smooth tapering, the main lobe widens and the sidelobes decrease in the DFT
response. Using no window is better viewed as using a rectangular window of
length N , unless the signal is exactly periodic in N samples. These topics are
considered further in the “Examples using the DFT” chapter.

Since the kth spectral sample X(ωk) is properly regarded as a measure of
spectral amplitude over a range of frequencies, nominally k − 1/2 to k + 1/2,
this range is sometimes called a frequency bin (as in a “storage bin” for spec-
tral energy). The frequency index k is called the bin number , and |X(ωk)|2
can be regarded as the total energy in the kth bin (see Parseval’s Theorem
in the “Fourier Theorems” chapter). Similar remarks apply to samples of any
continuous bandlimited function; however, the term “bin” is only used in the
frequency domain, even though it could be assigned exactly the same meaning
mathematically in the time domain.

7.1.8 Normalized DFT

A more “theoretically clean” DFT is obtained by projecting onto the normalized
DFT sinusoids

s̃k(n)
∆=
ej2πkn/N√
N

In this case, the normalized DFT of x is

X̃(ωk)
∆= 〈x, s̃k〉 = 1√

N

N−1∑
n=0

x(n)e−j2πkn/N

which is also precisely the coefficient of projection of x onto s̃k. The inverse
normalized DFT is then more simply

x(n) =
N−1∑
k=0

X(ωk)s̃k(n) =
1√
N

N−1∑
k=0

X(ωk)ej2πkn/N

While this definition is much cleaner from a “geometric signal theory” point of
view, it is rarely used in practice since it requires more computation than the
typical definition. However, note that the only difference between the forward
and inverse transforms in this case is the sign of the exponent in the kernel.
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7.2 The Length 2 DFT

The length 2 DFT is particularly simple, since the basis sinusoids are real:

s0 = (1, 1)
s1 = (1,−1)

The DFT sinusoid s0 is a sampled constant signal, while s1 is a sampled sinusoid
at half the sampling rate.

Figure 7.4 illustrates the graphical relationships for the length 2 DFT of the
signal x = [6, 2].

s0 = (1,1)

s1 = (1,-1)

e0 = (1,0)

e1 = (0,1)

x = (6,2)( ) ( )xPe1 = 2,0

( ) ( )xPs1 −= 2,2

( ) ( )xPs0 = 4,4

( ) ( )xPe0 = 0,6

Figure 7.4: Graphical interpretation of the length 2 DFT.

Analytically, we compute the DFT to be

X(ω0)
∆= Ps0(x)

∆=
〈x, s0〉
〈s0, s0〉

s0 =
6 · 1 + 2 · 1
12 + 12

s0 = 4s0 = (4, 4)

X(ω1)
∆= Ps1(x)

∆=
〈x, s1〉
〈s1, s1〉

s1 =
6 · 1 + 2 · (−1)
12 + (−1)2 s0 = 2s1 = (2,−2)

Note the lines of orthogonal projection illustrated in the figure. The “time do-
main” basis consists of the vectors {e0, e1}, and the orthogonal projections onto
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them are simply the coordinate projections (6, 0) and (0, 2). The “frequency
domain” basis vectors are {s0, s1}, and they provide an orthogonal basis set
which is rotated 45 degrees relative to the time-domain basis vectors. Projecting
orthogonally onto them gives X(ω0) = (4, 4) and X(ω1) = (2,−2), respectively.
The original signal x can be expressed as the vector sum of its coordinate pro-
jections (a time-domain representation), or as the vector sum of its projections
onto the DFT sinusoids (a frequency-domain representation). Computing the
coefficients of projection is essentially “taking the DFT” and constructing x as
the vector sum of its projections onto the DFT sinusoids amounts to “taking
the inverse DFT.”

7.3 Matrix Formulation of the DFT

The DFT can be formulated as a complex matrix multiply, as we show in this
section. For basic definitions regarding matrices, see §A.

The DFT consists of inner products of the input signal x with sampled
complex sinusoidal sections sk:

X(ωk)
∆= 〈x, sk〉 ∆=

N−1∑
n=0

x(n)e−j2πnk/N , k = 0, 1, 2, . . . , N − 1

By collecting the DFT output samples into a column vector, we have



X(ω0)
X(ω1)
X(ω2)
...

X(ωN−1)


 =



s0(0) s0(1) · · · s0(N − 1)
s1(0) s1(1) · · · s1(N − 1)
s2(0) s2(1) · · · s2(N − 1)
...

...
...

...
sN−1(0) sN−1(1) · · · sN−1(N − 1)







x(0)
x(1)
x(2)
...

x(N − 1)




or

X = SNx
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where SN denotes the DFT matrix SN [k, n]
∆=W−kn

N
∆= e−j2πkn/N , or,

SN
∆=



s0(0) s0(1) · · · s0(N − 1)
s1(0) s1(1) · · · s1(N − 1)
s2(0) s2(1) · · · s2(N − 1)
...

...
...

...
sN−1(0) sN−1(1) · · · sN−1(N − 1)




∆=



1 1 1 · · · 1
1 e−j2π/N e−j4π/N · · · e−j2π(N−1)/N

1 e−j4π/N e−j8π/N · · · e−j2π2(N−1)/N

...
...

...
...

...
1 e−j2π(N−1)/N e−j2π2(N−1)/N · · · e−j2π(N−1)(N−1)/N




We see that the kth row of the DFT matrix is the k DFT sinusoids. Since the
matrix is symmetric, SNT = SN (where transposition does not include conjuga-
tion), we observe that the kth column of SN is also the kth DFT sinusoid.

The inverse DFT matrix is simply SN/N . That is, we can perform the
inverse DFT operation simply as

x =
1
N
SN

∗X

Since X = SNx, the above implies

SN
∗SN = N · I

The above equation succinctly implies that the columns of SN are orthogonal,
which, of course, we already knew.

The normalized DFT matrix is given by

S̃N
∆=

1√
N
SN

and the corresponding normalized inverse DFT matrix is simply S̃N , so that we
have

S̃∗N S̃N = I

This implies that the columns of SN are orthonormal . Such a matrix is said to
be unitary .

When a real matrix A satisfies ATA = I, then A is said to be orthogonal .
“Unitary” is the generalization of “orthogonal” to complex matrices.
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7.4 Matlab Examples

7.4.1 Figure 7.2

Below is the Matlab for Fig. 7.2:

N=8;
fs=1;

n = [0:N-1]; % row
t = [0:0.01:N]; % interpolated
k=fliplr(n)’ - N/2;
fk = k*fs/N;
wk = 2*pi*fk;
clf;
for i=1:N

subplot(N,2,2*i-1);
plot(t,cos(wk(i)*t))
axis([0,8,-1,1]);
hold on;
plot(n,cos(wk(i)*n),’*’)
if i==1

title(’Real Part’);
end;
ylabel(sprintf(’k=%d’,k(i)));
if i==N

xlabel(’Time (samples)’);
end;
subplot(N,2,2*i);
plot(t,sin(wk(i)*t))
axis([0,8,-1,1]);
hold on;
plot(n,sin(wk(i)*n),’*’)
ylabel(sprintf(’k=%d’,k(i)));
if i==1

title(’Imaginary Part’);
end;
if i==N
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xlabel(’Time (samples)’);
end;

end

7.4.2 Figure 7.3

Below is the Matlab for Fig. 7.3:

% Parameters (sampling rate = 1)
N = 16; % DFT length
k = N/4; % bin where DFT filter is centered
wk = 2*pi*k/N; % normalized radian center-frequency for DFT_k()
wStep = 2*pi/N;
w = [0:wStep:2*pi - wStep]; % DFT frequency grid

interp = 10;
N2 = interp*N; % Denser grid showing "arbitrary" frequencies
w2Step = 2*pi/N2;
w2 = [0:w2Step:2*pi - w2Step]; % Extra dense frequency grid
X = (1 - exp(j*(w2-wk)*N)) ./ (1 - exp(j*(w2-wk)));

% slightly offset to avoid divide by zero at wk
X(1+k*interp) = N; % Fix divide-by-zero point (overwrite "NaN")

% Plot spectral magnitude
clf;
magX = abs(X);
magXd = magX(1:interp:N2); % DFT frequencies only
subplot(2,1,1);
plot(w2,magX,’-’); hold on; grid;
plot(w,magXd,’*’); % Show DFT sample points
title(’DFT Amplitude Response at k=N/4’);
xlabel(’Normalized Radian Frequency (radians per sample)’);
ylabel(’Magnitude (Linear)’);
text(-1,20,’a)’);

% Same thing on a dB scale
magXdb = 20*log10(magX); % Spectral magnitude in dB
% Since the zeros go to minus infinity, clip at -60 dB:
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magXdb = max(magXdb,-60*ones(1,N2));
magXddb = magXdb(1:interp:N2); % DFT frequencies only
subplot(2,1,2);
hold off; plot(w2,magXdb,’-’); hold on; plot(w,magXddb,’*’); grid;
xlabel(’Normalized Radian Frequency (radians per sample)’);
ylabel(’Magnitude (dB)’);
text(-1,40,’b)’);
print -deps ’../eps/dftfilter.eps’;
hold off;

7.4.3 DFT Matrix in Matlab

The following example reinforces the discussion of the DFT matrix. We can
simply create the DFT matrix in Matlab by taking the FFT of the identity
matrix. Then we show that multiplying by the DFT matrix is equivalent to the
FFT:

>> eye(4)
ans =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

>> S4 = fft(eye(4))
ans =

1.0000 1.0000 1.0000 1.0000
1.0000 0.0000 - 1.0000i -1.0000 0.0000 + 1.0000i
1.0000 -1.0000 1.0000 -1.0000
1.0000 0.0000 + 1.0000i -1.0000 0.0000 - 1.0000i

>> S4’ * S4 % Show that S4’ = inverse DFT (times N=4)
ans =

4.0000 0.0000 0 0.0000
0.0000 4.0000 0.0000 0.0000

0 0.0000 4.0000 0.0000
0.0000 0.0000 0.0000 4.0000

>> x = [1; 2; 3; 4]
x =

1
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2
3
4

>> fft(x)
ans =
10.0000
-2.0000 + 2.0000i
-2.0000
-2.0000 - 2.0000i

>> S4 * x
ans =
10.0000
-2.0000 + 2.0000i
-2.0000
-2.0000 - 2.0000i
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Chapter 8

Fourier Theorems for the DFT

This chapter derives various Fourier theorems for the case of the DFT. Included
are symmetry relations, the shift theorem, convolution theorem, correlation the-
orem, power theorem, and theorems pertaining to interpolation and downsam-
pling. Applications related to certain theorems are outlined, including linear
time-invariant filtering, sampling rate conversion, and statistical signal process-
ing.

8.1 The DFT and its Inverse

Let x(n), n = 0, 1, 2, . . . , N − 1 denote an n-sample complex sequence, i.e., x ∈
CN . Then the spectrum of x is defined by the Discrete Fourier Transform
(DFT):

X(k) ∆=
N−1∑
n=0

x(n)e−j2πnk/N , k = 0, 1, 2, . . . , N − 1

The inverse DFT (IDFT ) is defined by

x(n) =
1
N

N−1∑
k=0

X(k)ej2πnk/N , n = 0, 1, 2, . . . , N − 1

Note that for the first time we are not carrying along the sampling interval
T = 1/fs in our notation. This is actually the most typical treatment in the
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digital signal processing literature. It is often said that the sampling frequency
is fs = 1. However, it can be set to any desired value using the substitution

ej2πnk/N = ej2πk(fs/N)nT ∆= ejωktn

However, for the remainder of this chapter, we will adopt the more common (and
more mathematical) convention fs = 1. In particular, we’ll use the definition
ωk

∆= 2πk/N for this chapter only. In this case, a radian frequency ωk is in units
of “radians per sample.” Elsewhere in this book, ωk always means “radians per
second.” (Of course, there’s no difference when the sampling rate is really 1.)
Another term we use in connection with the fs = 1 convention is normalized
frequency : All normalized radian frequencies lie in the range [−π, π), and all
normalized frequencies in Hz lie in the range [−0.5, 0.5).

8.1.1 Notation and Terminology

If X is the DFT of x, we say that x and X form a transform pair and write

x↔ X (“x corresponds to X”).

Another notation we’ll use is

DFT(x) ∆= X, and

DFTk(x)
∆= X(k)

As we’ve already seen, time-domain signals are consistently denoted using lower-
case symbols such as “x,” while frequency-domain signals (spectra), are denoted
in uppercase (“X”).

8.1.2 Modulo Indexing, Periodic Extension

The DFT sinusoids sk(n)
∆= ejωkn are all periodic having periods which divide

N . That is, sk(n + mN) = sk(n) for any integer m. Since a length N signal
x can be expressed as a linear combination of the DFT sinusoids in the time
domain,

x(n) =
1
N

∑
k

X(k)sk(n),
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it follows that the “automatic” definition of x(n) beyond the range [0, N − 1] is
periodic extension, i.e., x(n+mN) ∆= x(n) for every integer m.

Moreover, the DFT also repeats naturally every N samples, since

X(k +mN) ∆=
∑
n

〈x, sk+mN 〉 =
N−1∑
n=0

〈x, sk〉 = X(k)

because sk+mN (n) = ej2πn(k+mN)/N = ej2πnk/Nej2πnm = sk(n). (The DFT
sinusoids behave identically as functions of n and k.) Accordingly, for purposes
of DFT studies, we may define all signals in CN as being single periods from an
infinitely long periodic signal with period N samples:

Definition: For any signal x ∈ CN , we define

x(n+mN) ∆= x(n)

for every integer m.
As a result of this convention, all indexing of signals and spectra1 can be

interpreted modulo N , and we may write x(n mod N) to emphasize this. For-
mally, “n mod N” is defined as n−mN with m chosen to give n−mN in the
range [0, N − 1].

As an example, when indexing a spectrum X, we have that X(N) = X(0)
which can be interpreted physically as saying that the sampling rate is the
same frequency as dc for discrete time signals. In the time domain, we have
what is sometimes called the “periodic extension” of x(n). This means that
the input to the DFT is mathematically treated as samples of a periodic signal
with period NT seconds (N samples). The corresponding assumption in the
frequency domain is that the spectrum is zero between frequency samples ωk.

It is also possible to adopt the point of view that the time-domain signal x(n)
consists of N samples preceded and followed by zeros. In this case, the spectrum
is nonzero between spectral samples ωk, and the spectrum between samples can
be reconstructed by means of bandlimited interpolation. This “time-limited”
interpretation of the DFT input is considered in detail in Music 420 and is
beyond the scope of Music 320 (except in the discussion of “zero padding ↔
interpolation” below).

1A spectrum is mathematically identical to a signal, since both are just sequences of N
complex numbers. However, for clarity, we generally use “signal” when the sequence index is
considered a time index, and “spectrum” when the index is associated with successive frequency
samples.
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8.2 Signal Operators

It will be convenient in the Fourier theorems below to make use of the following
signal operator definitions.

8.2.1 Flip Operator

Definition: We define the flip operator by

Flipn(x)
∆= x(−n)

which, by modulo indexing, is x(N −n). The Flip() operator reverses the order
of samples 1 through N − 1 of a sequence, leaving sample 0 alone, as shown in
Fig. 8.1a. Thanks to modulo indexing, it can also be viewed as “flipping” the
sequence about the vertical axis, as shown in Fig. 8.1b. The interpretation of
Fig. 8.1b is usually the one we want, and the Flip operator is usually thought
of as “time reversal” when applied to a signal x or “frequency reversal” when
applied to a spectrum X.

