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Introduction to Complex Hyperbolic Spaces
Since its introduction by Kobayashi, the theory of compiex hyperboiic spaces

=
o
»

e
=
=}

g
=
(4]
»
»
o
a.
(@)
o
=1
cn
o.
md
=)

P s b et A__ _T_._°_

Elliptic Curves: Diophantine Analysis
This systematic account of the basic diophantine theory on elliptic curves starts
with the classical Weierstrass parametrization, complemented by the basic
theory of Néron functions, and goes on to the formal group, heights and the
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In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of
AA tlenann ntianl Qainnane AN innha g T 1A i 1 i
Mathematical Sciences on Diophantine Geometry. I said yes, and here 1s
the volume.

By definition, diophantine problems concern the solutions of equations
in integers, or rational numbers, or various generalizations, such as

finitely generated rings over Z or finitely generated fields over Q. The
word Geometry is tacked on to suggest geometric methods. This means
that the present volume is not clementary. For a survey of some basic
problems with a much more elementary approach, see [La 90c].

The field of diophantine geometry is now moving quite rapidly. Out-
standing conjectures ranging from decades back are being proved. I have
tried to give the book some sort of coherence and permanence by em-

, h
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phasizing structurai bUllleLUIC as much as results, so that one has a
o e Af 4l £.1d N tha whala 3 1

clear plLtUIC of the field. On the whole, I omit proofs, according to the
------------ f4inms ~F A amavalamadia 3 T A 1
boundary conditions of the encyclopedia. On some occasions 1 do give

some ideas for the proofs when these are especially important. In any
case, a lengthy bibliography refers to papers and books where proofs
may be found. I have also followed Shafarevich’s suggestion to give

examples, and I have especially chosen these examples which show how

some classical problems do or do not get solved by contemporary in-

sights. Fermat’s last theorem occupies an intermediate position. Al-

though it is n t proved, it is not an ‘solated prob}em any more. It ﬁts in
m

found in Ch apter II from the nomt of view of dlophantme inequali-
ties, and Chapter V from the point of view of modular curves and
the Taniyama—Shimura conjecture. Some people might even see a race
between the two approaches: which one will prove Fermat first? It



is actually conceivable that diophantine inequalities might prove the
g

Taniyama—Shimura conjecture, which would give a high to everybody
There are also two approaches to Mordell's conjecture that a curve of
genus = 2 over the rationals {or over a number field) has only a finite
nurn“er of rauonzu pui nts: via l-adie representations in Chapter IV, and

<7 < - )
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require less Kno 1cd5¢ for their understanding. To increase accessibility

£ o ot T Lo mamends 1t 1

of some parts, I have reproduced some definitions from basic algebraic
i Thic io mcmerially tri £ +1 G i 1aals 1

geometry. This is especially truc of the first chapter, dealing with quali-

tative questions. If substantially more knowledge was required for some

results, then I did not try to reproduce such definitions, but I just used

whatever language was necessary. Obv1ously decisions as to where to
t i e

question also arose d

ximations. I decided not to include results of the last few years cen-
_g round the explicit Hllbert Nullstellensatz, notably by Brownawell,
re I ted bounds for the degrees of polynomials vanishing on certam

b
included. It simply means that at the moment, I feel they
i e aooronrlatelv in a volume devoted to diophantine ap-
prox_imati_ns or computational alg bralc geometry
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Coleman, Colliot-Théiéne, Gross, Parshin and Vojta.
and Colliot-Théléne for their help with the proofreading.
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because it is shorter, and because the terminology becomes func-

Also I object to using the same

expression vector bundle for the bundle and for its sheaf of sections.

.

for the separabie closure, or the unram
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Also the notatio

.

prime, for compiex conjugates, and whatnot.

faisceau en

time, and there is no reason to lag behind in English.
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have been using the expression

ments of a set S.
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is in line wi
closure, etc.

torial with respect to the ideas.
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The basic purpose of this chapter is to list systematically fundamental
theorems concerning the nature of sets of rational points, as well as
conjectures which make the theory more coherent. We use a fairly lim-
ited language from algebraic geometry, and hence for the convenience of

use.
Most cases treated in this chapter are those when the set of rational

oints is “as small as possible”. One of the purposes is to describe what
n

PSS 28 U LLoLAiUL 14l

ite, it may mean thinly distributed, or

J $ 34 i 11x3 ) a:2 22A0QAL RA22221) BRARSRAIUILS

if there is a group structure it may mean finitely generated. As mu‘ln as
possible, we try to characterize those situations when the set of rational

. XrTYYTY

points is small by algebraic geometric conditions. In Chapter VIII we
relate these algebraic condmons to others which arise from one imbed-

which there exist many rational points. These conditions seem to have to

do with group structures in various ways. The qualitative statements of

this first chapter will be complemented by quantitative statements in the
s

next chapter, both in the form of theorems and of conjectures.
The first section of Chapter II is extremely elementary, and many
- . - . ~ - . .1 ~ ~ 1 1
readers might want to read it first. It shows the sort of fundamental
.

results one wishes to obtain, admitting very simple statements, but for
which no known proofs are known today. The elaborate machinery being
built up strives partly to prove such resuits.



2 SOME QUALITATIVE DIOPHANTINE STATEMENTS (L, §1]
1, §1. BASIC GEOMETRIC NOTIONS

For the convenience of the reader we shall give definitions of the simple,
basic notions of algebralc geometry whlch we need for thlS chapter A

still benefit if provided with tuese basic definitions

Let k be a field. Consider the polynomial ring in n variables
k{z,...,z,]. Let I be an ideal in this ring, generated by a finite number
of polynomials g, , ...,g,. Assume that g, ....g, generate a prime ideal
in the ring k*[z,,...,z,] over the algebraic closure of k. The set of zeros

of Iis called an affine variety X. The variety defined by the zero ideal is

all of affine space A" If k' is a field containing k, the set of zeros of I
with coordnates Zyy -.esZy € k’ is called the set of rational points of X in
k', and is denoted by X(k’). It is equal to the set of solutions of the
finite number of equations
§i{z1 5 Zg) =0 with j=1,...,m

and z;ek' foralli=1,....n

The condition that the polynomials generate a prime ideal is to insure
what is called the irreducibility of the variety. Under our condition,
it is not possible to express a variety as the finite union of proper

subvarieties.

PR ,‘L._,‘C..:,. mrrsmmlane A~ o fR 4 1 1 1 i
By pasting together a finite number of affinc varieties in a suitabie

way one obtams the general notlon of a var1ety To avoxd a founda-

of varieties whxch we shall consider: affine, projective, and quasi pI‘OjCC-
tive, defined below. But for those acquainted with the scheme founda-
tions of algebraic geometry, a variety is a scheme over a field k, reduced,
integral, separated and of finite type, and such that these properties are
preserved under arbitrary extensions of the ground field k.

