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SET THEORY

. Setsand Functions

1.1. Basic definitions. Mathematics habitually deals with "'sets”™ made up
of "elements' of various kinds, e.g., the set of faces of a polyhedron, the
set of points on aline, the set of al positive integers, and so on. Because of
their generality, it is hard to define these concepts in a way that does more
than merely replace the word "set" by some equivalent term like **class,"
"family," ""collection,”* etc. and the word "element' by some equivalent
term like ""member."" We will adopt a " naive' point of view and regard the
notions of a set and the elements of a set as primitive and well-understood.

The set concept plays a key role in modern mathematics. This is partly
due to the fact that set theory, originaly developed towards the end of the
nineteenth century, has by now become an extensive subject in its own right.
Moreimportant, however, is the great influence which set theory has exerted
and continues to exert on mathematical thought as a whole. In this chapter,
we introduce the basic set-theoretic notions and notation to be used in the
rest of the book.

Sets will be denoted by capital letters like A, B, ..., and elements of
sets by small letterslike a, b, .. .. Theset with elementsa, b, c, . .. is often
denoted by {a,b, c,...), i.e., by writing the elements of the set between
curly brackets. For example, {1} is the set whose only member is 1, while
{1,2,...,n,...} is the set of al positive integers. The statement 'the
element a belongs to the set A™ is written symbolicaly as ae A, while
ad¢ A means that "the element a does not belong to the set A."" If every
element of a set A also belongs to a set B, we say that A is a subset of the
set B and write A < Bor B> A (also read as" A is contained in B or
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"B containsA"). For example, the set of all even numbers isa subset of the
set of all real numbers. We say that two sets A and B are equal and write
A =B if A and B consist of precisely the same elements. Notethat A =B
if and only if A < Band B < A, i.e., if and only if every element of A isan
element of B and every element of B isan element of A. If A < Bbut A # B,
we call A aproper subset of B.

Sometimes it is not known in advance whether or not a certain set (for
example, the set of roots of a given equation) contains any elements at all.
Thus it is convenient to introduce the concept of the empty set, i.e., the set
containing no elements at all. This set will be denoted by the symbol &.
The set & isclearly a subset of every set (why?).

ANEA

A g

FIGURE 1 FIGURE 2

1.2. Operationson sets. Let A and B be any two sets. Then by the sum
or union of A and B, denoted by A U B, is meant the set consisting of all
elements which belong to at least one of the sets A and B (see Figure 1).
More generaly, by the sum or union of an arbitrary number (finite or in-
finite) of sets A, (indexed by some parameter a), we mean the set, denoted by

U 4,

of all elements belonging to at least one of the sets A,

By the intersection A N B of two given sets A and B, we mean the set
consisting of al elements which belong to both A and B (see Figure 2). For
example, the intersection of the set of all even numbers and the set of all
integers divisible by 3 is the set of all integers divisible by 6. By the inter-
section of an arbitrary number (finite or infinite) of sets 4,, we mean the
set, denoted by

N A4,

of al elements belonging to every one of the sets A, Two setsA and B are
said to be digointif A N B= &, i.e., if they have no elementsin common.
More generaly, let # be afamily of sets such that A N B = & for every
pair of setsA, B in #. Then the setsin & are said to be pairwise disjoint.
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It isan immediate consequenceof the above definitionsthat the operations
U and N are commutative and associative, i.e., that
AVUB=BUA, AuUBUC=4VBUO,
ANB=BNA, ANBNC=4nBnNO).
Moreover, the operations U and N obey the following distributive laws:
AUB NC=ANC)u(BnAQO), ¢))
ANBHUC=AUC)N(BUCQC). )
For example, suppose x € (A W B) N ¢, so that x belongs to the left-hand

oy o

side of (1). Then x belongs to both € and A U B, i.e., X belongs to both
C and at least one of the sets A and B. But then X belongsto at least one of
thesstsA NCandB NC,ie,xe (A N C) v (B NC), sothat X belongs
to the right-hand side of (1). Conversely, supposex e (A N C) u (B N C).
Then x belongsto at least one of the two setsA N C and B N C. It follows
that X belongs to both € and at least one of the two setsA and B, i.e., Xe C
and x € A U B or equivalentlyx e (A W B) N C. This proves(1), and (2) is
proved similarly.

By the dzfference A — B between two sets A and B (in that order), we
mean the set of all elements of A which do not belong to B (see Figure 3).
Note that it is not assumed that A = B. It is sometimes convenient (e.g., in
measure theory) to consider the symmetric dijference of two sets A and B,
denoted by A A B and defined as the union of the two differences A — B
and B — A (see Figure 4):

AAB= (A —B)U(B—A).

We will often be concerned later with various sets which are all subsets
of some underlying basic set R, for example, various sets of points on the
rea line. In this case, given a set A, the difference R — A is caled the
complement of A, denoted by CA.
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An important role is played in set theory and its applications by the
following ""duality principle' :

R-U4,=NR&-A), ©)
R—QAang(R—Aa). (4)

In words, the complement of a union equals the intersection of the comple-
ments, and the complement of an intersection equals the union of the
complements. According to the duality principle, any theorem involving a
family of subsets of a fixed set R can be converted automatically into another,
"dua" theorem by replacing al subsets by their complements, all unions
by intersections and al intersections by unions. To prove (3), suppose

xeR— U4, (5)
Then x does not belong to the union
Ua, (6)

i.e., X does not belong to any of thesets A. It followsthat x belongsto each
of the complements R — A,, and hence

x€e Q (R — A). (7

Conversely, suppose (7) holds, so that x belongsto every set R — A. Then
x does not belong to any of the sets A,, i.e., X does not belong to the union
(6), or equivalently (5) holds. This proves (3), and (4) is proved similarly
(give the details).

Remark. The designation " symmetric difference’ for the set A A B is
not too apt, since A A B has much in common with thesum A U B. Infact,
in A U B the two statements " x belongs to A" and " x belongs to B* are
joined by the conjunction "or" used in the "either. .. or... or both...”
sense, whilein A & B the same two statementsare joined by " or** used in the
ordinary "either ... or...” sense(asin'to beor not to be"). In other words,
X belongsto A U Bif and only if x belongs to either A or B or both, while x
belongsto A A Bif and only if x belongs to either A or B but not both. The
set A A B can beregarded as a kind of ""modulo-two sum' of the sets A and
B, i.e., a sum of the sets A and B in which elements are dropped if they are
counted twice (once in A and oncein B).

1.3. Functions and mappings. Images and preimages. A rule associating a
unique real number y = f (x) with each element of a set of real humbers X
is said to define a (real) function f on X. The set X is called the domain
(of definition) off, and the set Y of al numbersf (x)such that x € Xis called
the range off.

FC 1 SETS AND FUNCTIONS 5

Moregeneraly, let M and N betwo arbitrary sets. Then aruleassociating
auniqueelement b = f (a) e N with each element a e M isagain said to define
a function f on M (or a function f with domain M). In this more general
context, f is usually called a mapping of M inte N. By the same token, f is
said to map M inro N (and ainto b).

If aisan element of M, the corresponding element b = f (a)is called the
image of a (under the mapping f). Every element of M with a given element
b e Nasitsimage is called apreimage of b. Note that in general b may have
several preimages. Moreover, N may contain elements with no preimages
at al. If b has a unique preimage, we denote this preimage by f ~(5).

If Aisasubset of M, the set of al elements f(a)EN such that ae A
iscaled theimage of A, denoted by f (A). The set of al elementsof M whose
images belong to a given set B < N is called the preimage of B, denoted
by f-*(B). If no element of B hasa preimage, thenf-1(B) = &. A function
f issaid to map M into N iff (M) < N, asis aways the case, and onto N
iff (M)= N.! Thus every "onto mapping'* is an "into mapping,” but not
conversely.

Suppose f maps M onto N. Then f is said to be one-ro-one if each element
b EN has a unique preimage f~*(5). In this case, f is said to establish a
one-to-one correspondence between M and N, and the mapping f ! associ-
ating f—1(b) with each b e N is called the inverse off.

THEOREM 1. The preimage of the union of two sets is the union of the

preimagesof the sets:
fA4 U B)=f(4) UT3(B).

Proof. If xef~*(4 U B), then f(x)E A U B, so that f (x) belongs
to at least one of the sets A and B. But then x belongs to at least one of
the sets f—1(4) and f~(B), i.e., x e f2(4) U f~1(B).

Conversely, if x ef~1(4) Uf~*(B), then x belongs to at least one
of the sets f~1(4) and f~*(B). Therefore f (x) belongs to at least one of
thesets Aand B,ie., f(x)EA U B. Butthen xef-(4 UB). g

THEOREM 2. The preimage of the intersection of two Sets is the inter-
section of the preimagesof the sets:

S7H4 NB)=f7(4) Nf(B).
Proof. If xef-1(4 N B),then f(x)e AN B, so that f(x)e A and
f(x)e B. But then x ef~1(4) and X e f (B}, i.e., X Ef~(4) Nf-YB).
Conversely, if x ef-1(4) Nf-1(B), then x e f-1(4) and x e f-1(B).
Therefore f(x)e A and f(x)eB, ie., f(x)e ANB. But then xe
fAANB). §

* Asin the case of real functions, the setf (M) is called the range of f.
2 The symbol § stands for Q.E.D. and indicates the end of a proof.
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THEOREM 3. The image of the union of two sets equals the union of the
images of the sets:

f 4 U B)=7(4) V[f(B)

Proof. Ify ef (A W B), theny =T (x) where x belongs to at least one
of the sets A and B. Therefore y =T (x) belongsto at least one of the sets
f (4) andf (B), ie., yef (4) U {(B).

Conversely, if y ef (A) UT (B), then y =T (x) where x belongs to at
least one of the sets A and B, i.e., xe A U B and hencey =f (x) e
fduUB). |

Remark |. Surprisingly enough, the image of the intersection of two sets
does not necessarily equal the intersection of the images of the sets. For
example, suppose the mapping f projects the xy-plane onto the x-axis,
carrying the point (x,y) into the (x,0). Then the segments 0 < X < 1,
y=0and0 < X < 1,y = 1do not intersect, although their images coincide.

Remark 2. Theorems 1-3 continue to hold for unions and intersections
of an arbitrary number (finite or infinite) of sets A,

FHUA) = Uria,
FH{0A) = 0770,
Y ) = Y

114 Decomposition of a set into classes. Equivalence relations. Decom-
positions of a given set into pairwise disjoint subsets play an important role
in a great variety of problems. For example, the plane (regarded as a point
set) can be decomposed into lines parallel to the x-axis, three-dimensional
space can be decomposed into concentric spheres, the inhabitants of a given
city can be decomposed into different age groups, and so on. Any such
representation of a given set M as the union of afamily of pairwise disjoint
subsets of M is called a decomposition or partition of M into classes.

Adecomposition is usually made on the basis of some criterion, allowing
us to assign the elements of M to one class or another. For example, the
set of all trianglesin the plane can be decomposed into classes of congruent
triangles or into classes of triangles of equal area, the set of al functions
of x can be decomposed into classes of functionsall taking the same value at
a given point x, and so on. Despite the great variety of such criteria, they
are not completely arbitrary. For example, it is obviously impossible to
partition al real numbers into classes by assigning the number b to the same
class as the number a if and only if b> a. In fact, if b>a, b must be
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assigned to the same class as a, but then a cannot be assigned to the same
classasb, sincea < b. Moreover, since ais not greater than itself, a cannot
even be assigned to the class containing itself! As another example, it is
impossible to partition the points of the plane into classes by assigning two
points to the same class if and only if the distance between them islessthan 1.
Infact, if the distance between a and b is less than 1 and if the distance
between b and cis less than 1, it does not follow that the distance between
a and cislessthan 1. Thus, by assigning a to the same class as b and b to
the same class as ¢, we may wedl find that two pointsfall in the same class
even though the distance between them is greater than 1!

These examples suggest conditionswhich must be satisfied by any criterion
if it isto be used as the basis for partitioning a given set into classes. Let
M be a set, and let certain ordered pairs (a,b) of elements of M be called
"labelled."" If (a,b) is a labelled pair, we say that a is related to b by the
(binary)relation R and write aRb.> For example, if aand b are real numbers,
aRb might mean a < b, whileif a and b are triangles, aRb might mean that
a and b have the same area. A relation between elements of M is called
arelation on M if there is at least one labelled pair (a,b) for every a M.
A relation R on M is called an equivalence relation (on M) if it satisfies the
following three conditions:

1) Reflexivity: aRa for every ae M;
2) Symmetry: If aRb, then bRa;
3) Transitivity: If aRb and bRe, then aRc.

THEOREM 4. A set M can be partitioned into classes by a relation R
(acting as a criterion for assigning two elements to the same class) if and
only if Risan equivalence relation on M.

Proof. Every partition of M determines a binary relation on M, where
aRb means that " a belongs to the same class as b™ 1t is then obvious
that R must be reflexive, symmetric and transitive, i.e., that R is an
equivalence relation on M.

Conversely, let R be an equivalence relation on M, and let X, be the
set of al elements x EM such that xRa (clearly a€ K, since R is
reflexive). Then two classes K, and K, are either identical or digjoint.
In fact, suppose an element ¢ belongs to both K, and X, so that cRa
and ¢Rb. Then aRc by the symmetry, and hence

aRb 8)

3 Put somewhat differently, let M? be the set of al ordered pairs (a,b) with a,be M,
and let # be the subset of M2 consisting of all labelled pairs. Then aRb if and only if
(ab)e £, i.e., a binary relation is essentidly just a subset of M2. As an exercise, state
the three conditions for R to be an equivalence relation in terms of ordered pairs and the
set Z.
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by thetransitivity. If now x € K, then xRa and hencexRb by (8) and the
trangitivity, i.e., X € K,. Virtualy the same argument shows that x € X,
implies x € K,. Therefore K, = K, if K, and K, have an element in
common. Therefore the distinct sets K, form a partition of M into
classes. |

Remark. Because of Theorem 4, one often talks about the decomposition
of M into equivalenceclasses.

There is an intimate connection between mappings and partitions into
classes, as shown by the following examples:

Example 1. Let f be a mapping of a set A into a set B and partition A
into sets, each consisting of all elements with the same image b =f (a) € B.
This gives a partition of A into classes. For example, suppose f projects
the xy-plane onto the x-axis, by mapping the point (x,y) into the point
(X, 0). Then the preimages of the points of the x-axis are vertical lines, and
the representation of the plane as the union of theselinesis the decomposition
into classes corresponding to f.

Example 2. Given any partition of aset A into classes, let B be the set of
these classes and associate each element a € A with the class (i.e., element
of B) to which it belongs. This gives a mapping of Ainto B. For example,
suppose we partition three-dimensional space into classes by assigning to the
same class dl points which are equidistant from the origin of coordinates.
Then every classis a sphere of a certain radius. The set of all these classes
can be identified with the set of points on the half-line [0, ), each point
corresponding to a possible value of the radius. In this sense, the decom-
position of space into concentric spheres corresponds to the mapping of
space into the half-line [0, o).

Example 3. Suppose we assign al real numbers with the same fractional
part* to the same class. Then the mapping corresponding to this partition
has the effect of ""'winding" the real line onto a circle of unit circumference.

Problem 1. Provethatif Aw B= Aand A N B= A, then A= B.
Problem 2. Show that in general (A — B) U B 7= A.

Problem 3. Let A=1{2,4,...,2n,...) and B=1{3,6,...,3n,...).
Find AnBand A — B.

1 Thelargest integer < x iscalled theintegralpart of X, denoted by [x],and the quantity
x — [x]is called the fractionalpart of x.
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Problem 4. Prove that
a (A—B)NC=ANC)—(BNC);
b) 4AB=A UB— A NB).
Problem 5. Prove that
LaJA, - ngmc l;J(A, — B).

Problem 6. Let 4,, be the set of al positiveintegers divisibleby n. Find
the sets

a) (.OJAn; b) NA4,.

n=2
Problem 7. Find
a) U[a—kl,b—l} b) n(a—l,b+l).
n=1 n n n=1 n n
Problem 8. Let A, be the set of points lying on the curve
-1 0<x<w)
X
What is
Na?

ozl

Problem 9. Lety =f (X) = (x) for al real x, where (x) is the fractional
part of x. Prove that every closed interval of length 1 has the same image
under f. What is this image? Isf one-to-one? What is the preimage of the
interval } <y < £? Partition the real line into classes of points with the
same image.

Problem 10. Givena set M, let # be the set of all ordered pairs on the
form (a @) withae M, and let aRb if and only if (a, b) € #. Interpret the
relation R.

Problem 11. Give an example of a binary relation which is

a) Reflexive and symmetric, but not transitive;

b) Reflexive, but neither symmetric nor transitive;
¢) Symmetric, but neither reflexive nor transitive;
d) Transitive, but neither reflexive nor symmetric.

2 Equivalence of Sets. The Power of a Set

21 Finiteandinfinitesets. The set of al vertices of a given polyhedron,
the set of al prime numbers less than a given number, and the set of all
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residents of New York City (at a given time) have a certain property in
common, namely, each set has a definite number of elements which can be
found in principle, if not in practice. Accordingly, these sets are al said to
be finite. Clearly, we can be sure that a set is finite without knowing the
number of elements in it. On the other hand, the set of al positive integers,
the set of all points on the line, the set of al circles in the plane, and the
set of al polynomials with rational coefficients have a different property
in common, namely, if we remove one element from each set, then remove
two elements, three elements, and so on, there will still be elements left in
the set at each stage. Accordingly, sets of this kind are said to be infinite.

Given two finite sets, we can aways decide whether or not they have the
same number of elements, and if not, we can always determine which set
has more elements than the other. It is natural to ask whether the same is
true of infinite sets. In other words, doesit make sense to ask, for example,
whether there are more circlesin the plane than rational points on the line,
or more functions defined in the interval [0,1] than lines in space? As will
soon be apparent, questions of this kind can indeed be answered.

T o compare two finite sets A and B, we can count the number of elements
in each set and then compare the two numbers, but alternatively, we can try
to establish a one-to-one correspondence between (the elements of) A and B,
i.e., a correspondence such that each element in A corresponds to one and
only one element in B and vice verse. It is clear that a one-to-one corre-
spondence between two finite sets can be set up if and only if the two sets
have the same number of elements. For example, to ascertain whether or
not the number of students in an assembly is the same as the number of
seats in the auditorium, there is no need to count the number of students
and the number of seats. We need merely observe whether or not there are
empty seats or students with no place to sit down. If the students can all
be seated with no empty seats left, i.e., if there isa one-to-one correspondence
between the set of students and the set of seats, then these two sets obviously
have the same number of elements. The important point here is that the
first method (counting elements) works only for finite sets, while the second
method (setting up a one-to-one correspondence) works for infinite sets as
well as for finite sets.

2.2. Countable sets. The simplest infinite set is the set Z, of al positive
integers. Aninfinite setiscalled countableif itselementscan be put in one-to-
one correspondence with those of Z,. In other words, a countable set is a
set whose elements can be numbered a,, a,, ..., a, .... By anuncountable
set we mean, of course, an infinite set which is not countable.

We now give some examples of countable sets:

Example 7. The set Z of al integers, positive, negative or zero, is
countable. In fact, we can set up the following one-to-one correspondence

=c 2 EQUIVALENCE OF SETS. THE POWER OF A seT !

between Z and the set Z,_ of all positiveintegers:

0, =1, 1, =2, 2,...

1, 2, 3, 4,5,...
More explicitly, we associate the nonnegative integer » > 0 with the odd
number 2n + 1, and the negative integer » < 0 with the even number 2 ||,
1.e.,

n<>2n-+1 if n>0,

n<>2lnj if n<O
(the symbol «— denotes a one-to-one correspondence).

Example 2 The set of al positive even numbers is countable, as shown
by the obvious correspondence # < 2n.

Example 3. Theset 2, 4,8, ..., 2% ... of powers of 2 is countable, as
shown by the obvious correspondence n <« 2".

Example 4. The set Q of al rational numbers is countable. To see this,
we first note that every rational number « can be written as a fraction p/q,
g = 0in lowest terms with a positive denominator. Call the sum |p| + gthe
"height'* of the rational humber «. For example,

=20
1

is the only rational number of height 0,
—1 1
1
are the only rational numbers of height 2,
—2 —1 1 2

» > Ll

1 2 2 1

are the only rational numbers of height 3, and so on. We can now arrange
al rational numbers in order of increasing height (with the numerators
increasing in each set of rational numbers of the same height). In other
words, we first count the rational numbers of height 1, then those of height
2 (suitably arranged), those of height 3, and so on. In this way, we assign
every rational number a unique positive integer, i.e., we set up a one-to-one
correspondence between the set Q of all rational numbers and the set Z,
of all positive integers.

Next we prove some elementary theorems involving countable sets:

THeorem 1. Every subset of a countable set is countable.

Proof. Let A be countable, with elementsa,, a,, ..., and let B bea
subset of A. Among theelements a,, a,, ..., leta, , a,,, . .. bethosein
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the set B. If the set of numbersny, n,, ... has a largest number, then
B is finite. Otherwise B is countable (consider the correspondence
i«va,) §

THeOREM 2. The union of g finite or countable number of countable
sets A, A, ... isitself countable.

Proof. We can assume that no two of the sets A,, A, ... have
elements in common, since otherwise we could consider the sets

Al’ A2_A17 A3_(A1UA2)7-..

instead, which are countable by Theorem 1 and have the same union as
the original sets. Suppose we write the elements of A,, A,, ... in the
form of an infinite table

31 Qzy dgg dgy - .- (1)

where the elements of the set A, appear in the first row, the elements of
the set A, appear in the second row, and so on. We now count al the
elementsin (1) ""diagonally," i.e., first we choose a,,, then a,, then a,,
and so on, moving in the way shown in the following table:®

Q1> Gyg—> - ..

4 Va4

Qo1 Qo Qa3 dgg ...

|7 v

gy Q3 dgy Qg 2
Vg

Itisclear that this procedure associates a unique number to each element
in each of the sets A, A, ..., thereby establishing a one-to-one
correspondence between the union of the sets A,, 4,, ... and the set
Z, of all positiveintegers. g

THEOREM 3. Every infinite Set has a countable subset.

Discuss the obvious modifications of (1) and (2) in the case of only a finite number
of setsA, A,,....
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Proof. Let M be an infinite set and a, any element of M. Being in-
finite, M contains an element a, distinct from a,, an element a, distinct
from both a, and a,, and so on. Continuing this process (which can
never terminate due to a "shortage’ of elements, since M is infinite),
we get a countable subset

A={a,a...,a,...}
of theset M. §

Remark. Theorem 3 shows that countable sets are the "' smallest'* infinite
sets. The question of whether there exist uncountable (infinite) sets will be
considered below.

2.3. Equivalenceof sets. We arrived at the notion of a countable set M
by considering one-to-one correspondences between M and the set Z, of all
positiveintegers. Moregenerally, wecan consider one-to-one correspondences
between any two sets M and N:

DEFINITION. Two sets M and N are said to be eguivalent (written
M ~ N) if there is a one-to-one correspondence between the elements of
M and the elements of N.

The concept of equivalence® is applicable to both finite and infinite sets.
Two finite sets are equivalent if and only if they have the same number of
elements. We can now define a countable set as a set equivalent to the set
Z, of all positive integers. It is clear that two sets which are equivalent to a
third set areequivalent to each other, andin particular that any two countable
sets are equivalent.

Example . Thesets of pointsin any two
closed intervals [a,b] and [c,d] are equiv-
alent, and Figure 5 shows how to set up a
one-to-one correspondence between them.
Here two pointsp and g correspond to each
other if and only if they lie on the same ray
emanating from the point O in which the
extensions of the line segments ac and bd
intersect.

Example 2. Theset of al pointsz in the Ficure 5
complex planeis equivalent to the set of all

¢ Not to be confused with our previous use of the word in the phrase " equivalence
relation.” However, note that set equivalence is an equivalence relation in the sense of
Sec. 1.4, being obviously reflexive, symmetric and transitive. Hence any family of sets
can be partitioned into classes of equivalent sets.
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points a on a sphere. In fact, a one-to-
one correspondence z <« a between the
points of the two sets can be established
by using stereographic projection, as
shown in Figure 6 (O is the north pole

of the sphere).
Example 3. The set of al points x
FIGURE 6 in the open unit interval (0, 1) is equiv-
alent to the set of all points y on the

whole real line. For example, the formula

y = ]—'arctanx+1'
7 2

establishes a one-to-one correspondence between these two sets.

The last example and the examples in Sec. 2.2 show that an infinite set
is sometimes equivalent to one of its proper subsets. For example, there are
“as many"' positive integers asintegers of arbitrary sign, there are'*as many"*
points in the interval (0, 1) as on the whole real line, and so on. This fact
is characteristic of al infinite sets (and can be used to define such sets), as
shown by

THEOREM 4. Everyinfiniteset is equivalent to one of its proper subsets.