8.2.2 Shift Operator

Definition: The shift operator is defined by

Shift∆,n(x)
∆= x(n−∆)

and Shift∆(x) denotes the entire shifted signal. Note that since indexing is
modulo N , the shift is circular. However, we normally use it to represent time
delay by ∆ samples. We often use the shift operator in conjunction with zero
padding (appending zeros to the signal x) in order to avoid the “wrap-around”
associated with a circular shift.

Figure 8.2 illustrates successive one-sample delays of a periodic signal having
first period given by [0, 1, 2, 3, 4].

Example: Shift1([1, 0, 0, 0]) = [0, 1, 0, 0] (an impulse delayed one sample).

Example: Shift1([1, 2, 3, 4]) = [4, 1, 2, 3] (a circular shift example).

Example: Shift−2([1, 0, 0, 0]) = [0, 0, 1, 0] (another circular shift example).
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x(n) Flipn(x)

0 1 2 3 4 0 1 2 3 4

x(n) Flipn(x)

-2 -1 0 1 2 -2 -1 0 1 2

a)

b)

Figure 8.1: Illustration of x and Flip(x) for N = 5 and two different
domain interpretations:
a) n ∈ [0, N − 1].
b) n ∈ [−(N − 1)/2, (N − 1)/2].
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Figure 8.2: Successive one-sample shifts of a sampled periodic sawtooth
waveform having first period [0, 1, 2, 3, 4].
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8.2.3 Convolution

Definition: The convolution of two signals x and y in CN is denoted “x ∗ y”
and defined by

(x ∗ y)n ∆=
N−1∑
m=0

x(m)y(n−m)

Note that this is cyclic or “circular” convolution.2 The importance of convolu-
tion in linear systems theory is discussed in §8.7

Convolution is commutative, i.e.,

x ∗ y = y ∗ x

Proof:

(x ∗ y)n ∆=
N−1∑
m=0

x(m)y(n−m) =
n−N+1∑
l=n

x(n− l)y(l) =
N−1∑
l=0

y(l)x(n− l) ∆= (y ∗ x)n

where in the first step we made the change of summation variable l ∆= n −m,
and in the second step, we made use of the fact that any sum over all N terms
is equivalent to a sum from 0 to N − 1.

Graphical Convolution

Note that the cyclic convolution operation can be expressed in terms of previ-
ously defined operators as

y(n) ∆= (x ∗ h)n ∆=
N−1∑
m=0

x(m)h(n−m) = 〈x,Shiftn(Flip(h))〉 (h real)

where x, y ∈ CN and h ∈ RN . It is instructive to interpret the last expression
above graphically.

2To simulate acyclic convolution, as is appropriate for the simulation of sampled continuous-
time systems, sufficient zero padding is used so that nonzero samples do not “wrap around” as
a result of the shifting of y in the definition of convolution. Zero padding is discussed later in
this chapter (§8.2.6).
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y(m)

h(0–m)

h(7–m)

h(6–m)

h(5–m)

h(1–m)

h(2–m)

h(3–m)

h(4–m)

4

3

2

1

0

1

2

3

( )( ) [ ]=∗ nhy 3,2,1,0,1,2,3,4

	 ( ) ( )
N−1

m

mnhmy −

Figure 8.3: Illustration of convolution of y = [1, 1, 1, 1, 0, 0, 0, 0] and its
“matched filter” h=[1,0,0,0,0,1,1,1] (N = 8).
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Figure 8.3 illustrates convolution of

y = [1, 1, 1, 1, 0, 0, 0, 0]
h = [1, 0, 0, 0, 0, 1, 1, 1]

For example, y could be a “rectangularly windowed signal, zero-padded by a
factor of 2,” where the signal happened to be dc (all 1s). For the convolution,
we need

Flip(h) = [1, 1, 1, 1, 0, 0, 0, 0]

which is the same as y. When h = Flip(y), we say that h is matched filter for y.3

In this case, h is matched to look for a “dc component,” and also zero-padded
by a factor of 2. The zero-padding serves to simulate acyclic convolution using
circular convolution. The figure illustrates the computation of the convolution
of y and h:

y ∗ h ∆=
N−1∑
n=0

y(n) · Flip(h) = [4, 3, 2, 1, 0, 1, 2, 3]

Note that a large peak is obtained in the convolution output at time 0. This
large peak (the largest possible if all signals are limited to [−1, 1] in magnitude),
indicates the matched filter has “found” the dc signal starting at time 0. This
peak would persist even if various sinusoids at other frequencies and/or noise
were added in.

Polynomial Multiplication

Note that when you multiply two polynomials together, their coefficients are
convolved. To see this, let p(x) denote the mth-order polynomial

p(x) = p0 + p1x+ p2x2 + · · ·+ pmxm
with coefficients pi, and let q(x) denote the nth-order polynomial

q(x) = q0 + q1x+ q2x2 + · · ·+ qnxn
with coefficients qi. Then we have [17]

p(x)q(x) = p0q0 + (p0q1 + p1q0)x+ (p0q2 + p1q1 + p2q0)x2

+(p0q3 + p1q2 + p2q1 + p3q0)x3

+(p0q4 + p1q3 + p2q2 + p3q1 + p4q0)x4 + · · ·
+(p0qn+m + p1qn+m−1 + p2qn+m−2 + pn+m−1q1 + pn+mq0)xn+m

3Matched filtering is briefly discussed in §8.8.
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Denoting p(x)q(x) by

r(x) ∆= p(x)q(x) = r0 + r1x+ r2x2 + · · ·+ rm+nx
m+n,

we see that the ith coefficient can be expressed as

ri = p0qi + p1qi−1 + p2qi−2 + · · ·+ pi−1q1 + piq0

=
i∑
j=0

pjqi−j =
∞∑

j=−∞
pjqi−j

∆= (p ∗ q)(i)
where pi and qi are doubly infinite sequences, defined as zero for i < 0 and
i > m, n, respectively.

Multiplication of Decimal Numbers

Since decimal numbers are implicitly just polynomials in the powers of 10, e.g.,

3819 = 3 · 103 + 8 · 102 + 1 · 101 + 9 · 100

it follows that multiplying two numbers convolves their digits. The only twist is
that, unlike normal polynomial multiplication, we have carries. That is, when a
convolution result exceeds 10, we subtract 10 from the result and add 1 to the
digit in the next higher place.

8.2.4 Correlation

Definition: The correlation operator for two signals x and y in CN is defined
as

(x = y)n
∆=
N−1∑
m=0

x(m)y(m+ n)

We may interpret the correlation operator as

(x = y)n = 〈Shift−n(y), x〉
which is the coefficient of projection onto x of y advanced by n samples (shifted
circularly to the left by n samples). The time shift n is called the correlation
lag , and x(m)y(m + n) is called a lagged product . Applications of correlation
are discussed in §8.8.
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8.2.5 Stretch Operator

Unlike all previous operators, the StretchL() operator maps a length N signal
to a length M ∆= LN signal, where L and N are integers. We use “m” instead
of “n” as the time index to underscore this fact.

Figure 8.4: Illustration of Stretch3(x).

Definition: A stretch by factor L is defined by

StretchL,m(x)
∆=

{
x(m/L), m/L = integer
0, m/L 	= integer

Thus, to stretch a signal by the factor L, insert L − 1 zeros between each pair
of samples. An example of a stretch by factor three is shown in Fig. 8.4. The
example is

Stretch3([4, 1, 2]) = [4, 0, 0, 1, 0, 0, 2, 0, 0]

The stretch operator is used to describe and analyze upsampling, i.e., in-
creasing the sampling rate by an integer factor.

8.2.6 Zero Padding

Definition: Zero padding consists of appending zeros to a signal. It maps a
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length N signal to a length M > N signal, but M need not be an integer
multiple of N :

ZeroPadM,m(x)
∆=

{
x(m), 0 ≤ m ≤ N − 1
0, N ≤ m ≤M − 1

For example,

ZeroPad10([1, 2, 3, 4, 5]) = [1, 2, 3, 4, 5, 0, 0, 0, 0, 0]

The above definition is natural when x(n) represents a signal starting at time
0 and extending for N samples. If, on the other hand, we are zero-padding a
spectrum, or we have a time-domain signal which has nonzero samples for neg-
ative time indices, then the zero padding is normally inserted between samples
(N − 1)/2 and (N + 1)/2 for N odd (note that (N + 1)/2 = (N + 1)/2 −N =
−(N−1)/2 mod N), and similarly for even N . I.e., for spectra, zero padding is
inserted at the point z = −1 (ω = πfs). Figure 8.5 illustrates this second form
of zero padding. It is also used in conjunction with zero-phase FFT windows
(discussed a bit further below).

Using Fourier theorems, we will be able to show that zero padding in the
time domain gives bandlimited interpolation in the frequency domain. Similarly,
zero padding in the frequency domain gives bandlimited interpolation in the time
domain. This is how ideal sampling rate conversion is accomplished.

It is important to note that bandlimited interpolation is ideal interpolation
in digital signal processing.

8.2.7 Repeat Operator

Like the StretchL() operator, the RepeatL() operator maps a length N signal
to a length M ∆= LN signal:

Definition: The repeat L times operator is defined by

RepeatL,m(x)
∆= x(m), m = 0, 1, 2, . . . ,M − 1

where M ∆= LN . Thus, the RepeatL() operator simply repeats its input signal
L times.4 An example of Repeat2(x) is shown in Fig. 8.6. The example is

Repeat2([0, 2, 1, 4, 3, 1]) = [0, 2, 1, 4, 3, 1, 0, 2, 1, 4, 3, 1]
4You might wonder why we need this since all indexing is defined modulo N already. The

answer is that RepeatL() formally expresses a mapping from the space of length N signals to
the space of length M = LN signals.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



CHAPTER 8. FOURIER THEOREMS FOR THE DFT Page 159

a) b)

c) d)

Figure 8.5: Illustration of frequency-domain zero padding:
a) Original spectrum X = [3, 2, 1, 1, 2] plotted over the domain k ∈

[0, N − 1] where N = 5 (i.e., as the spectral array would normally exist
in a computer array).
b) ZeroPad11(X).
c) The same signal X plotted over the domain k ∈ [−(N − 1)/2, (N −

1)/2] which is more natural for interpreting negative frequencies.
d) ZeroPad11(X).
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Repeat2

Figure 8.6: Illustration of Repeat2(x).

A frequency-domain example is shown in Fig. 8.7. Figure 8.7a shows the
original spectrum X, Fig. 8.7b shows the same spectrum plotted over the unit
circle in the z plane, and Fig. 8.7c shows Repeat3(X). The z = 1 point (dc) is
on the right-rear face of the enclosing box. Note that when viewed as centered
about k = 0, X is a somewhat “triangularly shaped” spectrum. The repeating
block can be considered to extend from the point at z = 1 to the point far to
the left, or it can be considered the triangularly shaped “baseband” spectrum
centered about z = 1.

The repeat operator is used to state the Fourier theorem

StretchL ↔ RepeatL

That is, when you stretch a signal by the factor L, its spectrum is repeated L
times around the unit circle.

8.2.8 Downsampling Operator

Definition: Downsampling by L is defined as taking every Lth sample, starting
with sample 0:

SelectL,m(x)
∆= x(mL), m = 0, 1, 2, . . . ,M − 1 (N = LM,x ∈ CN )

The SelectL() operator maps a length N = LM signal down to a lengthM
signal. It is the inverse of the StretchL() operator (but not vice versa), i.e.,

SelectL(StretchL(x)) = x

StretchL(SelectL(x)) 	= x (in general).

The stretch and downsampling operations do not commute because they are
linear time-varying operators. They can be modeled using time-varying switches
controlled by the sample index n.
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Figure 8.7: Illustration of Repeat3(X).
a) Conventional plot of X.
b) Plot of X over the unit circle in the z plane.
c) Repeat3(X).
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Figure 8.8: Illustration of Select2(x). The white-filled circles indicate
the retained samples while the black-filled circles indicate the discarded
samples.

An example of Select2(x) is shown in Fig. 8.8. The example is

Select2([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) = [0, 2, 4, 6, 8]

8.2.9 Alias Operator

Aliasing occurs when a signal is undersampled. If the signal sampling rate fs is
too low, we get frequency-domain aliasing .

The topic of aliasing normally arises in the context of sampling a continuous-
time signal. Shannon’s Sampling Theorem says that we will have no aliasing
due to sampling as long as the sampling rate is higher than twice the highest
frequency present in the signal being sampled.

In this chapter, we are considering only discrete-time signals, in order to
keep the math as simple as possible. Aliasing in this context occurs when a
discrete-time signal is decimated to reduce its sampling rate. You can think of
continuous-time sampling as the limiting case for which the starting sampling
rate is infinity.

An example of aliasing is shown in Fig. 8.9.
In the figure, the high-frequency sinusoid is indistinguishable from the lower

frequency sinusoid due to aliasing. We say the higher frequency aliases to the
lower frequency. Undersampling in the frequency domain gives rise to time-
domain aliasing . If time or frequency is not specified, the term “aliasing” nor-
mally means frequency-domain aliasing.

The aliasing operator is defined by

AliasL,m(x)
∆=
N−1∑
l=0

x

(
m+ l

N

L

)
, m = 0, 1, 2, . . . ,M − 1 (N = LM,x ∈ CN )
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Figure 8.9: Example of aliasing due to undersampling in time.

Like the SelectL() operator, the AliasL() operator maps a length N = LM
signal down to a length M signal. The way to think of it is to partition the
original N samples in to L blocks of length M , with the first block extending
from sample 0 to sample M − 1, the second block from M to 2M − 1, etc. Then
just add up the blocks. This process is called aliasing. If the original signal x
is a time signal, it is called time-domain aliasing ; if it is a spectrum, we call it
frequency-domain aliasing , or just aliasing. Note that aliasing is not invertible.
Once the blocks are added together, it is not possible to recover the original
blocks, in general.

For example,

Alias2([0, 1, 2, 3, 4, 5]) = [0, 1, 2] + [3, 4, 5] = [3, 5, 7]
Alias3([0, 1, 2, 3, 4, 5]) = [0, 1] + [2, 3] + [4, 5] = [6, 9]

The alias operator is used to state the Fourier theorem

SelectL ↔ AliasL

That is, when you decimate a signal by the factor L, its spectrum is aliased by
the factor L.

Figure 8.10 shows the result ofAlias2 applied toRepeat3(X) from Fig. 8.7c.
Imagine the spectrum of Fig. 8.10a as being plotted on a piece of paper rolled
to form a cylinder, with the edges of the paper meeting at z = 1 (upper right
corner of Fig. 8.10a). Then the Alias2 operation can be simulated by rerolling
the cylinder of paper to cut its circumference in half. That is, reroll it so that at
every point, two sheets of paper are in contact at all points on the new, narrower
cylinder. Now, simply add the values on the two overlapping sheets together,
and you have the Alias2 of the original spectrum on the unit circle. To alias
by 3, we would shrink the cylinder further until the paper edges again line up,
giving three layers of paper in the cylinder, and so on.
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a)

b)

c)

d)

e)

f)

Figure 8.10: Illustration of aliasing in the frequency domain.
a) Repeat3(X) from Fig. 8.7c.
b) First half of the original unit circle (0 to π) wrapped around the

new, smaller unit circle (which is magnified to the original size).
c) Second half (π to 2π), also wrapped around the new unit circle.
d) Overlay of components to be summed.
e) Sum of components (the aliased spectrum).
f) Both sum and overlay.
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Figure 8.10b shows what is plotted on the first circular wrap of the cylinder
of paper, and Fig. 8.10c shows what is on the second wrap. These are overlaid
in Fig. 8.10d and added together in Fig. 8.10e. Finally, Fig. 8.10f shows both
the addition and the overlay of the two components. We say that the second
component (Fig. 8.10c) “aliases” to new frequency components, while the first
component (Fig. 8.10b) is considered to be at its original frequencies. If the unit
circle of Fig. 8.10a covers frequencies 0 to fs, all other unit circles (Fig. 8.10b-c)
cover frequencies 0 to fs/2.