=

u O
Let P" denote projective n-space. If F is a field, then P"(F) denotes
the set of points of P" over F. Thus P"(F) consists of equivalence classes
1

S Xy) with x; € F, not all x; =0,

where two such (n + 1)- [up s (Xg,...,%,) and (yo,...,y,) are equivalent if
and only if there exists ¢ € F, ¢ # 0 such that

By a projective variety X over a field k we mean the set of solutions in
a projective space P" of a finite number of equations
fTy. . T)=0  (j=1,...m
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coefficients in k, and f;, ...,f,, generate a prime ideal in the polynomial

ring k*[T,, .. T1 If k" is a ﬁeld contammg k, by X (k') we mean the set
.,X,) with x; e k’

(O

faee 11 2 __ N e XX/~ ,l,\..,\en e, L\ (¢hhn macctdeen Alaoo £45111 € [ INAY
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k(x) = k(xg,-..5X,)

crirh that at loact Ana Af tha nratantive rnnrdinatac ic anial tA 1 1t Anoc
SuUVlil Lilial al 1vaol viiv vVl wuv PIU VOVLIVL VuUvVviliuliiiawo 1o Ukiual v 1. AL UUVO
not matter which such coordinate is selected. If for instance x, # 0, then

We shali give a more intrinsic definition of this field below. We say that
X (k') is the set of rational points of X in k’. The set of points in X (k?) 1s
called the set of algebraic points (over k).

We can define the Zariski topology on P" by prescribing that a closed
set is a finite union of varieties. A Zariski open set is defined to be the
compiement of a closed set. By a quasi-prvje;tive variety, we mean the

open subset of a projective variety obtained by omitting a closed subset.

A closed subset is simply the set of zeros of a finite number of poiy-

1

nomials, or equivalently of some ideal, which need not be a prime ideal.

A projective variety is covered by a finite number of affine varieties, as
follows.
Let, say, z, = T./T, (i=1,...,n) and let
2 J 12 17 U \ > 7
gi(zys...z,) = (1, 24,5 .., 2,).
Then the nolvnomials a. a. oenerate a nrime ideal in k2[z
““““ Y OPYRY RAVYEREARRAY U1 o2 Un DYEAYARYY W pAAESSY ARSTRISL ARk Y L=1> ’*nd>
and the set of solutions of the equations
g:(zy,...,2,) =0 (J=1,....m)

¢ an affine varietv which 1ic an onen cniheet Af Y dennted hy 77 Tt
] LA CRiiiiiv vuxlvl,_’, VY LAAWil A0 Qi1 UPVI.A DUULOVL Ul /A, uviivivu UJ UO. an
cons1sts of hose pomts (xo, ,x,,)eX such that Xo # 0. Similarly, we

Thus the set of points (x,,...,x,) such that x; # 0 is an affine open
subset of X denoted by U;. The projective variety X is covered by the

Anan qgatg TT T7
UPULIL dULWS Ugp,y ..U,
Dy o gunhvamrtaty ~AFf o0 variaty V wa ghall aluwavyge mmaang o nlagad ol
DYy a Suwvalitily Ul a valivly A C dliail aiwayos 1iavalld a Liuvdtu >uv-
variaty 1inlace Atharuwica grnanifhisaAd MNAngidar o0 mavimal Alhaoia ~AFf ol
variviy uliivdd ULlLI widLu  dSpuuilivu CUIDIULlL a 11aAllllal Vylialil Ul dSuv-



4 SOME QUALITATIVE DIOPHANTINE STATEMENTS [1, §1]

varieties

YpocYc-ct =X,
where Y, is a point and Y, # Y;,, for all i. Then all such chains have the
same number of elements r, and r is called the dimension of X. If k is a
subfield of the complex numbers, then X(C) is a complex analytic space
of complex analytic dimension r. A projective variety of dimension r is
sometimes called an r-fold.

A hypersurface is a subvariety of P" of codimension 1, defined by one
equation f(Ty,...,T,) =0. The degree of f is called the degree of the
hypersurface. If X is a subvariety of P" of dimension n — r, defined by
r equations f;=0 (j=1,...,r), then we say that X is a complete
intersection.

A curve is a variety of dimension 1. A surface is a variety of dimen-
sion 2. In the course of a discussion, one may wish to assume that a
curve or a surface is projective, or satisfies additional conditions such as
being non-singular (to be defined below), in which case such conditions
will be specified.

Let Z be an affine variety in affine space A", with coordinates
(z4,..-,2,), and defined over a field k. Let P =(ay,...,a,) be a point of
Z. Suppose k algebraically closed and qg; € k for all i. Let

g;i=0 (j=1,....m

be a set of defining equations for Z. We say that the point P is simple if
the matrix (D,g;(P)) has rank n —r, where r is the dimension of Z. We
have used D; for the partial derivative 0/0z;. We say that Z is non-
singular if every point on Z is simple. A projective variety is called
non-singular if all the affine open sets Uy, ...,U, above are non-singular.
If X is a variety defined over the complex numbers, then X is non-
singular if and only the set of complex points X(C) is a complex
manifold.

Let X be an affine variety, defined by an ideal I in k[z,,...,z,]. The
ring R = k[z,,...,z,]/I is called the affine coordinate ring of X, or simply
the affine ring of X. This ring has no divisors of zero, and its quotient
field is called the function field of X over k. An element of the function
field is called a rational function on X. A rational function on X is
therefore the quotient of two polynomial functions on X, such that the
denominator does not vanish identically on X. The function field is
denoted by k(X).

Let X be a projective variety. Then the function fields k(U), ...,k(U,)
are all equal, and are generated by the restrictions to X of the quotients
T,/T; (for all i, j such that T; is not identically 0 on X). The function field
of X over k is defined to be k(U;) (for any i), and is denoted by k(X). A
rational function can also be expressed as a quotient of two homoge-
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are defined. For instance, there may be a variety over a field k which is

b
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\'4
1

X

£
J .

lent if there exists a birational map between them. If

et X, Y be varieties, defined over a field k. By a morphism
equiva

A rational map f: X — Y is a morphism on a non-empty Zariski open

subset U of X. If V is a Zariski open subset of X, and g: V> Y is a

phism which has an inverse, i.e. a morphism g: Y - X suc

ally

morphism which is equal to f on UV, then g is uniquely determined.

needed, we specify the field over which rational maps or birational maps

L
Let f: X —» Y be a rational map, defined over the field k. We say that

closed. A non-singular variety is normal.

biration



6 SOME QUALITATIVE DIOPHANTINE STATEMENTS [T, §1]

A variety is said to be rational (resp. unirational) if it is birationally
equivalent to (resp. a rational image of) projective space.