Proof. According to Theorem 3, any infinite set M contains a
countable subset. Let this subset be

A={a,a,...,8, ...}
and partition A into two countable subsets

Al == {ala aa: a55 . .}, AZ = {aza a4’ aGa o }

Obviously, we can establish a one-to-one correspondence between the
countable sets A and A, (merely let a, < a,,_,). This correspondence
can be extended to a one-to-one correspondence between the sets A U
(M—A)=Mand A, UM —A)=M — A, by simply assigning x
itself to each element xe M — A. But M — 4, is a proper subset of
M. |

2.4. Uncountability of the real numbers. Several examples of countable
sets were given in Sec. 2.2, and many more examples of such sets could be
given. In fact, according to Theorem 2, the union of a finite or countable
number of countable setsisitself countable. It isnow natural to ask whether
there exist infinite sets which are uncountable. The existence of such sets
is shown by
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THeOREM 5. The set of real numbersin the closed unit interval [ 0,1] is
uncountable.

Proof. Suppose we have somehow managed to count some or al of
the real numbersin [0,1], arranging them in a list

0 =0.aa,.. .01, .-,
oy = 0.051003 .+ . Gy« + -+ »

............... 3)

where a,, is the kth digit in the decimal expansion of the number a,.
Consider the decimal

B=0bb,...b,... )

constructed as follows: For b, choose any digit (from 0 to 9) different
from a,, for b, any digit different from a,, and so on, and in general
forb, any digit differentfroma, Then the decimal (4) cannot coincide
with any decimal in thelist (3). In fact, £ differsfrom a, in at least the
first digit, from a, in at least the second digit, and so on, sincein general
b, a, for al n. Thus no list of real numbers in the interval [0,1]
can include all the real numbersin [0,1].

The above argument must be refined dightly since certain numbers,
namely those of the form p/106¢, can be written as decimals in two ways,
either with an infinite run of zeros or an infinite run of nines. For
example,

3= =05000... =0499...,

so that the fact that two decimals are distinct does not necessarily mean
that they represent distinct real numbers. However, this difficulty
disappears if in constructing 8, we require that 8 contain neither zeros
nor nines, for example by setting b, =2 if a, =1 and 5, =1 if
@ 7 1. B

Thus the set [0, 1] is uncountable. Other examples of uncountable sets
equivalent to [0,1] are

1) The set of pointsin any closed interval [a,b];

2) The set of points on the real line;

3) The set of pointsin any open interval (a,b);

4) The set of al pointsin the plane or in space;

5) The set of al points on a sphere or inside a sphere;

6) The set of al lines in the plane;

7) The set of al continuousreal functions of one or several variables.
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Thefact that thesets 1) and 2) areequivalent to [0, 1]isproved asin Examples
1 and 3, pp. 13 and 14, while the fact that the sets 3)-7) are equivalent
to [0, 1] is best proved indirectly (cf. Problems 7 and 9).

25. The power of a set. Given any two sets M and N, suppose M and N
are equivalent. Then M and N are said to have the same power. Roughly
speaking, " power' is something shared by equivalent sets. If M and N are
finite, then M and N have the same number of elements, and the concept
of the power of a set reduces to the usual notion of the number of elements
inaset. The power of theset Z, of all positive integers, and hence the power
of any countable set, is denoted by the symbol ®,, read ""aleph null."” A
set equivalent to the set of real numbersin the interval [0, 1], and hence to
the set of all real numbers, is said to have the power of the continuum,
denoted by c (or often by 8).

For the powers of finite sets, i.e., for the positive integers, we have the
notions of " greater than' and "'less than,"" as well as the notion of equality.
We now show how these concepts are extended to the case of infinite sets.

Let A and B be any two sets, with powers m(4) and m(B), respectively.
If Aisequivalent to B, then m(4) = m(B) by definition. If A is equivalent
to a subset of B and if no subset of A isequivalent to B, then, by analogy
with the finite case, it is natural to regard m(4) asless than m(B) or m(B) as
greater than m(4). Logically, however, there are two further possibilities:

a) B has a subset equivalent to A, and A has a subset equivalent to B;
b) A and B are not equivalent, and neither has a subset equivalent to the
other.

Incase a), A and B are equivalent and hence have the same power, as shown
by the Cantor-Bernstein theorem (Theorem 7 below). Case b) would obvi-
ously show the existence of powers that cannot be compared, but it follows
from the well-ordering theorem (see Sec. 3.7) that this caseis actually impos-
sible. Therefore, taking both of these theorems on faith, we see that any two
sets A and B either have the same power or ese satisfy one of the rela
tions m(4) < m(B) or m(4) = m(B). For example, it is clear that ¥, <c
(why ?).

Remark. The very deep problem of the existence of powers between 8,
and c is touched upon in Sec. 3.9. As a rule, however, the infinite sets
encountered in analysis are either countable or else have the power of the
continuum.

We have already noted that countable sets are the "smallest' infinite
sets. It has also been shown that there are infinite sets of power greater
than that of a countable set, namely sets with the power of the continuum.
It is natural to ask whether there are infinite sets of power greater than that
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of the continuum or, more generally, whether there is a "largest' power.
These questions are answered by

THEOREM 6. Given any set M, let .# be theset whose elementsare all
possible subsetsd M. Then thepower & .# isgreater than the power d
the original set M.

Proof. Clearly, the power 1. of theset .# cannot belessthan the power
m of the original set M, since the " single-element subsets™ (or *'single-
tons'") of M form a subset of .# equivalent to M. Thus we need only
show that m and . do not coincide. Supposea one-to-onecorrespondence

a<> A, b« B,...

has been established between the elements a, b, ... of M and certain
elements A, B, ... of .# (i.e., certain subsets of M). Then A, B, ...
do not exhaust al the elements of .#, i.e., all the subsets of M. To see
this, let X be the set of elements of M which do not belong to their
"associated subsets.* Moreexactly, if a<» Aweassign ato Xif ag¢A,
but not if a e A. Clearly, Xisasubset of M and hence an element of .#.
Suppose there is an element x e M such that X+« X, and consider
whether or not x belongs to X. Suppose X ¢ X. Then X EX, since, by
definition, X contains every element not contained in its associated
subset. On the other hand, suppose x ¢ X. Then X EX, since X con-
sists precisely of those elements which do not belong to their associated
subsets. In any event, the element x corresponding to the subset X must
simultaneously belong to X and not belong to X. But thisisimpossible!
It follows that there isno such element x. Therefore no one-to-one cor-
respondence can be established between the sets M and .#, ie.,
m~= u |

Thus, given any set M, there is a set .# of larger power, a set .#* of
till larger power, and so on indefinitely. In particular, there is no set of
"largest"" power.

26. The Cantor-Bernstein theorem. Next we prove an important theorem
already used in the preceding section:

THEOREM 7 (Cantor-Bernstein). Given any two sets A and B, suppose
A contains a subset A, equivalent to B, while B contains a subset B,
equivalent to A. Then A and B are equivalent.

Proof. By hypothesis, there is a one-to-one functionf mapping A
into B, and a one-to-one function g mapping B into A,:

f(A)=B, =B, gB=A cA

Ay = gf (A) = g(f (4) = g(By)

Therefore
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is a subset of A, equivalent to all of A. Similarly,

B, = f3(B) = f(g(B)) = f (A1)

is a subset of B, equivalent to B. Let A, be the subset of A into which
the mappinggf carriestheset A,, and let A, be the subset of A into which
gf carries A,. More generally, let A, Dbe the set into which A, (k=
1,2,...)iscaried by gf. Then clearly

A2 A4, D A2 DA D Ay D
Setting
D =N A4,
k=1

we can represent A as the following union of pairwise digjoint sets:

A=A—-A) UA —A) UA, —A) U.-
VA —4p)Y...UD (5

Similarly, we can write A, in the form
A=A —A)U A, — AU ... U (A ~ ApU ... UD. (6)
Clearly, (5) and (6) can be rewritten as
A=DUMUN, (5"

A =DUMUN,, (6")
where
M=A, —A) UA, —A) U...,
N=Ud—-A4) V{4, —A) V-,
Ni=(A —A) U4, —dy) u-.-.

But A — A, isequivalent to A, — A, (theformer iscarried into the latter
by the one-to-one function gf), A, — 4, is equivalent to A, — A,, and
so on. Therefore N is equivalent to ¥;. It follows from the represen-
tations (5) and (6) that a one-to-one correspondence can be set up
between the sets A and A, But A, is equivalent to B., by hypothesis.
Therefore A isequivalent to B. J

Remark. Here we can even " afford the unnecessary luxury™ of explicitly
writing down a one-to-one function carrying A into B, i.e.,

g Ha) if aeD UM,

#la) = f(a) if aeDUN

(see Figure 7).
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FIGURE 7

Problem 1. Prove that a set with an uncountable subset is itself un-
countable.

Problem 2. Let M be any infinite set and A any countable set. Prove that
M- MUA.

Problem 3. Prove that each of the following sets is countable;

a) The set of al numbers with two distinct decimal expansions (like
0.5000. .. and 0.4999.. .);

b) The set of al rational pointsin the plane (i.e., points with rational
coordinates);

€) Theset of all rational intervals (i.e., intervals with rational end points);

d) The set of al polynomials with rational coefficients.

Problem 4 A number « is called algebraic if it isa root of a polynomial
equation with rational coefficients. Prove that the set of all algebraic numbers
is countable.

Problem 5. Prove the existence of uncountably many transcendental num-
bers, i.e., numbers which are not algebraic.

Hint. Use Theorems 2 and 5.

Problem 6. Prove that the set of al real functions (more generaly,
functions taking values in a set containing at least two elements) defined
on aset M is of power greater than the power of M. In particular, prove
that the power of the set of all real functions (continuous and discontinuous)
defined in the interval [0, 1] is greater than c.

Hint. Usethefact that theset of al characteristic functions(i.e., functions
taking only the values 0 and 1) on M is equivalent to the set of al subsets
of M.

Problem 7. Givean indirect proof of the equivalence of the closed interval
[a, b], the open interval (a, b) and the half-open interval [a, b) or (a, b].
Hint. Use Theorem 7.
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Problem 8. Prove that the union of a finite or countable number of sets
each of power cisitself of power c.

Problem 9. Prove that edch of the following sets has the power of the
continuum:

a) The set of al infinite sequences of positive integers;
b) The set of al ordered n-tuples of real numbers;
¢) The set of all infinite sequences of real numbers.

Problem 10. Develop a contradiction inherent in the notion of the " set
of all sets which are not members of themselves.”

Hint. Is this set a member of itself?

Comment. Thus we will be careful to avoid sets which are "'too big," like
the "'set of all sets.”

3 Ordered Sets and Ordinal Numbers

3.1. Partially ordered sets. A binary relation R onaset M issaid to be a
partial ordering (and the set M itself is said to be partially ordered) if

1) Risreflexive (aRa for every ac M);
2) Ristransitive (aRb and bRc together imply aRc);
3) Risantisymmetric in the sensethat aRb and bRa together imply a = b.

For example, if M is the set of all real numbers and aRb means a < b, then
R is a partial ordering. This suggests writing a < b (or equivaently b > a)
instead of aRb whenever Risa partial ordering, and we will do so from now
on. Similarly, wewritea<bifa< b,as2bandb>aifb> a,b+ a.

The following examples give some idea of the generality of the concept
of a partial ordering:

Example | . Any set M can be partially ordered in atrivial way by setting
a< bifand only if a=b.

Example 2. Let M be the set of al continuous functions f, g, . . . defined
in a closed interval [e, 8]. Then we get a partial ordering by settingf < g
if and only iff (t)< g(¢) for every r € [a,B].

Example 3. The set of al subsets M;, M,,... is partially ordered if
M, < M, means that M; = M,.

Example 4. The set of al integers greater than 1 is partialy ordered if
a < bmeans that" bisdivisible by a"
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An element a of a partially ordered set is said to be maximal if a< b
impliesb = a and minimal if b < aimpliesb = a. Thusin Example 4 every
prime number (greater than 1) is a minimal element.

3.2. Order-preserving mappings. Isomorphisms. Let M and M' be any
two partially ordered sets, and letf be a one-to-one mapping of M onto M'.
Thenf issaid to be order-preservingif a < b (wherea, b e M)implies f(a) <
f (b) (in M'). An order-preserving mappingf such thatf (a) < f(b) implies
a < b is called an isomorphism. In other words, an isomorphism between
two partially ordered sets M and M’ is a one-to-one mapping of M onto M’
such that f (a) < T (b) if and only if a < b. Two partialy ordered sets M
and M' are said to beisomorphic (to each other) if there existsan isomorphism
between them.

Example. Let M be the set of positive integers greater than 1 partially
ordered asin Example 4, Sec. 3.1, and let M' be the same set partially ordered
in the natural way, i.e., in such a way that a< b if and only if b — ais
nonnegative. Then the mapping of M onto M' carrying every integer »
into itself is order-preserving, but not an isomorphism.

Isomorphism between partially ordered sets is an equivalence relation
as defined in Sec. 1.4, being obvioudly reflexive, symmetric and transitive.
Hence any given family of partially ordered sets can be partitioned into
disjoint classes of isomorphic sets.” Clearly, two isomorphic partialy
ordered sets can be regarded as identical in cases where it is the structure
of the partial ordering rather than the specific nature of the elements of the
sets that is of interest.

3.3. Ordered sets. Order types. Given two elementsa and b of a partially
ordered set M, it may turn out that neither of the relationsa < borb < a
holds. In this case, a and b are said to be noncomparable. Thus, in general,
the relation < is defined only for certain pairs of elements, which is why M
is said to be partially ordered. However, suppose M has ho honcomparable
elements. Then M is said to be ordered (synonymously, simply or linearly
ordered). In other words, a set M is ordered if it is partially ordered and if,
given any two distinct elements a, b e M, either a <b or b < a. Obviously,
any subset of an ordered set is itself ordered.

Each of the sets figuring in Examples 1-4, Sec. 3.1 is partially ordered,
but not ordered. Simple examples of ordered sets are the set of all positive
integers, the set of al rational numbers, the set of al real numbersin the

” Note that we avoid talking about the "'family of al/ partially ordered sets' (recall
Problem 10, p. 20).
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interval [0, 1], and so on (with the usual relations of " greater than'* and "'less
than™).

Since an ordered set isa specia kind of partially ordered set, the concepts
of order-preserving mapping and isomorphism apply equally well to ordered
sets. Two isomorphic ordered sets are said to have the same (order) type.
Thus "type" is something shared by all isomorphic ordered sets, just as
"power'* is something shared by all equivalent sets (considered as "'plain™
sets, without regard for possible orderings).

The simplest example of an ordered set is the set of al positive integers
1,2,3,... aranged in increasing order, with the usual meaning of the
symbol <. The order type of this set is denoted by the symbol w. Two iso-
morphic ordered sets obviously have the same power (an isomorphism is a
one-to-one correspondence). Thus it makes sense to talk about the power
corresponding to agiven order type. For example, the power ¥, corresponds
to the order type a. The converseis not true, since a set of a given power can
in general be ordered in many different ways. It isonly in thefinite case that
the number of elementsin a set uniquely determines its type, designated by
the same symbol » as the number of elements in the set. For example,
besides the " natural'" order type w of the set of positive integers, there is
another order type corresponding to the sequence

1,3,5,...,2,4,6,...,

where odd and even numbers are separately arranged in increasing order,
but any odd number precedes any even number. It can be shown that the
number of distinct order types of a set of power ¥, is infinite and in fact
uncountable.

3.4. Ordered sums and products of ordered sets. Let A7, and M, be two
ordered sets of types 6, and 0,, respectively. Then we can introduce an
ordering in the union M; U M, of the two sets by assuming that

1) aand b have the same ordering asin M, if a,be M;
2) aand b have the same ordering asin M, if a, be M,;
a<bifae M, beM,

(verify that this is actually an ordering of M, U M,). The set M, U M,
ordered in this way is called the ordered sum of A4, and M,, denoted by
M, T M,. Notethatthe order of termsmatters here, i.c., ingeneral M, t M,
is not isomorphic to M, + M,. More generally, we can define the ordered
sum of any finite number of ordered sets by writing (cf. Problem 6)

My + My + My = (M, + M) + 1,
M1+M2+M3+M4:(M1+M2+M3)+M47
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and so on. By the ordered sum of the types 6, and 0,, denoted by 6, +,,
we mean the order type of the set M, + u,.

Example. Consider the order types « and n. It is easy to see that
nt w=a. In fact, if finitely many terms are written to the left of the

sequence 1,2,...,k,..., we again get a set of the same type (why?).
On the other hand, the order type + 1, ie., the order type of the sets
{,2, ...k, .. ay, ap, ..., 0,0,

is obviously not equal to a.

Again let M, and M, be two ordered sets of types 6, and 0,, respectively.
Suppose we replace each element of A, by a"replica’ of the set M;. Then
the resulting set, denoted by M, . M,, is caled the ordered product of A,
and M,. More exactly, M, - M, is the set of al pairs (a,b) where ae M,
b e M,, ordered in such a way that

1) (@, b)) <(a, by) if by < b, (for arbitrary a,, a,);
2) {a;,b)<(a, b)if a, < a.

Note that the order of factors matters here, i.e., in general M, - A, is not
isomorphicto M; . M,. Theordered product of any finite number of ordered
sets can be defined by writing (cf. Problem 6)

Ml'M2-M3:(M1-M2)-M3,
MMy My My= (My - My My) - M,,

and so on. By the orderedproduct of the types 6, and 6,, denoted by 6, - 6,,
we mean the order type of the set M, - M,.

35. Well-ordered sets. Ordinal numbers. A key concept in the theory of
ordered setsis given by

DeriniTioN 1. An ordered set A7 is said to be well-ordered if every
nonempty subset A of /7 hasa smallest (or “first’’) element, i.e., an element
w such that . < afor every ae A.

Example 1. Every finite ordered set is obviously well-ordered.

Example 2. Every nonempty subset of a well-ordered set is itself well-
ordered.

Example 3. Theset M or rational numbersin theinterval {0, 1] is ordered
but not well-ordered. It is true that M has a smallest element, namely the

8 Here we use the same curly bracket notation as in Sec. 1.1, but the order of terms
is now crucid.
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number 0, but the subset of M consisting of all positive rational numbers
has no smallest element.

DerinITION 2. The ordér type of a well-ordered set is called an ordinal
number or simply an ordinal.® | f the set is infinite, the ordinal is said to be
transfinite.

Example 4. The set of positive integers 1,2,...,k,... arranged in
increasing order is well-ordered, and hence its order type o is a (transfinite)
ordinal. The order type w + » of the set

{L,2,...,k, .o a, Gy o050,
is also an ordinal.
Example 5. The set
{fovi,—k,...,—3,-2,—1} (D)
is ordered but not well-ordered. It is true that any nonempty subset A of
(1) has alargest element (i.e., an element v such that a < v for every a € A),
but in general A will not have a smallest element. In fact, the set (1) itself

has no smallest element. Hence the order type of (1), denoted by o* ,is not
an ordinal number.

THEOREM 1. The ordered sum of a finite number of well-ordered sets

M, M,,...,M,isitself a well-ordered set.
Proof. Let M be an arbitrary subset of the ordered sum M, + M, +
T M., and let M, bethefirst of the sets M,, M,, ..., M, (namely

the set with smallest index) containing elements of M. Then M N A,
isasubset of the well-ordered set M, and as such has a smallest element
. Clearly w is the smallest element of M itself. §

CoroLLARY. The ordered sum of a finite number of ordinal numbers is
itself an ordinal number.

Thus new ordinal numbers can be constructed from any given set of
ordinal numbers. For example, starting from the positive integers (i.e., the
finite ordinal numbers) and the ordinal number w, we can construct the new
ordinal numbers

o+n O0ot+tow, Ot+ot+n o-+oto,
and so on.

THeEOREM 2. The orderedproduct of two well-ordered sets M, and M,
is itself a well-ordered set.

® This is a good place to point out that the terms **cardinal number** and **power"
(of a set) are synonymous.

SEC. 3 ORDERED SETS AND ORDINAL NUMBERS 25

Proof. Let M be an arbitrary subset of M; . M,, sothat M isa set of
ordered pairs(a,b)withae M,, b e M,. Theset of all second elements b
of pairsin M isa subset of A,, and as such has a smallest element since
M, is well-ordered. Let b, denote this smallest element, and consider
all pairs of theform (a,b;) contained in M. The set of al first elements
a of these pairsis a subset of M,, and as such has a smallest element
since M, is well-ordered. Let 4, denote this smallest element. Then the
pair (ay, b) isclearly the smallest element of M. &

CoroLLARY 1. The ordered product of a finite number of well-ordered
setsisitself a well-ordered set.

CoroLLARY 2. The orderedproduct of ¢ finite number of ordinal num-
bersisitself an ordinal number.

Thus it makes sense to talk about the ordinal numbers
o n, w2, 0?-n, 03,
and so on. Itisalso possible to define such ordinal numbers as*®

(5]
0 0 ,...

3.6. Comparison of ordinal numbers. If #, and n, are two finite ordinal
numbers, then they either coincide or else one is larger than the other. As
we now show, the sameis true of transfinite ordinal numbers. We begin by
observing that every element a of a well-ordered set M determines an (initial)
section P, the set of al x € M such that x < a, and a remainder Q, the set
of al x e M such that x > a. Given any two ordinal humbers a and 8, let
M and N be well-ordered sets of order type a and {8, respectively. Then we
say that

D) « = 8if M and N areisomorphic;

2) a < #if M isisomorphicto some section of N;

3) a > pif Nisisomorphic to some section of M

(note that this definition makes sense for finite a and ).

Lemma. Let f be an isomorphism of a well-ordered set A onto some
subset B < A. Thenf(a)> afor all ae A

Proof. If there are elements a € A such thatf (a) < a, then thereisa
least such element since A is well-ordered. Let a, be this element, and
let b, =1f(a,). Then b, < a, and hence f (b,) < f (a,) = b, sincefisan
isomorphism. But then a, is not the smallest element such that f (a) < a.
Contradiction! J

1 See e.g., A. A. Fraenkel, Abstract Set Theory, third edition, North-Holland Pub-
lishing Co., Amsterdam (1966), pp. 202-208.
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It follows from the lemma that a well-ordered set A cannot be iso-
morphic to any of its sections, since if A were isomorphic to the section
determined by a, then clearly f (a) < a. In other words, the two relations

oL = B, o << B
are incompatible, and so are

o =23, x> B.
Moreover, the two relations

o < B, x>0

are incompatible, since otherwise we could use the transitivity to deduce
a < a, which is impossible by the lemma. Therefore, if one of the three
relations

o < B, o =B, x> 2

holds, the other two are automatically excluded. We must still show that
one of the relations (2) always holds, thereby proving that any two ordinal
numbers are comparable.
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is impossible, since then € C. Therefore £ <+ and hence C is a
section of A, which implies y < a. Moreover, Y is the first element of
theset A — C. Thusy < a, asasserted, and similarly y < 8. The case
y<a, y<p is impossible, since then ye A— C, yeB — C. But
then y ¢ C on the one hand and ¥ € A N B = C on the other hand.
It follows that there are only three possibilities

Y=« Y= B’ o= B’
Y=o y<pB a<B,
y<a, Y= B’ x> B’
i.e., aand p are comparable. §
THEOREM 4. Let A and Bbe well-ordered sets. Theneither Aisequivalent

to B or one of the setsis of greater power than the other, i.e., the powers
of A and B are comparable.

Proof. Thereis a definite power corresponding to each ordinal. But
we have just seen that ordinals are comparable, and so are the corre-

THeOREM 3. Two given ordinal numbers a and § satisfy one and only
one of the relations
x«<B, a=f, a>p.

Proof. Let W(«) be the set of all ordinals <a. Any two numbers
y and y' in W(x) are comparable!? and the corresponding ordering of
W(«x) makes it a well-ordered set of type a. In fact, if a set

A=1{..,a,...,b ..

is of type a, then by definition, the ordinals less than a are the types of
well-ordered sets isomorphic to sections of A. Hence the ordinals them-
selvesare in one-to-one correspondence with the elements of A. In other
words, the elements of a set of type a can be numbered by using the
ordinals lessthan a:

A={a1,a2,...,a,,, ...}.

Now let aand 8 be any two ordinals. Then W{(«) and W(pB) are well-
ordered sets of types a and B, respectively. Moreover, let C=A NB
betheintersection of the sets A and B, i.e., the set of all ordinalslessthan
both aand 8. Then Ciswell-ordered, of typey, say. We now show that
y < a. If C= A, then obviously y = a. On the other hand, if C = A,
then Cisasection of Aand hence y < «. Infact,let £ C, e A— C.
Then £ and yarecomparable, i.e.,either £ < nor£>qv. Butny < {<a

sponding powers (recall the definition of inequality of powers given in
Sec. 2.5). §

3.7. The well-ordering theorem, the axiom of ckeice and equivalent asser-
tions. Theorem 4 shows that the powers of two well-ordered sets are always
comparable. In 1904, Zermelo succeeded in proving the

WELL-ORDERING THEOREM. Every set can be well-ordered.

It followsfrom the well-ordering theorem and Theorem 5 that the powers of
two arbitrary sets are dways comparable, a fact already used in Sec. 2.5.
Zermelo's proof, which will not be given here,*? rests on the following basic

AxioM oF cHolcE. Givenany set M, thereisa" choicefunction” f such
that f (A)isan element of A for every nonempty subset A = M.

We will assume the validity of the axiom of choice without further ado.
In fact, without the axiom of choice we would be severely hampered in
making set-theoretic constructions. However, it should be noted that from
the standpoint of the foundations of set theory, there are still deep and
controversial problems associated with the use of the axiom of choice.