In general, aliasing by the factor K corresponds to a sampling-rate reduction
by the factor K. To prevent aliasing when reducing the sampling rate, an anti-
aliasing lowpass filter is generally used. The lowpass filter attenuates all signal
components at frequencies outside the interval [−fs/(2K), fs/(2K)]. If they are
not filtered out, they will alias, and aliasing is generally non-invertible.

Conceptually, the unit circle is reduced by Alias2 to a unit circle half
the original size, where the two halves are summed. The inverse of alias-
ing is then “repeating” which should be understood as increasing the unit
circle circumference using “periodic extension” to generate “more spectrum”
for the larger unit circle. In the time domain, downsampling is the inverse
of the stretch operator. All of these relationships are precise only for integer
stretch/downsampling/aliasing/repeat factors; in continuous time, the restric-
tion to integer factors is removed, and we obtain the (simpler) similarity theorem
(proved in §8.9).

8.3 Even and Odd Functions

Some of the Fourier theorems can be succinctly expressed in terms of even and
odd symmetries.

Definition: A function f(n) is said to be even if f(−n) = f(n). An even
function is also symmetric, but the term symmetric applies also to functions
symmetric about a point other than 0.

Definition: A function f(n) is said to be odd if f(−n) = −f(n). An odd
function is also called antisymmetric.

Note that every odd function f(n) must satisfy f(0) = 0. Moreover, for any
x ∈ CN with N even, we also have x(N/2) = 0 since x(N/2) = −x(−N/2) =
−x(−N/2 +N) = −x(N/2), i.e., N/2 and −N/2 index the same point.
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Theorem: Every function f(n) can be decomposed into a sum of its even
part fe(n) and odd part fo(n), where

fe(n)
∆=
f(n) + f(−n)

2

fo(n)
∆=
f(n)− f(−n)

2
Proof: In the above definitions, fe is even and fo is odd by construction.

Summing, we have

fe(n) + fo(n) =
f(n) + f(−n)

2
+
f(n)− f(−n)

2
= f(n)

Theorem: The product of even functions is even, the product of odd func-
tions is even, and the product of an even times an odd function is odd.
Proof: Readily shown.
Since even times even is even, odd times odd is even, and even times odd is

odd, we can think of even as (+) and odd as (−): (+)·(+) = (+), (−)·(−) = (+),
and (+) · (−) = (−) · (+) = (−).

Example: cos(ωkn) is an even signal since cos(−θ) = cos(θ).
Example: sin(ωkn) is an odd signal since sin(−θ) = − sin(θ).
Example: cos(ωkn) · sin(ωln) is odd (even times odd).
Example: sin(ωkn) · sin(ωln) is even (odd times odd).
Theorem: The sum of all the samples of an odd signal xo in CN is zero.
Proof: This is readily shown by writing the sum as xo(0)+[xo(1)+xo(−1)]+

· · · + x(N/2), where the last term only occurs when N is even. Each term so
written is zero for an odd signal xo.

Example: For all DFT sinusoidal frequencies ωk = 2πk/N ,
N−1∑
n=0

sin(ωkn) cos(ωkn) = 0, k = 0, 1, 2, . . . , N − 1

More generally,
N−1∑
n=0

xe(n)xo(n) = 0

for any even signal xe and odd signal xo in CN .
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8.4 The Fourier Theorems

In this section the main Fourier theorems are stated and proved. It is no small
matter how simple these theorems are in the DFT case relative to the other
three cases (DTFT, Fourier transform, and Fourier series). When infinite sum-
mations or integrals are involved, the conditions for the existence of the Fourier
transform can be quite difficult to characterize mathematically. Mathematicians
have expended a considerable effort on such questions. By focusing primarily
on the DFT case, we are able to study the essential concepts conveyed by the
Fourier theorems without getting involved with mathematical difficulties.

8.4.1 Linearity

Theorem: For any x, y ∈ CN and α, β ∈ C, the DFT satisfies

αx+ βy ↔ αX + βY

Thus, the DFT is a linear operator.
Proof:

DFTk(αx+ βy)
∆=

N−1∑
n=0

[αx(n) + βy(n)]e−j2πnk/N

=
N−1∑
n=0

αx(n)e−j2πnk/N +
N−1∑
n=0

βy(n)e−j2πnk/N

= α
N−1∑
n=0

x(n)e−j2πnk/N + β
N−1∑
n=0

y(n)e−j2πnk/N

∆= αX + βY

8.4.2 Conjugation and Reversal

Theorem: For any x ∈ CN ,

x↔ Flip(X)
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Proof:

DFTk(x)
∆=

N−1∑
n=0

x(n)e−j2πnk/N =
N−1∑
n=0

x(n)ej2πnk/N

=
N−1∑
n=0

x(n)e−j2πn(−k)/N ∆= Flipk(X)

Theorem: For any x ∈ CN ,

Flip(x)↔ X

Proof: Making the change of summation variable m ∆= N − n, we get

DFTk(Flip(x)) ∆=
N−1∑
n=0

x(N − n)e−j2πnk/N =
1∑

m=N

x(m)e−j2π(N−m)k/N

=
N−1∑
m=0

x(m)ej2πmk/N =
N−1∑
m=0

x(m)e−j2πmk/N ∆= X(k)

Theorem: For any x ∈ CN ,

Flip(x)↔ Flip(X)

Proof:

DFTk[Flip(x)] ∆=
N−1∑
n=0

x(N − n)e−j2πnk/N =
N−1∑
m=0

x(m)e−j2π(N−m)k/N

=
N−1∑
m=0

x(m)ej2πmk/N ∆= X(−k) ∆= Flipk(X)

Corollary: For any x ∈ RN ,

Flip(x)↔ X (x real)
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Proof: Picking up the previous proof at the third formula, remembering that
x is real,

N−1∑
n=0

x(n)ej2πnk/N =
N−1∑
n=0

x(n)e−j2πnk/N =
N−1∑
n=0

x(n)e−j2πnk/N ∆= X(k)

when x(n) is real.
Thus, conjugation in the frequency domain corresponds to reversal in the

time domain. Another way to say it is that negating spectral phase flips the
signal around backwards in time.

Corollary: For any x ∈ RN ,

Flip(X) = X (x real)

Proof: This follows from the previous two cases.

Definition: The property X(−k) = X(k) is called Hermitian symmetry or
“conjugate symmetry.” If X(−k) = −X(k), it may be called skew-Hermitian.

Another way to state the preceding corollary is

x ∈ RN ↔ X is Hermitian

8.4.3 Symmetry

In the previous section, we found Flip(X) = X when x is real. This fact is of
high practical importance. It says that the spectrum of every real signal is Her-
mitian. Due to this symmetry, we may discard all negative-frequency spectral
samples of a real signal and regenerate them later if needed from the positive-
frequency samples. Also, spectral plots of real signals are normally displayed
only for positive frequencies; e.g., spectra of sampled signals are normally plot-
ted over the range 0 Hz to fs/2 Hz. On the other hand, the spectrum of a
complex signal must be shown, in general, from −fs/2 to fs/2 (or from 0 to fs),
since the positive and negative frequency components of a complex signal are
independent.

Theorem: If x ∈ RN , re {X} is even and im {X} is odd.
Proof: This follows immediately from the conjugate symmetry of X for real

signals x.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



Page 170 8.4. THE FOURIER THEOREMS

Theorem: If x ∈ RN , |X| is even and � X is odd.
Proof: This follows immediately from the conjugate symmetry ofX expressed

in polar form X(k) = |X(k)| ej � X(k).
The conjugate symmetry of spectra of real signals is perhaps the most im-

portant symmetry theorem. However, there are a few more we can readily show.

Theorem: An even signal has an even transform:

x even↔ X even

Proof: Express x in terms of its real and imaginary parts by x ∆= xr + jxi.
Note that for a complex signal x to be even, both its real and imaginary parts
must be even. Then

X(k) ∆=
N−1∑
n=0

x(n)e−jωkn

=
N−1∑
n=0

[xr(n) + jxi(n)] cos(ωkn)− j[xr(n) + jxi(n)] sin(ωkn)

=
N−1∑
n=0

[xr(n) cos(ωkn) + xi(n) sin(ωkn)] + j[xi(n) cos(ωkn)− xr(n) sin(ωkn)]

=
N−1∑
n=0

even · even +
N−1∑
n=0

even · odd
︸ ︷︷ ︸
sums to 0

+j
N−1∑
n=0

even · even− j
N−1∑
n=0

even · odd
︸ ︷︷ ︸
sums to 0

=
N−1∑
n=0

even · even + j
N−1∑
n=0

even · even = even + j · even = even

Theorem: A real even signal has a real even transform:

x real and even↔ X real and even

Proof: This follows immediately from setting xi(n) = 0 in the preceding proof
and seeing that the DFT of a real and even function reduces to a type of cosine
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transform5,

X(k) =
N−1∑
n=0

x(n) cos(ωkn),

or we can show it directly:

X(k) ∆=
N−1∑
n=0

x(n)e−jωkn =
N−1∑
n=0

x(n) cos(ωkn) + j
N−1∑
n=0

x(n) sin(ωkn)

=
N−1∑
n=0

x(n) cos(ωkn) (
∑
even · odd =∑

odd = 0)

=
N−1∑
n=0

even · even =
N−1∑
n=0

even = even

Definition: A signal with a real spectrum (such as a real, even signal) is
often called a zero phase signal . However, note that when the spectrum goes
negative (which it can), the phase is really π, not 0. Nevertheless, it is common
to call such signals “zero phase, ” even though the phase switches between 0
and π at the zero-crossings of the spectrum. Such zero-crossings typically occur
at low amplitude in practice, such as in the “sidelobes” of the DTFT of an FFT
window.

8.4.4 Shift Theorem

Theorem: For any x ∈ CN and any integer ∆,

DFTk[Shift∆(x)] = e−jωk∆X(k)

5The discrete cosine transform (DCT) used often in applications is actually defined some-
what differently, but the basic principles are the same
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Proof:

DFTk[Shift∆(x)]
∆=

N−1∑
n=0

x(n−∆)e−j2πnk/N

=
N−1−∆∑
m=−∆

x(m)e−j2π(m+∆)k/N (m ∆= n−∆)

=
N−1∑
m=0

x(m)e−j2πmk/Ne−j2πk∆/N

= e−j2π∆k/N
N−1∑
m=0

x(m)e−j2πmk/N

∆= e−jωk∆X(k)

The shift theorem says that a delay in the time domain corresponds to a linear
phase term in the frequency domain. More specifically, a delay of ∆ samples in
the time waveform corresponds to the linear phase term e−jωk∆ multiplying the
spectrum, where ωk

∆= 2πk/N . (To consider ωk as radians per second instead of
radians per sample, just replace ∆ by ∆T so that the delay is in seconds instead
of samples.) Note that spectral magnitude is unaffected by a linear phase term.
That is,

∣∣e−jωk∆X(k)
∣∣ = |X(k)|.

Linear Phase Terms

The reason e−jωk∆ is called a linear phase term is that its phase is a linear
function of frequency:

� e−jωk∆ = −∆ · ωk
Thus, the slope of the phase versus radian frequency is −∆. In general, the time
delay in samples equals minus the slope of the linear phase term. If we express
the original spectrum in polar form as

X(k) = G(k)ejΘ(k),

where G and Θ are the magnitude and phase of X, respectively (both real), we
can see that a linear phase term only modifies the spectral phase Θ(k):

e−jωk∆X(k) ∆= e−jωk∆G(k)ejΘ(k) = G(k)ej[Θ(k)−ωk∆]
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where ωk
∆= 2πk/N . A positive time delay (waveform shift to the right) adds

a negatively sloped linear phase to the original spectral phase. A negative time
delay (waveform shift to the left) adds a positively sloped linear phase to the
original spectral phase. If we seem to be belaboring this relationship, it is
because it is one of the most useful in practice.

Definition: A signal is said to be linear phase signal if its phase is of the
form

Θ(ωk) = ±∆ · ωk ± πI(ωk)
where I(ωk) is an indicator function which takes on the values 0 or 1.

Application of the Shift Theorem to FFT Windows

In practical spectrum analysis, we most often use the fast Fourier transform6

(FFT) together with a window function w(n), n = 0, 1, 2, . . . , N − 1. Windows
are normally positive (w(n) > 0), symmetric about their midpoint, and look
pretty much like a “bell curve.” A window multiplies the signal x being analyzed
to form a windowed signal xw(n) = w(n)x(n), or xw = w · x, which is then
analyzed using the FFT. The window serves to taper the data segment gracefully
to zero, thus eliminating spectral distortions due to suddenly cutting off the
signal in time. Windowing is thus appropriate when x is a short section of a
longer signal.

Theorem: Real symmetric FFT windows are linear phase.
Proof: The midpoint of a symmetric signal can be translated to the time

origin to create an even signal. As established previously, the DFT of a real even
signal is real and even. By the shift theorem, the DFT of the original symmetric
signal is a real even spectrum multiplied by a linear phase term. A spectrum
whose phase is a linear function of frequency (with possible discontinuities of π
radians), is linear phase by definition.

8.4.5 Convolution Theorem

Theorem: For any x, y ∈ CN ,

x ∗ y ↔ X · Y
6The FFT is just a fast implementation of the DFT.
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Proof:

DFTk(x ∗ y) ∆=
N−1∑
n=0

(x ∗ y)ne−j2πnk/N

∆=
N−1∑
n=0

N−1∑
m=0

x(m)y(n−m)e−j2πnk/N

=
N−1∑
m=0

x(m)
N−1∑
n=0

y(n−m)e−j2πnk/N︸ ︷︷ ︸
e−j2πmk/NY (k)

=

(
N−1∑
m=0

x(m)e−j2πmk/N
)
Y (k) (by the Shift Theorem)

∆= X(k)Y (k)

This is perhaps the most important single Fourier theorem of all. It is the basis
of a large number of applications of the FFT. Since the FFT provides a fast
Fourier transform, it also provides fast convolution, thanks to the convolution
theorem. It turns out that using the FFT to perform convolution is really more
efficient in practice only for reasonably long convolutions, such as N > 100. For
much longer convolutions, the savings become enormous compared with “direct”
convolution. This happens because direct convolution requires on the order of
N2 operations (multiplications and additions), while FFT-based convolution
requires on the order of N lg(N) operations.

The following simple Matlab example illustrates how much faster convolution
can be performed using the FFT:

>> N = 1024; % FFT much faster at this length
>> t = 0:N-1; % [0,1,2,...,N-1]
>> h = exp(-t); % filter impulse reponse = sampled exponential
>> H = fft(h); % filter frequency response
>> x = ones(1,N); % input = dc (any example will do)
>> t0 = clock; y = conv(x,h); t1 = etime(clock,t0); % Direct
>> t0 = clock; y = ifft(fft(x) .* H); t2 = etime(clock,t0); % FFT
>> sprintf([’Elapsed time for direct convolution = %f sec\n’,...

’Elapsed time for FFT convolution = %f sec\n’,...
’Ratio = %f (Direct/FFT)’],t1,t2,t1/t2)
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ans =

Elapsed time for direct convolution = 8.542129 sec
Elapsed time for FFT convolution = 0.075038 sec
Ratio = 113.837376 (Direct/FFT)

8.4.6 Dual of the Convolution Theorem

The Dual7 of the Convolution Theorem says that multiplication in the time
domain is convolution in the frequency domain:

Theorem:

x · y ↔ 1
N
X ∗ Y

Proof: The steps are the same as in the Convolution Theorem.
This theorem also bears on the use of FFT windows. It says that windowing

in the time domain corresponds to smoothing in the frequency domain. That is,
the spectrum of w · x is simply X filtered by W , or, W ∗ X. This smoothing
reduces sidelobes associated with the rectangular window (which is the window
one gets implicitly when no window is explicitly used). FFT windows are covered
in Music 420.