Next we describe divisors on a variety. There are two kinds.

A Weil divisor is an element of the free abelian group generated by the
subvarieties of codimension 1. A Weil divisor can therefore be written as
a linear combination

D =Y nD,

where D; is a subvariety of codimension 1, and n;e Z. If all n; 2 0 then
D is called effective.

A Cartier divisor is defined as follows. We consider pairs (U, ¢) con-
sisting of a Zariski open set U and a rational function ¢ on X. We say
that two such pairs are equivalent, and write (U, ¢) ~ (V, ) if the ra-
tional function @y ! is a unit in the local ring Op for every Pe U V.
In other words, both ¢y ! and ¢ 'y are regular functions at all points
of U V. A maximal family of equivalent pairs whose open sets cover X
is defined to be a Cartier divisor. A pair (U, ¢) is said to represent the
divisor locally, or on the open set U. The Cartier divisor is said to be
effective if for all representing pairs (U, ¢) the rational function ¢ is
regular at all points of U. We then view the Cartier divisor as a hyper-
surface on X, defined locally on U by the equation ¢ = 0. The Cartier
divisors form a group. Indeed, if Cartier divisors are represented locally
by (U, ) and (U, ¢’) respectively, then their sum is represented by
(U, o¢’).

It is a basic fact that if X is non-singular then the groups of Weil
divisors and Cartier divisors are isomorphic in a natural way.

Let ¢ be a non-zero rational function. Then ¢ defines a Cartier
divisor denoted by (¢), represented by the pairs (U, ¢) for all open sets
U. Such Cartier divisors are said to be rationally or linearly equivalent to
0. The factor group of all Cartier divisors modulo the group of divisors
of functions is called the Cartier divisor class group or the Picard group
Pic(X). (See [Ha 77], Chapter II, Proposition 6.15.)

One can also define the notion of linearly equivalent to 0 for Weil
divisors. Let W be a subvariety of X of codimension 1. Let Oy be the
local ring of rational functions on X which are defined at W. If f is a
rational function on X which lies in Oy, f # 0, then we define the order
of f at W to be

ordy (f) = length of the Oy -module O /fOy, .
The order function extends to a homomorphism of the group of non-zero

rational functions on X into Z. To each rational function we can asso-
ciate its divisor

(f) =X ordy(f)(W).
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The subgroup of the Weil e divisors of
rational functions defines the group equivalent to O,

and the factor group is called the Chow group

It is a pain to have to deal with both groups. When dealing with the
we shall usually assume that the variety is complete and
i we shall now state some
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their own sake. See Fulton’s book Inrprcp('rmn Thenrv

Tbere ie a natnral homomorphism from Cartier divisors to Weil di-

an effective divisor. But there is a stronger property wh a
divisor D on X is calied very ampie if there exists a pro_]ec ¢ imbeddin
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divisor. We call a divisor
that gD is very ampie, and 51m11ar1y for the definition of an ample divisor
class. Equivalently, a divisor class c is ample if and only if there exists a

nositive inte
positive integer
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Proposition 1.1. Let X be a projective variety. Given a divisor D and

an ample divisor E, there exists a positive inieger n such that D + nE is

ample, or even very ample. In particular, every divisor D is linearl)

equivalent

D~E,—E,

where E,, E, are very ample.
We view ampleness as a property of “positivity” We s'nail see in Chap-
ter VIII that this property has an equivalent formulation in terms of
differential geometry, and in Chapter II we shall see how t gives rise to
positivity properties of heights.

By the support of a Cartier divisor D we mean the set of P
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indeed, let D be a Cartier divisor on Y, and suppose f(X) is not con-
tained in the support of D. Suppose D is represented by (V, ). Then

r—1/7v7\ r\ . . . . 1 n 1. . L
(f7'(V), ¥ o f) represents the inverse image f ‘D, which is a Cartier
divisor on X. This 1 1 i ivi
class, and thus defines our mapping f*.

uuuuu s &22

Example. Let X = P" be projective space, and let T, ...,T, be the
: ™1 P le al n 1 ~n 1 1 : Tan
nr. IP(‘TI Ve variables 1ne egauarion 1. = U daennes a nvoperniane 1 | g
projective variables. The equation T, =0 defines a hyperpiane in P

and the complement of this hyperplane is the affine open set which we
denoted Dy UO- On Ui with i # U, the nyperplane is represemea Dy the
rational function T,/T;. Instead of the index 0, we could have selected
any other index, of course. More oenem]lv let ae, ,a, be elements of k

ot all 0. The eauation
v §

£

T)=ayTy+ +a,T,=0

!
!

defines a hyperplane. On U, this hyperplane is represented by the ra-
tional .functzon
(1)
7 =ao(To/T) + -+ + a,(T,/T).

1

Let X be a projective non-singular variety defined over an algebraical-
ly closed field k. Let D be a divisor on X. We let

IHO/YV N\ — L_vertar ecnace of ratinnal finecticnng v = LYY cnich that
11 (A, V) = K-VECIOT SpAacCC Oi rqdtiliid: IUncCuoOiiS @ € Kia ) Sulil uldt
(N> _ D
YY) = .

In other words, (p) = E — D where E is an effective divisor. Let
i

{@o,...,on} be a basis of H*(X,D). If Pe X(k) is a point such tha
o; € 0, for all j, and for some j we have ¢.(P) # 0 then
¥j P J3 J Tj\" J

is viewed as a point in projective space P~(k), and we view the

association
f: PH((pO(P)’ .. ’(pN(P))
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Similarly, for each positive multiple mD of D, using a basis for H°(X, mD),
we obtain L morphism

3
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f v teger m such that f,, is an im
ome non-empty Zariski o open subset of X into a locally closed subset of
y
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On a non-singular projective variety, a divisor D is pseudo ample if and
only if if _here exists some positive integer m such that

- n .~ -—— a - S~ A RISAAILSN A Nl A MNAN AAIFN "l1IF- AFAILIN

i, §2. THE NONICAL CLASS AND 1Tnte GENUDS

We shall discuss a divisor class which plays a particularly important role
We first deal with varieties of dimension 1, and then we deal with the
oganeral cace

5\/11\/1 1 Viavow.

We define a curve to be a projective variety of dimension 1. Let X be a
non-singular curve over k. Then divisors can be viewed as Weil divisors,
and a subvariety of codimension 1 is a point. Hence a divisor D can be

D = z m;(P;) with m;eZ, and P e X(k®).

[N §

We define the degree of the divisor D to be

deg D =) m,.
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To each rational function y as above we can associate a Weil divisor

It 1s a fact that

= 0.

deg(y)

| =

(y dx) = ), ordp(y dx)(P).
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function u, it
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all equal. One possible definition of the genus of X is by the formula
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In general, on a non-singular curve X, a divisor class c is ample if and

only if
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et X be a curve defined over a field F finitely gen-

ned enough notions to pass to diophantine appiica-

Then X has only a finite number of rational points

e
c1l

us = 2.
L

2.