There are a number of assertions equivalent to the axiom of choice, i.e.,
assertions each of which both implies and isimplied by the axiom of choice.
One of these is the well-ordering theorem, which obviously implies the axiom
of choice. Infact, if an arbitrary set M can be well-ordered, then, by merely
choosing the "first" element in each subset A = M, we get the function f (A)

11 Recall the meaning of ¥ < «, ¥* < @, and use the fact that a section of a section of

a well-ordered set is itself a section of a ‘well-ordered set. 2 A, A. Fraenkel, op. cit., pp. 222-227.
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figuring in the statement of the axiom of choice. On the other hand, the
axiom of choiceimplies the well-ordering theorem, as already noted without
proof.

To state further assertions equivalent to the axiom of choice, we need
some more terminology :

DeriniTION 3. Let M bea partially ordered set, and let A beany subset
of M such that a and b are comparable for every a, b e A. Then Aiscalled
achain(inM). Achain Cissaid to be maximal if there isno other chain C’
in M containing C as a proper subset.

DeriniTION 4. An element a of a partially ordered set M is called an
upper bound of a subset ' = M ifd < afor everyd € M".

We now have the vocabulary needed to state two other assertions equiv-
alent to the axiom of choice:

HAUSDORFF's MAXIMAL PRINCIPLE. Every chain in a partially ordered
set M is contained in a maximal chainin M.

ZoRN's LEMMA. If every chainina partially ordered set M hasan upper
bound, then M contains a maximal element.

For the proof of the equivalence of the axiom of choice, the well-ordering
theorem, Hausdorff's maximal principle and Zorn's lemma, we refer the
reader elsewhere.’® Of these various equivalent assertions, Zorn's lemma is
perhaps the most useful.

3.8. Transfinite induction. Mathematical propositions are very often
proved by using the following familiar

THEOREM 4 (Mathematical induction). Given a proposition P(n) formu-
lated for every positive integer », suppose that

1) P(l)istrue;

2) The validity of P(k) for all k < » implies the validity of P(n + 1).
Then P(n) istrue for all n = 1, 2,

Proof. Suppose P(n) fails to be true for al n=1,2,..., and let
n, be the smallest integer for which P(r) is false (the existence of 7,
followsfrom the well-ordering of the positive integers). Clearly n, =1,

so that », — 1 is a positive integer. Therefore P(#) is valid for all
k < n; — 1 but not for n;. Contradiction! g

Replacing the set of dl positive integers by an arbitrary well-ordered set,

13 Seee.g., G. Birkhoff, Lattice Theory, third edition, American Mathematical Society,

Providence, R.1. (1967), pp. 205-206.
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we get

THEOREM 4'. (Transfinite induction). Given a well ordered set 4,14 let
P(a) be a proposition formulated for every element ae A. Suppose that

1) P(a) istrue for the smallest element of A;
2) The validity of P(e) for all a <a* implies the validity of P(a*).

Then P(a) istrue for all ac A.

Proof. Suppose P(a) failsto be true tor al ae A. Then P(a) isfase
for al a in some nonempty subset A* < A. By the well-ordering, A*
has a smallest element a*. Therefore P(q) is vaid for al a<<a* but
not for a*. Contradiction! §

Remark. Sinceany set can be well-ordered, by the well-ordering theorem,
transfinite induction can in principle be applied to any set M whatsoever.
I n practice, however, Zorn's lemmais a more useful tool, requiring only that
M be partially ordered.

3.9. Historical remarks. Set theory as a branch of mathematics in its
own right stems from the pioneer work of Georg Cantor (1845-1918).
Originally met with disbelief, Cantor's ideas subsequently became widespread.
By now, the set-theoretic point of view has become standard in the most
diverse fields of mathematics. Basic concepts, like groups, rings, fields, linear
spaces, etc. are habitually defined as sets of elements of an arbitrary kind
obeying appropriate axioms.

Further development of set theory led to a number of logical difficulties,
which naturally gave rise to attempts to replace "' naive' set theory by a more
rigorous, axiomatic set theory. Itturnsout that certain set-theoretic questions,
which would at first seem to have "'yes"" or "'no" answers, are in fact of a
different kind. Thus it was shown by Gdodel in 1940 that a negative answer
to the question "'Is there an uncountable set of power less than that of the
continuum™ is consistent with set theory (axiomatized in a way we will not
discuss here), but it was recently shown by Cohen that an affirmative answer
to the question is also consistent in the same sense!

Problem 1. Exhibit both a partial ordering and a simple ordering of the
set of all complex numbers.

Problem 2. What is the minimal element of the set of all subsets of a
given set X, partially ordered by set inclusion. What is the maximal element?

Problem 3. A partially ordered set M is said to be a directed set if, given
any two elementsa, b E M, thereisan element ce M suchthata < ¢,b < c.
Axe the partially ordered sets in Examples 1-4, Sec. 3.1 all directed sets?

1 For example, the set of all transfiniteordinals less than a given ordinal.
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Problem 4. By the greatest lower bound of two elements a and b of a
partially ordered set M, we mean an element ce M such that c< a,c< b
and there is no element d e M such that ¢ < d < a, d < b. Similarly, by
the least upper bound of a and b, we mean an element ¢ € M such that a < c,
b < ¢ and there is no element de M such that a<d<e¢, b< d. By a
lattice is meant a partially ordered set any two element of which have both
a greatest lower bound and a least upper bound. Prove that the set of al
subsets of a given set X, partially ordered by set inclusion, is a lattice. What
is the set-theoretic meaning of the greatest lower bound and least upper
bound of two elements of this set?

Problem 5. Prove that an order-preserving mapping of one ordered set
onto another is automatically an isomorphism.

Problem 6. Prove that ordered sums and products of ordered sets are
associative, i.e., prove that if A, M, and M; are ordered sets, then

(M, + M) + My = M, + (M, + My), (M, My M; = My (M, M,),
where the operations 4 and . are the same asin Sec. 3.4.

Comment. This alows us to drop parentheses in writing ordered sums
and products.

Problem 7. Construct well-ordered sets with ordinals
w4n otow, o+ot+n ot+o+to,.
Show that the sets are all countable.
Problem 8. Construct well-ordered sets with ordinals

w'n, w, o

n, o3 ...
Show that the sets are all countable.

Problem 9. Show that
w4 w=n-2, ot+ot+to=03...

Problem 10. Prove that the set W(«) of all ordinals less than a given
ordinal « iswell-ordered.
Problem 11. Prove that any nonempty set of ordinalsis well-ordered.

Problem 12. Prove that the set M of al ordinals corresponding to a
countable set is itself uncountable.

Problem 13. Let ¥, be the power of the set M in the preceding problem.
Prove that there is no power m such that 8, < m < ¥,.
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4. Systems of Sets?®

4.1. Rings of sets. By a system of sets we mean any set whose elements
are themselves sets. Unless the contrary is explicitly stated, the elements
of a given system of sets will be assumed to be certain subsets of some fixed
set X. Systems of sets will usually be denoted by capital script letters like
92, Y, etc. Our chief interest will be systems of sets which have certain
closure properties under the operations introduced in Sec. 1.1.

DernTION 1. A nonempty system of sets Z is called aring (of sets) if
ArBe RZand A N Be X whenever Ac B, Be A.
Since
AUB=(AAB)A(4NB),

A—B=A4A (4 NB),

we also have AUBe # and A —~Be % whenever Ac #, Be A.
Thus a ring of sets is a system of sets closed under the operations of
taking unions, intersections, differences, and symmetric differences.
Clearly, aring of setsisalso closed under the operations of taking finite
unions and intersections:

Ua, N4,
k=1 k=1
A ring of sets must contain the empty set @, since A — A= g.
A set Eiscalled the unit of a system of sets & if Ee Y and
ANE=A4

for every A e &. Clearly E is unique (why?). Thus the unit of Y is
just the maximal set of &, i.e., the set containing all other sets of ..
A ring of sets with a unit is called an algebra (of sets).

Example 1. Given a set A, the system .#(4) of all subsets of A is an
algebra of sets, with unit E= A.

Example 2. The system {&, 4} consisting of the empty set z and any
nonempty set A is an algebra of sets, with E= A.

Example 3. The system of al finire subsets of a given set A isaring of
sets. Thisring isan algebraif and only if A itself isfinite.

Example 4. The system of all bounded subsets of the real lineis a ring of
sets, which does not contain a unit.

15 The material in this section need not be read now, since it will not be needed until
Chapter 7.
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THEOREM 1. The intersection
v =N A
of any set of ringsis itself a ring.

Proof. Animmediate consequence of Definition 1.

THEOREM 2. Given any nonempty system of sets &, there is a unique
ring £ containing Y and contained in every ring containing Y.

Proof. If £ exigts, then clearly £ is unique (why ?). To prove the
existence of 8,consider the union

X=U4
Aey
of all sets A belonging to Y and the ring 4 (X) of all subsets of X. Let
Z be the set of all rings of sets contained in.#(X) and containing Y.
Then the intersection
P=Nx
REL
of al these rings clearly has the desired properties. Infact, Z obviously
contains . Moreover, if #* is any ring containing &, then the
intersection Z = W* N.#(X)isaringinZ and hence # <« # < %*,
asrequired. Thering Z iscalled the minimal ring generated by the system
&, and will henceforth be denoted by Z(%). §

Remark. The set .#(X) containing £(<%) has been introduced to avoid
talking about the ""set of al rings containing #.”> Such concepts as *'the
set of all sets," ""the set of al rings," etc. are inherently contradictory and
should be avoided (recall Problem 10, p. 20).

4.2. Semirings of sets. The following notion is more general than that
of a ring of sets and plays an important role in a number of problems (par-
ticularly in measure theory):

DerINITION 2. A system of sets Y is called a semiring (of sets) §

1) Y contains the empty set & ;

2) An Be & whenever Ae &, Be &,

3) If Y contains the sets A and A, = A, then A can be represented
as afinite union

A =

&
e

Ay (H

of pairwise digoint sets of &, with the given set A, asitsfirst term.
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Remark. The representation (1) is caled afinite expansion of A, with
respect to the sets A,, A,, ..., 4,.

Example |. Every ring of sets # isa semiring, since if &% contains A and
A, < Ajthen A=A, UA where A, = A - A e &.

Example 2. The set Y of al open intervals (a, b), closed intervals [a, b]
and half-open intervals [a,b), (a,b] ,including the " empty interval"* (a,a) =
@ and the single-element sets [a,a] = {a),is a semiring but not a ring.

LemmA 1. Suppose the sets A, A, ..., A, where A, ..., A, are
pairwise digoint subsets of A, all belong to a semiring Y . Thenthereisa
finite expansion

A=U 4, (s > n)
k=1
with A,, ..., A, asits first n terms, where 4, € &, 4, N A, = %for all
k,l=1,...,n

Proof. The lemma holds for » = 1, by the definition of a semiring.
Suppose the lemma holds for n = m, and consider m +i1stsA, ...,
A, A, satisfying the conditions of the lemma. By hypothesis,

A=4,0V"--UA4,UB U---UB,
where the sets A, ..., A,, By, ..., B, are pairwise disjoint subsets of
A, dl belonging to &. Let
By = A, N B,
By the definition of a semiring,
B,=ByU...UB,,
where the sets B,; (j=1,...,r) are pairwise disjoint subsets of B,,
all belonging to &#. But then it is easy to see that

» Tq
A=A U...UA UA,,uU (Uqu),
a=1 \ j=2

ie., thelemmaistruefor » = m + 1. The proof now follows by mathe-
matical induction. §

LEMMA 2. Given any finite system of sets A,, ..., A, belonging to a
semiring &, there is a finite System of pairwise disoint sets By, ..., B,
belonging to YY" such that every A, has afinite expansion

A,=UB, (k=1,...,n)

se My
with respect to certain of the sets B,.'¢

** Here M, denotes somesubset of theset {1, 2, ..., t), depending on the choice of k.
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Proof. The lemmaistrivial for n = 1, since we need only set t = 1,

B, = A, Suppose the lemmaiis true for » = m, and consider a system
of setsA,, ..., A, A inY.LetB,...,B, besasof Y satisfying
the conditions of the lemma with respect to A,, ..., A, and let

By = Am+1 N B,
Then, by Lemma 1, there is an expansion
t a
Aoy = (U le) U (U B,’,) (Bl e &),
s=1 Pp=1
while, by the very definition of a semiring, there is an expansion
Bs = le v BsZ Ueen U Bsrs (st € y)
It is easy to see that
4, = U (Lst,-) k=1,...,m)

seMy \i=1
for some suitable M. Moreover, the setsB,,, B, are pairwise digoint.
Hence the sets B,, B, satisfy the conditions of the lemma with respect
toA, ..., A A The proof now follows by mathematical induc-
tion. R

43. Thering generated by a semiring. According to Theorem 1, there is
a unique minimal ring Z(&¥) generated by a given system of sets &. The
actual construction of #Z(&) isquite complicated for arbitrary <. However,
the construction is completely straightforward if Y is a semiring, as shown
b
d THEOREM 3. If & is a semiring, then Z(%’) coincides with the system
Z of all sets A which have finite expansions

C:x

A=
with respect to the sets A, € .

Ay

k=1

Proof. First we provethat # isaring. Let Aand B beany two setsin
&. Then there are expansions

A A; (4:€Y),

I
3

I
C:!

B Bj (B:,Ey)

1

J

Since ¥ is a semiring, the sets
Cz‘:i = Ai M B;
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also belongto Y. By Lemmal, there are expansions
A4; = (U Cz'a') Y (U Dik) (Di € &),
J=1 k=1

B; = (U Ci:‘) Y (U Eﬂ) (Epe ).
i=1 1=1
It followsfrom (2) that A N B and A A B have the expansions
AnB=Ugc

i3

AAB= (U Dik) v (U Eﬂ),
ik il
and hence belong to %. Therefore & isaring. The fact that % is the
minimal ring generated by % is obvious. [

44. Borel algebras. There are many problems (particularly in measure
theory) involving unions and intersections not only of a finite number of
sets, but also of a countable number of sets. This motivates the following
concepts:

DeriNiTION 3. Aring of sets is called a o-ring if it contains the union

S=U4,

n=1

whenever it contains the sets A, A,, ..., A, .... A o-ring with a unit
E iscalled a c-algebra.

DeriNnITION 4. Aring of sets is called a S-ring if it contains the inter-
section

whenever it contains the setsA,, A,, ..., A, ... . A 8ring with a unit
E is called a 8-algebra.

THEOREM 4. Every o-algebrais a 8-algebra and conversely.

Proof. An immediate consegquence of the "'dua"* formulas
9/1,1:15— Q(E~An),
DAan— UE-4,). &
The term Borel algebra (or brieflytl B-algebra) is often used to denote

a o-algebra (equivalently, a 8-algebra). The simplest example of a B-algebra
is the set of all subsets of a given set A.
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Given any system of sets ., there aways exists at least one B-algebra
containing &. In fact, let Y= U4

Ae¥

Then the system % of all subsets of X is clearly a B-algebra containing <.

If # is any B-algebra containing Y and if E is its unit, then every
Ae & iscontained in E and hence

X=UAC<CE.
AeS

A B-algebraZ is caled irreducible (with respect to the system &) if X = E,
i.e., an irreducible B-algebra is a B-algebra containing no points that do
not belong to one of the sets A € &. In every case, it will be enough to
consider only irreducible B-algebras.

Theorem 2 has the following analogue for irreducible B-algebras:

THEOREM 5. Given any nonempty system d sets &, thereisa unique
irreducible’” B-algebra #Z(&) containing & and contained in every
B-algebracontaining &.

Proof. The proof is virtually identical with that of Theorem 2. The
B-algebra# (%) is called the minimal B-algebragenerated by the system
& or the Borel closure of <. §

Remark. An important roleis played in analysis by Borel sets or B-sats.
These are the subsets of the real line belonging to the minimal B-algebra
generated by the set of all closed intervals [a, b).

Problem 7. Let X be an uncountableset, and let # be the ring consisting
of al finite subsets of X and their complements. Is # a s-ring?

Problem 2. Are open intervals Borel sets?

Problem 3. Let y = f(x) be a function defined on a set M and taking
valuesin aset N. Let.# be asystem of subsets of M, and letf (.#) denote
the system of all images f(4) of sets A e.#. Moreover, let A4 be a system
of subsets of &, and let f/~!(.#") denote the system of all preimages f *(B)
of sets B € A". Prove that

a) If A isaring, 0isf~1(A");

b) If A" isan agebra, soisf-1(A);
c) If A7 isa B-algebra soisf-1(A");
d) Z(f~HAD)) =F HZ(AN);

e Z(fTHA)) = fHE(N)).

Which of these assertions remain true if 4" is replaced by -# and /-1 byf ?

17 More exactly, irreducible with respect to %.
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METRIC SPACES

5. Basic Concepts

51 Definitionsand examples. One of the most important operations in
mathematical analysisis the taking of limits. Here what mattersis not so
much. the algebraic nature of the real numbers,® but rather the fact that
distance from one point to another on the real line (or in two or three-
dimensional space) is wdl-defined and has certain properties. Roughly
speaking, a metric space is a set equipped with a distance (or "'metric')
which has these same properties. More exactly, we have

DerINITION 1. By a mezric spaceis meant a pair (X, p) consisting d
a set X and a distance ¢, i.e., a Single-vaued, nonnegative, real function
o(x, y) definedfor all x,y e X which has thefollowing threeproperties:

1) o(x,y) =0ifand only ifx =vy,;
2) Symmetry: o(x,y) = (¥, X);
3 Triangleinequality: e(x, z) < p(x,Y) + p(y, 2).
We will often refer to the set X asa " space’ and itselementsx, y, ... as
“points.”” Metric spaces are usualy denoted by a singleletter, like
R = (X, P)’

or even by the sameletter X as used for the underlying space, in cases where
there is no possibility of confusion.

! Le., thefact that the real numbersform a field.
37
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Example 1. Setting
0 if x=y,

P(o) = 1 if x#y,

where x and y are elements of an arbitrary set X, we obviously get a metric
space, which might be called a "discrete space'™ or a ""space of isolated
points."

Example 2. The set of all real numbers with distance
o(x, y) = |x — yl
isa metric space, which we denote by R
Example 3. The set of al ordered n-tuples

X = (x19x2:- . ,xn)
of real numbers xy, X,, .. ., X,, with distance
e(x, y) = \/ gl(xk — ), (1)

is a metric space denoted by R" and called n-dimensional Euclidean space
(or simply Euclidean n-space). The distance (1) obviously has properties
1) and 2) in Definition 1. Moreover, it is easy to see that (1) satisfies the
triangleinequality. In fact, let
X = (xl’x25 *aw? xn): }’ == (}’1,)’2, e ,yn), Z = (Zl, Z9y o ,Z,n)
be three pointsin R", and let
=Xy — Vg b=y — 2z, (k=1,...,n).

Then the triangle inequality takes the form

D0 — z)* < \/Z(xk — 3+ \/Z(J"k -z @
k=1 r=1 Tl
or equivalently
\/E(ak + b)Y < \/Za;’; + \/Zbi- (2
Fo==1 k=1 =1
It followsfrom the Cauchy-Schwarz inequality
n 2 n n
(E akbk) < Ya; > br (3)
k=1 k=1 k=r

(see Problem 2) that
> (a + by)* = Eai +23 aby + 2 b
k=1 k=1 k=1 =1
n n n n n 3 2
<2 ai+2\/zai Db+ Ybi= ( 2 a; + Zbi)
k=1 k=1 k=1 k=1 k=1 k=1

Taking square roots, we get (2) and hence (2).
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Example 4 Take the same set of ordered n-tuplesx = (x4, ..., X) asin
the preceding example, but this time define the distance by the function

pu(x, ¥) :kZJXk — Yl (4)
It isclear that (4) has al three properties of a distance figuring in Definition
1. The corresponding metric space will be denoted by Rz

Example 5. Take the same set as in Examples 3 and 4, but this time
define distance between two points X = (x,...,x,) andy = (y;, ..., )
by the formula

po(X, ¥) = max [x; — yl. ()
1<sk<n
Then we again get a metric space (verify all three properties of the distance).
This space, denoted by R?, is often as useful as the Euclidean space R™.

Remark. The last three examples show that it is sometimes important
to use a different notation for a metric space than for the underlying set of
pointsin the space, sincethelatter can be " metrized' in a variety of different
ways.

Example 6. The set C, ,, of all continuous functions defined on the
closed interval [a, b], with distance
o(f, & = max |f(1) — g(1)| (6)
a<I<h
isa metric space of great importance in analysis (again verify the three
properties of distance). This metric space and the underlying set of "' points'
will both be denoted by the symbol C,, ,,. Instead of C, ., we will often
write just C. A space like C, ,; is often called a "function space,” to
emphasize that its elements are functions.

Example 7. Let |, be the set of al infinite sequences?

x:(xl’x2a-~-axka"')
of real numbers xy, x,, . .. , X, . . . Satisfying the convergence condition
2. X < o0,
k=1

The infinite sequence with general term x, can be written as {x,} or smply as
X,y X5+ .., Xg, -+ . (this notation is familiar from calculus). It can also be written in
" point notation™ as x = (x,, X, ..., Xy, . . -), i.e,, @ an ""ordered co-tuple” generalizing
the notion of an ordered n-tuple. (In writing {x;} we have another use of curly brackets,
but the context will always prevent any confusion between the sequence {x;} and the set
whose only element is x;.)
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where distance between points is defined by

P(xa)’) = \/]gl(xk - yk)z' (N

Clearly (7) makes sensefor al x,y €/, sinceit follows from the elementary
inequality

(% £ 0" < 26 9D
that convergence of the two series

@

@

2 2
xk, zyk
1 k=1

fe=

implies that of the series

Z(xk — )
=1
At the same time, we find that if the points (x;, X,, ..., X, ...) and

(¥1» Y25 .+« , V&« . .) both belong to /,, then so does the point
(X9 + Y1 X0+ Yas o oo s X+ Vio o0 0)

Thefunction (7)obviously has the first two defining properties of a distance.
To verify the triangle inequality, which takes the form

ﬁ(xk — ) < \/i(xk — )+ \/ki(J’k — z,)? ¥
=1 =1 =1

for the metric (7), wefirst note that all three series converge, for the reason
just given. Moreover, the inequality

Sen -z < JBe— S0z ©)

holds for al n, as shown in Example 3. Taking the limit as n— o in (%),
we get (8), thereby verifying the triangle inequality in /. Therefore 1, is a
metric space.

Example 8. As in Example 6, consider the set of all functions continuous
on theinterval [a,b],but thistime define distance by the formula

o(x, y) = ( f; [x(f) — ¥(OF dt)w, (10)

instead of (6). The resulting metric space will be denoted by CZ, ... The
first two properties of the metric are obvious, and the fact that (10) satisfies
the triangle inequality is an immediate consequence of Schwarz's inequality

(be(t)y(t) dt)2< f:ﬁ(t) dtf:yz(t) dt 11
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(see Problem 3), by the continuous analogue of the argument given in
Example 3.

Example 9. Next consider the set of all bounded infinite sequences of real
numbers X = (xy, Xg, « « + , X, - . .), and let®

p(x, y) = sup [x, — Yil- (12)

This gives a metric space which we denote by m. The fact that (12) has the
three properties of a metric is almost obvious.

Example 10. As in Example 3, consider the set of all ordered n-tuples
X = (xy,...,X) Of real numbers, but this time define the distance by the
more general formula

Te=1

es(%, ) = (%l-‘xk - ykl”)w, (13)

where p is a fixed number =1 (Examples 3 and 4 correspond to the cases
p = 2and p =1, respectively). This givesa metric space, which we denote
by R7. Itisobviousthat ¢ (x,y) = Oif and only if x = y and that ¢ (x, y) =
e, (¥, X), but verification of the triangle inequality for the metric (13) requires
alittle work. Let
x:(x17.-.,x,n), y:(yl’---,yn)’ Z:(Zl,___’zn)
be three pointsin R7, and let
p = X — Yi» b= Yp — 2z, k=1,...,n),
just asin Example 3. Then the triangle inequality
0,(x, 2) < p,(x,2) + p,(y, 2)
takes the form of Minkowski's inequality

1/p 1/p

(éllaﬁ bklf’)l/p< (gakv’) + (ké]bk[”) . (14)

The ineguality is obvious for p = 1, and hence we can confine ourselves to
the casep > 1.
The proof of (14)for p = 1isin turn based on Holder's inequality

Sianl < (Sl (5 i), (s)

Te=1

where the numbersp > 1 and g > 1 satisfy the condition

L + L =1. (16)
P g
3 Theleast upper bound or supremumofasequenceofred numbersa,, a,, ..., @ . ..

is denoted by aup a..
k
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We begin by observing that the inequality (15) is homogeneous, i.e., if it

holds for two points (a,, ...,a,) and (b,,...,5,), then it holds for any
two points (hay, . .., ra,) and (uby, ..., wb,) where » and . are arbitrary
real numbers. Therefore we need only prove (15)for the case
2lad” =2 1bl”= 1. amn
k=1 k=1
Thus, assuming that (17) holds, we now
y prove that
n
b / 2 laghy) < (18)
s F==1
2 Consider the two areas S, and S, shown in
o Figure 8, associated with the curvein the £
oo 5 plane defined by the equation
- ¢ 7= grt
FIGURE 8 or equivaently by the equation
E — a,]q—l‘
Then clearly
a » g
si=[era= s=[ra=L.
Moreover, it is apparent from the figure that
S8 > ab
for arbitrary positive @ and b. It follows that
D a
ab <%+ 2 (19)
p q

Setting a = la,|, b = [b,], summing over k from 1 to », and taking account
of (16) and (17), we get the desired inequality (18). This proves Holder's
inequality (15). Note that (15)reducesto Schwarz's inequality ifp = 2.