8.4.7 Correlation Theorem

Theorem: For all x, y ∈ CN ,

x = y ↔ X · Y

7In general, the dual of any Fourier operation is obtained by interchanging time and fre-
quency.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



Page 176 8.4. THE FOURIER THEOREMS

Proof:

(x = y)n
∆=

N−1∑
m=0

x(m)y(n+m)

=
N−1∑
m=0

x(−m)y(n−m) (m← −m)

= (Flip(x) ∗ y)n
↔ X · Y

where the last step follows from the Convolution Theorem and the result Flip(x)↔
X from the section on Conjugation and Reversal.

8.4.8 Power Theorem

Theorem: For all x, y ∈ CN ,

〈x, y〉 = 1
N
〈X,Y 〉

Proof:

〈x, y〉 ∆=
N−1∑
n=0

x(n)y(n) = (y = x)0 = DFT−1
0 (Y ·X)

=
1
N

N−1∑
k=0

X(k)Y (k) ∆=
1
N
〈X,Y 〉

Note that the power theorem would be more elegant (〈x, y〉 = 〈X,Y 〉) if the DFT
were defined as the coefficient of projection onto the normalized DFT sinusoid
s̃k(n)

∆= sk(n)/
√
N .

8.4.9 Rayleigh Energy Theorem (Parseval’s Theorem)

Theorem: For any x ∈ CN ,

‖x ‖2 = 1
N
‖X ‖2
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I.e.,
N−1∑
n=0

|x(n)|2 = 1
N

N−1∑
k=0

|X(k)|2

Proof: This is a special case of the Power Theorem.
Note that again the relationship would be cleaner (‖x ‖ = ‖X ‖) if we were

using the normalized DFT .

8.4.10 Stretch Theorem (Repeat Theorem)

Theorem: For all x ∈ CN ,

StretchL(x)↔ RepeatL(X)

Proof: Recall the stretch operator:

StretchL,m(x)
∆=

{
x(m/L), m/L = integer
0, m/L 	= integer

Let y ∆= StretchL(x), where y ∈ CM , M = LN . Also define the new denser
frequency grid associated with length M by ω′k

∆= 2πk/M , with ωk = 2πk/N as
usual. Then

Y (k) ∆=
M−1∑
m=0

y(m)e−jω
′
km =

N−1∑
n=0

x(n)e−jω
′
knL (n ∆= m/L)

But
ω′kL

∆=
2πk
M
L =

2πk
N

= ωk

Thus, Y (k) = X(k), and by the modulo indexing of X, L copies of X are
generated as k goes from 0 to M − 1 = LN − 1.

8.4.11 Downsampling Theorem (Aliasing Theorem)

Theorem: For all x ∈ CN ,

SelectL(x)↔ 1
L

AliasL(X)
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Proof: Let k′ ∈ [0,M−1] denote the frequency index in the aliased spectrum,
and let Y (k′) ∆= AliasL,k′(X). Then Y is length M = N/L, where L is the
downsampling factor. We have

Y (k′) ∆= AliasL,k′(X)
∆=
L−1∑
l=0

Y (k′ + lM), k′ = 0, 1, 2, . . . ,M − 1

∆=
L−1∑
l=0

N−1∑
n=0

x(n)e−j2π(k
′+lM)n/N

∆=
N−1∑
n=0

x(n)e−j2πk
′n/N

L−1∑
l=0

e−j2πlnM/N

Since M/N = L, the sum over l becomes

L−1∑
l=0

e−j2πlMn/N =
L−1∑
l=0

[
e−j2πn/L

]l
=

1− e−j2πn
1− e−j2πn/L =

{
L, n = 0 mod L
0, n 	= 0 mod L

using the closed form expression for a geometric series derived earlier. We see
that the sum over L effectively samples x every L samples. This can be expressed
in the previous formula by definingm ∆= n/L which ranges only over the nonzero
samples:

AliasL,k′(X) =
N−1∑
n=0

x(n)e−j2πk
′n/N

L−1∑
l=0

e−j2πln/L

= L

N/L−1∑
m=0

x(mL)e−j2πk
′(mL)/N (m ∆= n/L)

∆= L
M−1∑
m=0

x(mL)e−j2πk
′m/M ∆= L

M−1∑
m=0

SelectL,m(x)e−j2πk
′m/M

∆= L ·DFTk′(SelectL(x))

Since the above derivation also works in reverse, the theorem is proved.
Here is an illustration of the Downsampling Theorem in Matlab:

>> N=4;
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>> x = 1:N;
>> X = fft(x);
>> x2 = x(1:2:N);
>> fft(x2) % FFT(Decimate(x,2))

ans =

4 -2

>> (X(1:N/2) + X(N/2 + 1:N))/2 % (1/2) Alias(X,2)

ans =

4.0000 -2.0000

An illustration of aliasing in the frequency domain is shown in Fig. 8.10.

8.4.12 Zero Padding Theorem

A fundamental tool in practical spectrum analysis is zero padding . This theorem
shows that zero padding in the time domain corresponds to ideal interpolation
in the frequency domain:

Let x ∈ CN and define y = ZeroPadM (x). Then y ∈ CM with M ≥ N .
Denote the original frequency index by k, where ωk

∆= 2πk/N and the new
frequency index by k′, where ωk′

∆= 2πk′/M .

Definition: The ideal bandlimited interpolation of a spectrum X(ωk)
∆=

DFTk(x), x ∈ CN , to an arbitrary new frequency ω ∈ [−π, π) is defined as

X(ω) ∆=
N−1∑
n=0

x(n)e−jωn

Note that this is just the definition of the DFT with ωk replaced by ω. That is,
the spectrum is interpolated by projecting onto the new sinusoid exactly as if it
were a DFT sinusoid. This makes the most sense when x is assumed to be N
samples of a time-limited signal. That is, if the signal really is zero outside of
the time interval [0, N − 1], then the inner product between it and any sinusoid
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will be exactly as in the equation above. Thus, for time limited signals, this
kind of interpolation is ideal.

Definition: The interpolation operator interpolates a signal by an integer
factor L. That is,

InterpL,k′(X)
∆= X(ωk′), ωk′ = 2πk′/M, k′ = 0, 1, 2, . . . ,M − 1, M ∆= LN

Since X(ωk)
∆= DFTN,k(x) is initially only defined over the N roots of unity,

while X(ωk′) is defined over M = LN roots of unity, we define X(ωk′) for
ωk′ 	= ωk by ideal bandlimited interpolation.

Theorem: For any x ∈ CN

ZeroPadLN (x)↔ InterpL(X)

Proof: Let M = LN with L ≥ 1. Then

DFTM,k′(ZeroPadM (x)) =
N−1∑
m=0

x(m)e−j2πmk
′/M ∆= X(ωk′) = InterpL(X)

8.4.13 Bandlimited Interpolation in Time

The dual of the Zero-Padding Theorem states formally that zero padding in
the frequency domain corresponds to ideal bandlimited interpolation in the time
domain. However, we have not precisely defined ideal bandlimited interpolation
in the time domain. Therefore, we’ll let the dual of the Zero-Padding Theorem
provide its definition:

Definition: For all x ∈ CN and any integer L ≥ 1,

InterpL(x)
∆= IDFT(ZeroPadLN (X))

where the zero-padding is of the frequency-domain type, as described earlier and
illustrated in Fig. 8.5.

It is instructive to interpret the Interpolation Theorem in terms of the Stretch
Theorem StretchL(x) ↔ RepeatL(X). To do this, it is convenient to define
a “zero-centered rectangular window” operator:
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Definition: For any X ∈ CN and any odd integer M < N we define the
length M even rectangular windowing operation by

RectWinM,k(X)
∆=

{
X(k), −M−1

2 ≤ k ≤ M−1
2

0, M+1
2 ≤ |k| ≤ N

2

Thus, the “zero-phase rectangular window,” when applied to a spectrum X, sets
the spectrum to zero everywhere outside a zero-centered interval of M samples.
Note thatRectWinM (X) is the ideal lowpass filtering operation in the frequency
domain, where the lowpass “cut-off frequency” in radians per sample is ωc =
2π[(M − 1)/2]/N . With this we can efficiently show the basic theorem of ideal
bandlimited interpolation:

Theorem: For x ∈ CN ,

InterpL(x) = IDFT(RectWinN (DFT(StretchL(x))))

In other words, ideal bandlimited interpolation of x by the factor L may be
carried out by first stretching x by the factor L (i.e., inserting L − 1 zeros
between adjacent samples of x), taking the DFT, applying the ideal lowpass
filter, and performing the inverse DFT.
Proof: First, recall that StretchL(x)↔ RepeatL(X), that is, stretching a

signal by the factor L gives a new signal y = StretchL(x) which has a spectral
grid L times the density of X, and the spectrum Y contains L copies of X
repeated around the unit circle. The “baseband copy” of X can be defined as
the width N sequence centered about frequency zero. Therefore, if we can use
an “ideal filter” to “pass” the baseband spectral copy and zero out all others,
we can convert RepeatL(X) to ZeroPadLN (X). I.e.,

RectWinN (RepeatL(X)) = ZeroPadLN (X)↔ InterpL(x)

where the last step is by definition of time-domain ideal bandlimited interpola-
tion.

Note that the definition of ideal bandlimited time-domain interpolation in
this section is only really ideal for signals which are periodic inN samples. To see
this, consider that the rectangular windowing operation in the frequency domain
corresponds to cyclic convolution in the time domain,8 and cyclic convolution is

8The inverse DFT of the rectangular window here is an aliased, discrete-time counterpart
of the sinc function which is defined as “sin(πt)/πt.”
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only the same as acyclic convolution when one of the signals is truly periodic in
N samples. Since all spectra X ∈ CN are truly periodic in N samples, there is
no problem with the definition of ideal spectral interpolation used in connection
with the Zero-Padding Theorem. However, for a more practical definition of ideal
time-domain interpolation, we should use instead the dual of the Zero-Padding
Theorem for the DTFT case. Nevertheless, for signals which are exactly periodic
in N samples (a rare situation), the present definition is ideal.

8.5 Conclusions

For the student interested in pursuing further the topics of this chapter, see
[18, 19].
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8.7 Appendix A: Linear Time-Invariant Filters and
Convolution

A reason for the importance of convolution is that every linear time-invariant
system9 can be represented by a convolution. Thus, in the convolution equation

y = h ∗ x

we may interpret x as the input signal to a filter, y as the output signal, and h
as the digital filter , as shown in Fig. 8.11.

x(n) y(n)h

Figure 8.11: The filter interpretation of convolution.

9We use the term “system” interchangeably with “filter.”
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The impulse or “unit pulse” signal is defined by

δ(n) ∆=
{
1, n = 0
0, n 	= 0

For example, for N = 4, δ = [1, 0, 0, 0]. The impulse signal is the identity
element under convolution, since

(x ∗ δ)n ∆=
N−1∑
m=0

δ(m)x(n−m) = x(n)

If we set x = δ in the filter equation above, we get

y = h ∗ x = h ∗ δ = h

Thus, h is the impulse response of the filter.
It turns out in general that every linear time-invariant (LTI) system (filter)

is completely described by its impulse response. No matter what the LTI system
is, we can give it an impulse, record what comes out, call it h(n), and implement
the system by convolving the input signal x with the impulse response h. In
other words, every LTI system has a convolution representation in terms of its
impulse response.

8.7.1 LTI Filters and the Convolution Theorem

Definition: The frequency response of an LTI filter is defined as the Fourier
transform of its impulse response. In particular, for finite, discrete-time signals
h ∈ CN , the sampled frequency response is defined as

H(ωk)
∆= DFTk(h)

The complete frequency response is defined using the DTFT, i.e.,

H(ω) ∆= DTFTω(ZeroPad∞(h))
∆=
N−1∑
n=0

h(n)e−jωn

where we used the fact that h(n) is zero for n < 0 and n > N − 1 to truncate
the summation limits. Thus, the infinitely zero-padded DTFT can be obtained
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from the DFT by simply replacing ωk by ω. In principle, the continuous fre-
quency response H(ω) is being obtained using “time-limited interpolation in the
frequency domain” based on the samples H(ωk). This interpolation is possible
only when the frequency samples H(ωk) are sufficiently dense: for a length N
finite-impulse-response (FIR) filter h, we require at least N samples around the
unit circle (length N DFT) in order that H(ω) be sufficiently well sampled in
the frequency domain. This is of course the dual of the usual sampling rate
requirement in the time domain.10

Definition: The amplitude response of a filter is defined as the magnitude
of the frequency response

G(k) ∆= |H(ωk)|
From the convolution theorem, we can see that the amplitude response G(k) is
the gain of the filter at frequency ωk, since

|Y (k)| = |H(ωk)X(k)| = G(k) |X(k)|

Definition: The phase response of a filter is defined as the phase of the
frequency response

Θ(k) ∆= � H(ωk)

From the convolution theorem, we can see that the phase response Θ(k) is the
phase-shift added by the filter to an input sinusoidal component at frequency
ωk, since

� Y (k) = � [H(ωk)X(k)] = � H(ωk) + � X(k)

The subject of this section is developed in detail in [1].

8.8 Appendix B: Statistical Signal Processing

The correlation operator defined above plays a major role in statistical signal
processing. This section gives a short introduction to some of the most com-
monly used elements. The student interested in mastering the concepts intro-

10Note that we normally say the sampling rate in the time domain must be higher than twice
the highest frequency in the frequency domain. From the point of view of this book, however,
we may say instead that sampling rate in the time domain must be greater than the full spectral
bandwidth of the signal, including both positive and negative frequencies. From this simplified
point of view, “sampling rate = bandwidth supported.”
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duced briefly below may consider taking EE 278 in the Electrical Engineering
Department. For further reading, see [12, 20].

8.8.1 Cross-Correlation

Definition: The circular cross-correlation of two signals x and y in CN may
be defined by

rxy(l)
∆=
1
N
(x = y)(l) ∆=

1
N

N−1∑
n=0

x(n)y(n+ l), l = 0, 1, 2, . . . , N − 1 (cross-correlation)

(Note carefully above that “l” is an integer variable, not the constant 1.) The
term “cross-correlation” comes from statistics, and what we have defined here
is more properly called the “sample cross-correlation,” i.e., it is an estimator
of the true cross-correlation which is a statistical property of the signal itself.
The estimator works by averaging lagged products x(n)y(n + l). The true sta-
tistical cross-correlation is the so-called expected value of the lagged products in
random signals x and y, which may be denoted E{x(n)y(n + l)}. In principle,
the expected value must be computed by averaging (n)y(n+ l) over many real-
izations of the stochastic process x and y. That is, for each “roll of the dice”
we obtain x(·) and y(·) for all time, and we can average x(n)y(n+ l) across all
realizations to estimate the expected value of x(n)y(n + l). This is called an
“ensemble average” across realizations of a stochastic process. If the signals are
stationary (which primarily means their statistics are time-invariant), then we
may average across time to estimate the expected value. In other words, for
stationary noise-like signals, time averages equal ensemble averages. The above
definition of the sample cross-correlation is only valid for stationary stochastic
processes.

The DFT of the cross-correlation is called the cross-spectral density , or
“cross-power spectrum,” or even simply “cross-spectrum.”