Such fields can be characterized as follows. An extension F of

A function field, which is defined as the function field of a variety, over
ie

A number field, which by definition is a finite extension of Q.

in F, that is, X (F) is finite.

erated over the rational numbers. Then X (F) is finite.

F is a finitely generated field over the prime field, then F is a
variety over F.

X has gen

W — X, defined over k. We refer to this situation as the split case of a

If
function field, whose constant field k is the set of elements in F which are

definitions between the set of rational points X,(F) and the rational maps

a field k.

constant



case.
In [La 60aj I conjectured the following analogue of Mordelii’s
conjecture for a curve (assumed non-singular).

urve defined over the function field F over k

<,

This formulation was proved by Manin [Man 63]. We shall describe
certain features of Manin’s proof, as well as several other proofs given

Note as in 60a] that the essential difficulty occurs when F has
s 1 1 - 7 .1 . -— ~ . ~
transcendence degree 1 over k, that is, when F is a finite extension of a

11312
P

rational field k(z) with a variable . Elementary reduction steps reduce
the theorem to this case. Indeed, there exists a tower

g <

)|
|

k=FycF,c--cF=F

such that each F; is a function field over F;_,, of dimension 1. One can
then apply induction to the case of dimension 1 to handle the general
case.

The case of Theorem 2.3 when X is isomorphic to some curve X, over
k is the split case in which the conclusion may be reformulated in the
following geometric form. For a proof see [La 60a], p. 29, and [La 83a],

n 2
!.ln et ot &
Theorem of de Franchis. Let X, be a curve in characteristic 0, of genus
2 2. Let W be an arbitrary variety. Then there is only a finite number
of generically surjective rational maps of W onto X, .
inl\nr d;mnnc;nnc
lllsll\fl SEARRAVERDRIVIID
Let X be a projective non-singular variety of dimension n, defined over
an algebraically closed field k.
Let W be a subvariety of codimension 1. In particular, W is a divisor
on X. Let Pe X(k), and let (p be the local ring of P on X, with
maximal ideal .#,. Then the hypothesis that X is non-singular implies
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wish to emphasize the dependence on X.

The

0

ed regular at P if its divisor is

1
w1

e canonical class on P* is given by
Hy.

itseif is given by

y denoted by p,.

all

represented in a neighborhood of P by a pair (U, y) where ¢ € 0p.

Kpi ~ —2(P).

ai ciass of P™
LT,)=0

.

~(d—(m+1))

T, ..

K

o o
PR

2

.

A differential form of top degree is ¢

The canonic

Examplies.

oo
-

defined by the equation
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The class — K is called the co-canonical or anti-canonical class

A non-singular projective variety is defined to be:

canonical if the canonical class Ky is ample

very canonical if K, is very ampie

pseudo canonicai if K, is pseudo ampie

anti-canonical if — Ky is ample

and so on.
Instead of pseudo canonical, a variety has been called of genmeral type,
but with the support of Griffiths, T am trying to make the terminology
functorial with respect to the ideas. (I know I am fighting an uphill battle
on this.)

— Mmoo PR TR ¥ . 5. S g S L..4 zm~ccilalsy cisnaizlase

rially, suppose indat A 1S 4 pr()_;culvc vari€lty, out pOSSioiy Siiiguiar
We say that X is pseudo canonical if X is birationally equivalent to a
projective non-singular pseudo canonical variety. In characteristic 0, re-

et
solution of singularities is known, and due to Hironaka. This means that
given X a projective variety, there exists a birational morphism

the Zariski open subset subset of X consisting of the simple points.

It is an elementary fact of algebraic geometry that if f: X —>Y is a
birational map between non-singular projective varieties, then for every
positive integer n, f*: H°(Y, nKy) - H°(X, nKy) is an isomorphism. In
particular, Ky is pseudo ample if and only if Ky is pseudo ampie. In

analogy with the case of curves, one defines the geometric genus

p,(X) = dim HO(X, K).

P [ 4

fined over a finitely gener:

that X is Mordellic if X (F) is ﬁmte for
F over Q, containing F,. We ask under
e infinitely many ratlonal po 1nts of in

,4
=
(¢
-
()
=
]
=
o 8
=
ol
3
g
(¢]
]
w»
g
»
)
<

what co dltio S can thcre

every fini
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some such field F?
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defined over some finitely generated extension, i.e. we are dealing with
the ‘geometric” situation. A more general example is given by a group

.

ariety, that is a variety which is a group such that the composition law
oA tha temsrascn sernsa nma sen~ssmlhiosaa TE£ 7 26 0o veoniism srmssntber thac Fanonn
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ture more precise.
Let X be a projective variety. Let us define the algebraic special set
Sp(X) t be the Zariski closure of the unlon of all 1mages of non-

3.1. I he Complement 0] the SpeClal set 1S Mordellic
3.2. A nrojective variety is Mordellic if and onlyv if the special set is
.Zz. A projective variety 1s Mordeliic if and only Y the special set 1s
emntv. ie. if and onlv if everv rational man of a aroun varietv into
empty, 1.e. if and only Uf every rational map of a group variety nto
X 1S constant,
ANl~bn ¢hhné s¢hhn ~ffaans 1ian Al ~e thhn ansiléimliandicra v - Y e laiten
INote tnat tne amnine i1ine A", Or ine uuxupuuauvc gluup G, , arc oira-
PO | RIS P s 4+~ DI v~ tbhhn mincnsnnas ~AF n i vac 2e2 V  oane laa
Lol11 l_y CqUIchcut ., O e pleC iCC Ul lallUllal CUrves iimn A camn oc

s
viewed from the point of view that these lines are rational images of
group varieties. A group variety which is projective is called an abelian
variety. We shall study thelr dloohantme oronertles more closelv later

-

TN
3

s}

varieties are group exte I
and the function field of a linear grou
an algebraically closed field. Hence:

Rk Tho cnorial cot SNn(Y) ic tho Zavicki rlaocuvo of tho wuminn of all
S 2 € SPECIGe S SPraj IS i€ LGrisSki CGosSure O] ne union 9 Gu
imanoe nf wnan_rnnctant watinnal mance f Pl ,ud Aholian naviotioe
mmages gj non-consiant racionae maps 0j x Gnta GoeuahGn varieuies
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3.4. The special set Sp(X) is the Zariski closure of the union of the
images of all non-constant rational maps of abelian varieties into X.