It is now an easy matter to prove Minkowski's inequality (14), starting
from the identity

(lal + 1b)* = (lal + 16>~ |al + (lal + [5])>~* |B].
In fact, setting a = a,, b = &, and summing over k from 1 to », we obtain

§<iakf b = Slay] + 15l aw] + 3 (ay] + [l bgl.
=1 k=1 k=1

Next we apply Holder's inequality (15) to both sums on the right, bearing
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inmind that (p— 1)g = p:

n 1/q n i/p n 1/p
(la) -+ 1)) < (zuak! + lw) ([zmﬂ + [zibﬂ )
1 Fe=1 k=1 =1
Dividing both sides of this inequality by

n 1/q
(zl (g + |bk1)") :
k=

n 1/p n ) 1/p n i/p
(20 + 10y < (Zjar) (Z)5r)
k=1 r=1 x=1
whichimmediately implies (14), thereby proving the triangle inequality in R%.
Example 11. Finally let 1 bethe set of all infinite sequences

n

k=

we get

X == (Xqy Xgy o ev s Xpp v v )

of real numbers satisfying the convergence condition

Fxp <
k=1
for some fixed number p > 1, where distance between points is defined by
e 1/p
ol 9) = ( Zxe— ) (20)
Jo==

(the case p = 2 has already been considered in Example 7). It follows from
Minkowski's inequality (14)that
1/p

(ilxk~ yklp)‘/’g ( éllxklv)”ﬁ ( éllykv’) 1)

k=1
for any n. Since the series
Elxkla’, ZI)’klp
k=1 k=1
converge, by hypothesis, we can take the limit as » — o in (21), obtaining
@ 1/p @© 1/p ) 1/p
(- )< () + (zmap) <o,
r=1 r=1 Km=1

This shows that (20)actually makessensefor arbitrary x,y € I, At the same
time, we have verified that the triangle inequality holdsin I, (the other two
properties of a metric are obviously satisfied). Thereforel, isa metric space.

Remark. If R= (X, p) isa metric space and M is any subset of X, then
obviously R* = (M, p) is again a metric space, caled a subspace of the




44  METRIC SPACES CHAP. 2

original metric space R. This device gives us infinitely more examples of
metric spaces.

5.2. Continuous mappings and homeomorphisms. Isometric spaces. Letf
be a mapping of one metric space X into another metric space ¥, so that
f associates an element y =f (x) € Y with each element x € X. Thenf is
said to be continuous at the point X, € X if, given any = = 0, there exists a
3 > 0 such that

o (f(x), f (xe)) < &
whenever
o(x, xp) < 3

(here ¢ is the metric in X and o’ the metric in Y). The mappingf is said
to be continuouson X if it is continuous at every point x € X.

Remark. This definition reduces to the usual definition of continuity
familiar from calculusif X and Y are both numerical sets, i.e., iff isareal
function defined on some subset of the real line.

Given two metric spaces X and Y, letf be one-to-one mapping of X onto
Y, and supposef and f-* are both continuous. Thenf is caled a homeo-
morphic mapping, or simply a homeomorphism (between X and Y). Two
spaces X and Yaresaid to be homeomorphicif there exists a homeomorphism
between them.

Example. The function

y=f(x)= 2 arctan x
T

establishes a homeomorphism between the whole real line (— o0, «0) and the
open interval (—1, 1).

DerINITION 2. A one-to-onemapping fd onemetric space R = (X, p)
onto another metric space R' = (Y, p) issaid to bean isometric mapping
(or smply an isometry) if’

P(xl’ xz) = pl(f(xl)’f(xz))

for all x,, x, e R. Correspondingly, the spaces R and R' are said to be
isometric (to each other).

Thus if R and R' are isometric, the ""metric relations” between the
elements of R are the same as those between the elements of R', i.e., R and
R' differ only in the explicit nature of their elements (this distinction is
unimportant from the standpoint of metric space theory). From now on,
we will not distinguish between isometric spaces, regarding them simply as
identical.
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Remark. We will discuss continuity and homeomorphisms from a more
general point of view in Sec. 9.6.
Problem 1. Given a metric space (X, p), prove that

a) IP(-x: Z) - P(}’, wl < P(XaY) + P(Za u) (x’ya z,u€X);
b) |P(x, Z) - P(}’, Z)l < P(x:}’) (xsy’ ze X).

Problem 2. Verify that

n 2 n n 1 n n _
( Zakbk) = al 3bi— >3 S(ab; — ba).
r=1

=1 =1 i=1 =1
Deduce the Cauchy-Schwarz inequality (3) from this identity.
Problem 3. Verify that

(oo atf = [0 @il 0t = L [ 1690 - yomoras o

Deduce Schwarz's inequality (11) from this identity.
Problem 4. What goeswrong in Example 10, p. 41if p<1?
Hint. Show that Minkowski's inequality fails forp < 1.

Problem 5. Prove that the metric (5) isthelimiting case of the metric (13)
in the sense that

n 1/p
oo, ) =thax; — ¥l = lim (zm - m”) .
Do \k=

Problem 6. Starting from the inequality (19), deduce Holder's integral
inequality

[xtomar < ([sor ) (foorf* (241 1),

vaid for any functions x(¢) and y(t) such that the integrals on the right exist.

Problem 7. Use Holder's integral inequality to prove Minkowski's integral
inequality

(w0 + seor ) "< ([xor) "+ ([vora]” o>,

Problem 8. Exhibit an isometry between the spaces Cy, ,; and G, -

6. Convergence. Open and Closed Sets

6.1. Closure of a set. Limit points. By the open sphere (or open ball)
S(x,, ) in a metric space R we mean the set of points x € R satisfying the
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inequality
p(x, X) <7

(p is the metric of R).* The fixed point x, is caled the center of the sphere,
and the number r is called its radius. By the closed sphere (or closed ball)
STxq, '] with center x, and radiusr we mean the set of points x E R satisfying
the inequality

o(x0, X) < 7.

An open sphere of radiuse with center x, will also be called an e-neighborhood
of x,, denoted by O.(x,).

A point x € Riscalled a contact point of a set M < R if every neighbor-
hood of x contains at least one point of M. The set of al contact points of a
set M isdenoted by [M]and iscalled the closureof M. Obviously M < [M],
since every point of M is a contact point of M. By the closure operator in
a metric space R, we mean the mapping of Rinto R carryingeachset M < R
into itsclosure [M].

THEOREM 1. The closure operator has the following properties:

1) If M < N, then [M] < [N}
2) [[M]] = [M];

3) [MUN]=[M]U][N];
4) [o]=2.

Proof. Property 1) is obvious. To prove property 2), let x E [[M]].
Then any given neighborhood O, (x) contains a point x; € [M]. Consider
the sphere O, (x,) of radius

g = & — p(x, Xp).

Clearly O, (x;) is contained in O.(x). In fact, if zeO, (x,), then
e(z, x;) < ¢, and hence, since p(x, x;) = e — &, it follows from the
triangle inequality that

p(z,x) <& +(e—g) =5,

i.e., ZE O, (x). Since x, E [M], there is a point x, EM in O, (x). But
then x, € O.(x) and hence x € [M], since 0,(x) isan arbitrary neighbor-
hood of x. Therefore [[M]] < [M]. But obvioudy [M] < [[M]] and
hence [[M]] = [M], as required.

To prove property 3), let x € [M U N]and suppose x ¢ [M] U [N].
Then x ¢ [M] and x ¢ [ N].But then there exist neighborhoods O, (x)
and 0,,(x) such that O, (x) contains no points of M while 0, (x) contains

4 Any confusion between " sphere’ meant in the sense of spherical surface and ** sphere™
meant in the sense of a solid sphere (or ball) will always beavoided by judicious use of the
adjectives " open™ or **closed.”

SEC. 6 CONVERGENCE. OPEN AND CLOSED sETs 47

no points of N. It follows that the neighborhood O,(x), where ¢ =
min {g;, &5}, contains no points of either M or N, and hence no points
of M U N, contrary to the assumption that x e [ MU N]. Therefore
x € [M] U [ N] and hence

[M U N]< [M] VY [N], D

since x is an arbitrary point of [ MU N]. On the other hand, since
M< MUN and N M UN, it follows from property 1) that
[M] < [MuU NJ]and [N]= [MuU N].But then

[M] U [N] = [M U N,

which together with (1) implies [M U N]= [M] U [N].
Finally, to prove property 4), we observe that givenany M < R,

M]=[My g]=[M]V[5]

by property 3). It follows that [@] = [M]. But this is possible for
arbitrary M only if [o] = @. (Alternatively, the set with no elements
can have no contact points!) g

A point x € Riscalled alimitpoint of aset M = Riif every neighborhood
of x contains infinitely many points of M. The limit point may or may not
belongto M. For example, if M isthe set of rational numbersin the interval
[0, 1], then every point of [0,1], rational or not, isalimit point of M.

A point x belonging to a set M is cdled an isolated point of M if there
isa ("sufficiently small™) neighborhood of x containing no points of M other
than x itself.

6.2. Convergence and limits. A sequence of points {x,} = x;, X4, .. .,
X, ... 1N & metric space R is said to converge to a point x € R if every
neighborhood O, (x) of x contains all pointsx, starting from a certain index
(more exactly, if, given any € > 0, there is an integer &, such that O.(x)
contains all points x,, with » = N_). The point x is caled the limit of the
sequence {x,,}, and we write x, — X (asn — o). Clearly, {x,} convergesto
x if and only if

lim p(x, x,,) = 0.

It is an immediate consequence of the definition of a limit that

1) No sequence can have two distinct limits;
2) If a sequence {x,} convergesto a point x, then so does every subse-
quence of {x,}

(give the details).
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THEOREM 2. A necessary and sufficient condition for a point x to be a
contact point of a set M isthat there exist a sequence {x,,} of points of M
converging to X.

Proof. The condition is necessary, sinceif x is a contact point of M,
then every neighborhood 0,,,(x) contains at least one point x, € M,
and these pointsform a sequence {x,,} converging to M. The sufficiency
isobvious. §

THEOREM 2. A necessary and sufficient condition for a point X to be a
limit point of a set M isthat there exist a sequence {x,} of distinct points
of M converging to X.

Proof. Clearly, if x is a limit point of M, then the points x, €
0,,4(x) N M figuring in the proof of Theorem 2 can be chosen to be
distinct. Thisprovesthe necessity,and the sufficiency isagain obvious.

6.3. Dense subsets. Separable spaces. Let A and B be two subsets of a
metric space R. Then A is said to be densein B if [A]> B. In particular,
A is said to be everywhere dense (in R) if [A]=R. A set A issaid to be
nowhere denseif it is densein no (open) sphere at all.

Example 1. The set of all rational points is densein the real line R%

Example 2. The set of al points X = (xy, x5, .. ., x,,) With rational co-
ordinatesis densein each of the spacesR", Ry and R? introduced in Examples
3-5, pp. 38-30.

Example 3. The set of dl points X = (X, X, «+ ., X, «..) With only
finitely many nonzero coordinates, each a rational number, is dense in the
space /; introduced in Example 7, p. 39.

Example 4. The set of al polynomials with rational coefficientsis dense
in both spaces C,, ,, and C7, ,; introduced in Examples6 and 8, pp. 39 and
40.

DEFINITION. A metric space is said to be separablef it hasa countable
everywhere dense subset.

and C?

[a,b]

Example5. The spacesRY, R", R?, R%, 1, C,

[a,0]>
since the setsin Examples 1-4 above are all countable.

areall separable,

Example 6. The ""discrete space™ M described in Example 1, p. 38 con-
tains a countabl e everywhere dense subset and hence is separable if and only
if it isitself a countable set, since clearly [M] = M in this case.

Example 7. There is no countable everywheredense set in the space m of
al bounded sequences, introduced in Example 9, p. 41. In fact, consider
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the set E of al sequencesconsisting exclusively of zeros and ones. Clearly,
E has the power of the continuum (recall Theorem 6, Sec. 2.5), since there
is a one-to-one correspondence between E and the set of all subsets of the
set Z, ={1,2,...,n,...) (describe the correspondence). According to
formula (12), p. 41, the distance between any two points of E equals 1.
Suppose we surround each point of E by an open sphere of radius 4, thereby
obtaining an uncountably infinite family of pairwise digoint spheres. Then
if some set M is everywhere densein m, there must be at least one point of
M in each of the spheres. It follows that M cannot be countable and hence
that m cannot be separable.

64. Closed sets. We say that a subset M of a metric space Ris closed if it
coincides with its own closure, i.e., if [M]= M. In other words, a set is
caled closed if it contains al itslimit points (see Problem 2).

Example |. The empty set @ and the whole space R are closed sets.
Example 2. Every closed interval [a,b] on the real lineis a closed set.

Example 3. Every closed sphere in a metric space is a closed set. In
particular, the set of al functions f in the space C, ,, such that | /(1) < K
(where K is a constant) is closed.

Example 4. The set of al functions f in C,, ,, such that | ()] < K (an
open sphere) is not closed. The closure of this set is the closed spherein the
preceding example.

Example 5 Any set consisting of afinite number of pointsis closed.

THEOREM 3. The intersection of an arbitrary number of closed setsis
closed. The union of a finite number of closed sets is closed.

Proof. Given arbitrary sets F, indexed by a parameter a, let x be a
limit point of the intersection

F=IF.
a

Then any neighborhood O,(x) contains infinitely many points of F, and
hence infinitely many points of each F. Therefore x is a limit point of
each F, and hence belongs to each F,, since the sets F, are all closed.
It followsthat x € F, and hence that F itself is closed.

Next let

be the union of a finite number of closed sets F,, and suppose x does
not belongto F. Then x does not belong to any of the sets F,,, and hence
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cannot bealimit point of any of them. But then, for every k, thereisa
neighborhood O, (x) containing no more than afinite number of points
of F,. Choosing

E=min{e,...,c,},

we get a neighborhood 0, (x) containing no more than afinite number of
points of F, so that x cannot b?a limit point of . This proves that a
point X ¢ Fcannot be alimit point of F. Therefore Fis closed. i

6.5. Open sats. A point x is called an interior point of aset M if x hasa
neighborhood 0,(x) = M, i.e., a neighborhood consisting entirely of points
of M. A setissaid to be open if its points are all interior points.

Example 1. Every open interval (a, b) on the real line is an open set. In
fact, if a<x <b, choose ¢ = min{x — a, b — x). Then clearly 0,(x) <
(a, b).

Example 2. Every open sphere S(a, r) in a metric space is an open set.
Infact, x € S(a, r) implies p(a, X) <r. Hence, choosinge = r — p(a, X), We
have O.(x) = S(x, g) = S(a, 1).

Example 3. Let M be theset of al functionsf in C, ,, such thatf (t) <
g(t), whereg isafixedfunction in G, ,;. Then M is an open subset of C, ..

THEOREM 4. A subset M d a metricspace R isopen f and only if its
complement R — M isclosed.

Proof. If M is open, then every point x € M has a neighborhood
(entirely) contained in M. Therefore no point X € M can be a contact
point of R — M. In other words, if X is a contact point of R — M,
thenxe R — M, ie., R — Misclosed.

Conversely, if R — M is closed, then any point x EM must have a
neighborhood contained in M, since otherwise every neighborhood of x
would contain points of R — M, i.e., X would be a contact point of
R — M notin R — M. Therefore M isopen. §

CoroLLARY. The empty set @ and the whole space R are open sets.

Proof. An immediate consequence of Theorem 4 and Example 1,
Sec.6.4. §

THEOREM 5. The union of an arbitrary number & open setsisopen. The
intersection d afinite number d open setsis open.

Proof. Thisisthe ' dua" of Theorem 3. The proof is an immediate
consequence of Theorem 4 and formulas (3)-(4), p. 4. i
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6.6. Openand closed setson thereal line. The structure of open and closed
setsin a given metric space can be quite complicated. Thisis true even for
open and closed sets in a Euclidean space of two or more dimensions
(R", # > 2). In the one-dimensional case, however, it is an easy matter to
give a complete description of all open sets (and hence of all closed sets):

THEOREM 6. Every openset G on thereal line is the union d afinite or
countable system d pairwise digoint open intervals.®

Proof. Let x bean arbitrary point of G. By the definition of an open
set, there is at least one open interval containing x and contained in G.
Let I, be the union of al such open intervals. Then, aswe now show, I,
isitself an open interval. In fact, let®

a =infl,, b=supl,
(where we allow the casesa = — o and b= -+c0). Then obviously
1, < (a,b). )

Moreover, suppose Yy is an arbitrary point of (a, b) distinct from x,
where, to be explicit, we assume that a <y < x. Then there is a point
y' €1, such that a <y' <y (why?). Hence G contains an open interval
containing the pointsy' and x. But then this interval also containsy,
ie,yel. (Thecasey > x is treated similarly.) Moreover, the point
X belongsto |,, by hypothesis. It followsthat I, = (a, b), and hence by
(2)that I, = (a, b). Thusl, isitself an open interval, as asserted, in fact
the open interva (a, b).

By its very construction, the interval (a, b) iscontained in G and is
not a subset of a larger interval contained in G. Moreover, it is clear
that two intervals |, and I, corresponding to distinct points x and x'
either coincide or dse are digoint (otherwise |, and Z,. would both be
contained in alarger interval |, U I, = | < G. Thereare no morethan
countably many such pairwise digoint intervals I, Infact, choosing an
arbitrary rational point in each I,, we establish a one-to-one correspond-
ence between the intervals |, and a subset of the rational numbers.
Finally, it is obvious that

c=U1 §

CoroLLARY. Every closedset on thereal linecan beobtainedby deleting
a finite or countable system d pairwise digoint intervalsfrom theline.

5 Theinfiniteintervals (—m, m), (@, m), and (— o, b) are regarded as open.
s Given a set of real numbers E, inf E denotes the greatest lower bound or infimum
of E, while sup E denotes the least upper bound or supremum of E.
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Proof. Animmediate consequence of Theorems 4 and 6.

Example | . Every closed interval [a, b] is a closed set (here a and b are
necessarily finite).

Example 2. Every single-element set {x,} is closed.

Example 3. The union of a finite number of closed intervals and single-
element setsis a closed set.

Example 4 (The Cantor set). A more interesting example of a closed set
on the line can be constructed as follows: Delete the open interval (4, %)
from the closed interval F, = [0, 1], and let F, denote the remaining closed
set, consisting of two closed intervals. Then delete the open intervals
(3,3 and (%, §) from Fy, and let F, denote the remaining closed set, con-
sisting of four closed intervals. Then delete the "' middle third" from each
of thesefour intervals, getting a new closed set F;, and so on (see Figure 9).
Continuing this processindefinitely, we get a sequence of closed sets F,, such
that

F0:F1:F2:>...:>Fn:>~--

(such a sequenceis said to be decreasing). Theintersection

m
F=MNF,

n=0
of all these setsis called the Cantor set. Clearly F is closed, by Theorem 3,
and is obtained from the unit interval [0, 1] by deleting a countable number
of open intervals. In fact, at the nth stage of the construction, we delete
271 intervals, each of length 1/3~.

To describe the structure of the set F, we first note that F contains the

points

0,L,5 55568 3
i.e., the end points of the deleted intervals (together with the points 0 and 1).
0 1*8
0 3 < 1
; ;
o L+ 2 4 2 1 8
9 9 3 3 9 9 /'i
- T~ - T T4
FIGURE 9
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However F contains many other points. Infact, givenany x € [0, 1], suppose
we write X in ternary notation, representing X as a series

S R ST ST 4
x= QB )

where each of the numbersa,, a,, ..., a, ...canonly take one of thethree
values0, 1, 2. Thenitiseasy toseethat X belongs to F if and only if x hasa
representation(4) such that none of the numbers a,, a,,...,4a, ... equas
1 (think things through).'

Remarkably enough, the set F has the power of the continuum, i.e.,
there are as many pointsin Fasin the wholeinterval [0, 1], despite the fact
that the sum of the lengths of the deleted intervals equals

F+i+5+ =1
To see this, we associate a new point

sb b be
)—2+22+ +2n+
with each point (4), where®
0 if a,=0,
"t if a,=2

I n this way, we set up a one-to-one correspondence between F and the whole
interval [0, 1]. Itfollowsthat F hasthe power of the continuum, as asserted.
Let A, bethesetof points(3). ThenF = A, U A,, wheretheset A, = F — 4,4
is uncountable, since A, is countable and F itsalf is not. The points of 4,
are often called " points (of F) of thefirst kind," whilethose of A, arecalled
"' points of the second kind.""

Problem |, Give an example of a metric space R and two open spheres
S(x,1) and S(y, r,) in R such that S(x,r,) < S(y,r,) dthoughr, >r,.

Problem 2. Prove that every contact point of a set M/ iseither alimit point
of M or anisolated point of M.

7 Just as in the case of ordinary decimals, certain numbers can be written in two
distinct ways. For example,

1 1 0 0++0+...—_0+2+2+..+2+..
373 tE 3n T3 3n :
Since none of the numerators in the second representation equals 1 the point % belongs
to F (thisis aready obvious from the construction of F).
81f x has two representations of the form (4), then one and only one of them has no
numerators a,, a,, . . ., a, -..equa tol. Theseare the numbers used to define b,.
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Comment. In particular, [M] can only contain points of the following
three types:

a) Limit points of M belongingto M ;

b) Limit points of M which do not belongto M;

¢) Isolated points of M.

Thus [M]isthe union of M and the set of al itslimit points.

Problem 3. Prove that if x,, — X, y, —Y asn - oo, then p(x,, y,) —
e(x, ).

Hint. Use Problem |a, p. 45.

Problem 4. Letf be a mapping of one metric space X into another metric
space Y. Prove thatf iscontinuous at a point x, if and only if the sequence

{y.} = {f(x,)} converges toy =f(x,) whenever the sequence {x,} con-
Vergesto x,.

Problem 5. Prove that

a) Theclosure of any set M isa closed set;
b) [M]isthe smallest closed set containing M.

Problem 6. Is the union of infinitely many closed sets necessarily closed?
How about the intersection of infinitely many open sets? Give examples.

Problem 7. Prove directly that the point $ belongs to the Cantor set F,
although it is not an end point of any of the open intervals deleted in con-
structing F

Hint. The point % divides the interval [0, 1] in the ratio 1:3. It also
dividestheinterval [0, §] |eft after deleting (%, %) intheratio 3:1, and so on.

Problem 8. Let Fbe the Cantor set. Prove that

@) The points of the first kind, i.e., the points (3) form an everywhere
dense subset of F;

b) Thenumbers of theform¢, + t,, wheret,, t, € F, fill thewholeinterval
[0, 21

Problem 9. Given a metric space R, let A be a subset of R and x a point
of R. Then the number

o(4, X) = inf g(a, X)
aed

is caled the distance between A and x. Prove that

a) X e Aimplies p(4, x) = 0, but not conversely;

b) o(4, X) isa continuousfunction of x (for fixed A);

0 o4, x) = 0if and only if x isa contact point of A;

d) [A] = A U M, where M istheset of all pointsx suchthat ¢(4, X) = 0.
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Problem 10. Let A and B be two subsets of a metric space R. Then the
number
o(4, B) = inf p(a, b)

acd
beB

iscalled the distance between A and B. Show that p(4, B) =0if A N B # &,
but not conversely.

Problem 1. Let Mg be the set of al functionsf in C, ,, satisfying a
Lipschitz condition, i.e., the set of allf such that

() — f)l < Kl — 1
for al 1, t, € [a, b], where X is a fixed positive number. Prove that

a) My isclosed and in fact is the closure of the set of all differentiable
functions on [a, b] such that | f'(?)| < X;
b) The set
M=U M,
K

of al functions satisfying a Lipschitz condition for some X is not
closed;
) The closure of M is the whole space C;, ,;.

Problem 12. An open set G in n-dimensional Euclidean space R" is said
to be connected if any points X, y € G can be joined by a polygona line?
lying entirely in G. For example, the (open) disk x? +y2 < 1 isconnected,
but not the union of the two disks

x2 R <, (x—2+y* <1

(even though they share a contact point). An open subset of an open set G
is called a component of G if it is connected and is not contained in alarger
connected subset of G. Use Zorn's lemmato prove that every open set G in
Rn is the union of no more than countably many pairwise digoint com-
ponents.

Comment. In the casen = 1 (i.e., on the real line) every connected open
set is an open interval, possibility one of the infinite intervals (—co, co),
(a, @), (—oo, b). Thus Theorem 6 on the structure of open sets on the line
is tantamount to two assertions:

1) Every open set on thelineisthe union of afinite or countable number
of components;
2) Every open connected set on the lineis an open interval.

® By a polygonal line we mean a curve obtained by joining a finite number of straight
line segmentsend to end.
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The first assertion holds for open sets in R (and in fact is susceptible to
further generalizations), while the second assertion pertains specificaly to
thereal line.