Normally in practice we are interested in estimating the true cross-correlation
between two signals, not the circular cross-correlation which results naturally in
a DFT setting. For this, we may define instead the unbiased cross-correlation

r̂xy(l)
∆=

1
N − 1− l

N−l∑
n=0

x(n)y(n+ l), l = 0, 1, 2, . . . , L− 1
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where we chose L << N (e.g. L =
√
N) in order to have enough lagged

products at the highest lag that a reasonably accurate average is obtained. The
term “unbiased” refers to the fact that we are dividing the sum by N − l rather
than N .

Note that instead of first estimating the cross-correlation between signals x
and y and then taking the DFT to estimate the cross-spectral density, we may
instead compute the sample cross-correlation for each block of a signal, take the
DFT of each, and average the DFTs to form a final cross-spectrum estimate.
This is called the periodogram method of spectral estimation.

8.8.2 Applications of Cross-Correlation

In this section, two applications of cross-correlation are outlined.

Matched Filtering

The cross-correlation function is used extensively in pattern recognition and sig-
nal detection. We know that projecting one signal onto another is a means of
measuring how much of the second signal is present in the first. This can be used
to “detect” the presence of known signals as components of more complicated
signals. As a simple example, suppose we record x(n) which we think consists
of a signal s(n) which we are looking for plus some additive measurement noise
e(n). Then the projection of x onto s is

Ps(x) = Ps(s) + Ps(e) ≈ s
since the projection of any specific signal s onto random, zero-mean noise is
close to zero. Another term for this process is called matched filtering. The
impulse response of the “matched filter” for a signal x is given by Flip(x). By
time reversing x, we transform the convolution implemented by filtering into a
cross-correlation operation.

FIR System Identification

Estimating an impulse response from input-output measurements is called sys-
tem identification, and a large literature exists on this topic [21].

Cross-correlation can be used to compute the impulse response h(n) of a filter
from the cross-correlation of its input and output signals x(n) and y = h ∗ x,
respectively.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



CHAPTER 8. FOURIER THEOREMS FOR THE DFT Page 187

To see this, note that, by the correlation theorem,

x = y ↔ X · Y = X · (H ·X) = H · |X|2

Therefore, the frequency response is given by the input-output cross-spectrum
divided by the input power spectrum:

H =
X · Y
|X|2

In terms of the cross-spectral density and the input power-spectral density
(which can be estimated by averaging X · Y and |X|2, respectively), this re-
lation can be written as

H(ω) =
Rxy(ω)
Rxx(ω)

Multiplying the above equation by Rxx(ω) and taking the inverse DTFT yields
the time-domain relation

h ∗ rxx = rxy
where rxy can also be written as x = y. In words, the cross-correlation of the
filter input and output is equal to the filter’s impulse response convolved with
the autocorrelation of the input signal.

A Matlab program illustrating these relationships is listed in Fig. 8.12.

8.8.3 Autocorrelation

The cross-correlation of a signal with itself gives the autocorrelation function

rx(l)
∆=
1
N
(x = x)(l) ∆=

1
N

N−1∑
n=0

x(n)x(n+ l)

The autocorrelation function is Hermitian:

rx(−l) = rx(l)

When x is real, its autocorrelation is symmetric. More specifically, it is real and
even.
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% sidex.m - Demonstration of the use of FFT cross-
% correlation to compute the impulse response
% of a filter given its input and output.
% This is called "FIR system identification".

Nx = 32; % input signal length
Nh = 10; % filter length Ny = Nx+Nh-1;
% max output signal length
% FFT size to accommodate cross-correlation:
Nfft = 2^nextpow2(Nx+Ny-1); % FFT wants power of 2

x = rand(1,Nx); % input signal = noise
%x = 1:Nx; % input signal = ramp
h = [1:Nh]; % the filter
xzp = [x,zeros(1,Nfft-Nx)]; % zero-padded input
yzp = filter(h,1,xzp); % apply the filter
X = fft(xzp); % input spectrum
Y = fft(yzp); % output spectrum
Rxx = conj(X) .* X; % energy spectrum of x
Rxy = conj(X) .* Y; % cross-energy spectrum
Hxy = Rxy ./ Rxx; % should be the freq. response
hxy = ifft(Hxy); % should be the imp. response

hxy(1:Nh) % print estimated impulse response
freqz(hxy,1,Nfft); % plot estimated freq response

err = norm(hxy - [h,zeros(1,Nfft-Nh)])/norm(h);
disp(sprintf([’Impulse Response Error = ’,...
’%0.14f%%’],100*err));

err = norm(Hxy-fft([h,zeros(1,Nfft-Nh)]))/norm(h);
disp(sprintf(’Frequency Response Error = ’,...
’%0.14f%%’],100*err));

Figure 8.12: FIR system identification example in Matlab.
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As in the case of cross-correlation, we can form an unbiased sample autocor-
relation as

r̂x(l)
∆=

1
N − l

N−1∑
n=0

x(n)x(n+ l), l = 0, 1, 2, . . . , L− 1

The DFT of the autocorrelation function rx(n) is called the power spectral
density (PSD), or power spectrum, and is often denoted

Rx(k)
∆= DFTk(rx)

The true PSD of a “stationary stochastic process” is the Fourier transform of
the true autocorrelation function, and therefore the definition above provides
only a sample estimate of the PSD.

Periodogram Method for Power Spectrum Estimation

As in the case of the cross-spectrum, we may use the periodogram method for
computing the power spectrum estimate. That is, we may estimate the power
spectrum as the average of the DFTs of many sample autocorrelations which
are computed block by block in a long signal, rather than taking one DFT of a
single autocorrelation estimate based on all the data we have. By the Correlation
Theorem, this is the same as averaging squared-magnitude DFTs of the signal
blocks themselves. Let xm denote the mth block of the signal x, and let M
denote the number of blocks. Then the PSD estimate is given by

R̂x(k) =
1
M
|DFTk(xm)|2

However, note that |Xm|2 ↔ x=x which is circular correlation. To avoid this, we
use zero padding in the time domain, i.e., we replace xm above by [xm, 0, . . . , 0].
However, note that although the “wrap-around problem” is fixed, the estimator
is still biased. To repair this, we can use a triangular window (also called a
“Bartlett window”) to apply the weighting needed to remove the bias.

For real signals, the autocorrelation is real and even, and therefore the power
spectral density is real and even for all real signals. The PSD Rx(ω) can inter-
preted as a measure of the relative probability that the signal contains energy
at frequency ω. Essentially, however, it is the long-term average energy density
vs. frequency in the random process x(n).
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At lag zero, the autocorrelation function reduces to the average power (root
mean square) which we defined earlier:

rx(0)
∆=
1
N

N−1∑
m=0

|x(m)|2 ∆= P2
x

Replacing “correlation” with “covariance” in the above definitions gives the
corresponding zero-mean versions. For example, the cross-covariance is defined
as

cxy(n)
∆=
1
N

N−1∑
m=0

[x(m)− µx][y(m+ n)− µy]

We also have that cx(0) equals the variance of the signal x:

cx(0)
∆=
1
N

N−1∑
m=0

|x(m)− µx|2 ∆= σ2
x

8.8.4 Coherence

A function related to cross-correlation is the coherence function Γxy(ω), defined
in terms of power spectral densities and the cross-spectral density by

Γxy(k)
∆=

Rxy(k)√
Rx(k)Ry(k)

In practice, these quantities can be estimated by averaging X(k)Y (k), |X(k)|2
and |Y (k)|2 over successive signal blocks. Let {·} denote time averaging. Then
an estimate of the coherence, the sample coherence function Γ̂xy(k), may be
defined by

Γ̂xy(k)
∆=

{
X(k)Y (k)

}
√{

|X(k)|2
}
·
{
|Y (k)|2

}
The magnitude-squared coherence |Γxy(k)|2 is a real function between 0 and

1 which gives a measure of correlation between x and y at each frequency (DFT
bin number k). For example, imagine that y is produced from x via an LTI
filtering operation:

y = h ∗ x =⇒ Y (k) = H(k)X(k)
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Then the coherence function is

Γ̂xy(k)
∆=

X(k)Y (k)
|X(k)| · |Y (k)| =

X(k)H(k)X(k)
|X(k)| |H(k)X(k)| =

|X(k)|2H(k)
|X(k)|2 |H(k)| =

H(k)
|H(k)|

and the magnitude-squared coherence function is simply∣∣∣Γ̂xy(k)∣∣∣ = ∣∣∣∣ H(k)|H(k)|
∣∣∣∣ = 1

On the other hand, if x and y are uncorrelated noise processes, the coherence
converges to zero.

A common use for the coherence function is in the validation of input/output
data collected in an acoustics experiment for purposes of system identification.
For example, x(n) might be a known signal which is input to an unknown system,
such as a reverberant room, say, and y(n) is the recorded response of the room.
Ideally, the coherence should be 1 at all frequencies. However, if the microphone
is situated at a null in the room response for some frequency, it may record
mostly noise at that frequency. This will be indicated in the measured coherence
by a significant dip below 1.

8.9 Appendix C: The Similarity Theorem

The similarity theorem is fundamentally restricted to the continuous-time case.
It says that if you “stretch” a signal by the factor α in the time domain, you
“squeeze” its Fourier transform by the same factor in the frequency domain.
This is such a fundamental Fourier relationship, that we include it here rather
than leave it out as a non-DFT result.

The closest we came to the similarity theorem among the DFT theorems
was the the Interpolation Theorem. We found that “stretching” a discrete-time
signal by the integer factor α (filling in between samples with zeros) corresponded
to the spectrum being repeated α times around the unit circle. As a result, the
“baseband” copy of the spectrum “shrinks” in width (relative to 2π) by the
factor α. Similarly, stretching a signal using interpolation (instead of zero-fill)
corresponded to the repeated spectrum with all spurious spectral copies zeroed
out. The spectrum of the interpolated signal can therefore be seen as having
been stretched by the inverse of the time-domain stretch factor. In summary,
the Interpolation DFT Theorem can be viewed as the discrete-time counterpart
of the similarity Fourier Transform (FT) theorem.
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Theorem: For all continuous-time functions x(t) possessing a Fourier trans-
form,

Stretchα(x)↔ 1
|α|Stretch(1/α)(X)

where
Stretchα,t(x)

∆= x(αt)

and α is any nonzero real number (the abscissa scaling factor).
Proof:

FTω(Stretchα(x))
∆=

∫ ∞

−∞
x(αt)e−jωtdt =

∫ ∞

−∞
x(τ)e−jω(τ/α)d(τ/α)

=
1
|α|

∫ ∞

−∞
x(τ)e−j(ω/α)τdτ

∆=
1
|α|X

(ω
α

)
The absolute value appears above because, when α < 0, d(τ/α) < 0, which
brings out a minus sign in front of the integral from −∞ to ∞.
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Chapter 9

Example Applications of the
DFT

This chapter goes through some practical examples of FFT analysis in Matlab.
The various Fourier theorems provide a “thinking vocabulary” for understanding
elements of spectral analysis.

9.1 Spectrum Analysis of a Sinusoid: Windowing,
Zero-Padding, and the FFT

The examples below give a progression from the most simplistic analysis up
to a proper practical treatment. Careful study of these examples will teach
you a lot about how spectrum analysis is carried out on real data, and provide
opportunities to see the Fourier theorems in action.

9.1.1 Example 1: FFT of a Simple Sinusoid

Our first example is an FFT of the simple sinusoid

x(n) = cos(ωxnT )

where we choose ωx = 2π(fs/4) (frequency fs/4) and T = 1 (sampling rate set
to 1). Since we’re using the FFT, the signal length N must be a power of 2.
Here is the Matlab code:

193
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9.1. SPECTRUM ANALYSIS OF A SINUSOID: WINDOWING,

ZERO-PADDING, AND THE FFT

echo on; hold off; diary off;
% !/bin/rm -f examples.dia; diary examples.dia % For session log
% !mkdirs eps % For figures

% Example 1: FFT of a DFT sinusoid

% Parameters:
N = 64; % Must be a power of two
T = 1; % Set sampling rate to 1
f = 0.25; % Sinusoidal frequency in cycles per sample
A = 1; % Sinusoidal amplitude
phi = 0; % Sinusoidal phase
n = [0:N-1];
x = cos(2*pi*n*f*T); % Signal to analyze
X = fft(x); % Spectrum

Let’s plot the time data and magnitude spectrum:

% Plot time data
figure(1);
subplot(3,1,1);
plot(n,x,’*’);
ni = [0:.1:N-1]; % Interpolated time axis
hold on;
plot(ni,cos(2*pi*ni*f*T),’-’);
title(’Sinusoid Sampled at 1/4 the Sampling Rate’);
xlabel(’Time (samples)’); ylabel(’Amplitude’);
text(-8,1,’a)’);

% Plot spectral magnitude
magX = abs(X);
fn = [0:1.0/N:1-1.0/N]; % Normalized frequency axis
subplot(3,1,2);
stem(fn,magX)
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (Linear)’);
text(-.11,40,’b)’);
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% Same thing on a dB scale
spec = 20*log10(magX); % Spectral magnitude in dB
subplot(3,1,3);
plot(fn,spec);
axis([0 1 -350 50]);
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (dB)’);
text(-.11,50,’c)’);
print -deps eps/example1.eps; hold off;
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Figure 9.1: Sampled sinusoid at f = fs/4. a) Time waveform. b)
Magnitude spectrum. c) DB magnitude spectrum.
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9.1. SPECTRUM ANALYSIS OF A SINUSOID: WINDOWING,

ZERO-PADDING, AND THE FFT

The results are shown in Fig. 9.1. The time-domain signal is shown in
Fig. 9.1a, both in pseudo-continuous and sampled form. In Fig. 9.1b, we see
two peaks in the magnitude spectrum, each at magnitude 32 on a linear scale,
located at normalized frequencies f = 0.25 and f = 0.75 = −0.25. Since the
DFT length is N = 64, a spectral peak amplitude of 32 = (1/2)64 is what we
expect, since

DFTk(cos(ωxn))
∆=
N−1∑
n=0

ejωxn + e−jωxn

2
e−jωkn =

N−1∑
n=0

ej0n

2
=
N

2

when ωk = ±ωx. This happens at bin numbers k = (0.25/fs)N = 16 and
k = (0.75/fs)N = 48 for N = 64. However, recall that Matlab requires indexing
from 1, so that these peaks will really show up at index 17 and 49 in the magX
array.

The spectrum should be exactly zero at the other bin numbers. How accu-
rately this happens can be seen by looking on a dB scale, as shown in Fig. 9.1c.
We see that the spectral magnitude in the other bins is on the order of 300 dB
lower, which is close enough to zero for audio work.

9.1.2 Example 2: FFT of a Not-So-Simple Sinusoid

Now let’s increase the frequency in the above example by one-half of a bin:

% Example 2: Same as Example 1 but with a frequency between bins

f = 0.25 + 0.5/N; % Move frequency off-center by half a bin

x = cos(2*pi*n*f*T); % Signal to analyze
X = fft(x); % Spectrum

% Plot time data
figure(2);
subplot(3,1,1);
plot(n,x,’*’);
ni = [0:.1:N-1]; % Interpolated time axis
hold on;
plot(ni,cos(2*pi*ni*f*T),’-’);
title(’Sinusoid Sampled at NEAR 1/4 the Sampling Rate’);
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xlabel(’Time (samples)’); ylabel(’Amplitude’);
text(-8,1,’a)’); hold off;

% Plot spectral magnitude
subplot(3,1,2);
magX = abs(X);
stem(fn,magX); grid;
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (Linear)’);
text(-0.11,30,’b)’);

% Same spectrum on a dB scale
subplot(3,1,3);
spec = 20*log10(magX); % Spectral magnitude in dB
plot(fn,spec); grid
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (dB)’);
text(-0.11,40,’c)’);
print -deps eps/example2.eps; hold off;

The resulting magnitude spectrum is shown in Fig. 9.2b and c. We see
extensive “spectral leakage” into all the bins at this frequency.