We define a projective variety to be algebraically hyperbolic if and
only if the special set is empty. We make this de inition to fit conjec-
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in Chapter V. Analytic hyperbolicity implies algebraic hyperbolicity, so
these examples are also examples of algebralcally hyperbolic varieties

o Iy s >
cimmmianl cad io LL- .-LA‘I- rem et mde A <ren s b R S F- U PSR 1 ~ne
bpcbldl SCL lb LI1IC WII10IC Vvdl lCl_\/. A lelt:l_y WILICI1 1> 101 bpt:bldl Cdil
| PR |} P N ML, Lo ~1 3 b2 1 (e doee ) . 12 _Ls. O
DC CaliCu gencral LIS 1L O1AdcCI IW[CI [lllllUlUg_y (gt:llt:rdl Lype) 11 ngit oi
ot A& Ll sy
L OIjeluic 5.0 LCIOW.

TL s o L e s S el 4l " . 1

r ' :
variety is algebraically hyperbolic, and when the special set

variety, i.e. the variety is special. One wants a classification of both types
of varieties, which amounts to problems principally in algebraic geome-
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One basic conjecture states:

(¢}

3.5. The special set Sp(X) is a proper subset if and only if X is pseudo

3.6. The following conditions are equivalent for a projective variety X:
X is algebraically hyperbolic, i.e. the special set is empty.
X is Mordellic.

) PSR PO
r.very suuvanmy O,

g

projective varieties besides hyperbollc ones.
In this context, it is natural to define a variety X to be pseudo
Mordellic if there exists a proper Zariski closed subset Y of X such that

A 1150 ML T A_-MM__‘..A_J,
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i A mmiamzatan] ML Z il 11 o los Y7 L a1 . L _
PYEUUO canonicdal. 1€ LAaridkl Cloded SUoSeL I can oe Laken Lo oe
the special set Sp(X)
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3.8. If the special set is empty, then the canonical class is ample.

The above discussion and conjectures give criteria for the special set
0o be em iective variety.
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GlI'CCllOIl one is interested in those cases when X is spec1a1 This ie

X ads at
first into problems of pure aigebraic geometry, independently of dio-
phantine applications, concerning the structure of the special set. Nota-

hlv we have the fnllnwmc nrnhleme

Sp 1. If we omit taking the Zariski closure, do we still get the same
set?

Sp 2. Are the irreducible components of the special set generically
fibered by rational images of group varieties?

xor which there exist a group variety G and

:G—> W aennea over some nnlte
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turn rational maps into morphisms
tional maps into morphisms.
One can also formulate an alternative for the second question, namely
Sp 3. Suppose X = Sp(X) is special. Is there a generically finite ra-
tional man from a varietv X’ onto Y cuch that Y’ ic cenerically
VAVALGL 2uQpy iV & VQaavey /A WiilVU i Ouwvilil wiiau s 10 5\;11\411\/“11
fibered by a rational image of a group variety?
It would still follow under this property that it is not necessary to take

the Zariski closure in defining the special set. As a refinement of Sp 3,
one can also ask for those conditions under which X’ would be gener-
ically fibered by a group variety rather than a rational image.

Note that we are dealing here with rational fibrations, so only up to
birational equivalence. In connection with Sp 2, suppose f[: X - Y is a
rational map whose generic fiber 1s a rational image of a group varicty
T'hen one asks the general question:

. A YXI7L ___ - 4L . 1 .l e 1 PR . o~

OD 4. vien is Inere a rationai seciion of j, so that the generic fiber

) I el 1 PR .. 41l O .l oo11 /N T L1
nas a rational pommt over ine€ iunctuion neia k(y)! 11 there 1S no
k

rational section, over a number fieid
one or more rational points?

We shall discuss several examples below an
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existence of rational curves has long been a subject of interest to alge-

finding “good” models, possibly not complete, for the complete X, whose

owing
out the special set.

11

as a corollary. These considerations fit well with those of

o

a generic fibration as in Sp 2 and Sp 3 by rational images of abelian

f

3.9, X is special, but we

varieties, or abelian varieties themselves. Interesting cases when the canon-

e
I asked Todorov if Mori’s theorem would still be valid under the weaker

h

fibers may be homogeneous spaces for linear groups, i.e. without generic

geometrically we have t

ical class K, is not pseudo ample arise not only when

As we shall see later, such models can be found for abelian

braic geometers, and has received significant impetus through the work of

g
CIK

More generally I conjectured:

Chapter X. In addition, 39a and 3.9b

note that only rational images of P! are needed to fill

, see also [

theorem of [Mori 82]

P s

v

(=4

covered by rational curves and no abelian varieties are needed.
of rational curves in X.

In particular, under the hypothesis of T

or hypersurface. But still workin

sections.

raise the question whether a gen-

erically finite covering of X is generically fibered by unirational varieties.
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they refiect the existence of degenerate fibers. This suggests the existence
of a theory of non-complete special modeis of special varieties which
remains to be elaborated. In particular, the following questions also arise:

P ~

3.10. Suppose that — K is pseudo ample. (a) I
. ot

satisfied with a linear group innose that X is de-

ausned with a unear group uppose that X

fined over a field and has a k-rational noint. When is X
ed over a neld X and has a k-rational! pomnt nen 18 A

nnirahnnal (rpcr\ rafinnan over I(

unirational (resp. rational) over c?
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a vector
varlety and iet &
be the corresponamg line sheaf of hyperplanes. One possible character-
ization of & bemg ample is that & is ample. One of Mori’s theorems

Theorem 3.11. Let X be a non-singular projective variety and assume
s a

le. Then X is isomorphic to projective

‘l hl° recult i« valid over the aloebraic closure of a field nf deﬁmhnn nf )(_
§ TCSUil 1§ VailG OVCeI N0 aigedIall CiOsuic O a4 1ICIC O aeaaantionr ol
Over a oiven field of definition. a varietv mav not have anv rntinnal
sV Wi «“ el ¥ Wik AAWANG A NAVARARAACANI ALy ““ ¥V AA AW 'J “‘“J AANS - AAve V W “A‘J ASsvaN S aatiea
noint or mav b oniv unirationai We shall discuss other mmmnieg mn
POl OI a OC Oy unirationai wC Shiall AISCUSsSs OUIch exalllplics 111

There is another notion which has currentiy been used by aigebraic
geometers to describe when a variety is generically fibered by rational

enrvee Indeed a varietv of dimension r over an aloehrﬂinaﬂv closed
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field Lk is said to be uniruled if there exists an (r — 1)-di menqmnal varietv
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important resuits when threefolds are uniruied, having to do with nega-
tivity properties of the canonical ciass, in addition to Mori’s paper alreaay
cited see Miyaoka— Mori [MiyM 86] and Miyaoka L 'y

the fo i o)