1. Complete Metric Spaces

7.1. Definitionsand examples. The reader is presumably already familiar
with the notion of the completenessof thereal line. Thereadl lineis, of course,
a particularly simple example of a metric space. We now make the natural
generalization of the notion of completeness to the case of an arbitrary
metric space.

DeriviTION 1. 4 Sequence {x,,} of points inametric space R withmetric
p is said to satisfy the Cauchy critevion if, given any ¢ = 0, thereis an
integer N, suchthat p(x,, x,.) <efor alln,n > N_.

DermvTioN 2. 4 subsequence{x,} of points inametric space R iscalled
a Cauchy sequence (or a fundamental sequence) if it satisfies the Cauchy
criterion.

THEOREM 1. Every convergent sequence {x,} is fundamental,

Proof. If {x,} convergesto alimit x, then, given any € > 0, thereis
an integer N, such that

(X5 X) <§
for dl » > N,. Butthen
p(xna xn’) < P('xn5 X) + P(xn” -x) <e
fordln,n" > N, §

DEerINITION 3. A metric space Rissaid to be complete if every Cauchy
sequence in R converges to an element of R. Otherwise R is said to be
incomplete.

Example |. Let Rbethe" space of isolated points™ considered in Example
1, p. 38. Then the Cauchy sequencesin R are just the "' stationary sequences,"'
i.e., the sequences {x,} all of whose terms are the same starting from some
index n. Every such sequenceis obviously convergent to an element of R.
Hence R iscomplete.

Example 2. The completenessof the real line R* isfamiliar from elemen-
tary analysis.
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Example 3. The completeness of Euclidean n-space R" followsfrom that
of R Infact, let

X =0 L6 (=12,

be a fundamental segquence of points of R". Then, given any £ = 0, there
existsan N, such that

n
B — oy <
k=1

for allp, g> N, it followsthat
X — x{?l < ¢ (k=1,...,n)
for all p, g > N,, i.e., each {x{"’} isa fundamental sequencein R%. Let

X = (xla"' ,x'n,)5

where

x;, = lim x{”".
Then obviously e

limx? = x.

9- o
This proves the completeness of R*. The completeness of the spaces Ry and
R introduced in Examples4 and 5, p. 39 is proved in almost the same way

(give the details).

Example 4. Let {x,(1)} be a Cauchy sequencein the function space C, ,,
considered in Example 6, p. 39. Then, given any € > 0, thereisan N, such
that

[%,() — x ()] <& ¢y

for al n, > N, and al te [a,b]. It follows that the sequence {x,(?)} is
uniformly convergent. But the limit of a uniformly convergent sequence of
continuous functions isitself a continuous function (see Problem 1). Taking
the limit as#” — oo in (1), we find that

leu(r) = x()] < =
foraln> N, and dl te [a,b], ie., {x,(1)} convergesin the metric of C,
to afunction x(t) € C, ;. Hence C, ,; is a complete metric space.

Example 5. Next let x!* be a sequence in the space 1 considered in
Example 7, p. 39, so that

(n)
x™ = (x4, XM, L),

SEMP <o (n=1,2,...).
k=1
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Suppose further that {x™} is a Cauchy sequence. Then, given any ¢ > 0,
thereisa N, such that
Pz(x(n)’ x(%’)) :kzl(xi(cn) _ x’(cn'))z < (2)
if n, ' > N,. It followsthat
M — xR <e (k=1,2,...),

i.e., for every k the sequence {x{™} is fundamental and hence convergent.

Let
(n)

X, = lim x,*,
n-* o0
X == (Xqy Xoy e v vy Xpyoo )

Then, as we now show, x isitself apoint of |, and moreover {x™} converges
to x in the |, metric, so that /, is a complete metric space.
Infact, (2) implies

M
SO =X ©)
for any fixed M. Holding # fixedin (3) and taking thelimitasn' — oo, weget

£ (n) 2
2000 =) < e @

Since (4) holdsfor arbitrary M, wecaninturntakethelimit of (4) asM — <o,
obtaining
20" — X < e &)

k=1

Just as on p. 40, the convergence of the two series

(e ) 2
2 20— )
impliesthat of the series
3 xk.
k=1

This provesthat x € |, Moreover, Since e is arbitrarily small, (5) implies

o0
lim p(x™, x) =1lim _| 3 (x{™ — x,)? = 0,
n=r o0 n-r o =1

i.e., {x} convergesto x in the /, metric, as asserted.
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Example 6. |t is easy to show that the space C7, ,; of Example 8, p. 40 is
incomplete. If

—1 if —1<t<—l,
n

qJn(t) = nt if —

then {¢,(1} is a fundamental sequencein C%, ,;, Since

2

L[%(t) — o (D) dt < e

However, {9,(¢)} cannot convergeto a function in C, ,;. In fact, consider
the discontinuous function

$(@t) = {

—1 if t<<0,
1 if r>0.

Then, given any function f € C, ,;, it follows from Schwarz's inequality
(obviously till valid for piecewise continuous functions) that

1/2

([0 — wor) "< ([0 - et ) “+ ([ fouto — v ar) "

But the integral on the left is nonzero, by the continuity off, and moreover
itisclear that

tim [ [p.(1) — YO dt = 0.
Therefore o

[ U@ — @u01 dt
cannot converge to zero asn — 0.

7.2. The nested spheretheorem. A sequence of closed spheres
Slxp, 11l Shxa, ra)s o L0, Slxarnls L
in a metric space R is said to be nested (or decreasing) if
Slxp, 11] D S[xg, r2] 2 =+ 2 Slxp, 1,1 2 -

Using thisconcept, wecan proveasimplecriterion for the completenessof R:
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THEOREM 2 (Nested sphere theorem). A metric space R is completef
and only if every nested sequence {S} = {S[x,, r,I} of closed spheresin
R such that r,, — 0 asn —~ w has a nonempty intersection

0 S,
n=1

Proof. If Ris complete and if {S)) = {S[x,, r,]} is any nested =
guence of closed spheres in R such that r,— 0 as n+ w, then the
sequence{x,) of centersof the spheresisfundamental, since p(x,, x,) <
r,forn” >nandr, —0asn— co. Therefore {x,) hasalimit. Let

x =limx,.
Then A
xefls,.
n=1
In fact, S, contains every point of the sequence{x,) except possibly the
points x,, x,, . . . , X,_31, and hence x isalimit point of every sphere S.

But S, isclosed, and hence x € S, for dl ».

Conversely, suppose every nested sequence of closed spheres in R
with radii converging to zero has a nonempty intersection, and let {x,}
be any fundamental sequencein R. Then x hasalimitin R. To seethis,
use thefact that {x,} isfundamental to choose atermx, of thesequence
{x,} such that

1
P(x'm xnl) < E

foraln > ny, and let S, bethe closed sphere of radius 1 with center x,, .
Then choose a term x,,, of {x,) such that n, = », and

1
P(xna xfnz) < i_z'

for al n > n,, and let S, be the closed sphere of radius § with center x,, .
Continue this construction indefinitely, i.e., once having chosen terms
Xpys Xpgs v ooy Xp (1 <My <*..<my), choose a term x,  such that
M1 = 1 and
1
o Xppin) < byt

for dl n > n,,,, let S,,, bethe closed sphere of radius 1/2* with center
Xp,,,» and so on. This gives a nested sequence{S) of closed spheres
with radii converging to zero. By hypothesis, these spheres have a non-
empty intersection, i.e., thereis a point x in all the spheres. This point
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is obviously the limit of the sequence {x, }. But if a fundamental se-
guence contains a subsequence converging to x, then the sequenceitself
must convergeto x (why?), i.e.,

limx, =x. §

n—+ o

7.3. Baire'stheorem. It will be recalledfrom Sec. 6.3 that a subset A of a
metric space R is said to be nowhere dense in Rif it is dense in no (open)
sphere at all, or equivalently, if every sphere S < R contains another sphere
S’ such that S N A= @ (check the eguivalence). This concept plays an
important role in

THEOREM 3 (Baire). A complete metric space R cannot be represented
as the union of a countable number of nowhere dense sets.

Proof. Suppose to the contrary that

R=UA, (6)

n=1

whereevery set A, isnowheredensein R. Let S, < R beaclosed sphere
of radius1. Since A, isnowhere densein S,, being nowhere densein R,
there is a closed sphere S, of radius less than % such that S, < S, and
S1 N A = g. Since A, is nowhere dense in S}, being nowhere dense
in S,, thereisaclosed sphere S, of radius lessthan § such that s, < §,
and S, N A, = @, and so on. In this way, we get a nested segquence of
closed spheres{S} with radii converging to zero such that

S, NA, =@ n=1,2,..)).
By the nested sphere theorem, the intersection
ns,
n=|

contains a point x. By construction, x cannot belong to any of the
sets A, i.e.,

It follows that
R+U4,,
n=1
contrary to (6). Hence the representation (6) isimpossible. i

CoroLLARY. A complete metric space R without isolated points is
uncountable.

Proof. Every single-elementset {x)is nowheredensein R. g
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7.4. Completionof a metricspace. As we how show, anincomplete metric
space can awaysbeenlarged (in an essentialy uniqueway) to give acomplete
metric space.

DeriNITION 4. Given a metric space R with closure [ R] a complete
metric space R* is called a completion of R if R <« R* and [ R]= R*,
i.e., if Risasubset of R* everywheredensein R*.

Example 1. Clearly R* = Rif Risaready complete (see Problem7).

Example 2. The space of al real numbers is the completion of the space
of al rational numbers.

THEOREM 4. Every metric space R has a completion. This completion
is unique to within an isometric mapping carrying every point x € R into
itself.

Proof. The proof is somewhat lengthy, but completely straight-
forward. First we prove the uniqueness, showing that if R* and R**
are two completions of R, then there is a one-to-one mapping x** =
p(x*) of R* onto R** such that ¢(x) = xfor al x e Rand

eu(x*, y*) = pa(x™*, y*) @)

(** = o(y*)), wherep, isthedistance in R* and p, the distancein R**.
The required mapping ¢ isconstructed asfollows: Let xX* bean arbitrary
point of R*. Then, by the definition of a completion, thereisa sequence
{x,) of points of R convergingto x*. The points of the sequence {x,)
also belong to R**, where they form a fundamental sequence (why?).
Therefore {x,) converges to a point x** € R**, since R** is complete.
It is clear that x** is independent of the choice of the sequence {x,)
converging to the point x* (why?). If we set ¢(x*) = x**, then ¢ is
the required mapping. In fact, ¢(x) = x for dl x € R, since if x,, — X
€ R,then obviouslyx = x* € R* ,x** = x. Moreover, suppose x,, — X* ,
Y, —y¥in R*, while x, — x**, y, — p** in R**. Then, if ¢ is the
distancein R,

Pl(x*’ y*) == 1-1_)11:) Pl(xm yn) = hm p(x'rw yn) (8)

see Problem 3, p. 54), while at the same time
p
P2(x**> y**) == hm Pz(xn, yn) = hm P(Xm yn) (8,)
n— o n—+m

But (8) and (8')together imply (7).
We must now prove the existence of a completion of R. Given an
arbitrary metric space R, we say that two Cauchy sequences{x,) and
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{%,} in Rare equivalent and write{x,) ~ {z,} if

lim o(x,, £,) = 0.

As anticipated by the notation and terminology, ~ is reflexive, sym-
metric and transitive, i.e., ~ is an equivalencerelation in the sense of
Sec. 1.4. Therefore the set of al Cauchy sequencesof pointsin the space
R can be partitioned into classes of equivalent sequences. Let these
classes be the points of a new space R*. Then we define the distance
between two arbitrary points x*, y* € R* by the formula

pl(X*a }’*) = lim P(xn’ )’n)’ (9)
where{x,) isany "representative" of x* (namely, any Cauchy sequence
in the class x*) and {y,) is any representative of y*.

The next step is to verify that (9)isin fact a distance, i.c., that (9)
exists, isindependent of the choice of the sequences{x,) € x*,{y,) € y*,
and satisfies the three properties of a distance figuringin Definition 1,
p: 37. Given any ¢ >0, it follows from the triangle inequality in R
(recall Problem Ib, p. 45) that

|P(xn7 yn) - P(xn’: yn’)l
= o(Xps ¥0) — 8(Xps ¥0) + P(Xwrs Y) — o(Xnr, yr)|
< Ip(xn’ yn) - p(xn’7 yn)! + lp(-xn’a yn) - P(xn’9 yn’)l

< 0% %) + o yu) <=+ = (10)

2 2

for all sufficientlylargern and n'. Therefore the sequence of real numbers
{5t = {p(x,,V,)) isfundamental and hence has a limit. This limit is
independent of the choice{x,) € x*,{y,) €y*. Infact, suppose

{xn}a{xn}ex’k: {}’n}>{)7n} E)’*‘
Then
IP(Xm yn) - p(£n> fn)l < P(xn’ fn) + P()’m j;n):

by a calculation analogous to (10). But

n-rm

since{x,} ~{R,), {ya} ~ {Fu}, and hence
lim P(x'n’ yn) = lim P(fna Jju)'

Asfor the three properties of a metric, it is obvious that p,(x*, y*) =
p:(y*, x*),and thefact that g, (x*, y*) = 0 if and only if X* = y* isan
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immediate consequenceof the definition of equivalent Cauchy sequences.
Toverify thetnanglemequal ityin R* ,westart fromthetriangleinequality

0Cinr 2,) < (s ) + 0Ws 22)
in the original space R and then take the limit asnh — oo, obtaining

lim p(xm Zn) < lim P(xm yn) +lim P(yn’ Zn):
n—+o n—c n—0

pr(x*®, z%) < pu(x*®, ¥*) + pi(¥¥, 2%).

We now come to the crucial step of showing that R* is a completion
of R. Supposethat withevery point x € R, we associatetheclassx* e R*
of all Cauchy sequencesconvergingto x. Let

i.e.,

x =limx,, y =limy,.
n=r o n— oo

Then clearly
e(x, y) =lim p(x,, y,.)
n—r o

(recall Problem 3, p. 54), while on the other hand

pa(x*, y*) =lim o(Xps Vs
n=m
by definition. Therefore
p('x? .y) = pl(X*7 y*)a

and hence the mapping of R into R* carrying X into X* is isometric.
Accordingly, we need no longer distinguish between the original space R
and its image in R*, in particular between the two metrics p and ¢,
(recall the relevant comments on p. 44). In other words, R can be re-
garded as a subset of R*. The theorem will be proved once we succeed
in showing that

1) Riseverywheredensein R*,i.e., [R]I= R
2) R iscomplete.

To this end, given any point x* € R* and any £ > 0, choose a rep-
resentative of x*, namely a Cauchy sequence{x,) in the class x*. Let
N be such that p(x,, X.) <eforaln,d = N. Then

P(xna x*) = lim P(xn’ xn') <€
n' =+

if n> N, i.e., every neighborhood of the point x* containsa point of R.
It followsthat [R]= R.

Finally, to show that R* is complete, we first note that by the very
definition of R*, any Cauchy segquence {X,) consisting of pointsin R
convergesto some point in R*, namely to the point x* € R* defined by
{x,). Moreover, since R is dense in R*, given any Cauchy sequence
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{x¥} consisting of pointsin R* ,we can find an equivalent sequence{x,)
consisting of points in R. In fact, we need only choose x, to be any
point of R such that p(x,, x¥) < 1/n. The resulting sequence {x,} is
fundamental, and, asjust shown, convergesto a point x* € R*. But then
the sequence {x*} also convergesto x*. §

Example. If Risthe space of all rational numbers, then R* is the space of
all real numbers, both equipped with the distance ¢(x, y) = |x — y|. Inthis
way, we can "‘construct the real number system." However, there still
remains the problem of suitably defining sums and products of real numbers
and verifying that the usual axioms of arithmetic are satisfied.

Problem 1. Prove that the limitf (t) of a uniformly convergent sequence
of functions {f,,(#)} continuous on [a,] is itself a function continuous on
[a, b].

Hint. Clearly
£ (&) — U < 1f () — oD + 1/2() = F@)| + 1£a(0) — f (1)l

where ¢, ¢, € [a, b]. Use the uniform convergence to make the sum of the
first and third terms on the right small for sufficiently large n. Then use the
continuity of £,(¢) to make the second term small for t sufficiently close to .

Problem 2. Prove that the space m in Example 9, p. 41 is complete.

Problem 3. Prove that if R is complete, then the intersection n Sy
figuring in Theorem 2 consists of a single point.

Problem 4. By the diameter of a subset A of a metric space R is meant the
number

d(4) =sup e(x; )-
Suppose R is complete, and let {A,) be a sequence of closed subsets of R
nested in the sense that
A13A2:> ...DAnD
Suppose further that
limd(4,) =0

n—+o

Prove that the intersection n A, is nonempty.

Problem 5. A subset A of a metric space R is said to be bounded if its
diameter d(4) isfinite. Prove that the union of a finite number of bounded
setsis bounded.
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Problem6. Give an example of a complete metric space R and a nested
sequence {A,) of closed subsets of R such that

N4, = z.
ne==1

Reconcile this example with Problem 4.

Problem 7. Prove that a subspace of a complete metric space R is com-
pleteif and only if it is closed.

Problem8. Prove that the real line equipped with the distance
p(x,y)=larctan x — arctany]|
is an incomplete metric space.

Problem9. Give an example of a complete metric space homeomorphic
to an incomplete metric space.

Hint. Consider the example on p. 44.

Comment. Thus homeomorphic metric spaces can have different " metric
properties.”

Problem 10. Carry out the program discussed in the last sentence of the
example on p. 65.

Hint. If {x,} and {y,) are Cauchy seguences of rational numbers serving
as"'representatives of real numbers x* and y*, respectively, define x* +
as the real number with representative {x, + y,}.

8. Contraction Mappings

8.8. Definition of a contraction mapping. The fixed point theorem. Let A
be a mapping of a metric space R into itself. Then X is called a fixed point
of Aif Ax = X, i.e., if Acarries x into itself. Suppose there exists a number
a << 1 such that

o(Ax, Ay) < ap(x, y) M

for every pair of points x,y € R. Then Aissaid to be a contractionmapping.
Every contraction mapping isautomatically continuous, sinceit followsfrom
the "' contraction condition'" (1) that Ax, — Ax whenever x, — X.

THEOREM 1 (Fixed point theorem!®). Every contraction mapping A
defined on a complete Metric space R has a unique fixed point.

10 Often called the method of successive approximations (see the remark following
Theorem 1) or the principled contraction mappings.
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Proof. Given an arbitrary point x, R, let'!
X = AXg, X9 = Axy = A%x¢, ..., X, = AX, 1 = A"%y,... (2)

Then the sequence {x,) isfundamental. In fact, assuming to be explicit
that n < n’, we have

P(xnﬂ xn’) = p(A”xO, An"xo) < “nP(Xo: xn’—n)
< ‘xn[P(XO: xl) + P(xl’ x2) + o + P(X'n’—n——lv xn’—n)]

2 n'—r— - 1_
< ap(Xp, X[l + o+ o 4 b < (X, X1) 1 .
—

But the expression on the right can be made arbitrarily small for suffi-
ciently large n, since a < 1. Since R is complete, the sequence {x,},
being fundamental, has a limit

X =lim X,
. . N 0
Then, by the continuity of A,
Ax= Alimx, =lim Ax, =limx,, = X

This provesthe existence of afixed point x. To prove the uniquenessof x,
we note that if
AX = x, Ay =y,
(1) becomes
p(x, 1) < ap(x, y).

But then p(x,y)=0sincea<1l,and hence x=y. §

Remark. The fixed point theorem can be used to prove existence and
uniqueness theorems for solutions of equations of various types. Besides
showing that an equation of the form Ax = x has a unique solution, the
fixed point theorem also givesa practical method for finding the solution, i.e.,
calculation of the "successive approximations™ (2). In fact, as shown in
the proof, the approximations (2) actually converge to the solution of the
equation Ax = X. For this reason, the fixed point theorem is often called
the method of successive approximations.

Example 1. Let f be a function defined on the closed interval [a,b] which
which maps [a,b] into itself and satisfies a Lipschitz condition

S) — SOl < Klxy — X, 3

with constant K < 1. Then f is a contraction mapping, and hence, by

1 A2x means A(4x), A*x means A(A%) = A?(Ax),and 0 on.
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b If A isa contraction mapping, we can use the method of successiveapproxi-

b ) mations to solve the equation Ax = x. The conditions under which A is a

Y"N\ contraction mapping depend on the choice of metric. We now examinethree
Flo)— cases:

1) The space R? with metric

me=m§M—nL

1si<sn

fla) ; In this case,

; a(x; — %)) ’

1

0 X X3X X X b i
FIGURE 10 < max; laf lx; — %4l
Theorem 1, the sequence < max 3 |a;] mex Ix; — %] = (mgx 2 |a,~,~!) e(x, %),
7 2 % 3
Yo, X =f(x), xe=f(x1),... @ ‘ and the contraction condition
converges to the unique root of the equationf(x) = x. In particular, the Slagl<a<1l (i =1...,0. (6
" contraction condition'(3) holdsiff hasa continuous derivativef” on [a, b] !
such that 2) The space Ry with metric
ffl<K<1 p(x, y) = lexz =yl
The behavior of the successiveapproximations 4) in thecases0 <f (x) <1 Here
and —1 <f'(x) <0 isshownin Figures 10 and 11. N o
Y g p(ysﬁ):ZIyi—yi!=Z|zaij(xi"xj)
% K2 3

Example 2. Consider the mapping A of n-dimensional space into itself

iven by the system of linear equations . N .
given by the s “ <ZM%Wwwk<@azmﬂwa
g i i

Ve = 0% tho (=L ® and the contraction condition is now
Slagl<a<l (i=1L...,mn). (D

b 3) Ordinary Euclidean space R* with metric

/(0) n
ox, ) = | 2 (5 — 3%

Using the Cauchy-Schwarz inequality, we have

e M) =2 (2 a;(x; — fi))2< (;; a?,.) p¥(x, %),

[

|

T

LA

t

|

|

} and the contraction condition becomes

X, 0

' ST el <a< L. (8)
i 7

0 Xy KXy X Ky

FIGURE 11
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Thus, if at least one of the conditions (6)-(8) holds, there exists a unique
point X = (xy, X,, - - . . X,,) such that

ax, by (=1,...,n). ©)

R

X; —

Jj=1

The sequence of successive approximations to this solution of the equation
x = Ax are of theform

© 0 (0 )
x@ = (@, xP, L, x(,

(1) _ (1) (1) (1)
X = (X X s ey Xy ),

%) () (k) )
x :(x] ’xzcv s Xn )5

................

where
x::k) — zaijx;'k_l) + bi’
J=1

and we can choose any point x® as the "' zeroth approximation."*

Each of the conditions (6) - (8)is sufficient for applicability of the method
of successiveapproximations, but none of themisnecessary. Infact, examples
can be constructed in which each of the conditions (6)-(8)is satisfied, but
not the other two.

Theorem 1 has the following useful generalization, which will be needed
later (see Example 2, p. 75):

THEOREM 1. Given a continuousmapping of a complete metric space R
into itself, suppose A" isa contraction mapping (# an integer > 1). Then
A has a unique fixed point.

Proof. Choosing any point x, € R, let
X = lim A*"x,.
) i k—=m
Then, by the continuity of A,
AX = lim 44*"x,.

ko

But A" is a contraction mapping, and hence
e(AFAxg, AOX) < ap(A% " 4x0s AB—Dxg) < »+ - < aPp(Ax,, X,)
where« << 1. It follows that
p(Ax, x) zklim o AA*"x,, Ak”XO) =90,

i.e., AX = x sothat x isafixed point of A. To provethe uniquenessof x,

i et

EEN

L A
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we merely note that if A has more than onefixed point, then so does A",
which is impossible, by Theorem 1, since A" is a contraction

mapping.

8.2. Contractionmappingsand differential equations. The most interesting
applications of Theorems 1 and 1' arise when the space R is a function
space. We can then use these theorems to prove a number of existence and
unigqueness theorems for differential and integral equations, as shown in this
section and the next.

THEOREM 2 (Picard). Given a function f(X,y) defined and continuous
on a plane domain G containing the point (x,, y,),'? suppose f satisfiesa
Lipschitz condition of the form

) —f, Dl < My — 3|

in the variable y. Then there is an interval |x — xy| < & in which the
differential equation

dy
has a unique solution
Y = 9(x)

satisfying the initial condition
?(xX0) = Yo 11

Proof. Together the differential equation (10)and theinitial condition
(I'l) are equivalent to the integral equation

o(x) = yo + |_1(t, o(0)) dt. (12)
By the continuity off, we have
Lpl< K (13)

in some domain G* < G containing the point (x,, y,).** Choose 8 = 0
such that

D) (x, )G if [x — xo| < 8, ]y — pol < K3
2) M3 <1,

and let C* bethe space of continuousfunctions ¢ defined on theinterval

12 By an n-dimensional domain we mean an open connected set in Euclidean n-space
R" (connectedness is defined in Problem 12, p. 55).
13 |n fact, T is bounded on [G] if [G] < G (cf. Theorem 2, p. 110).
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|x — xo| < 8and such that |¢(x) — yo| < K3, equipped with the metric
e, ) = max o(x) — B(X)I.