To get an idea of where this spectral leakage is coming from, let’s look at
the periodic extension of the time waveform:

% Plot the periodic extension of the time-domain signal
plot([x,x]);
title(’Time Waveform Repeated Once’);
xlabel(’Time (samples)’);
ylabel(’Amplitude’);
print -deps eps/waveform2.eps; % Figure 4
disp ’pausing for RETURN (check the plot). . .’; pause

The result is shown in Fig. 9.3. Note the “glitch” in the middle where the
signal begins its forced repetition.
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9.1. SPECTRUM ANALYSIS OF A SINUSOID: WINDOWING,

ZERO-PADDING, AND THE FFT

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1
Sinusoid Sampled at NEAR 1/4 the Sampling Rate

Time (samples)

A
m

pl
itu

de

a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

Normalized Frequency (cycles per sample))

M
ag

ni
tu

de
 (

Li
ne

ar
)b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

Normalized Frequency (cycles per sample))

M
ag

ni
tu

de
 (

dB
)

c)

Figure 9.2: Sinusoid at Frequency f = 0.25+0.5/N . a) Time waveform.
b) Magnitude spectrum. c) DB magnitude spectrum.
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Figure 9.3: Time waveform repeated to show discontinuity introduced
by periodic extension (see midpoint).
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9.1. SPECTRUM ANALYSIS OF A SINUSOID: WINDOWING,

ZERO-PADDING, AND THE FFT

9.1.3 Example 3: FFT of a Zero-Padded Sinusoid

Interestingly, looking back at Fig. 9.2c, we see there are no negative dB values.
Could this be right? To really see the spectrum, let’s use some zero padding in
the time domain to yield ideal interpolation in the freqency domain:

% Example 3: Add zero padding
zpf = 8; % zero-padding factor
x = [cos(2*pi*n*f*T),zeros(1,(zpf-1)*N)]; % zero-padded FFT input data
X = fft(x); % Interpolated spectrum

% Plot time data
figure(4);
subplot(3,1,1);
plot(x);
title(’Zero-Padded Sampled Sinusoid’);
xlabel(’Time (samples)’); ylabel(’Amplitude’);
text(-30,1,’a)’); hold off;

% Plot spectral magnitude
magX = abs(X);
nfft = zpf*N;
fni = [0:1.0/nfft:1-1.0/nfft]; % Normalized frequency axis
subplot(3,1,2);
plot(fni,magX,’-’); grid; % With interpolation, we can use solid lines ’-’
% title(’Interpolated Spectral Magnitude’);
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (Linear)’);
text(-.11,40,’b)’);

% Same thing on a dB scale
spec = 20*log10(magX); % Spectral magnitude in dB
spec = max(spec,-60*ones(1,length(spec))); % clip to -60 dB
subplot(3,1,3);
plot(fni,spec,’-’); grid; axis([0 1 -60 50]);
% title(’Interpolated Spectral Magnitude (dB)’);
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (dB)’);
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text(-.11,50,’c)’);
print -deps eps/example3.eps;
if dopause, disp ’pausing for RETURN (check the plot). . .’; pause; end
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Figure 9.4: Zero-Padded Sinusoid at Frequency f = 0.25 + 0.5/N . a)
Time waveform. b) Magnitude spectrum. c) DB magnitude spectrum.

With the zero padding, we see there’s quite a bit going on. In fact, the
spectrum has a regular sidelobe structure. On the dB scale in Fig. 9.4c, we now
see that there are indeed negative dB values. This shows the importance of
using zero padding to interpolate spectral displays so that the eye can “fill in”
properly between the samples.
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ZERO-PADDING, AND THE FFT

9.1.4 Example 4: Blackman Window

Finally, to finish off this sinusoid, let’s look at the effect of using a Blackman
window [22] (which has good though suboptimal characteristics for audio work).
Figure 9.5a shows the Blackman window, Fig. 9.5b shows its magnitude spec-
trum on a dB scale, and Fig. 9.5c introduces the use of a more natural frequency
axis which interprets the upper half of the bin numbers as negative frequencies.
Here is the Matlab for it:

% Add a "Blackman window"
% w = blackman(N); % if you have the signal processing toolbox
w = .42-.5*cos(2*pi*(0:N-1)/(N-1))+.08*cos(4*pi*(0:N-1)/(N-1));
figure(5);
subplot(3,1,1); plot(w,’*’); title(’The Blackman Window’);
xlabel(’Time (samples)’); ylabel(’Amplitude’);
text(-8,1,’a)’);

% Also show the window transform:
xw = [w,zeros(1,(zpf-1)*N)]; % zero-padded window (col vector)
Xw = fft(xw); % Blackman window transform
spec = 20*log10(abs(Xw)); % Spectral magnitude in dB
spec = spec - max(spec); % Usually we normalize to 0 db max
spec = max(spec,-100*ones(1,nfft)); % clip to -100 dB
subplot(3,1,2); plot(fni,spec,’-’); axis([0,1,-100,10]); grid;
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (dB)’);
text(-.12,20,’b)’);

% Replot interpreting upper bin numbers as negative frequencies:
nh = nfft/2;
specnf = [spec(nh+1:nfft),spec(1:nh)]; % see also Matlab’s fftshift()
fninf = fni - 0.5;
subplot(3,1,3);
plot(fninf,specnf,’-’); axis([-0.5,0.5,-100,10]); grid;
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (dB)’);
text(-.6,20,’c)’);
print -deps eps/blackman.eps;
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Figure 9.5: The Blackman Window. a) The window itself in the
time domain. b) DB Magnitude spectrum of the Blackman window.
c) Blackman-window DB magnitude spectrum plotted over frequencies
[−0.5, 0.5).
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9.1.5 Example 5: Use of the Blackman Window

Now let’s apply this window to the sinusoidal data:

% Use the Blackman window on the sinusoid data
xw = [w .* cos(2*pi*n*f*T),zeros(1,(zpf-1)*N)]; % windowed, zero-padded data
X = fft(xw); % Smoothed, interpolated spectrum

% Plot time data
figure(6);
subplot(2,1,1);
plot(xw);
title(’Windowed, Zero-Padded, Sampled Sinusoid’);
xlabel(’Time (samples)’); ylabel(’Amplitude’);
text(-50,1,’a)’); hold off;

% Plot spectral magnitude in the best way
spec = 10*log10(conj(X).*X); % Spectral magnitude in dB
spec = max(spec,-60*ones(1,nfft)); % clip to -60 dB
subplot(2,1,2);
plot(fninf,fftshift(spec),’-’); axis([-0.5,0.5,-60,40]); grid;
title(’Smoothed, Interpolated, Spectral Magnitude (dB)’);
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (dB)’);
text(-.6,40,’b)’);
print -deps eps/xw.eps;
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Figure 9.6: Effect of the Blackman window on the sinusoidal data seg-
ment.
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9.1.6 Example 6: Hanning-Windowed Complex Sinusoid

In this example, we’ll perform spectrum analysis on a complex sinusoid having
only a single positive frequency. We’ll use the Hanning window which does not
have as much sidelobe suppression as the Blackman window, but its main lobe is
narrower. Its sidelobes “roll off” very quickly versus frequency. Compare with
the Blackman window results to see if you can see these differences.

% Example 5: Practical spectrum analysis of a sinusoidal signal

% Analysis parameters:
M = 31; % Window length (we’ll use a "Hanning window")
N = 64; % FFT length (zero padding around a factor of 2)

% Signal parameters:
wxT = 2*pi/4; % Sinusoid frequency in rad/sample (1/4 sampling rate)
A = 1; % Sinusoid amplitude
phix = 0; % Sinusoid phase

% Compute the signal x:
n = [0:N-1]; % time indices for sinusoid and FFT
x = A * exp(j*wxT*n+phix); % the complex sinusoid itself: [1,j,-1,-j,1,j,...]

% Compute Hanning window:
nm = [0:M-1]; % time indices for window computation
w = (1/M) * (cos((pi/M)*(nm-(M-1)/2))).^2; % Hanning window = "raised cosine"
% (FIXME: normalizing constant above should be 2/M)

wzp = [w,zeros(1,N-M)]; % zero-pad out to the length of x
xw = x .* wzp; % apply the window w to the signal x

% Display real part of windowed signal and the Hanning window:
plot(n,wzp,’-’); hold on;
plot(n,real(xw),’*’);
title(’Hanning Window and Windowed, Zero-Padded, Sinusoid (Real Part)’);
xlabel(’Time (samples)’); ylabel(’Amplitude’); hold off;
disp ’pausing for RETURN (check the plot). . .’; pause
print -deps eps/hanning.eps;
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Figure 9.7: A length 31 Hanning Window (“Raised Cosine”) and the
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% Compute the spectrum and its various alternative forms
%
Xw = fft(xw); % FFT of windowed data
fn = [0:1.0/N:1-1.0/N]; % Normalized frequency axis
spec = 20*log10(abs(Xw)); % Spectral magnitude in dB
% Since the zeros go to minus infinity, clip at -100 dB:
spec = max(spec,-100*ones(1,length(spec)));
phs = angle(Xw); % Spectral phase in radians
phsu = unwrap(phs); % Unwrapped spectral phase (using matlab function)

To help see the full spectrum, we’ll also compute a heavily interpolated
spectrum which we’ll draw using solid lines. (The previously computed spectrum
will be plotted using ’*’.) Ideal spectral interpolation is done using zero-padding
in the time domain:

Nzp = 16; % Zero-padding factor
Nfft = N*Nzp; % Increased FFT size
xwi = [xw,zeros(1,Nfft-N)]; % New zero-padded FFT buffer
Xwi = fft(xwi); % Take the FFT
fni = [0:1.0/Nfft:1.0-1.0/Nfft]; % Normalized frequency axis
speci = 20*log10(abs(Xwi)); % Interpolated spectral magnitude in dB
speci = max(speci,-100*ones(1,length(speci))); % clip at -100 dB
phsi = angle(Xwi); % Phase
phsiu = unwrap(phsi); % Unwrapped phase

% Plot spectral magnitude
%
plot(fn,abs(Xw),’*’); hold on; plot(fni,abs(Xwi));
title(’Spectral Magnitude’);
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Amplitude (Linear)’);
disp ’pausing for RETURN (check the plot). . .’; pause
print -deps eps/specmag.eps; hold off;

% Same thing on a dB scale
plot(fn,spec,’*’); hold on; plot(fni,speci);
title(’Spectral Magnitude (dB)’);
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Figure 9.8: Spectral Magnitude, linear scale.
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xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Magnitude (dB)’);
disp ’pausing for RETURN (check the plot). . .’; pause
print -deps eps/specmagdb.eps; hold off;
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Figure 9.9: Spectral Magnitude, dB scale.

Note that there are no negative frequency components in Fig. 9.8 because
we are analyzing a complex sinusoid [1, j,−1,−j, 1, j, . . .] which is a sampled
complex sinusoid frequency fs/4 only.

Notice how difficult it would be to correctly interpret the shape of the “side-
lobes” without zero padding. The asterisks correspond to a zero-padding factor
of 2, already twice as much as needed to preserve all spectral information faith-
fully, but it is clearly not sufficient to make the sidelobes clear in a spectral
magnitude plot.
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Spectral Phase

As for the phase of the spectrum, what do we expect? We have chosen the
sinusoid phase to be zero. The window is symmetric about its middle. Therefore,
we expect a linear phase term with slope -(M-1)/2 samples. Also, the window
transform has sidelobes which cause a phase of π radians to switch in and out.
Thus, we expect to see samples of a straight line with slope -15 across the main
lobe of the window transform, together with a switching offset by π in every
other sidelobe away from the main lobe, starting with the immediately adjacent
sidelobes.

In the plot, you can see the negatively sloped line across the main lobe of
the window transform, but the sidelobes are hard to follow.

plot(fn,phs,’*’); hold on; plot(fni,phsi); grid;
title(’Spectral Phase’);
xlabel(’Normalized Frequency (cycles per sample))’);
ylabel(’Phase - Phi (Radians)’);
disp ’pausing for RETURN (check the plot). . .’; pause
print -deps eps/specphase.eps; hold off;

To convert the expected phase slope from−15 “radians per radian-frequency”
to “radians per cycle-per-sample,” we need to multiply by “radians per cycle,”
or 2π. Thus, in Fig. 9.10, we expect a slope of −94.2 radians per unit normal-
ized frequency, or −9.42 radians per 0.1 cycles-per-sample, and this looks about
right, judging from the plot.
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Figure 9.10: Spectral phase.
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Appendix A

Matrices

A matrix is defined as a rectangular array of numbers, e.g.,

A =

[
a b

c d

]

which is a 2×2 (“two by two”) matrix. A general matrix may beM ×N , where
M is the number of rows, and N is the number of columns. For example, the
general 3× 2 matrix is 

 a b
c d
e f




(Either square brackets or large parentheses may be used.) The (i, j)th element1

of a matrix A may be denoted by A[i, j] or A(i, j). The rows and columns of
matrices are normally numbered from 1 instead of from 0; thus, 1 ≤ i ≤M and
1 ≤ j ≤ N . When N =M , the matrix is said to be square.

The transpose of a real matrix A ∈ RM×N is denoted by AT and is defined
by

AT[i, j] ∆= A[j, i]

Note that while A is M ×N , its transpose is N ×M .
A complex matrix A ∈ CM×N , is simply a matrix containing complex num-

bers. The transpose of a complex matrix is normally defined to include conju-
gation. The conjugating transpose operation is called the Hermitian transpose.

1We are now using j as an integer counter, not as
√−1. This is standard notational practice.
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To avoid confusion, in this tutorial, AT and the word “transpose” will always
denote transposition without conjugation, while conjugating transposition will
be denoted by A∗ and be called the “Hermitian transpose” or the “conjugate
transpose.” Thus,

A∗[i, j] ∆= A[j, i]

Example: The transpose of the general 3× 2 matrix is
 a b
c d
e f


T

=
[
a c e
b d f

]

while the conjugate transpose of the general 3× 2 matrix is
 a b
c d
e f


∗

=
[
a c e

b d f

]

A column-vector

x =

[
x0

x1

]

is the special case of an M × 1 matrix, and a row-vector

xT = [x0 x1]

(as we have been using) is a 1×N matrix. In contexts where matrices are being
used (only this section for this book), it is best to define all vectors as column
vectors and to indicate row vectors using the transpose notation, as was done
in the equation above.

A.0.1 Matrix Multiplication

Let AT be a general M × L matrix and let B denote a general L × N matrix.
Denote the matrix product by C = ATB or C = AT · B. Then matrix multipli-
cation is carried out by computing the inner product of every row of AT with
every column of B. Let the ith row of AT be denoted by aT

i , i = 1, 2, . . . ,M , and
the jth column of B by bj , j = 1, 2, . . . , L. Then the matrix product C = ATB
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is defined as

C = ATB =



< aT

1 , b1 > < aT
1 , b2 > · · · < aT

1 , bN >
< aT

2 , b1 > < aT
2 , b2 > · · · < aT

2 , bN >
...

... · · · ...
< aT

M , b1 > < aT
M , b2 > · · · < aT

M , bN >




This definition can be extended to complex matrices by using a definition of
inner product which does not conjugate its second argument.2

Examples: 
 a b
c d
e f


 · [ α β

γ δ

]
=


 aα+ bγ aβ + bδ
cα+ dγ cβ + dδ
eα+ fγ eβ + fδ




[
α β
γ δ

]
·
[
a c e
b d f

]
=

[
αa+ βb αc+ βd αe+ βf
γa+ δb γc+ δd γe+ δf

]
[
α
β

]
· [ a b c ]

=
[
αa αb αc
βa βb βc

]

[
a b c

] ·

 αβ
γ


 = aα+ bβ + cγ

AnM ×L matrix A can only be multiplied on the right by an L×N matrix,
where N is any positive integer. An L×N matrix A can only be multiplied on
the left by a M ×L matrix, where M is any positive integer. Thus, the number
of columns in the matrix on the left must equal the number of rows in the matrix
on the right.