Theorem n 332 whic
Pl o o dt AN

istic 0). The follow three conditions are equivalent. (a Through
every point of thore nasses a rational curve in X. (b)Y X is uniruled
y point of X there passes a rational curve in X. (D)

s N www . wwl) s wr -r N ~ ~

(0 Wo have H (X mK =0 for all m > 0

(c) We have H” (X, mK4) =0 for all m > 0.
Note that — K. pseudo ample implies HY(X. mK,) =0 for all m > 0, by
N hat — K pseudo ample imphes H7(X, mK ;) =0 for a , by
the Kodaira criterion for nseudo amnpleness. For further resulis see also
he K ira criterion for pseudo ampleness. ror further resulis see als
-— ~—— N ~A ] ~ e, I A W 3
Batyrev LBat 9U_|, and Ior a g neral expOSltlon (0) | or1 program, See€

Kollar [Koli 89].
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variety X to be unigrouped if there exi t a varlety X' as in condltlo--
Sp 3. We shall now consider several significant examples illustrating the
Sn conditions. amono other thinos
Sp conditions, among other things.
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Example 1 (Subvarieties of abeli-"'i varieties). In this case the structure
of the special set is known, and the answers to Sp 1 and Sp 2 are yes in
both cases. This example will be discussed at length in §6. See also

Chapter VIII, §1.

Examnle 2. Let X be a nroiective non-sincular surface. Qne savs that
........ Z. L X projective non-singuiar suriace. OUne says that
-~ = o P ~ s oo . B ~ <r
X 1S 2 K3 suriace 1 Ay = O and i cvery rational map of X mto an
. ) o X .
Constant lI A IS

an abelian variety of dimension 2 and

+1 } then a minimal (lesmgular-
K =

ization of Z is a K3 surface, called ummer surface. If X is a K3

surface, then by a result of Green—Griffiths [GrG 80] and Bogomolov—
Mum.ord completed by Mori—Mukai [MoM 83], Appendix, a generically
finite covering X' of X has a generic fibration by curves of genus 1,
so that X is unigrouped, and in particular X is special. Sometimes

there exists a rational section and sometimes not. When such a section
does not CXISI, over number Ilel(IS, the proolem arises how many fibers

have rational points, or a point of infinite order on the fibral elliptic
curve. We shall see an example with the Fermat surface below, and

Sii&iiaz Sagiiipae

similar questions arise in the high mensional case of Fermat hyper-
o~ . 1 oo —~1 AL 1 o~ 0~ o~ . -r o~
surfaces, or in the case of the Chatelet surface of Chapter X, §2

The next two cases deal with generic hypersurfaces.

Example 3. Let X be the generic hypersurface of degree d in P", and
suppose d = n + 2, so that the canonical class is ample. By generic we
mean that the polynomlal defining X has algebralcallv independent coef-

The analogous conjecture goes for the generic complete intersection.
These are algebraic formulations of a conjecture of Kobayashi in the

w aluytin ~Aoga An a £ ~f MNhawmén UITTY N~ L. 2aa
complex analytic case. See Example 1.5 of Chapter VIII. Note that in
Licht Af Caniantiiea 2L thaca gasmasia ~anseasalods St owcan ti e AT 11 L
iugnt of Conjecture 5.6 these generic compiete intersections would be
Mo :

Example 4. Let X be the generic hypersurface of degree 5 in P*. One
says that X is the generic quintic threefold in P*. Then K, = 0. Follow-

7 X
1y o ~nngteiintinm ~AF Ml lasnmas (FC1 0127 re't! OA N e o P S I
ing a CONSiruCuion O1 UTriiitns, UIemens (il o5, Ll o04]1) Provea tne
Avictann~n AF 1nfanitalsy s s 42 n2m PP . Ty SR A P
CADILIWCIILC Ul 1 lllllllCly llldll_y Ialivlial CUul veod 11ICI1 a4alC Z.d4dlldKl Ucllbc,
hAasmnalagically aqnivalant ket cobhiiale Sen liceanaley teadoemnee dans oo 1.1
11VU1 u.uusluauy cqul vaiclii, vul willlil ailc 11 lCdll_y 11U p 1UcCIIt  11104aulv

algalhenin an~iiva las~n TTamann 10« ¢hoic ~oca 70 Qo / V) v Sem 4l
GISCUI au, cquxvawuuc I1C1HILC 111 U Cadl WO lldVU DP\A} = A, 111 OlICI

words X is special. It is then a problem to determine whether X satisfies
conditions Sp 2 or Sp 3 above, especially whether a generically finite
covermg of X is genencallv fibered by ellmtlc curves, r K3 surfaces, or

geometric terms. The existence of such ﬁbratlons in the case of sub-
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varieties of abelian varieties can be taken as an
answer may exist in general, but the evidence at the moment is still too
scarce to convince everyone that the answer will always be positive. For

more on the quintic threefold, see [CIKM 88], §22 and Remark 5.5.

P LSS AN ~oitiia

.1 - .
inaication tnat a podllIve

The above examples conjecturally illustrate some general principles on
some generic hypersurfaces. Roughly speaking, as the degree increases
(so the canonical class becomes more ample), the variety becomes less

and less rational, and fibrations of the special set if they exist involve

abelian varieties, whereas for lower degrees, these fibrations may involve
only linear groups and rational or unirational fibers. Changes of be-
havior occur especially for d =n+ 2, n + 1, and n. The less the canon-
ical class is ample, the more a variety has a tendency to contain rational

Let X be a hypersurface of degree d in P". If d<n—1, then X
contains a line through every point.

Thic racilt ic clascical and easy For the arcument <

This result is classical and <asy. For the argument, sec [La 86], P 196.
Teo o111 4o lenon 24 S0 o smsmn~lalaces 67 datncncann tirlhnd Lhocaanan o A ly SSPN P
in ail tne above, it is a prooiem to actermine wnat nappens on ZarisKi

open subsets rather than generically. For some examples in other con-
texts, see Chapter VIII, §1 for the Brody—Green perturbation of the
Fermat hypersurface, and Chapter X, §2 for the Chatelet surface. Here
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Neraeazmly & ML, Taceanas Lo . ) Qicmnn ¢hce Lconnn ezl an

LXxaupic o (1nc l‘crllldt nypeimnuiiacte). Ol1lLc tlllb nypeisulliate
d —d - —d —d —d
0++1,,=U or 1++1n= 0

contains lines, we see that the condition that X has ample canonical class
does not imply that X is Mordellic or that the special set is empty.