The space C* iscomplete, sinceit isa closed subspace of the space of all
continuous functions on [x, — 38, x, -~ 8}. Consider the mapping ¢ =
A ¢ defined by the integral equation

VW) = yot [ f odr (x — xl < 3)

Clearly A is a contraction mapping carrying C* into itself. In fact, if
@ eC*,|x — x¢| < 6then

46 — vl = | [ et syt < [[170 sl ar < K Ix — wol < K3
by (13), and hence ¢ = A¢ also belongsto C*. Moreover,

1909 = Be0l < [, 1 00) = 0, 50)] dr < M3 max o) — (0,
and hence _
e, §) < Mp(o, 9)

after maximizing with respect to x. But 43 < 1, so that A is a con-
traction mapping. It followsfrom Theorem 1 that theequation y = Ay,
i.e., theintegral equation (12), hasa unique solutionin the spaceC*. §

Theorem 2 can easily be generalized to the case of systems of differential
equations:

THEOREM 2. Given n functionsfy(x, yi, . . . , ¥,,) dgined and continuous
on an (n+ 1)-dimensional domain G containing the point

(xO’ )/01, “as ,yOn)ﬂ

suppose each f; satisfies a Lipschitz condition of the form

|fi(x’ }’1, ey yn) _fi'l(x’ .}715 ey n)j)l < M max ly’L - )72[

1<i<n

inthevariablesy,, . .., y,. Thenthereisaninterval |[x — x,| < 8inwhich
the system of dierential eguations

%’(_i:ﬁ(x,yl’__.’yn) (i=1,...,n) (14

has a unique solution
yl == <Pl(-x)9 A 3_yn - CP,n(X)
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satisfying the initial conditions

?1(%0) = Yo . . . » PalX0) = Yon- (15)
Proof. Together the differential equations (14) and the initial con-
ditions (15) are equivalent to the system of integral equations

2 = ot [ [t 00,y 0uDdt (=1, m). (16)

By the continuity of the functions f;, we have

iyl <K (=1,...,0) (17
insomedomain G' = G containing the point (x,, yo;, « « « » ¥o,,). Choose
6 > 0 such that

1) (xa_yls Y :y'n)EG’ |f |x —_ xOl < 87 ’}’z —yoli < K6 f0r a“ | =
1,...,n;
2) M3 < 1.

Thistimelet C* be the space of ordered n-tuples

(P:(cpla-~-9<pn)
of continuousfunctions ¢, . . . , ¢, defined on theinterval |x — x,| < 8
such that |@;(x) — yo| < K8 for al i =1,...,n, equipped with the
metric

(o, SB) = max P(x) — @(x)l

Clearly C* iscomplete. Moreover, the mapping ¢ = A ¢ defined by the
system of integral eguations

W = yort [, Sl o),

(Jx —xg) < 8,0 =1,...

isa contraction mapping carrying C* into

(p:(cPl’"',CPn)EC* °\
then \; S
4 BRI
® £ . ~
1909 = yod = | [ At a0, S
XN EATNC
by (17), so that ¢ = (J,. e s
z - ,\o
[§,(x) — du(x)| = { \»\é . case of (18) by extending the
RS
vif y > x.
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and hence

o(b, §) < MBp(9, §)
after maximizing with respect to x and i. But 3 <1, so that Aisa
contraction mapping. It follows from Theorem 1 that the equation
¢ = Ao, L.e., thesystem of integral equations (16), hasa unique solution
inthespace C*. §

8.3. Contraction mappings and integral equations. We now show how the
method of successive approximations can be used to prove the existence and
unigueness of solutions of integral equations.

Example 1. By a Fredholm equation (of the second kind) is meant an
integral equation of the form

S =2 K ) ) dy + o0, (18)

involving two given functions K and ¢, an unknown function f and an
arbitrary parameter A. The function K is called the kernel of the equation,
and the equation is said to be homogeneousif ¢ = 0 (but otherwise non-
homogeneous).

Suppose K(x,y) and ¢(x) are continuous on the square a < X < b,
a<y < b,sothatin particular

[K(x, Ml < M (ea<x<ba<y<b).
Consider the mapping ¢ = Af of the complete metric space C,, ,, into itself
given by
800 = & ['KGx, ) f(0) dy + o).
Clearly, if g, = Af,, g, = Af;, then
plgs, g2) = max[g(x) = g(x)| < N M(b — a) max [ f1(x) — fo(x)|
= [A] M(b — a)e( /1, o),
so that A is acontraction mapping if
vy (19)

It follows from Theorem 1 that the integral equation (18) has a unique
solution for any value of A satisfying (19). The successive approximations

Jofi.o 0k, . to this solution are given by

fulx) = fa KGo D o) dy + o) (n=1,2,..),

U ——
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where any function continuous on [a, b] can be chosen as f;. Note that the
method of successive approximations can be applied to the equation (18)
only for sufficiently small [Al.

Example 2. Next consider the Volterra equation

700 = 1[ Kx, 1) dy + o), (20)

which differs from the Fredholm equation (18) by having the variable x
rather than the fixed number b as the upper limit of integration.™ It is easy
to see that the method of successive approximations can be applied to the
Volterra equation (20) for arbitrary A, not just for sufficiently small |A| as
in the case of the Fredholm equation (18). In fact, let A be the mapping

of Cp, ,; into itself defined by

A5 = 2] KCx, )£ dy F o),
and |etf1>f2 € C[a,b]' Then
|Af(x) — A = 1] K(x, DUAG) — AO)] dy

< AM(x — a) max | fi(x) — fo(3)l,
where ”
M = max | K(x, y)|.
It follows that o

A,06) — A00) < M max | ) — G0l [ — a)d

— M= & — 2 max L fi(x) — fa(x)],

and in general,
JATf(x) — Ao < x"M"(; max | £,(x) — (3|

< A" --in‘T—- max | f(x) — f(x)],
which implies '

p(A,, A% < anper Ll oz, 1y,

14 Equation (20) can be regarded formally as a specia case of (18) by extending the
definition of the kernel, i.e., by setting

K(x,y) =0 if y>x
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But, given any 2, we can always choose # large enough to make
A" (—k-’—ila‘l <1,
n!

i.e., A" is a contraction mapping for sufficiently large n. It follows from
Theorem1' that theintegral equation (20) hasauniquesolutionfor arbitrary 2.

Problem | . Let A bea mapping of a metric space R into itself. Prove that
the condition

p(dx, dy) < o(x,p)  (x# )
isinsufficient for the existence of afixed point of A.

Problem 2. Let F(x) be a continuously differentiable function defined on
the interva [a, b] such that F(a) <0, F(b) > 0 and

0 < K; < F'(x) < K, (a<x<b)
Use Theorem 1 to find the unique root of the equation F(x) = 0.

Hint. Introduce the auxiliary functionf (x) = x — AF(x), and choose A
such that the theorem works for the equivalent equationf (x) = x.

Problem 3. Devisea proof of the implicit function theorem based on the
use of the fixed point theorem.!

Problem 4. Prove that the method of successive approximations can be
used to solve the system (9) if |a,;| < 1/n (for aliandj), but notif |a,| = 1/n.

Problem 5. Prove that the condition (6) is necessary for the mapping (5)
to be a contraction mapping in the space Rj.

Problem 6. Prove that any of the conditions (6)-(8) implies

a; — 1 dio o Aia
2751 gy — 1 ... Aon ” 0
dn1 Ao g, — 1
nn

Comment. Hence thefact that the system (5) has a unique solution (under
suitable conditions) follows from Cramer's rule as well as from the fixed
point theorem.

1 Seee.g., |. G. Petrovski, Ordinary Differential Equations (translated by R. A. Silver-
man), Prentice-Hall, Inc, Englewood Cliffs, N.J. (1966), p. 47.
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Problem 7. Consider the nonlinear integral equation
b
£ =2[ Kx, y: S0 dy + o) (21)
with continuous K and ¢, where K satisfies a Lipschitz condition of theform

[K(x,y; z1) — K(x, y; )] < M |zy — 2z,

inits"functiona" argument. Prove that (21) has a unique solution for al

Write the successive approximations to this solution.
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TOPOLOGICAL SPACES

9. Badc Concepts

9.1. Definitionsand examples. In our study of metric spaces, we defined
a number of key ideas like contact point, limit point, closure of a set, etc.
I n each case, the definition rests on the notion of a neighborhood, or, what
amountsto the same thing, the notion of an open set. These notions (neigh-
borhood and open set) werein turn defined by using the metric (or distance)
in the given space. However, instead of introducing a metric in a given set
X, we can go about things differently, by specifying a system of open sets
in X with suitable properties. This approach leads to the notion of a topo-
logical space. Metric spaces are topological spaces of a rather specia
(although very important) kind.

DeriniTiON 1. Givena set X, by atopology in Xi smeant a system T of
subsets G < X, called epen sets (relative to ), with the following two
properties:

1) The set X itself and the empty set & belong to =;

2) Arbitrary (finite or infinite) unions {J G, and Jnite intersections

n o

(1} G, of open setsbelong zo T.
k=1

DEFINITION 2. By a topological space ismeant a pair (X, v}, consisting
of aset X and a topology = defined in X.

Just asa metric spaceisa pair consisting of a set Xand ametric defined in
X, soatopological spaceisa pair consisting of aset X and a topology defined
in X. Thus, to specify a topological space, we must specify both a set X and

78
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atopology in X, i.e., we must indicate which subsets of X are to be regarded
as " open (in X)." Clearly, we can equip one and the same set with various
different topologies, thereby defining various different topological spaces.
Nevertheless, wewill usually denotea topological space, namely apair (X, 1),
by asingleletter like T. Just asin the case of a metric space R, the elements
of atopological space Twill be called the points of T.

By the closed sets of a topological space T, we mean the complements
T — G of the open setsG of T. It followsfrom Definition 1 and the" duality
principle’ (see p. 4) that

1') The space T itself and the empty set & are closed;
2) Arbitrary (Inite or infinite) intersections () F, and finite unions U Fy
of closed sets of Tare closed. a el

The natural way of introducing the concepts of neighborhood, contact
point, limit point and closure of a set is now apparent:

a) By aneighborhood of a point x in a topological space T is meant any
openset G < T containing X;

b) A point x e T iscalled a contact point of aset M < T if every neigh-
borhood of x contains at least one point of M ;

c) A point x e Tiscaled alimitpoint of aset M < T if every neighbor-
hood of x containsinfinitely many points of M ;

d) The set of all contact points of a set M < T is called the closure of
M, denoted by [M].

Example 1. According to Theorem 5, p. 50, the open sets in any metric
space satisfy the two properties in Definition 1. Hence every metric space
isa topological space as well.

Example 2. Given any set 7, suppose we regard every subset of T as open.
Then T is a topological space (the properties in Definition 1 are obviously
satisfied). In particular, every set M < Tisboth open and closed, and every
set M = T coincides with its own closure. Note that the "' discrete metric
space' of Example 1, p. 38 has this trivial topology.

Example 3. Asanother extreme case, consider an arbitrary set T equipped
with a topology consisting of just two sets, the whole set T and the empty
set @. Then T isa topological space, a kind of " space of coalesced points'™
(mainly of academic interest). Note that the closure of every nonempty set
is the whole space T.

Example 4. Let T be the set {a,b), consisting of just two points a and b,
and let the open setsin T be T itself, the empty set and the single-element set
{b). Then the two properties in Definition 1 are satisfied, and T is a topo-
logical space. The closed setsin this space are T itself, the empty set and the
set {a). Note that the closure of {b) is the whole space T.
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9.2. Comparison of topologies. Let v; and t, be two topologies defined
in the same set X.* Then we say that the topology =, is stronger than the
topology T, (or equivalently that =, is weaker than ) if v, < 7, i.e., if
every set of the system t, is a set of the system =,.

THEOREM 1. The intersection v = n 7, Of any set of topologies in X
isitself a topology in X.

Proof. Clearly n T, contains X and &. Moreover, since every =, is

closed (algebrai caIIy) under the operations of tak| ng arbitrary unionsand
finite intersections, the sameis true of n T,. B

COROLLARY. Let 4 be any system of subsets of a set X. Then there
exists a minimal topology in X containing %, i.e., a topology t(%) con-
taining % and contained in every topology containing 4.

Proof. A topology containing # aways exists, e.g., the topology
in which every subset of X is open. The intersection of all topologies
containing % is the desired minimal topology (%), often called the
topology generated by the system %. §

Let #Z be a system of subsets of X and A a fixed subset of X. Then by
the trace of the system 4 on the set A we mean the system #, consisting of
all subsets of X of theform A N B, Be #. It is easy to see that the trace
(on A) of atopology = (defined in X) is a topology t in A. (Such a topol-
ogy is often called a relative topology.) In this sense, every subset A of a
given topological space (X, T) generates a new topological space (A, t4),
called a subspace of the original topological space (X, ).

9.3, Bases. AXiomsof countability. As we have seen, defining a topology
in aspace T means specifying a system of open setsin 7. However, in many
concrete problems, it is more convenient to specify, instead of al the open
sets, some system of subsets which uniquely determines al the open sets.
For example, in the case of a metric space we first introduced the notion of
an open sphere (e-neighborhood) and then defined an open set G as a set such
that every point x € G has a neighborhood O,(x) = G. In other words, the
open setsin a metric space are precisely those which can be represented as
finite or infinite unions of open spheres. In particular, the open sets on the
real line are precisely those which can be represented as finite or countable
unions of open intervals (recall Theorem 6, p. 51). These considerations
suggest

1 This gives two topological spaces T, = (X, 7)) and T, = (X, r,).
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DerINITION 3. A4 family 4 of open subsets of a topological space T’ is
calleda basefor Ti every open set in T can be represented as a union of
setsin %.

Example | . The set of all open spheres (of all possible radii and with all
possible centers) in a metric space R is a base for R. In particular, the set
of al open intervalsis a base on the real line. The set of all open intervals
with rational end points is also a base on the line, since any open interva
(and hence any open set on the line) can be represented as a union of such
intervals.

It isclear from the foregoing that a topology « can be definedin aset T
by specifying abase ¢ in T. This topology - isjust the system of setswhich
can berepresented as unions of setsin 9. If thisway of specifying a topology
isto be of practical value, we must find requirements which, when imposed
on a system ¢ of subsets of a given set T, guarantee that the system « of all
possible unions of setsin ¢ be a topology in 7, i.e., that = have the two
properties figuring in Definition 1:

THEOREM 2. Givenaset 7, let & bea systemof subsets G, < T with the
following two properties:

1) Every point x € T belongsto at least one G, € ¥;
2) Ifx e G, N Gy, thenthereisaG, € ¥ suchthat x e G, < G, N G,

Suppose the empty set @ and all sets representable as unions of sets G,
aredesignatedasopen. Then T isatopologicalspace, and % isabasefor T.

Proof. It followsat once from the conditions of the theorem that the
wholeset Tand theempty set & are open sets, and that the union of any
number of open setsis open. We must still show that the intersection of
a finite number of open setsis open. It is enough to provethisfor just
two sets. Thuslet

A= U Goc, B = U GB'
a B
Then
Ar‘\B:UB(Ga(\Gg). )

By hypothesis, given any point x € G, N Gy, thereisa G, € % such that
XeG, < G, NG, Hencetheset G, N G, is open, being the union of
al G, contained in G N G,. But then (1) isalso open. Therefore Tisa
topological space. Thefact that ¢ isa base for T is clear from the way
open setsin Tare defined.

The following theorem is a useful tool for deciding whether or not a
given system of open setsis a base:




82 TOPOLOGICAL SPACES CHAP. 3

THEOREM 3. A system ¢ of open sets G, in a topological space T isa
basefor T1 and onlyif givenany openset G < T and any point X € G,
thereisaset G, ¢ suchthat x e G, < G.

Proof. If 4 isa basefor T, then every open set G < Tisaunion
¢=Ug,
a

of sets G, € . Therefore every point x € G is contained in some set
G < G. Conversely, given any open set G < T, suppose that for every
point X € G thereisa set G (x) €  such that x € G,(x) = G. Then
G =UG.x),
ae
i.e., Gisaunion of setsin 9. [

Example 2. It follows from Theorem 3 that the set of all open spheres
with rational radii (and all possible centers) in a metric spaceR is a base for
R (this is obvious anyway). In particular, as already noted in Example 1,
the set of all openintervals with rational end pointsisa basefor the real line.

Animportant classof topological spacesconsistsof spaces with a countable
base, i.e., spacesin which thereis at least one base containing no more than

countably many sets. Such a spaceis also said to satisfy the second axiom of
countability.

THeorem 4. |fa topological space T has a countable base, then T con-
tains a countable everywhere dense subset, i.e., a countable set M = T
such that [M]=T.

Proof. Let ¢ = {G,,G,, ..., G,, ...} bea countable base for T,
and choose a point x, ineach G. Then the set

M:{XI,JCg,...,x,,,...)

is countable. Moreover, M is everywhere dense in T, since otherwise
the nonempty open set G= T — [M] would contain no points of M.
But thisisimpossible, since G is a union of some of the setsG,, in ¢ and
G, containsthe point x, e M. g

For metric spaces, we can say even more:

THeorem 5. If a metric space R has a countable everywhere dense
subset, then R has a countable base.

Proof. Suppose R has a countable everywhere dense subset {Xx,,
Xz, ..., Xy -..)- Then, givenany open set G = Rand any X € G, there
is an open sphere S(x,,, 1/r) such that x € S(x,,, 1/n) = G for suitable
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positive integers m and » (why?). Hence the open spheres S{x,,, 1/n),
wherem and » range over all positiveintegers, form a countable basefor
R §

Combining Theorems4 and 5, we see that a metric space Rhasa countable
basef and onlyf it hasa countable everywhere dense subset.

Example 3. Every separable metric space, i.e., every metric space with a
countable everywhere dense subset, is a metric space satisfying the second
axiom of countability.

Example 4. The spacem of all bounded sequencesis not separable (recall
Example 7, p. 48) and hence has no countable base.

Remark. I'n general, Theorem 5 does not hold for arbitrary (nonmetric)
topological spaces. In fact, examples can be given of topological spaces
which havea countabl eeverywheredense subset but no countable base. Let us
see how this might come about. Given any point x of ametric spaceR, there
is a countable neighborhood base (or local base) at x, i.e., a countable system
0 of neighborhoods of x with the following property: Given any open set G
containing x, there is a neighborhood O € @ such that O = G (cf. Theorem
3).2 Suppose every point x of a topological space T has a countable neigh-
borhood base. Then T is said to satisfy the firss axiom of countability.
However, this axiom need not be satisfiedin an arbitrary topological space.
Hence the argument used in the case of metric spacesto deduce the existence
of a countable base from that of a countable everywhere dense subset does
not carry over to the case of an arbitrary topological space.

A system .# of sets M, is called a cover (or covering) of a topological
space T, and .# issaid to cover T, if

T=U M.,.

A cover consisting of open (or closed) setsonly is called an open (or closed)
cover. If Alisacover of atopological space T, then by a subcover of A4
we mean any subset of .# which also covers T.

THEOREM 6. If T is a topological space with a countable base ¢, then
every open cover @ has a finite or countable subcover.

Proof. Since @ covers T, each point x € T belongsto some open set
O, € . Moreover, since ¢ is a countable base for T, for each x e T
there is a set G, (x) € ¢ such that x € G, (x) < O, (recall Theorem 3).

2 For example, the set of open spheres S(x, 1/n) is a countable neighborhood base at
any point x of a metric space R.
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The collection of al sets G, (x) selected in this way isfinite or countable
andcoversT. For each G, (x) wenow chooseone of the sets O, containing
G, (%), thereby obtaining afinite or countable subcover of ¢.

Given any topological space T, the empty set @ and the space T itsdlf
are both open and closed, by definition. A topological space T is said to
be connected if it has no subsets other than & and T which are both open
and closed. For example, the real line R* is connected, but not the set
R — {x) obtained from R! by deleting any point x.

9.4. Convergent Sequencesin a topological space. The concept of a con-
vergent sequence, introduced in Sec. 6.2 for the case of a metric space,
generaizesin the natural way to the case of a topological space. Thus a
sequence of points {x,} = xy, X,, ..., X,, ... iN & topological space T is
said to converge to a point x € T (called the limit of the sequence) if every
neighborhood G(x) of x containsall points x,, starting from a certain index.?
However, the concept of a convergent sequence does not play the same basic
role for topological spaces as for metric spaces. In fact, in the case of a
metric space R, a point x isa contact point of aset M < R if and only if M
contains a sequence converging to x. On the other hand, in the case of a
topological space 7, thisisin general not true, as shown by Problem 11.
In other words, a point x can be a contact point of aset M < T (i.e., X can
belong to [A£]) without A7 containing a sequence converging to x. However,
convergent sequences "are given their rights back™ if T satisfies the first
axiom of countability, i.e., if thereisa countable neighborhood base at every
point xe T:

THeorem 7. If a topological space T satisfies the first axiom of
countability, then every contact point x of aset M < T isthe limit of a
convergent sequence of pointsin M.

Proof. Let @ be a countable neighborhood base at x, consisting of
sets0,. |t can beassumed that 0,,, < O, (n=1, 2,...), since other-

wise we need only replace 0, by rn1 O;. Let x, be any point of M

k=1
contained in ¢,. Such a point x, can aways be found, since x is a
contact point of M. Then the sequence {x,} obviously converges to

x. §

Remark. As aready noted, every metric space satisfies the first axiom
of countability. This, together with Theorem 7, shows why in the case of
metric spaces we were able to formulate concepts like contact point, limit

# More exactly, if, given any G(x), there is an integer N, such that G(x) contains all
points x, with » > N,

SEC. 9 BASIC cONcepTs 85

point, etc. in terms of convergent sequences (recall Theorems 2 and 2,
p. 48).

95. Axiomsof separation. Although many basic concepts of the theory
of metric spaces carry over easly to the case of topological spaces, an
arbitrary topological spaceis till too general an object for most problems
of analysis. In fact, things can happen in an arbitrary topological space
which differ in an essential way from what happensin a metric space. Thus,
for example, a finite set of points need not be closed in an arbitrary topo-
logical space, as shown in Example 4, p. 79. Hence it is desirable to
specialize the notion of a topological space somewhat by considering topo-
logical spaces more closaly resembling metric spaces. This is done by
imposing extra conditions on a topological space T, in addition to the two
defining properties figuring in Definition 1, p. 78. For example, as we
have already seen, the axioms of countability allow us to study topological
spacesfrom the standpoint of the concept of convergence. We now introduce
supplementary conditions, called axioms of separation, of quite a different

type:
DerNniTiON 4. Suppose that for each pair of distinct pointsx and y in
a topological space T, there isa neighborhood O, of x and a neighborhood

0, ofysuchthat x €0,, y € O,. Then Tissaid to satisfy the firsz axiom of
separation, and is called a Ty-space.

Example|. Thespacein Example 2, p. 79isa T,-space, but not the space
in Example 4.

THEOREM 8. Every finite subset of a T,-space is closed.

Proof. Given any single-element set {x), suppose y ## x. Then y
has a neighborhood 0, which does not contain x, i.e., y & [{x)].There-
fore [{x)]= {x), i.e., every "singleton” {x) is closed. But every finite
union of closed setsisitsalf closed. Henceevery finite subset of the given
spaceisclosed. §

The next axiom of separation is stronger than the first axiom:

DerINITION 5. Suppose that for each pair of distinct pointsx andy in
a topological space T, there isa neighborhood O, of x anda neighborhood
O, of y such that 0, N 0O, = @. Then T issaid to satisfy the second (or
Hausdorff’) axiom of separation, and is called a T,-space or Hausdorff
space.

Thus, roughly speaking, each pair of digoint pointsin a Hausdorff space
has a pair of digoint neighborhoods.
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Example 2. Every Hausdorff space is a Ty-space, but not conversely (see
Problem 10).

Topological spaces more general than Hausdorff spaces are rarely used
in analysis. In fact, most of the topologica spaces of interest in analysis
satisfy a separation condition even stronger than the second axiom of
separation:

DEFINITION 6. A Ti-space T is said to be normal If for each pair of
digoint closed sets F, and F, in 7T, there is an open set 0, containing F,
and an open set O, containing F, suchthat 0, N 0, = .

I n other words, each pair of disjoint closed setsin a normal space has a
pair of digoint " neighborhoods."

Example 3. Obvioudly, every normal spaceis a Hausdorff space.

Example 4. Consider the closed unit interval [0, I], where neighborhoods
of any point X 5= 0 are definedin the usual way (i.e., as open setscontaining
X), but neighborhoods of the point x = 0 are al half-open intervals 0, a)
with the points

TS S )

deleted (and arbitrary unions and finiteintersections of these neighborhoods
with neighborhoods of nonzero points). This space is Hausdorff, but not

normal since the set {0} and the set of points (2) are digoint closed sets
without digoint neighborhoods.

THEOREM 9. Every metric space is normal.

Proof. Let X and Y be any two digoint closed subsets of R. Every
point x £ X has a neighborhood 0, digoint from Y, and henceis at a
positive distance p,, from Y (recall Problem 9, p. 54). Similarly, every
pointy E Y is at a positive distance g, from X. Consider the open sets

U= U S(X, %Px)’ V= U S(y’ %py)i
2e X vel

where, as usual, S(x, r) is the open sphere with center x and radius r.
Itisclearthat X < U, Y = V. Moreover, Uand V aredigoint. Infact,

suppose to the contrary that thereisa point ze U N V. Then there are
points x, E X, y, E Y such that

p(xo, 2) < %P%’ e(z, yo) < %Pv(,-
Assume, to be explicit, that Po, < Py Then

P(x()a yO) < P(xo, z) + e(z, }’o) = %Pwo + %Puo < Py07
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Le., xo € S(¥o, gy,)- Thiscontradictsthe definition of p, , and showsthat
there is no pointzEU N V. §

Remark. Every subspace of a metric space is itself a metric space and
hence normal. Thisis not truefor normal spacesin general, i.e., a subspace
of a normal space need not be normal.® A property of a topological space
T shared by every subspace of Tissaid to behereditary. Thusnormality of a

space is not a hereditary property. These ideas are pursued in Problems
13and 14.