Matrix multiplication is non-commutative, in general. That is, normally
AB 	= BA even when both products are defined (such as when the matrices are
square.)

2Alternatively, it can be extended to the complex case by writing A∗B ∆
= [. . . < bj , a

∗
i > . . .],

so that A∗ includes a conjugation of the elements of A. This difficulty arises from the fact that
matrix multiplication is really defined without consideration of conjugation or transposition at
all, making it unwieldy to express in terms of inner products in the complex case, even though
that is perhaps the most fundamental interpretation of a matrix multiply.
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The transpose of a matrix product is the product of the transposes in reverse
order :

(AB)T = BTAT

The identity matrix is denoted by I and is defined as

I
∆=



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
... · · · ...

0 0 0 · · · 1




Identity matrices are always square. The N × N identity matrix I, sometimes
denoted as IN , satisfies A · IN = A for every M × N matrix A. Similarly,
IM ·A = A, for every M ×N matrix A.

As a special case, a matrix AT times a vector x produces a new vector
y = ATx which consists of the inner product of every row of AT with x

ATx =



< aT1 , x >
< aT2 , x >

...
< aTM , x >




A matrix AT times a vector x defines a linear transformation of x. In fact, every
linear function of a vector x can be expressed as a matrix multiply. In particular,
every linear filtering operation can be expressed as a matrix multiply applied to
the input signal. As a special case, every linear, time-invariant (LTI) filtering
operation can be expressed as a matrix multiply in which the matrix is Toeplitz ,
i.e., AT[i, j] = AT[i− j] (constant along all diagonals).

As a further special case, a row vector on the left may be multiplied by a
column vector on the right to form a single inner product :

y∗x =< x, y >

where the alternate transpose notation “∗” is defined to include complex conju-
gation so that the above result holds also for complex vectors. Using this result,
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we may rewrite the general matrix multiply as

C = ATB =



aT

1 b1 aT
1 b2 · · · aT

1 bN
aT

2 b1 aT
2 b2 · · · aT

2 bN
...

...
...

...
aT
Mb1 aT

Mb2 · · · aT
MbN




A.0.2 Solving Linear Equations Using Matrices

Consider the linear system of equations

ax1 + bx2 = c

dx1 + ex2 = f

in matrix form: [
a b

d e

][
x1

x2

]
=

[
c

f

]
.

This can be written in higher level form as

Ax = b

where A denotes the two-by-two matrix above, and x and b denotes the two-by-
one vectors. The solution to this equation is then

x = A−1b =

[
a b

d e

]−1 [
c

f

]

The general two-by-two matrix inverse is given by[
a b

d e

]−1

=
1

ae− bd

[
e −b
−d a

]

and the inverse exists whenever ae− bd (which is called the determinant of the
matrix A) is nonzero. For larger matrices, numerical algorithms are used to
invert matrices, such as used by Matlab based on LINPACK [23]. An initial
introduction to matrices and linear algebra can be found in [16].
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Appendix B

Sampling Theory

A basic tutorial on sampling theory is presented. Aliasing due to sampling of
continuous-time signals is characterized mathematically. Shannon’s sampling
theorem is proved. A pictorial representation of continuous-time signal recon-
struction from discrete-time samples is given.

B.1 Introduction

Inside computers and modern “digital” synthesizers, (as well as music CDs),
sound is sampled into a stream of numbers. Each sample can be thought of as
a number which specifies the position1 of a loudspeaker at a particular instant.
When sound is sampled, we call it digital audio. The sampling rate used for CDs

1More typically, each sample represents the instantaneous velocity of the speaker. Here’s
why: Most microphones are transducers from acoustic pressure to electrical voltage, and analog-
to-digital converters (ADCs) produce numerical samples which are proportional to voltage.
Thus, digital samples are normally proportional to acoustic pressure deviation (force per unit
area on the microphone, with ambient air pressure subtracted out). When digital samples are
converted to analog form by digital-to-analog conversion (DAC), each sample is converted to an
electrical voltage which then drives a loudspeaker (in audio applications). Typical loudspeakers
use a “voice-coil” to convert applied voltage to electromotive force on the speaker which applies
pressure on the air via the speaker cone. Since the acoustic impedance of air is a real number,
wave pressure is directly proportional wave velocity. Since the speaker must move in contact
with the air during wave generation, we may conclude that digital signal samples correspond
most closely to the velocity of the speaker, not its position. The situation is further complicated
somewhat by the fact that speakers do not themselves have a real driving-point impedance.
However, for an “ideal” microphone and speaker, we should get samples proportional to speaker
velocity and hence to air pressure.
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is 44,100 samples per second. That means when you play a CD, the speakers in
your stereo system are moved to a new position 44,100 times per second, or once
every 23 microseconds. Controlling a speaker this fast enables it to generate any
sound in the human hearing range because we cannot hear frequencies higher
than around 20,000 cycles per second, and a sampling rate more than twice the
highest frequency in the sound guarantees that exact reconstruction is possible
from the samples.

B.1.1 Reconstruction from Samples—Pictorial Version

Figure B.1 shows how a sound is reconstructed from its samples. Each sample
can be considered as specifying the scaling and location of a sinc function. The
discrete-time signal being interpolated in the figure is [. . . , 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, . . . ].
The sinc functions are drawn with dashed lines, and they sum to produce the
solid curve. Note the “Gibb’s overshoot” near the corners of this continuous
rectangular pulse due to band-limiting.

Figure B.1: How sinc functions sum up to create a continuous waveform
from discrete-time samples.

Note how each sinc function passes through zero at every sample instant but
the one it is centered on, where it passes through 1. An isolated sinc function is
shown in Fig. B.2.

The sinc function is the famous “sine x over x” curve, defined by

sinc(Fst)
∆=
sin(πFst)
πFst

.
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Figure B.2: The sinc function.

where Fs denotes the sampling rate in samples-per-second (Hz), and t denotes
time in seconds.

B.1.2 Reconstruction from Samples—The Math

Let xd(n)
∆= x(nTs) denote the nth sample of the original sound x(t), where

t is time in seconds. Thus, n ranges over the integers, and Ts is the sampling
period in seconds. The sampling rate in Hertz (Hz) is just the reciprocal of the
sampling period, i.e.,

Fs
∆=
1
Ts

To avoid losing any information as a result of sampling, we must assume x(t)
is band-limited to less than half the sampling rate. This means there can be no
energy in x(t) at frequency Fs/2 or above. We will prove this mathematically
when we prove Shannon’s Sampling Theorem in §B.3 below.

Let X(ω) denote the Fourier transform of x(t), i.e.,

X(ω) ∆=
∫ ∞

−∞
x(t)e−jωtdt.

Then we can say x is band-limited to less than half the sampling rate if and only
if X(ω) = 0 for all |ω| ≥ πFs. In this case, Shannon’s sampling theorem gives us
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that x(t) can be uniquely reconstructed from the samples x(nTs) by summing
up shifted, scaled, sinc functions:

x̂(t) ∆=
∞∑

n=−∞
x(nTs)hs(t− nTs) ≡ x(t)

where

hs(t)
∆= sinc(Fst)

∆=
sin(πFst)
πFst

The sinc function is the impulse response of the ideal lowpass filter. This means
its Fourier transform is a rectangular window in the frequency domain. The
particular sinc function used here corresponds to the ideal lowpass filter which
cuts off at half the sampling rate. In other words, it has a gain of 1 between
frequencies 0 and Fs/2, and a gain of zero at all higher frequencies.

The reconstruction of a sound from its samples can thus be interpreted as
follows: convert the sample stream into a weighted impulse train, and pass that
signal through an ideal lowpass filter which cuts off at half the sampling rate.
These are the fundamental steps of digital to analog conversion (DAC). In prac-
tice, neither the impulses nor the lowpass filter are ideal, but they are usually
close enough to ideal that you cannot hear any difference. Practical lowpass-filter
design is discussed in the context of band-limited interpolation.2

B.2 Aliasing of Sampled Signals

This section quantifies aliasing in the general case. This result is then used in
the proof of Shannon’s Sampling Theorem in the next section.

It is well known that when a continuous-time signal contains energy at a
frequency higher than half the sampling rate Fs/2, then sampling at Fs samples
per second causes that energy to alias to a lower frequency. If we write the
original frequency as f = Fs/2 + ε, then the new aliased frequency is fa =
Fs/2 − ε, for ε ≤ Fs/2. This phenomenon is also called “folding”, since fa
is a “mirror image” of f about Fs/2. As we will see, however, this is not
a fundamental description of aliasing, as it only applies to real signals. For
general (complex) signals, it is better to regard the aliasing due to sampling as
a summation over all spectral “blocks” of width Fs.

2http://www-ccrma.stanford.edu/˜jos/resample/

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



APPENDIX B. SAMPLING THEORY Page 223

Theorem. (Continuous-Time Aliasing Theorem) Let x(t) denote any
continuous-time signal having a Fourier Transform (FT)

X(jω) ∆=
∫ ∞

−∞
x(t)e−jωtdt

Let
xd(n)

∆= x(nTs), n = . . . ,−2,−1, 0, 1, 2, . . . ,
denote the samples of x(t) at uniform intervals of Ts seconds, and denote its
Discrete-Time Fourier Transform (DTFT) by

Xd(ejθ)
∆=

∞∑
n=−∞

xd(n)e−jθn

Then the spectrum Xd of the sampled signal xd is related to the spectrum X of
the original continuous-time signal x by

Xd(ejθ) =
1
Ts

∞∑
m=−∞

X

[
j

(
θ

Ts
+m

2π
Ts

)]
.

The terms in the above sum for m 	= 0 are called aliasing terms. They are
said to alias into the base band [−π/Ts, π/Ts]. Note that the summation of
a spectrum with aliasing components involves addition of complex numbers;
therefore, aliasing components can be removed only if both their amplitude and
phase are known.

Proof. Writing x(t) as an inverse FT gives

x(t) =
1
2π

∫ ∞

−∞
X(jω)ejωtdω

Writing xd(n) as an inverse DTFT gives

xd(n) =
1
2π

∫ π

−π
Xd(ejθ)x(t)ejθtdθ

where θ ∆= 2πωdTs denotes the normalized discrete-time frequency variable.
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The inverse FT can be broken up into a sum of finite integrals, each of length
Ωs

∆= 2πFs = 2π/Ts, as follows:

x(t) =
1
2π

∫ ∞

−∞
X(jω)ejωtdω

=
1
2π

∞∑
m=−∞

∫ (2m+1)π/Ts

(2m−1)π/Ts)
X(jω)ejωtdω

=
ω ← mΩs 1

2π

∞∑
m=−∞

∫ Ωs/2

−Ωs/2
X (jω + jmΩs) ejωtejΩsmtdω

=
1
2π

∫ Ωs/2

−Ωs/2
ejωt

∞∑
m=−∞

X (jω + jmΩs) ejΩsmtdω

Let us now sample this representation for x(t) at t = nTs to obtain

xd(n)
∆= x(nTs) =

1
2π

∫ Ωs/2

−Ωs/2
ejωnTs

∞∑
m=−∞

X (jω + jmΩs) ejΩsmnTsdω

=
1
2π

∫ Ωs/2

−Ωs/2
ejωnTs

∞∑
m=−∞

X (jω + jmΩs) ej(2π/Ts)mnTsdω

=
1
2π

∫ Ωs/2

−Ωs/2
ejωnTs

∞∑
m=−∞

X (jω + jmΩs) dω

since n and m are integers. Normalizing frequency as θ′ = ωTs yields

xd(n) =
1
2π

∫
−π
πejθ

′n 1
Ts

∞∑
m=−∞

X

[
j

(
θ′

Ts
+m

2π
Ts

)]
dθ′.

Since this is formally the inverse DTFT ofXd(ejθ
′
) written in terms ofX(jθ′/Ts),

the result follows. ✷
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B.3 Shannon’s Sampling Theorem

Theorem. Let x(t) denote any continuous-time signal having a continuous
Fourier transform

X(jω) ∆=
∫ ∞

−∞
x(t)e−jωtdt

Let
xd(n)

∆= x(nTs), n = . . . ,−2,−1, 0, 1, 2, . . . ,
denote the samples of x(t) at uniform intervals of Ts seconds. Then x(t) can
be exactly reconstructed from its samples xd(n) if and only if X(jω) = 0 for all
|ω| ≥ π/Ts.3

Proof. From the Continuous-Time Aliasing Theorem of §B.2, we have that
the discrete-time spectrum Xd(ejθ) can be written in terms of the continuous-
time spectrum X(jω) as

Xd(ejωdTs) =
1
Ts

∞∑
m=−∞

X[j(ωd +mΩs)]

where ωd
∆= θ/Ts is the “digital frequency” variable. If X(jω) = 0 for all

|ω| ≥ Ωs/2, then the above infinite sum reduces to one term, the m = 0 term,
and we have

Xd(ejωdTs) =
1
Ts
X(jωd), ωd ∈ [−π/Ts, π/Ts]

At this point, we can see that the spectrum of the sampled signal x(nTs) co-
incides with the spectrum of the continuous-time signal x(t). In other words,
the DTFT of x(nTs) is equal to the FT of x(t) between plus and minus half the
sampling rate, and the FT is zero outside that range. This makes it clear that
spectral information is preserved, so it should now be possible to go from the
samples back to the continuous waveform without error.

3Mathematically, X(jω) can be allowed to be nonzero over points |ω| ≥ π/Ts provided that
the set of all such points have measure zero in the sense of Lebesgue integration. However,
such distinctions do not arise for practical signals which are always finite in extent and which
therefore have continuous Fourier transforms. This is why we specialize Shannon’s Sampling
Theorem to the case of continuous-spectrum signals.
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To reconstruct x(t) from its samples x(nTs), we may simply take the inverse
Fourier transform of the zero-extended DTFT, i.e.,

x(t) = IFTt(X)
∆=
1
2π

∫ ∞

−∞
X(jω)ejωtdω =

1
2π

∫ Ωs/2

−Ωs/2
X(jω)ejωtdω

=
1
2π

∫ Ωs/2

−Ωs/2
Xd(ejθ)ejωtdω

∆= IDTFTt(Xd)

By expanding Xd(ejθ) as the DTFT of the samples x(n), the formula for re-
constructing x(t) as a superposition of sinc functions weighted by the samples,
depicted in Fig. B.1, is obtained:

x(t) = IDTFTt(Xd)
∆=

1
2π

∫ π

−π
Xd(ejθ)ejωtdω

=
Ts
2π

∫ π/Ts

−π/Ts

Xd(ejωdTs)ejωdtdωd

∆=
Ts
2π

∫ π/Ts

−π/Ts

[ ∞∑
n=−∞

x(nTs)e−jωdnTs

]
ejωdtdωd

=
∞∑

n=−∞
x(nTs)

Ts
2π

∫ π/Ts

−π/Ts

ejωd(t−nTs)dωd

︸ ︷︷ ︸
∆
=h(t−nTs)

∆=
∞∑

n=−∞
x(nTs)h(t− nTs)

∆= (x ∗ h)(t)
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where we defined

h(t− nTs) ∆=
Ts
2π

∫ π/Ts

−π/Ts

ejωd(t−nTs)dωd

=
Ts
2π

2
2j(t− nTs)

[
ejπ

t−n
Ts
/Ts − e−jπ t−nTs

Ts

]

=
sin

[
π
(
t
Ts
− n

)]
π
(
t
Ts
− n

)
∆= sinc(t− nTs)

I.e.,

h(t) = sinc(t) ∆=
sin(πt)
πt

The “sinc function” is defined with π in its argument so that it has zero cross-
ings on the integers, and its peak magnitude is 1. Figure B.2 illustrates the
appearance of the sinc function.