1o 3100 aleands;s ~Aamcaremad e A zmzen~ Ars A~ mAdims watinma
Euler was already concerned with the problem of finding rational
PR L. e cnlkiins ) NN | PNy Y S Py et mnloran ~amncnlo
curves, tnat 1is, soiving tne rermat cquation Wwitn poOlynoimiais
Qrzricnzamnzdbnze Teenee FQUWW/TY £V Sicioe ovimliniéd acrazesze 1ac -~ P P
Swinnerton-Uyer [DwWU 52 gives ¢€xXpiicCit €xampies ©Oi rationai Curves
..... VS ISR D
over the rationais, on
~— s R ~— 8 ~
I>+--+7T>2=0
Iy 4 oy 0
Ty _ - v 1 h . . 7 V=4 1 21 st : 1 1 :
nere A nas daegree a4 =n = O, and SO th€¢ anti-canonical ciass 1S very

ample. Swinnerton-Dyer says: “It
stt

four param , 1at there are an infinity of solutions in three
parameters, but I see no prospect of making further progress by the

" :
neth ) In general, I conjectured:
212 Ean tho Lormanat hunowrceunfars if A — 1 thon tho watinnal rurnoc arpe
JelJe 1'UI LIIIC 1 CIINIIUL uyyctou Jubc U u — I, Ltrnicr rnic ruLvnul curveco urc
Znwviclri Aouncn rund tho LBownat hunowvocriwfrnns 1o 1imiwatinunal nowe )
L/UTIONLE RETIDE, UNU LIIC 1 CIinuL rnypersurjucc 1 uritruLivnul vver .



Example: When d = n = 3, the Fermat hypersurface has Ramanujan’s
is the

taxicab rational point (1729 is the sum of two cubes in two different
ways: 9, 10 and 12, 1). Furthermore, the conjecture is true in this case,
. a - - < -— o . .. 1 s ) ~ 1
ie. for d = n = 3, the Fermat surface is a rational image of P~ over Q, oy
using Theorem 12.11 of Manin’s book [Man 74]. But so far there are n

=

systematic results known for the general Fermat hypersurfaces from the

present point of view of algebraic geometry, for the existence of rational
curves, both geometrically and over Q, and for the possibility of their
being rational images of projective space for low degrees compared to n
The Fermat equation is even more subtle for d =n 4+ 1, when one
expects fewer solutions Euler haa a false mn.iuon When he guessed

]

275 + 845 4 110° + 133° = 144°,

Then Elkies [El 88] found infinitely many solutions in degree 4,
including

2682440* + 153656394 + 18796760* = 20615673*
He was led to this solution by a mixture of theory and computer search.
The point is that for the degree d =n + 1 there is no expecrauon that

the Fermat hypersurface is unirational. Rather, it is fibered by curves of
genus 1, and the question is when a fiber has a rational point. Eikies
found theoretically that in many cases there could not be a rational

ved that mﬁmfPlv mnny fibers have at

- e

nt

one has infinite order on the fibral elliptic curve.
probiem of giving an asymptotic estimate for the number of rational
points on the base curve of height bounded by B — oo, such that the

elhpt!c curve with a rational noint of

fiber above those poin ) urve with 1al po
mﬁnite orde
e ~1 ~ s | h anl ~ 1 11 " ral 1
The fibration of the Fermat surface bv ellintic curves over C 1s clas-
The fi ion of the Fermat surface by eiliptic curves over C is cias
. . 7

sical, perhaps dating back to Gauss. Over Q, as far as I know, a
fibration comes from Demjanenko [Dem 74], and it is the one used by

Elkies. When written in the form

Xo + X1 = X3 + X3,
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L1, 41 ABELIAN VARIETIES )
Vichweg pointed out to me that this statement 1s essentially proved in

[Mae 83] over an algebraically closed field of characteristic 0.
The interplay between the diophantine problems and algebraic geome-
try is reﬂected in the hlstorv surroundmg Theorem 3.14. My comecture

are pseudo Mordellic, thus coming to the conjecture that a variety is
Mordellic (or hyperbolic) if and only if every subvariety is pseudo canon-
ical, and coming to the definition of the special set.

For more information on the topics of this section, readers might look
up my survey [La 86]. For quantitative formulations, see Vojta’s conjec-
tures in Chapter II, §4
] oA A M1 1AM WIA MIFCTIFN
i, 34. ABELIAN VARIETIES

< - 1 - ~4a 4Ll _
An abelian variety is a projective non-singular variety which is at the
ame time a group such that the law of composition and inverse are
morph.sms. Over the complex numbers, abelian varieties are thus com-
pact complex Lie groups, and are thus commutative groups. Weil orig-
inally developed the theory algebraically, aithol_gh the fact that abelian
1" 1 . 11 _
arieties are commutativ ail characteristics is due to Chevaliey

Example. Let A be an abelian variety of dimension 1, and suppose A
is defined over a field k of characteristic # 2, 3. Then A can be defined
by an affine equation in Weierstrass form

2 =4x3 - — ith ek
yo=4ax g2X —9gs w 92> 93
and A = g3 — 2795 # 0. The corresponding projective curve is (isomor-
phic to) A4, w hose points A(k) consist of the solutions of the affine equa-

1
tion with x, y ek together with the point at infinity in P2. If k= C is
the complex numbers then A(C) can be parametrized by the Weierstrass
functlons with resnect to some lattice A. In other words, there exists a

N




on P~

Abelian varieties of dimension 1 over a field k are precisely the curves

elian varieties are of interest intrinsically, for themselves, and also

the homomorphisms of 4 into B which are algebraic, i1.e. the morphisms

om,(A, B) we mean

of genus 1 together with a rational point, which is taken as the origin on

By

of A into B which are also grou

Let A, B be abelian varieties over a field k.

Al

because they affect the theory of other varieties in various ways. One of

Theorem 4.1 (Mordell-Weil theorem). Let A be an abelian variety de-

fined over a number field F. Then A(F) is a finitely generated abelian

§5.

these ways is described in

generation of A4(Q) was conjectured by Poincaré and proved by Mordell

J

an F/k-trace of A we mean a pair (B, 7) consisting of an abelian variety B

x

in 1921 [Mo 21]. Weil extended Mordell’s theorem to number fields and

arbitrary dimension [We 28]. Néron [Ne 52] extended the theorem to

A
A

- DR _
D

-
L.

defined over k, and a homomorphism
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C over k, and a homomorphism o: C - A over F, then there exists a

unique homomorphism «,.: C = B over k such that th

owing diagram

1l

e fo

commutes.

Theorem 4.2 (Lang—Néron theorem). Let F be the function field of a

variety over k. Let A be an abelian variety defined over F, and let (B, 1)

a

172843 /A.

J

=

section. Let as usual

In both cases, the Lang—Néron theorem guarantees that A(F) is finitely

generated.