9.6. Continuous mappings. Homeomorphisms. The concept of a contin-
uous mapping, introduced for metric spacesin Sec. 5.2, generalizesat once
to the case of arbitrary topological spaces. Thus, let f be a mapping of one
topological space X into another topological space Y, so that f associates
an element y =T (x) E Y with each element x € X. Then f is said to be
continuous at the point x, e X if, given any neighborhood V, of the point
¥o = f (xy), there is a neighborhood U of the point x, such that f U, ) <
Vy,- The mapping f is said to be conti ndous on X if it is continuous at every
pomt o X In particular, a continuous mapping of a topological space X
into the real lineis called a continuous real function on X.

Remark. These definitionsclearly reduce to the corresponding definitions
for metric spacesin Sec. 5.2 if X and Y are both metric spaces.

The notion of continuity of a mapping f of one topological space into
another® is easily stated in terms of open sets, i.e., in terms of the topologies
of the two spaces:

THeorem 10. A mapping f of a topological space X into a topological
space Y is continuous f and only I the preimage T' = f~1(G) of every
openset G < Yisopen(inX).

Proof. Suppose f is continuous on X, and let G be any open subset
of ¥. Choose any point x € I' = f1(G), and lety = f (x). Then Gisa
neighborhood of the pointy. Hence, by the continuity off, thereisa
neighborhood U, of x suchthat f (U,) < G, i.e., U, < |2 Inother words,
evary point x ET' has a neighborhood contained in I'. But then T is
open (see Problem 1).

Conversely, suppose I' = /-(G) is open whenever G < Y is open.
Givenany point X E X, let ¥, beany neighborhood of the pointy =f (x).

4 Seee.g, J. L. Keley, General Topology, D. Van Nostrand Co., Inc., Princeton, N.J.
(1955), p. 132.

5 |f desired, the mappingf can always be regarded as ** onto,"" since otherwise we need
only replace the space Y by the subspace f(X) < Y.




88 TOPOLOGICAL SPACES CHAP. 3

Then clearly x ef ~2(¥,), and moreoverf —*(¥,) is open, by hypothesis.
Therefore U, = f~X¥,) is a neighborhood sf x such thatf (U,) < 7,.
I n other words,f iscontinuousat x and henceon X, sincexisan arbitrary
point of X. §

Naturally, Theorem 10 has the following " dua"":

THeorem 10'. Amapping f of a topological space X into a topological
space Y iscontinuousifand only ifthepreimageI’ =f —*(F) d every closed
set F < Yisclosed (in X).

Proof. Usethefact that the preimage of a complement isthe comple-
ment of the preimage.

Remark. Let X and Y be two arbitrary sets, and letf be a mapping of
Xinto Y. Suppose that in Y there is specified a topology =, i.e., a system
of sets containing Y and @, and closed under the operations of taking
arbitrary unions and finite intersections. Then since the preimage of a
union (or intersection) of sets equals the union (or intersection) of the
preimages of the sets, by Theorems 1 and 2, p. 5, the preimage of the
topology =, i.e., the system of all sets f=*(G) where Ge r, is a topology
in X which we denote by f~1(x).

Suppose now that X and Y are topological spaces, with topologies 5
and ty, respectively. Then Theorem 10, giving a necessary and sufficient
condition for a mapping f of X into Y to be continuous can be paraphrased
asfollows: Amappingf of X into Y iscontinuousif and only if the topology
Tx isstronger than the topology f—*(ty).

Example. |t iseasy to see that the image (as opposed to the preimage) of
an open set under a continuous mapping need not be open. Similarly, the
image of a closed set under a continuous mapping need not be closed. For
example, consider the mapping of the half-openinterval X = [0, 1) onto the
circle of unit circumference corresponding to ""winding' the interval onto
the circle. Then theset [, I), whichisclosedin [0, 1), goesinto a set which
is not closed on the circle (see Figure 12).

£{0)

¥

=

FIGURE 12
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The theorem on continuity of composite functions, familiar from
elementary calculus, has the following analogue for topological spaces:

THeoreM 11. Given topological spaces X, Y and Z, supposef is a
continuous mapping d X into Y and ¢ a continuousmapping d Y into Z.

Then the mapping ¢f, i.e., the mapping carrying X into ¢(f(x)), is
continuous.

Proof. An immediate consequence of Theorem 10.

Given two topological spacesX and Y, letf be a one-to-one mapping of X
onto Y, and supposef and f—* are both continuous. Thenf is caled a
homeomorphic mapping or simply a homeomorphism (between X and Y).
Two spaces X and Y are said to be homeomorphic if there exists a homeo-
morphism between them. Homeomorphic spaces have the same topological
properties, and from the topological point of view are merely two ' repre-
sentatives' of one and the same space. In fact, if X and Y have topologies
¢ and <y, respectively, and iff isa homeomorphic mapping of X onto ¥,
then vy =f (1) and ©y =T (vx). The relation of being homeomorphic
is obviously reflexive, symmetric and transitive, and henceis an equivalence
relation. Therefore any given family of topological spacescan be partitioned
into digoint classes of homeomorphic spaces.

Remark. Again these are the natural generalizations of the same notions
for metric spaces, introduced in Sec. 2.2. It should be noted that two homeo-
morphic metric spaces need not have the same "metric properties™ (recall
Problem 9, p. 66). Note also that the topology of a metric space is uniquely
determined by its metric, but not conversely (illustrate this by an example).

9.7. Variousways of specifying topologies. Metrizability. The most direct
and in principle the simplest way of specifying a topology in a space T isto
indicate which subsets of T are regarded as open. The system of all such
subsets must then satisfy properties 1) and 2) of Definition 1. By duality,
we could just as wdl indicate which subsets of X are regarded as closed.
The system of all such subsets must then satisfy properties 1) and 2') on
p. 79. However, this method is of limited practical value. For example, in
the case of the plane it is hardly possible to give a direct description of all
open sets (as was done in Theorem 6, p. 51 for the case of the line).

A topology is often specified in a space T by giving a base for T. In
fact, thisis precisely what isdonein Sec. 6 for the case of a metric space R,
where the base for R consists of all open spheres (or even all open spheres
with rational radii).

Another way of specifying a topology in a space T is to introduce the
notion of convergencein T. As noted in Sec. 9.4, this is not a universal
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method. It does work, however, in the case of spaces satisfying the first
axiom of countability.®

Still another way of introducing a topology in a space T is to specify
aclosure operator in T, i.e., a mapping which assignsto each subset M < T
a subset [M] < T and satisfies the four properties listed in Theorem 1,
p. 46. It can be shown that the system of complements of al setsM < T
such that [M] = M isthen a topology in T.7

Specifyinga metric in a space T is one of the most important ways of
introducing atopology in T, but it isagain far from being a universal method.
As aready noted, every metric space is normal and satisfies the first axiom
of countability. Hence no metric can be used to introduce a topology in a
space whichfails to have these two properties. A topological space T issaid
to be metrizable if its topology can be specified by means of some metric
(more exactly, if it is homeomorphic to some metric space). Asjust pointed
out, a necessary condition for a topological space T to be metrizable is that
it be normal and satisfy the first axiom of countability. However, it can be
shown that these conditions are not sufficient for T to be metrizable. On the
other hand, in the case of a space with a countable base (i.e., satisfying the
second axiom of countability), we have

URYSOHN'S METRIZATION THEOREM. A necessary and sufficient condi-
tion for a topological space with a countable base to be metrizableis that
it be normal.

The necessity followsfrom Theorem 9. For the sufficiency we refer to the
literature.®

Problem 1. Given atopological space 7, provethat aset G = Tisopen if
and only if every point x € G has a heighborhood contained in G.

Problem 2. Given a topological space T, prove that

a) [M] = M if and only if M isaclosed set, i.e., the complement T — G
of anopenset G = T,

b) [M]isthe smallest closed set containing M ;

¢) The closure operator, i.e., the mapping of T into T carrying M into
[M] satisfies Theorem 1, p. 46.

Problem 3. Consider the set .7~ of al possible topologies defined in a
set X, where 1, < 7, means that T, is weaker than t,. Veify that < isa

¢In fact, by suitably generalizing the notion of convergence (and introducing the
concepts of ""nets™ and "*filters™), this method can be made to work quite generally. See
e.g., J. L. Kelley, op. cit., p. 83.

*J. L. Kelley, op. ciz., p. 43.

8 Seee.g., P. S. Alexandroff, Einfiihrungin die Mengeniehre und die Theorieder Reellen
Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin (1956), p. 195 ff.
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partial ordering of 7. Does. g~ have maximal and minimal elements? If so,
what are they?

Problem 4. Can two distinct topologies t; and =, in X generate the same
relative topology in asubset A = X?

Problem 5. Let
X={a,b,c}, A=1{a, b}, B={b,c},

andlet ¥ = {3, X, A,B). Is% abasefor atopology in X?

Problem 6. Prove that if M is an uncountable subset of a topological
space with a countable base, then some point of M isalimit point of M.

Problem 7. Prove that the topological space T in Example 4, p. 79 is
connected.

Comment. T might be called a"* connected doubleton."*

Problem 8. Prove that a topological space satisfying the second axiom of
countability automatically satisfies the first axiom of countability.

Problem 9. Give an example of a topological space satisfying the first
axiom of countability but not the second axiom of countability.

Problem 10. Let t be the system of sets consisting of the empty set and
every subset of the closed unit interval [0, 1] obtained by deleting a finite
or countable number of pointsfrom X. Verifythat T = (X, v)isatopological
space. Prove that T satisfies neither the second nor the first axiom of count-
ability. Provethat T isa T;-space, but not a Hausdorff space.

Problem 11. Let T be the topological space of the preceding problem.
Prove that the only convergent sequencesin Tarethe" stationary sequences,"
i.e., the sequencesall of whose terms are the same starting from someindex
n. Prove that the set M = (0, 1] has the point O as a contact point, but
contains no sequence of points converging to 0.

Problem 12. Prove the converse of Theorem 8.

Comment. Hence a topological space T is a Ty-space if and only if every
finite subset of T is closed.

Problem 13. Prove the following theorem, known as Urysohn's Jemma:
Given a normal space T and two digjoint closed subsets F;, F, € T, there
exists a continuous real functionf such that 0 < f (x) < 1 and

0 if xekfy,

&= & xer
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Problem 14. A Ty-space T is said to be completely regular if, given any
closed set F < T and any point x, € T — F, there exists a continuous real
function f such that 0 < f (x)< 1 and

0 0 if x= xy

X) =

: 1 if xeF.

(Completely regular spaces are also called Tychonoff spaces.) Prove that
every normal space is completely regular, but not conversely. Prove that
every subspace of acompletely regular space (in particular, of anormal space)
is completely regular.

Comment. Thus, unlike normality, complete regularity is a hereditary
property. It can be shown that a space is completely regular if and only if
itisasubspace of anormal space.” Completely regular spacesare particularly
important in analysis, since they "are able to support sufficiently many
continuous functions," i.e., for any two distinct points x and y of a completely
regular space T, there is a continuous real function on T taking distinct
values at x and y.

[0. Compactness
10.1. Compact topological spaces. The reader has presumably already
encountered the familiar

HEINE-BOREL THEOREM. Any cover of aclosed interval [ a,b] by a system
of open intervals (or, more generally, open sets) has « finite subcover.

Generalizing this property of closed intervals, weare led to a key concept
of real analysis:

DeriniTIoN 1. A topological space T is said to be compact if every open
cover of T has a finite subcover. A compact Hausdorff space is called a
compactum.

Example. As we will see in Sec. 11.2, any closed bounded subset of
Euclidean n-space R" is compact, for arbitrary n. On the other hand, R"
itself (e.g., thereal line or three-dimensional space) is not compact.

DeriNITION 2. A system of subsets {A,) of a set T issaid to be centered

if every finite intersection kr_]l A, isnonempty.1

?J. L. Kelley, op. cit., p. 145.
10 A system of sets with typical member A, will often be denoted by {A,} (this is still
another use of curly brackets).
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THeorem 1. A topological space T is compact if and only if it has the
following property:

A) Every centered system of closed subsets of T has a nonempty
intersection.

Proof. Suppose T iscompact, and let {F,} be any centered system of
closed subsetsof 7. Then thesetsG, = T — F, areopen. Hence the fact

that no finiteintersection (} F, isempty implies that no finite system of

k=1
setsG, = T — F, covers T. But then thewhole system of sets{G,} cannot
cover T, by the compactness, and hence N F, 4 @. In other words,
T has property A) if T is compact. *
Conversely, suppose T has property A), and let {G,) be any open
cover of T. Setting F, = T — G,, we find that [} F, = &, which, by

24
property ), implies that the system F, is not centered, i.e., that there
are sets £, ..., F, such that ) £, = @. But then the corresponding

k=1
open sets G, =T — F, form a finite subcover of the cover {G,). In
other words, Tiscompact if T has property A). §

THEOREM 2. Every closed subset F of a compact topological space T is
itself compact.

Proof. Let {F,) beany centered system of closed subsets of the sub-
space F = T. Then every F, isclosedin Taswdll, i.e., {F,) isacentered
system of closed subsets of 7. Therefore (} F, = &, by Theorem 1.

But then F is compact, by Theorem 1 again.

CoroLLARY. Every closedsubset of a compactum isizselfa compactum.

Proof. Use Theorem 2 and the fact that every subset of a Hausdorff
space isitself a Hausdorff space. g

THeorem 3. Let K be a compactum and T any Hausdorff space con-
taining K. Then Kisclosedin T.

Proof. Suppose y ¢ K, so that y e T — K. Then, given any point
x € K, thereisa neighborhood U, of x and a neighborhood ¥, of y such
that
U,Nnv,=a.

The neighborhoods {U,}(x € K) form an open cover of K. Hence, by the
compactness of K, {U,} has afinitesubcover consisting of sets U, , . . . ,
U, Let

V=7, n..- NV,

&y
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Then ¥ is a neighborhood of the pointy which does not intersect the set
U, U... v U, =K, and hencey ¢ [K]. It follows that K is closed
(inT). B
Remark. It is a consequence of Theorems 2 and 3 that compactness is
an"'intrinsic property," in the sensethat a compactum remains a compactum
after being "' embedded™ in any larger Hausdorff space.

THeoREM 4. Every compactum K isa normal space.

Proof. Let X and Y be any two digjoint closed subsets of K. Re-
peating the argument givenin the proof of Theorem 3, weeasily seethat,
given any pointy € Y, there existsa neighborhood U, containingy and
an open set O, » X such that U, N 0, = @&. Since Y is compact, by
Theorem 2, the cover {U,}(y € Y) of the set Y has a finite subcover
U,»+ -+, U,,. The open sets

0(1):0yln__.moyn’ 0(2):U111U'"UU!!“
then satisfy the normality conditions
oW o X, 0¥ oY, oV NOo® =g, §

10.2. Continuous mappings of compact spaces. Next we show that the
"*continuous image'* of a compact space isitsef a compact space:

THEOREM 5. Let X bea compact space and f a continuousmapping of X
onto a topological space Y. Then Y =f (X) isitself compact.

Proof. Let{V,) beany opencover of Y, andlet U, = f~*(¥,). Then
the sets U, are open (being preimages of open sets under a continuous
mapping) and cover the space X. Since Xis compact, {U,} has a finite
subcover U, ,~.., U, . Thenthesets ¥, ,..., V, , where V, =T (Up),
cover Y. It followsthat Y iscompact. §

THEOREM 6. A oneto-one continuous mapping of a compactum X
onto a compactum Y is necessarily a homeomor phism.

Proof. We must show that theinversemappingf —*isitself continuous.
Let Fbe aclosed setin X and P =f (F) itsimagein Y. Then Pisa
compactum, by Theorem 5. Hence, by Theorem 3, Pis closed in Y.
Therefore the preimage under /—* of any closed set F< X isclosed. It
followsfrom Theorem 10’, p. 88 that f—* is continuous. i

10.3. Countable compactness. We begin by proving animportant property
of compact spaces:

THEOREM 7. If T is a compact space, then any infinite subset of T has
at least one limit point.
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Proof. Suppose Tcontainsan infiniteset X with nolimit point. Then
T contains a countable set

X ={x1, X5 o4« s Xps v}
with no limit point. But then the sets
Yo = s Xz} (1=1,2,..)

form a centered system of closed setsin T with an empty intersection,
i.e., Tisnot compact. §

These considerations suggest

DeriniTiON 3. A topological space T is said to be countably compact
if every infinite subset of T hasat least one limit point (in 7).

Thus Theorem 7 says that every compact set is countably compact. The

converse, however, is not true (see Problem 1). The relation between the
concepts of compactness and countable compactness is made clear by

THeorem 8. Each of the following two conditions is necessary and
sufficient for a topological space T to be countably compact:

1) Every countable open cover of T has a finite subcover;
2) Every countable centered system of closed subsets of T has a non-
empty intersection.

Proof. The equivalence of conditions 1) and 2) is an immediate
consequence of the duality principle. Moreover, if T is not countably
compact, then, repeating the argument given in proving Theorem 7,
wefind that there is a countable centered system of closed subsets of T
with an empty intersection. This proves the sufficiency of condition 2).
Thus we need only prove the necessity of condition 2). Let T be
countably compact, and let {F,} be a countable centered system of
closed setsin T. Then, aswe now show, () F, # o . Let

n
0,=NF.
k=1
Then none of the @, is empty, since {F,} is centered. Moreover,
(1)13(1)23...2)(1)”3---,
and
No,=NF,
n n
There are now just two possibilities:

D, = ®?, .1 =...starting from someindex n,, in which caseit
isobviousthat | @, = @, # o.
n
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2) There are infinitely many distinct sets @,. In this case, there is
clearly nolossof generalityin assumingthat all the @, aredistinct.
Let x, e ®, — ®,.,. Then the sequence{x,) consistsof infinitely
many distinct points of 7, and hence, by the countable compact-
nessof 7, must have at least one limit point, say x,. But then x,
must be a limit point of ®,, since ®, contains all the points x,,
Xpi1s+ .« Moreover x, € @, since @, isclosed. It follows that

xeN®,, ie, NO, # z. B
n n

Thus compact topological spaces are those in which an arbitrary open
cover has a finite subcover, while countably compact spaces are those in
which every countable open cover has a finite subcover. Although in general
countable compactness does not imply compactness, we have the following
important special situation:

THEOREM 9. The concepts of compactness and countable compactness
coincide for a topological space T with a countable base.

Proof. By Theorem 6, p. 83, every open cover @ of T hasa countable
subcover. Hence, if T isceuntably compact, @ has a finite subcover, by
Theorem 8. §

Remark. The concept of a countably compact topological space, unlike
that of a compact space, has not turned out to be very natural or fruitful.
Its presencein mathematics can be explainedin terms of akind of " historical
inertia."" The point isthat, aswill be shown in the next section, the concepts
of compactness and countable compactness coincide for metric spaces, as
well as for spaces with a countable base. The notion of compactness was
originally introduced in connection with metric spaces, with acompact metric
space being defined as one in which every infinite subset has at least one
limit point (i.e., in terms of what is now called "' countable compactness').
The "automatic transcription'” of this definition from metric spaces to
topological spacesthen led to the concept of acountably compact topological
space. Sometimes, especiadly in the older literature, the word ' compact™
isusedinthe senseof "' countably compact,"* and atopological space compact
in our sense (i.e., such that every open cover has a finite subcover) is said
to be "bicompact.”” In this older language, a compact Hausdorff space
(a "compactum™ in our terminology) is called a “bicompactum,” and the
term " compactum' is reserved for a compact metric space. We will adhere
to the terminology introduced in Definitions 1 and 3, often using the term
""metric compactum™ to designate a compact metric space.

10.4. Relatively compact subsets. Among the subsets of a topological
space, those whose closures are compact are of specia interest:
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DeriNITION 4. A subset M of a topological space T is said to be rela-
tive& compact (inT)if its closure # in T is compact.

Example 1. According to Theorem 2, every subset of a compact topo-
logical space is relatively compact.

Example 2. Aswe will seein Sec. 11.3, every bounded subset of the real
line R* (or more generally of Euclidean n-space R")is relatively compact.

A related concept is given by

DEerINITION 5. A subset A4 of a topological space T is said to be rele-
tively countably compact (inT ) if every infinite subset A < A has at least
one limit point in T (whichmay or may not belong to M).

Relative compactness (unlike compactness) is not an "' intrinsic property,**
i.e., it depends on the space T in which the given set A7 is ""embedded.”
For example, the set of all rational numbersin theinterva (0, 1) isrelatively
compact if regarded as a subset of thereal line, but not if regarded as a subset
of the space of al rational numbers. The concept of relative compactness
is most important in the case of metric spaces (see Sec. 11.3).

Problem |. Let X be the set of all ordinal numbers less than the first
uncountable ordinal. Let («, 8) = X denote the set of all ordinal numbers
v such that « <y <, and let the open setsin X be al unions of intervals
(«, B). Prove that the resulting topological space is countably compact but
not compact.

Problem 2. A topological space T is said to be locally compact if every
point x e T has at least one relatively compact neighborhood. Show that a
compact space is automatically locally compact, but not conversely. Prove
that every closed subspace of alocally compact subspace islocally compact.

Problem3. Apoint x is said to bea complete limit point of a subset A of a
topological spaceif, given any neighborhood U of x,thesetsAand A N U
have the same power (i.e., cardinal number). Prove that every infinite subset
of a compact topological space has at least one complete limit point.

Comment. Conversely, it can be shown that if every infinite subset of a
topological space T hasat |east one completelimit point, then T iscompact.’t

il. Compactness in Metric Spaces

11.1. Total boundedness. Since metric spaces are topological spacesof a
specia kind, the definitions and results of the preceding section apply to

P, S Alexandroff, op. cit., pp. 250-251; J. L. Kelley, op. cit., pp. 163-164.
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metric spaces as well. However, in the case of metric spaces, the concept
of compactness is intimately connected with another concept, known as
total boundedness.

DeriNITION 1. Let R beametricspaceande any positivenumber. Then
aset A< Rissaid to bean g-netfor aset M < R if, for every x e M,
thereisat least onepoint a € A such that o(x,a) < e

Examplel. Theset of al points with integral coordinatesisa (1 /\/ 5)-net.
Example 2 Every subset d a totally bounded set is itsdf totally bounded.

DeriniTION 2. Given ametricspace R andasubset M < R, suppose M
has a finite c-netfor every = = 0. Then M issaid to be totally bounded.

If a set M istotally bounded, then obviously soisitsclosure [M]. Every
totally bounded set is automatically bounded, being the union of a finite
number of bounded sets (recall Problem 5, p. 65). The converseis not true,
as shown in Example 4.

Example 3. In Euclidean n-space R", total boundedness is equivalent to
boundedness. In fact, if M < R is bounded, then M is contained in some
sufficiently large cube Q. Partitioning Q into smaller cubes of side e, wefind
that the vertices of the little cubesform afinite (\/ nef2)-net for Q and hence
(afortiori) for any set contained in Q.

Example 4. The unit sphere % in /,, with equation

i x2 =1,
n=1
is bounded but not totally bounded. In fact, consider the points
ey =(1,0,0,..), e=(01,0,..),...,
where the nth coordinate of e, is one and the others are al zero. These
points all lie on Z, and the distance between any two of them isv/2. Hence
Z cannot have afinite e-net with e < \/5/2.
Example 5. Let IT be the set of points x = (xy, X,, + v+, X, -+ 2) IN ]y
satisfying the inequalities
1

1
[x:] < 1, 1x2|<5,-~~, lxn|<27:1,---

The set 11, called the Hilbert cube (or fundamental parallelepiped)'® furnishes

12 Another commonly encountered definition of the Hilbert cube is the set of points
in |, satisfying the inequalities
1
lxa] <1, [xal < PEREED [xa] <

5

1
n
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an example of an infinite-dimensional totally bounded set. The fact that I1
is totally bounded can be seen as follows: Given any ¢ = 0, choose » such
that

1 <& ’
2=t 2
and with each point
X = (X1, X5 e e 3 Xppur2)
in I associate the point
X* = (X, Xgy 005 X,,0,0,..) )]
(x* isalso a point inIT). Then
© - ) 1 €
, X% = 2 g o8,
P(x X ) \/k=.§+1xk kgn 4k 2n—1 2

But the set IT* of al pointsin Il of the form (1) is totally bounded, being
abounded setinn-space. Let Abeafinite(e/2)-netinII*. Then Aisafinite
c-net for the whole set I1.

11.2. Compactness and total boundedness. We now show the connection
between the concepts of compactness (of both kinds) and total boundedness:

TreoreM 1. Every countably compactmetricspace Ristotally bounded.