We have shown that when x(t) is band-limited to less than half the sampling
rate, the IFT of the zero-extended DTFT of its samples x(nTs) gives back the
original continuous-time signal x(t).

Conversely, if x(t) can be reconstructed from its samples xd(n)
∆= x(nTs), it

must be true that x(t) is band-limited to (−Fs/2, Fs/2), since a sampled signal
only supports frequencies up to Fs/2 (see Appendix B.4). This completes the
proof of Shannon’s Sampling Theorem. ✷

A “one-line summary” of Shannon’s sampling theorem is as follows:

x(t) = IFTt {ZeroPad∞ {DTFT{xd}}}

That is, the domain of the Discrete-Time Fourier Transform of the samples is
extended to plus and minus infinity by zero (“zero padded”), and the inverse
Fourier transform of that gives the original signal. The Continuous-Time Alias-
ing Theorem provides that the zero-padded DTFT{xd} and the original signal
spectrum FT{x} are identical, as needed.

Shannon’s sampling theorem is easier to show when applied to discrete-time
sampling-rate conversion, i.e., when simple decimation of a discrete time signal is
being used to reduce the sampling rate by an integer factor. In analogy with the
Continuous-Time Aliasing Theorem of §B.2, the Decimation Theorem states
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that downsampling a digital signal by an integer factor L produces a digital
signal whose spectrum can be calculated by partitioning the original spectrum
into L equal blocks and then summing (aliasing) those blocks. If only one of the
blocks is nonzero, then the original signal at the higher sampling rate is exactly
recoverable.

B.4 Another Path to Sampling Theory

Consider z0 ∈ C, with |z0| = 1. Then we can write z0 in polar form as

z0
∆= ejθ0 ∆= ejω0Ts ,

where θ0, ω0, and Ts are real numbers.
Forming a geometric sequence based on z0 yields the sequence

x(tn)
∆= zn0 = e

jθ0n = ejω0tn

where tn
∆= nTs. Thus, successive integer powers of z0 produce a sampled complex

sinusoid with unit amplitude, and zero phase. Defining the sampling interval
as Ts in seconds provides that ω0 is the radian frequency in radians per second.

B.4.1 What frequencies are representable by a geometric se-
quence?

A natural question to investigate is what frequencies ω0 are possible. The angu-
lar step of the point zn0 along the unit circle in the complex plane is θ0 = ω0Ts.
Since ej(θ0n+2π) = ejθ0n, an angular step θ0 > 2π is indistinguishable from the
angular step θ0−2π. Therefore, we must restrict the angular step θ0 to a length
2π range in order to avoid ambiguity.

Recall that we need support for both positive and negative frequencies since
equal magnitudes of each must be summed to produce real sinusoids, as indicated
by the identities

cos(ω0tn) =
1
2
ejω0tn +

1
2
e−jω0tn

sin(ω0tn) = − j
2
ejω0tn +

j

2
e−jω0tn .
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The length 2π range which is symmetric about zero is

θ0 ∈ [−π, π],
which, since θ0 = ω0Ts = 2πf0Ts, corresponds to the frequency range

ω0 ∈ [−π/Ts, π/Ts]
f0 ∈ [−Fs/2, Fs/2]

However, there is a problem with the point at f0 = ±Fs/2: Both +Fs/2 and
−Fs/2 correspond to the same point z0 = −1 in the z-plane. Technically, this
can be viewed as aliasing of the frequency −Fs/2 on top of Fs/2, or vice versa.
The practical impact is that it is not possible in general to reconstruct a sinusoid
from its samples at this frequency. For an obvious example, consider the sinusoid
at half the sampling-rate sampled on its zero-crossings: sin(ω0tn) = sin(πn) ≡ 0.
We cannot be expected to reconstruct a nonzero signal from a sequence of zeros!
For the signal cos(ω0tn) = cos(πn) = (−1)n, on the other hand, we sample
the positive and negative peaks, and everything looks looks fine. In general,
we either do not know the amplitude, or we do not know phase of a sinusoid
sampled at exactly twice its frequency, and if we hit the zero crossings, we lose
it altogether.

In view of the foregoing, we may define the valid range of “digital frequencies”
to be

θ0 ∈ [−π, π)
ω0 ∈ [−π/Ts, π/Ts)
f0 ∈ [−Fs/2, Fs/2)

While you might have expected the open interval (−π, π), we are free to give
the point z0 = −1 either the largest positive or largest negative representable
frequency. Here, we chose the largest negative frequency since it corresponds to
the assignment of numbers in two’s complement arithmetic, which is often used
to implement phase registers in sinusoidal oscillators. Since there is no corre-
sponding positive-frequency component, samples at Fs/2 must be interpreted
as samples of clockwise circular motion around the unit circle at two points.
Such signals are any alternating sequence of the form c(−1)n, where c can be be
complex. The amplitude at −Fs/2 is then defined as |c|, and the phase is � c.

We have seen that uniformly spaced samples can represent frequencies f0 only
in the range [−Fs/2, Fs/2), where Fs denotes the sampling rate. Frequencies
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outside this range yield sampled sinusoids indistinguishable from frequencies
inside the range.

Suppose we henceforth agree to sample at higher than twice the highest
frequency in our continuous-time signal. This is normally ensured in practice
by lowpass-filtering the input signal to remove all signal energy at Fs/2 and
above. Such a filter is called an anti-aliasing filter, and it is a standard first
stage in an Analog-to-Digital (A/D) Converter (ADC). Nowadays, ADCs are
normally implemented within a single integrated circuit chip, such as a CODEC
(for “coder/decoder”) or “multimedia chip”.

B.4.2 Recovering a Continuous Signal from its Samples

Given samples of a properly band-limited signal, how do we reconstruct the
original continuous waveform? I.e., given x(tn), n = 0, 1, 2, . . . , N − 1, how do
we compute x(t) for any value of t?

One reasonable definition for x(t) can be based on the DFT of x(n):

X(ejωk) ∆=
N−1∑
n=0

x(tn)e−jωktn , k = 0, 1, 2, . . . , N − 1

Since X(ejωk) gives the magnitude and phase of the sinusoidal component at
frequency ωk, we simply construct x(t) as the sum of its constituent sinusoids,
using continuous-time versions of the sinusoids:

x(t) ∆=
N−1∑
k=0

X(ejωk)ejωkt

This method is based on the fact that we know how to reconstruct sampled com-
plex sinusoids exactly, since we have a “closed form” formula for any sinusoid.
This method makes perfectly fine sense, but note that this definition of x(t) is
periodic with period NTs seconds. This happens because each of the sinusoids
ejωkt repeats after NTs seconds. This is known as the periodic extension prop-
erty of the DFT, and it results from the fact that we had only N samples to
begin with, so some assumption must be made outside that interval. We see that
the “automatic” assumption built into the math is periodic extension. However,
in practice, it is far more common to want to assume zeros outside the range of
samples:

x(t) ∆=
{ ∑N−1

k=0 X(e
jωk)ejωkt, 0 ≤ t ≤ (N − 1)Ts

0, otherwise
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Note that the nonzero time interval can be chosen as any length NTs interval.
Often the best choice is [−Ts(N − 1)/2, Ts(N − 1)/2− 1], which allows for both
positive and negative times. (“Zero-phase filtering” must be implemented using
this convention, for example.)

“Chopping” the sum of the N “DFT sinusoids” in this way to zero outside
an N -sample range works fine if the original signal x(tn) starts out and finishes
with zeros. Otherwise, however, the truncation will cause errors at the edges,
as can be understood from Fig. B.1.

Does it Work?

It is straightforward to show that the “additive synthesis” reconstruction method
of the previous section actually works exactly (in the periodic case) in the fol-
lowing sense:

• The reconstructed signal x(t) is band-limited to [−π, π), i.e., its Fourier
transform X(ω) is zero for all |ω| > π/Ts. (This is not quite true in the
truncated case.)

• The reconstructed signal x(t) passes through the samples x(tn) exactly.
(This is true in both cases.)

Is this enough? Are we done? Well, not quite. We know by construction that
x(t) is a band-limited interpolation of x(tn). But are band-limited interpolations
unique? If so, then this must be it, but are they unique? The answer turns out
to be yes, based on Shannon’s Sampling Theorem. The uniqueness follows from
the uniqueness of the inverse Fourier transform. We still have two different cases,
however, depending on whether we assume periodic extension or zero extension
beyond the range n ∈ [0, N −1]. In the periodic case, we have found the answer;
in the zero-extended case, we need to use the sum-of-sincs construction provided
in the proof of Shannon’s sampling theorem.

Why do the DFT sinusoids suffice for interpolation in the periodic case and
not in the zero-extended case? In the periodic case, the spectrum consists of
the DFT frequencies and nothing else, so additive synthesis using DFT sinusoids
works perfectly. A sum of N DFT sinusoids can only create a periodic signal
(since each of the sinusoids repeats after N samples). Truncating such a sum in
time results in all frequencies being present to some extent (save isolated points)
from ω = 0 to ω =∞. Therefore, the truncated result is not band-limited, so it
must be wrong.
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It is a well known Fourier fact that no function can be both time-limited
and band-limited. Therefore, any truly band-limited interpolation must be a
function which has infinite duration, such as the sinc function sinc(Fst) used in
bandlimited interpolation by a sum of sincs. Note that such a sum of sincs does
pass through zero at all sample times in the “zero extension” region.

...
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20 dB boost, 47
3 dB boost, 48

absolute value of a complex number,
15

aliased sinc function, 136
Aliasing, 162
aliasing operator, 162
amplitude response, 184
anti-aliasing lowpass filter, 165
antilog, 43
antilogarithm, 43
antisymmetric functions, 165
Argand diagram, 13
argument of a complex number, 15
average power, 68

bandlimited interpolation in the fre-
quency domain, 158

bandlimited interpolation in the time
domain, 158

base, 43
base 10 logarithm, 44
base 2 logarithm, 44
bel, 46
bin (discrete Fourier transform), 138
bin number, 138
binary, 55
binary digits, 56
bits, 56

carrier, 90
Cartesian coordinates, 14
characteristic of the logarithm, 44
circular cross-correlation, 185
CODEC, 66
coefficient of projection, 134
coherence function, 190
column-vector, 214
comb-filter, 77
common logarithm, 43
commutativity of convolution, 153
companding, 55, 66
complex amplitude, 90
complex conjugate, 15
complex matrix, 213
complex matrix transpose, 213
complex multiplication, 13
complex number, 13
complex numbers, 11

argument or angle or phase, 15
modulus or magnitude or radius

or absolute value or norm,
15

complex plane, 13
conjugation in the frequency domain

corresponds to reversal in the
time domain, 169

constant modulus, 81
convolution, 153
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convolution in the frequency domain,
175

convolution representation, 183
correlation operator, 156
cross-correlation, circular, 185
cross-covariance, 190
cross-spectral density, 185
cross-talk, 136
cyclic convolution, 153

dB per decade, 47
dB per octave, 48
dB scale, 46
De Moivre’s theorem, 17
decibel, 46
decimal numbers, 56
DFT applications, 193
DFT as a digital filter, 135
DFT matrix, 141
digit, 56
digital filter, 182
Discrete Fourier Transform, 147
Discrete Fourier Transform (DFT),

1
dynamic range, 54
dynamic range of magnetic tape, 54

energy, 46
Euler’s Formula, 16
Euler’s Theorem, 27
even functions, 165
expected value, 67

factored form, 7
fast convolution, 174
flip operator, 150
Fourier Dual, 175
Fourier theorems, 147

frequency bin, 138
frequency response, 183
frequency-domain aliasing, 162, 163
fundamental theorem of algebra, 11

geometric sequence, 129
geometric series, 129

Hermitian spectra, 169
Hermitian symmetry, 169
Hermitian transpose, 213
hex, 56
hexadecimal, 56

ideal bandlimited interpolation, 179,
181

ideal bandlimited interpolation in the
time domain, 180

ideal lowpass filtering operation in
the frequency domain, 181

identity matrix, 216
IDFT, 147
imaginary part, 13
impulse response, 183
impulse signal, 183
indicator function, 173
Intensity, 46
intensity level, 50
interpolation operator, 180
inverse DFT, 1, 147
inverse DFT matrix, 141
irrational number, 30

JND, 47
just-noticeable difference, 47

lag, 156
lagged product, 156
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length M even rectangular window-
ing operation, 181

linear combination, 90
linear phase FFT windows, 173
linear phase signal, 173
linear phase term, 172
linear transformation, 216
logarithm, 43
loudness, 49

magnitude of a complex number, 15
main lobe, 136
mantissa, 44
matched filter, 155
matrices, 213
matrix, 213
matrix columns, 213
matrix multiplication, 214
matrix rows, 213
matrix transpose, 213
mean, 67
mean of a random variable, 67
mean of a signal, 67
mean square, 68
mean value, 67
modulo, 149
modulus of a complex number, 15
moments, 68
monic, 7
Mth roots of unity, 29
mu-law companding, 66
multiplication in the time domain,

175
multiplication of large numbers, 45
multiplying two numbers convolves

their digits, 156

natural logarithm, 44

negating spectral phase flips the sig-
nal around backwards in time,
169

non-commutativity of matrix multi-
plication, 215

nonlinear system of equations, 8
norm of a complex number, 15
normalized inverse DFT matrix, 141
normalized DFT, 177
normalized DFT matrix, 141
normalized DFT sinusoid, 176
normalized DFT sinusoids, 134, 138
normalized frequency, 148

octal, 56
odd functions, 165
orthogonal, 141
orthogonality of sinusoids, 130
orthonormal, 141

parabola, 9
PCM, 55
periodic, 148
periodic extension, 136, 149
periodogram method, 189
periodogram method for power spec-

trum estimation, 189
phase response, 184
phasor, 90
phasor angle, 90
phasor magnitude, 90
phon amplitude scale, 50
polar coordinates, 14
polar form, 29
polynomial approximation, 39
power, 46
power spectral density, 189
power spectrum, 189

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, July 2002. The latest draft is available on-line at

http://www-ccrma.stanford.edu/~jos/mdft/.



INDEX Page 239

pressure, 46
primitive Mth root of unity, 30
primitive Nth root of unity, 131

quadratic formula, 9

rational, 29
real part, 13
rectangular window, 138
rectilinear coordinates, 14
rms level, 68
roots, 7
roots of unity, 29, 130
row-vector, 214

sample coherence function, 190
sample mean, 67
sample variance, 68
sampling rate, 2
second central moment, 68
sensation level, 50
shift operator, 150
sidelobes, 136
signal dynamic range, 54
similarity theorem, 191
sinc function, 136, 181
sinc function, aliased, 136
skew-Hermitian, 169
smoothing in the frequency domain,

175
sone amplitude scale, 50
Sound Pressure Level, 49
spectral leakage, 136
Spectrum, 2
spectrum, 134, 147
SPL, 49
square matrix, 213
standard deviation, 68

stretch by factor L, 157
Stretch Operator, 157
symmetric functions, 165
system identification, 186, 191

Taylor series expansion, 36
time constant, 79
time-domain aliasing, 162, 163
Toeplitz, 216
transform pair, 148
transpose of a matrix product, 216

unbiased cross-correlation, 185
unit pulse signal, 183
unitary, 141

variance, 68

window, 136
windowing in the time domain, 175

zero padding, 157, 179
zero padding in the frequency do-

main, 158, 180
zero padding in the time domain, 158
zero phase signal, 171
zeros, 7
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