This corollary is the absolute version of Theorem 4.2, and follows since

the set of points of a variety in a finite field (the constant field) is finite,

curves) [Shio 72] and Silverberg in higher dimension [Slbg 85] have

no matter what the variety, or in characteristic 0, by using Theorem 4.1.

shown that if A is the generic member of such families, then A(F) is

finite. Torsion for elliptic curves over a base of dimension 1 has been



afarevich—Tate

have given such examples for elliptic curves defined over functio

n fiel

Sh

ay. S

line with the general topics which have been discussed.

x

Here, we mention only two qualitative conjectures, in

[ =4

x

No example of such elliptic curves is known tod

other chapters.

lem is also connected with the Birch—Swinnerton-Dyer conjecture, which

relates the rank to certain aspects of a zeta function associated with the

Aside from the rank, one also wants to describe the torsion group, for

Given a number field F, there is an integer N,(F) and a

such that if A is an elliptic curve

The general

For some current

individual abelian varieties, and also uniformly for families.

of the torsion group is bounded by 16, developing in the process an

ce

curve, and which we shall discuss in Chapter III.

- -
1
vai?

a

L=

x

\

For elliptic curves over the rationals, Mazur has proved that the order

Question 4.6.
finite number of values j

by C(F, d).

x
7

Furthermore, Kamienny [Kam 90] has shown for d =1 and n = 2 that

expectation lies in:
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infinite extensions. For instance:
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Theorem 4.7. Let A be an abelian variety defined over a number field
F. Let p denote the group of all roots of unity in the aigebraic numbers.
Then the group of torsion points A(F ()., is finite.

This was proved by Ribet (see the appendix of [KaL 821]). We also have
Theorem 4.8 (Zarhin [Zar 87]). Let A be a simple abelian variety over
a number field F. Then A(F®),, is finite if an only if A does not have

For the convenience of the reader, we recall the definit
complex multmhcatlon. or haﬂ CM type over a field

rom other theorems con-
elian representa‘ions of the Galois group, for which I
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eil group in towers of number fieids with Iwasawa type
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theory and modular curves, see Mazu

of the Mord

or other results

isomorphic to the

F
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r [Maz

¢(x) = restriction of ¢ to

~

.

+

e

+

The group generated by all classes of the form ‘c(y,) — ‘c(y,) for

~

.

o~

-

e

The superscript t indicates a transpose, namely ‘c is the transpose of ¢ on

o
~
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he Néron—Severi group is finitely

NS(X) = CH!(X)/CH{(X)

generated.

proved the theorem, and an even clearer connection was established by

roup of rational points of an abelian variety over a function field. To

Lang—Neéron, who showed how to inject the Néron-Severi group in a

5.

g
d



morphism

f:X—->A

«

homomorphism f,: 4 —» B and a point be B such that the following

diagram commutes.

4

3

-

0. The abelian variety A is uniquely

Of course, if @(P)=0 then b

or some sort of condition is needed on the variety X. For instance, there
may be a projective curve of genus 1, defined over a field k and having

determined up to an isomorphism, and is called the Albanese variety of

(=4

Over any extension of k where this curve acquires a

no rational point.

(=4

2
5

-

N
7

generated by the points in X(k’). A zero cycle a can then be expressed

k, define the group of O-cycles Z(X(k')) to be the free abelian grou
Sp(a) =Y nif(Py),

\

as a formal linear combination

We define

X

(=

-

X

&

that i1s those cycles such that ) n, = 0. Then the image S.(a) is indepen-

v

1s a homomorphism. Let Z,(X) be the subgroup of 0-cycles of degree 0,

(6]

7

J N

dent of the map f, which was determined only up to a translation,
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-
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for every field k' containing k, such that over any field k" where X has a
rationai pomt A, is the Albanese variety of X, and § =S,. We again
call A the Albanese variety of X, and we call S the Albanese homomor-
phism on the O-cycles of degree 0.

If X is a curve, then its Albanese variety is called the Jacobian. A

canonical map of X into its Jacobian is an imbedding. If X and J are
n

defined over a field k, then one way to approach the study of the
rational points Auc) 1s via 't’ imbedding in J(k).

It wiil now be 1mpo ant to deal with fields of rationality, so suppose
the projective variety X is defined over a field k. By CH!(X, k) we mean
the group of divisor classes on X, defined over k

Theorem 5.2 (Lang—Néron [LN 59]). Let X be a projective variety,

non-singular in codimension 1, and defined over an algebraically closed

field k. Let L, be a linear variety defined by linear polynomials with
algebraically independent coefficients u, and of dimension such that the

intersection X .L, is a non-singular curve C, defined over the function
purely transcendental over k). Let J, be the Jacobian of C,,

J DIoe

1), and let

&
c-
o
o~
:-
o
7]
b
Q-
IS
~
(@)
=
A
&
(
ol
o~
>
&
-
(@]
S
54
o

induces an injective homomorphism € < J,(k(u)), and also an injective
homomorphism
N ar t VA ' AN Y S IORN W » 74 AN
/o A, K) — J\K(U))/TDK).
That NS(X, k) is finitely generated is then a consequence of the Lang-

Observe how a geometric object, the Néron-Severi group, is reduced
to a diophantine object, the rational points of an abelian variety in some

£ 4. £.13 V @ P O T P-S le: wxrn cha cAA ing nAag s

function field. Conversely, we shall see instances when geometric objects
ore accariated ta rational nointe in the cace of curves

are associated to rational points, in the case of curves






34 SOME QUALITATIVE DIOPHANTINE STATEMENTS [1, §5]

dimension m, and one can define the notion of algebraic equivalence,

as well as cohomological equivalence. Thus one obtains factor groups

analogous to the Néron—Severi group. The example of Clemens ([Cl 83],

[Cl 84] and Example 4 of §3) shows that over an algebralcally closed

field, this group is not necessarily finitely generated. It is still conjectured
4 MY IM/ Y Co £ £~ t ’

that CH™(X, F) is finitely generated if F is finitely genera
e +

fact there are even much deeper conjectures of Beilinson and Bloch
connecting the rank with orders of poles of zeta functions in the manner

of the Birch— Swmnert n-Dyer conjecture and the theory of heights. See
8 ] ana blocn [BI 54], [BiI zsaj ror more on

mean an abeha'i variety A4 and an algebrai equwalence class ce NS(,;)
which contains an ample divisor. Such a class is called a polarization. A
homomorphism of polarized abelian varieties
f: (Aa C)-*(AI,CI)

is a homomorphism of abelian varieties f: A - A, such that f*c, =c¢
To each polarization we shall associate a special kind of homomorphism
of A. We define an isogeny ¢: A - B of abelian varieties to be a homo-
morphism Wthh is surjective and has finite kernel. Then A, B have the

Q.. A—> A satisfying ¢, (a) = element a’ such that

is a homomorphism of A into A', depending only on the algebraic equiva-
lence class of c. The association ¢+ @, induces an injective homomorphism
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