Proof. Suppose R is not totally bounded. Then there is an ¢, > 0
such that R has no finite e;-net. Choose any point a, € R. Then R
contains at least one point, say a,, such that

p(ab aZ) > 30’
since otherwise @, would be an g4-net for R. Moreover, R contains a
point a, such that
p(ay, as) > =, p(aq, as) > <,
since otherwisethe pair a,, a, would be an eg-net for R. Moregeneraly,
once having found the points a, a,, ..., a, we choose a,,; € R such
that
P(@r> Any1) > € (k=12,...,m).

This construction givesan infinitesequenceof distinct pointsa,, a,, ...,
a,, . .. With no limit points, since ¢(a;, a,) > ¢, if j 54 k. But then R
cannot be countably compact. §

CoroLLARY 1. Every countably compact metric space hasa countable
everywhere dense subset and a countable base.

Proof. SinceRistotally bounded, by Theorem 1, R hasa finite (1/n)-net
foreveey n =1,2,... . Theunion of all these netsis then a countable
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everywheredense subset of R. It follows from Theorem 5, p. 8 that R
has a countable base. J

CoroLLARY 2. Every countably compact metric space is compact.

Proof. An immediate consequence of Corollary 1 and Theorem 9,
p.96. §

According to Theorem 1, total boundedness is a necessary condition for
ametric space to be compact. However, thisconditionis not sufficient. For
example, the set of rational pointsin the interval [0,1] with the ordinary
definition of distance forms a metric space R which is totally bounded but
not compact. In fact, the sequence of points

0, 0.4, 0.41, 0.414, 0.4142, ...

in R, i.e., the sequence of decimal approximations to the irrational number

V2 - 1, has no limit point in R. Necessary and sufficient conditions for
compactness of a metric space are given by

THEOREM 2. A metric space R is compact If and only it is totally
bounded and complete.

Proof. To see that compactness of R implies completeness of R,
we need only note that if R has a Cauchy sequence {x,} with no limit,
then {x,} has no limit points in R. This, together with Theorem 1,
showsthat R istotally bounded and complete if Ris compact.

Conversely, suppose Ristotally bounded and complete, and let {x,}
be any infinite sequence of distinct pointsin R. Let N; be a finite |-net
for R, and construct a closed sphere of radius 1 about every point of »;.
Sincethese spherescover Rand there areinfinitely many of them, at least
one of the spheres, say S, contains an infinite subsequence

(n n
X1y way Xa g

of the sequence{x,}. Let N, beafinitei-netfor R, and construct aclosed
sphere of radius 4 for every point of N,. Then at least one of these
spheres, say S,, contains an infinite subsequence

(2) (2)
X1 ey Xg yaan

of the sequence {x!2}. Continue this construction indefinitely, finding
a closed sphere S; of radius } containing an infinite subsequence

(a) (3
A S

of thesequence {x{#}, and so on, where S, hasradius 1/2%-1. Let S’ be
the closed sphere with the same center as S, but with aradius r, twiceas
large (i.e., equal to 1/2™). Then clearly

’ ’ ’
Slgsz:}...:)sn:;...’
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and moreover r, — 0 asn — c0. Since R is complete, it follows from
the nested sphere theorem (Theorem 2, p. 60) that

ns,# o.
n=1

In fact, there isa point x, € R such that
m
ns, = {xo}
n=l

(recall Problem 3, p. 65). Clearly x, is a limit point of the origina
sequence {x,}, sSince every neighborhood of x, contains some sphere S,
and hence some infinite subsequence {x}. Therefore every infinite
sequence{x,} of distinct pointsof Rhas alimit pointin R. Itfollowsthat
Ris countably compact and hence compact, by Corollary 2. g

Example. Asaready noted, a subset M of Euclidean n-space R"istotally
bounded if and only if it isbounded. Moreover, M iscompleteif and only if
itisclosed (recall Problem 7, p. 66). Hence, by Theorem 2, the set of all
compact subsets of R™ coincides with the set of al closed bounded subsets
of R™.

11.3. Relatively compact subsetsof a metric space. The concept of relative
compactness, introduced in Sec. 104 for subsets of an arbitrary topological
space, applies in particular to subsets of a metric space. In the case of a
metric space, however, there is no longer any distinction between relative
compactness and relative count-able compactness.

THEOREM 3. A subset M of a complete metric space R is relatively
compact if and only if it is totally bounded.

Proof. An immediate consequence of Theorem 2 and the fact that a
closed subset of a complete metric spaceisitself complete. §

Example. Any bounded subset of Euclidean n-spaceit totally bounded
and hence relatively compact (this is our version of the familiar Bolzano-
Weierstrass theorem).

Remark. The utility of Theorem 3 stemsfrom the fact it is usually easier
to provethat a set istotally bounded than to givea direct proof of itsrelative
compactness. On the other hand, compactness is the key property as far as
applications are concerned.

114. Arzeld’s theorem. The problem of proving the compactness of
various subsets of a given metric space is encountered quite frequently in
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analysis. However, the direct application of Theorem 2 is not aways easy.
Thisexplainsthe need for special criteria servingas practical toolsfor proving
compactnessin particular spaces. For example, aswe have seen, thebounded-
ness of a setin Euclidean n-spaceimpliesits compactness, but thisimplication
failsin more general metric spaces.

One of the most important metric spacesin analysisis the function space
Cla.07» INtroduced in Example 6, p. 39. For subsets of this space, we have
an Important and frequently used criterion for relative compactness, called
Arzeld’s theorem, which will be stated and proved after first introducing two
new concepts:

DEerINITION 3. A family ® of functions ¢ defined on a closed interval
[a,b] is said to be uniformly bounded if there exists a number K = 0 such
that

lp(0)] < K
for all x e [a,b]and all ¢ € D.

DerINITION 4. A family @ of functions ¢ defined on a closed interval
[a,b] issaid to be eguicontinuous i f, given any e = 0, thereexistsa number
3 > 0 such that |x" — x"| < 6implies

o(x) — o(x") < e
for all X', X" e [a,bland all ¢ € D.

THEOREM 4 (Arzela). A necessary and sufficient conditionfor a family
@ of continuous functions ¢ defined on a closed interval [a,b] to be
relatively compact in C, ,, is that @ be uniformly bounded and equi-
continuous.

Proof. We give the proof in two steps:
Step | (Necessity). Suppose @ is relatively compact in C, Then

[2,51°
by Theorem 3, given any e > 0, there is a finite (¢/3)-net ¢y, ..., ¢,
in @ (see Problem 1). Being a continuous function defined on a closed

interval, each ¢, is bounded:

() < K; (a< x<b).
Let

K:max{Kl,...,Kn}'|':;—E

By the definition of an (¢/3)-net, givenany ¢ € @, thereisat least one ¢,
such that

o( s ¢1) = max [¢(x) ~ ¢{x)] <

A28

g
3
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Therefore
lo(0)] <l + §- < K;+ g <K,

i.e., ®isuniformly bounded. Moreover, each function ¢, in the (¢/3)-net
is continuous, and hence uniformly continuous, on [a,b] . Hence, given
any € > 0, thereisa 3, such that

T(x) — @x2)] < §

whenever |x; — x| <3,. Let
8=min{d,...,3,}
Then, givenany ¢ € ® and choosing ¢; suchthat p(¢, ¢,) < ¢/3, wehave

o(xy) — p(x2)]
< lo(xy) — @) T 1o(xn) — @i(xa)l + [9i(xa) — ()]

E E E
< - —_ e
3T3t3™"
whenever [x; — x,| < 6. This proves the equicontinuity of ®.

Step 2 (Sufficiency). Suppose @ is uniformly bounded and equi-
continuous. According to Theorem 3, to prove that @ isrelatively com-
pact in Cp, ,;, we need only show that @ is totally bounded, i.e., that
given any e > 0, there exists a finite e-net for © in C, ,,. Suppose
lo(x)] < Kfor al ¢ € ®, and let 8 > 0 be such that

lp(x1) — @(x2)] <§

for al ¢ e ® whenever |x;, — x,| < 6. Divide the interval a< x < b
along the x-axisinto subintervals of length less than 8, by introducing
points of subdivision x,, x4, X, . . . , X, SUch that

A=< X < Xpg<<'v+<Xx,=b,

and then draw a vertical line through each of these points. Similarly,
divide the interval —K < y < K aong the y-axis into subintervals of
lengthless than e/5, by introducingpoints of subdivisiony,, ¥4, ¥, « -+ , ¥
such that

—K:yo <y1 <_y2< D <_yp: K,

and then draw a horizontal line through each of these points. In this
way, therectanglea < x < b, —M < y < M isdivided into np cdls of
horizontal side length less than 8 and vertical side length less than /5.
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We now associate with eachfunction ¢ € ® apolygonal liney = {(x)
which has vertices at points of the form (x;,y,) and differs from the
function ¢ by lessthan ¢/5 at every point x,, (the reader should draw a
figureand convince himsalf on the existence of such a function). Since

loGes) — Yol <5,

[o(Xprn) — $(xpp)] < z >

[o(x) — @(xpy0)l < g,

by construction, we have

M) — PGl < %i: .

Moreover,
e — 4N < (n< % < X,

since ¢(x) islinear between the points x;, and x,,,. Let X be any point
in [a,b] and x; the point of subdivision nearest to x on the left. Then

lo(x) — 4 < lo(x) — o(x)] + lo(xi) — $Cx)| + 14 () — bl < e,

i.e., the set of polygonal lines ¢(x) forms an e-net for ®. But there
are obvioudly only finitely many such lines. Therefore @ is totally
bounded. §

11.5. Peano’s theorem. Arzeld’s theorem has many applications, among

them the following existencetheorem for differential equations:

THEOREM 5 (Peano). Letf(X, y) be defined and continuous on a plane
domain G. Then at least one integral curve of the differential equation

—==f0xy) (2

passes through eachpoint (x,, ¥,) of G.

Proof. By the continuity off, we have

fxe < K

in some domain G’ < G containing the point (x,, p,). Draw the lines
with slopes K and —X through the point (x,, y,). Then draw vertical
linessx =aandx =b (a<x,<h) Wh|ch together with the first two
lines form two isosceles triangles contained in G with common vertex
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)

Uono 6

(C

FiGure 13

(x> Y,), asshownin Figure13. Thisgivesaclosed interval [ a, b], which
will figurein the rest of the proof.

The next step is to construct a family of polygonal lines, called Euler
lines, associated with the differential equation(2). We begin by drawing
the line with slopef (x,, y,) through the point (x,, y,). Next, choosing a
point (x;,Y,) on thefirstline, wedraw thelinewithslopd (x,, y,) through
the point(x,, y,). Then, choosing a point(X,, y,) on the second line, we
draw the line with slopef (x,,Y,) through the point (x,,Y,), and so on
indefinitely. Supposeweconstruct awholesequencer,, L,, ..., L,, ..
of such Euler lines going through the point(X,, y,), with the property
that the length of the longest line segment making up L,, approaches 0
asn — . Let ¢, bethefunctionwithgraphL,. Then thisgiveﬁafamily
of functions ¢, @2,. .., ¢, ..., al defined ontheinterva [a,b], which
is easily seen to be uniformly bounded and equicontinuous (why?). It
follows from Arzelas theorem that the sequence {¢,} contains a uni-
formly convergent subsequence v, 2, ..., ¢'™, ... Let

¢(x) =lim ¢'(x).
Then clearly "
?(xXo) = Yo,
s0 that the curvey = o(x) passes through the point(x,, V,).

We now show that y = ¢(x) satisfies the differential equation (2) in
the open interval (a, i). This means showing that, given any ¢ > 0 and
any points X', X" €(a, b), we have

X — X

CP(X ”) - CP’(x)__f(xl’ cp(x’)) <e
X — X
whenever [x" — x'| is sufficiently small, or equivalently that
€Y FOWANNIN €7 PV
T T e | < ¢ 3
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whenever n is sufficiently large and [x” — x| is sufficiently small. Let
y = ¢(x'). Then, by the continuity off, given any ¢ > 0, there is a
number » = 0 such that

SO — e <flr,y) <f(x',y) +e
whenever

Ix —x'1 <2m, |y —y'| < 4Ky,

The set of points (x,y) satisfying theseinequalitiesis a rectangle, which
we denote by Q. Let N be so large that for al n > N, the length of the
longest segment making up L,, islessthan v and moreover

fo(x) — ¢ (x)] < K.

Then al the Euler lines L,, withn > N lieinside the rectangle Q (why?).

Suppose L, hasvertices (a,, b)), (a,, &)y ..., @, bxi1), where®
a<x<a<a < .<a,<x"<agp,.
Then
o™ (a) — oW (x") =1 (a, bo)lar — x7),
CP(n)(ai—i-l) - cP(ﬂ)(ai) = f(a,, bi)(ai+1 — ai) (I - 15 2, ey k - 1),

e (") — ¢"(a) =f(a, b(" — a).
Hence, if [x" — x| <,
[, )) — el@ — x) < o™ (@) — o™ ()< [f (o) Tella — ),
Y)Y — el(@im — @) < 9™(a0) — ¢ (ay)

<, tea,—a) (=12...,k=1,

[F(x5 ) = el(x” —a) <o (x") — 9™ (a) <[f(x',y") +cl(x" — a).
Adding these inequalities, we get
(")) — el(x" — x7) < (") — oW (XN < [f (X', ) +e](x" — x)
if |x" — x’| < v, whichisequivalent to (3). §

Remark. Different subsequences of a sequence of Euler lines may con-
vergeto different solutions of the differential equation (2). Hencethesolution
¢ found in the proof of Theorem 5 may not be the unique solution of (2)
passing through the point (x,, ¥o).

Problem|. Let M be atotally bounded subset of a metric spaceR. Prove
that the e-nets figuringin the definition of total boundedness of M can always
be chosen to consist of points of M rather than of R.

1 To be explicit, we assumethat x” > x. Thecasex" < X istreated similarly.
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Hint. Given an e-net for M consisting of pointsa, a,, ...,a, e R, al
within ¢ of some point of M, replace each point a, by a point b, EM such
that p(a;, by) < E.

Problem 2. Prove that every totally bounded metric space is separable.

Hint, Construct a finite (1/n)-net for every n=1, 2,... Then take the
union of these nets.

Problem 3. Let M bea bounded subset of the space C
set of al functions

Prove that the

[a,b]

FGx) = [ f(0) de

withf € M compact.

Problem 4. Given two metric compacta X and Y, let Cxy be the set of
all continuous mappings of Xinto Y. Let distance be definedin Cy 5 by the
formula

o(f 8) = sup e(f(x), &(x)). @

Prove that Cxy isa metric space. Let My be the set of all mappings of
Xinto ¥, with the same metric (4). Prove that Cy isclosedin A 5.

Hint. Use the method of Problem 1, p. 65 to prove that the limit of a
uniformly convergent sequence of continuous mappingsisitself a continuous
mapping.

Problem5. Let X, Y and Cxy bethe same asin the preceding problem.
Prove the following generalization of Arzela’s theorem: A necessary and
sufficient condition for a set D < Cx 5 to be relatively compact is that
D be an equicontinuousfamily of functions, in the sensethat given any ¢ = 0,
thereexistsanumber 8 > 0 suchthat p(x’, y') < 8impliese(f (x'),f (x") <e
for al x', x" e X and alf € D.

Hint. To prove the sufficiency, show that D is relatively compact in
M <+ (defined in the preceding problem) and hencein Cxy, since Cxy iS
closed in M. To prove the relative compactness of D in My, first
represent X as a union of finitely many pairwise disjoint sets £, such that
x', x" € E;implies p(x’, X") < 8. For example, let x,, ..., x,, be a (812)-net
for X, and let

E; = S[x;, 8] — U S[x; , 3l
i<i

Then let yy,...,y, bean enetin ¥, and let L be the set of al functions
taking thevaluesy; onthesetsE,. Givenany fe Dandany x, € {x;, ..., x,},
lety, € {ys, ..., .} besuchthat p(f(x;), ;) < e and let g € L be such that
g(x,) =y, Show that (f(x),g(x)) < 2e, thereby proving that L is a finite
2e-net for Din Mxyp.




108 TOPOLOGICAL SPACES CHAP. 3

IZ. Real Functions on Metric and Topological Spaces

12.1. Continuousand uniformlycontinuousfunctionsand functionals. Let T
be a topological space, in particular a metric space. Then by a real function
on T wemean a mapping of Tintothespace R* (thereal line). For example,
a real function on Euclidean n-space R" is just the usua **function of n
variables" Suppose T is a function space, i.e., a space whose elements are
functions. Then areal function on T is called a functional.

Example 1. Let x(z) be a function defined on the interval [0,1], let
(S0, S1, -+ « » 8,) be afunction of n + 1 variables defined for all real values
of its arguments, and let (¢, u) be a function of two variables defined for
al te [0, 1] and all real u. Then the following are all functionals:

Fy(x) = sup x(1),
O<I<1

Fy(x) = inf x(1),

Fa(x) = x(ty) where t,e[0,1],
Fo(x) = olx(to), x(1a), . . ., x(£,)]
Fox) = [ o1t x(0] di

Fe(x) = x'(to) where 1, €0, 1],

Fo(x) = J:,I\/ 1+ x%(p) dt.

Fo(0) = [JIv ) at,

The functionas F,, F,, F,, F, and F; are defined on the space C of al
functions continuous on the interval [0,1]. On the other hand, F; is defined
only for functions differentiableat the point #,, F, isdefined only for functions
such that the expression Jit x"2(1) is integrable, and F; is defined only for
functions with integrable |x’(z)].

Example 2. The functional F, is continuous on C, since

p(x,y) = sup|x — y|, [sup x — sup y| < sup |x — y|.

Example 3. Thefunctiona Fgisdiscontinuous on C at any point x, where
it is defined. Infact, let x(¢) be such that x'(#,) = 1 and [x(#)] < e, and let
Y =X + x. Then Y'(te) = x,(t,) + 1 even though g(xy, y) < e. However,
Fgiscontinuousif it is defined on the space C® of all functions continuously
differentiable on the interval [0, 1], with metric

e(x, y) = sup [|x(2) — y(O)] + |x'(t) — y'(DI]

LES 2]

(why?).
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Example 4. Thefunction F; isalso discontinuous on C. Infact, let

W) =0 %)= r%sin 2mnt,
Then

1
P(xm xo) =——0,
n

but F,(x,) = 4 for all » while F,{x;) = 1. Hence F,(x,) fails to approach
F,(x,) even though x,, — x,.

The ordinary concept of uniform continuity generalizes at once to the
case of arbitrary metric spaces:

DerINITION 1. A real function f (x) defined on a metric space R is said
to be uniformly continuous on R if, givenany € = 0, thereisa 8 = 0 such
that p(xy, X,) <3 implies|f(x) — f(x) < eforall x;, x, € R

The reader will recall from calculus that a real function continuouson a
closed interval [a,b]isuniformly continuouson [a,b]. Thisfact isa specia
case of

Treorem 1. Areal function f continuouson a compact metric space R
is uniformly continuouson R.

Proof. Suppose f is continuous but not uniformly continuous on R.
Then for some positivee and every » there are points x,, and x,, in R such
that

oy, x) < - 1)
n
but
L) — )] > <. @)

Since Riscompact, the sequence{x,} hasasubsequencef{x,, } converging
to a point x € R. Hence {x,, } also convergesto x, because of (1). But
then at least one of the inequalities

@ = fea)l > 2, 1) = f(x)l > 2

must hold for arbitrary k, because of (2). This contradicts the assumed
continuity off at x. §

12.2. Continuousand semicontinuousfunctionson compact spaces. As just
shown, the theorem on uniform continuity of a function continuous on a
closed interval generalizes to functions continuous on arbitrary metric
compacta. There are other properties of functions continuous on a closed
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interval which generalize to arbitrary compact spaces (not necessarily metric
spaces):
THeorRem 2. A real function f continuous on a compact topological
space T is bounded on 7.** Moreover f achievesits least upper bound and
greatest lower bound on T.

Proof. A continuous real function on T is a continuous mapping of
T intothereal line Rt. Theimage of Tin R iscompact, by Theorem 5,
p. 94. But every compact subset of R!is bounded and closed (see p.
101). Hencef isbounded on T. Moreover, f not only has a least upper
bound and greatest lower bound on T, but actually achievesthese bounds
at pointsof T. @

Theorem 2 can be generalized to a larger class of functions, which we
now introduce:

DerFINITION 2. A (real) function f defined on a topological space T is
said to be upper semicontinuousat a point x, € Tif, givenany e = 0, there
exists a neighborhood of x, in whichf (x) << f (x,) + .. Smilarly, f issaid
to belower semicontinuous at x, if, givenany e > 0, thereexistsaneighbor-
hood of x, in whichf (x) > (x,) — «.

Example 1. Let [ x]be the integral part of x,i.e., thelargest integer <x.
Then f (x) = [ x]is upper semicontinuousfor al x.

Example 2. Given a continuous function f, suppose weincrease the value
f(x,) taken by f at the point x,. Thenf becomes upper semicontinuousat x.
Similarly, f becomes lower semicontinuous at x, if we decrease f (x,).
Moreover, f is upper semicontinuous if and only if —f is lower semicon-
tinuous. These facts can be used to construct many more examples of
semicontinuous functions.

In studying the properties of semicontinuous functions, it is convenient
to alow them to take infinite values. Iff (x,) = 4o, we regard f as upper
semicontinuous at x,. The function f is also regarded as lower semicon-
tinuous at x, if, given any h > 0, there is a neighborhood of x, in which
f(x) = h. Similarly, if f(x) = —0, we regardf as lower semicontinuous
at x,, and at the same time upper senaicontinuous at x, if, given any h = 0,
there is a neighborhood of xg in which f (x) < —h.

We now prove the promised generalization of Theorem 2:

14 A real function (or functional) fissaid to be bounded on a set Eiff (E) iscontained
in someinterva [, C].
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THEOREM 2'. A finite lower semicontinuous function f defined on a
compact topological space T is bounded from below.

Proof. Suppose to the contrary that inf f(x)= —co. Then there
exists a sequence {x,} such that f(x,) < —n. Since T is compact, the
infinite set E= {x;, X,, ..., x,, ...} has at least one limit point x,.
Sincef isfinite and lower semicontinuous at x,, there isa neighborhood
U of x,inwhichf (x)> f (x,) — 1. But then U can only contain finitely
many points of E, so that x, cannot be a limit point of E. g

THEOREM 2". A finite lower semicontinuous function f degjined on a
compact topological space T achievesits greatest lower bound on T.

Proof. By Theorem 2, inff (x) is finite. Clearly, there exists a
sequence {x,} such that

F(xa) < inff(x) + %

By the compactness of T, theset E = {x;, X,, ..., X,,...} hasat least
onelimit point x,. Iff (x,) = inf f, then, by the semicontinuity off at x,,
there is a neighborhood U of the point x, and a & > 0 such thatf (x)>
inf f + 3 for al x e U. But then U cannot contain an infinite subset of

E, i.e., x, cannot be alimit point of x,. It followsthat f (x,) = inff. §

Remark. Theorems 2 and 2' remain true if the words "' lower," **below,"
and "'greatest™ are replaced by "upper," "above," and "'least.”" The details
are |eft as an exercise.

We conclude this section with some useful terminology:
DeriNnITION 3. Given a real function f degjined on a metric space R, the
(finite or infinite) quantity

Flx) = lim-{ sup f(x)}

g0 |xeS8{xy,¢)

is called the upper limit off at x,, while rie (finite or injinite) quantity

F(xp) = lim ( inf f(x)}

£—=0 ‘zeSlzg.e)
is called the lower limit off at x,. The difference
‘Df(xo) = f(x) — f(x0),

provided it exists,'5 is called the oscillation off at x,.

% Le., provided at least one of the numbers f (x,),f(x,) isfinite.
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(a) (&) (¢)

FIGURE 14

3123 Continuouscurvesin metric spaces. Instead of mappings of a metric
space into the real line, we now consider mappings of a subset of the real
line into a metric space. More exactly, let 7 =f (t) be a continuous map-
ping of the interval a < t < binto a metric space R. As t ""traverses" the
interval from a to b, the point 2 =T (t) ""traverses a continuous curve' in
the space R. Before giving a formal definition corresponding to this rough
idea of a " curve," we make two key observations:

1) Theorder in which points are traversed will be regarded as an essential
property of a curve. For ,example, the set of points shown in Figure
14(a) givesrise to two distinct curves when traversed in the two distinct
ways shown in Figures 14(b) and 14(c). Similarly, the function shown
in Figure 15(a), definedintheinterval 0 < t < 1, determinesa’ curve”
fillingupthesegment0 < y < 1of they-axis, but thiscurveistraversed
three times (twice upward and once downward) and hence is distinct
from the segment 0 < y < 1 traversed just oncefrom the pointy = 0
to the pointy = 1.

2) The choice of the parameter t will be regarded as unimportant,
provided a change in parameter does not change the order in which
the points of the curve are traversed. Thus the functions shown in
Figures 15(a) and 15(b) represent the same curve, even though a given
point of the curve corresponds to different parameter values in the
two cases. For example, the point A in Figure 15(a) corresponds to

y y
) S —— ) —
1
| |
B—— | ] — |
| 1
| |
I e e
| |
L | ||
N 7 0 7 £ 1

FIGURE 15

SEC. 12 REAL FUNCTIONS ON METRIC AND TOPOLOGICAL SPACES |13

two isolated points C and D on the t-axis, whilein Figure 15(b) the
same point A corresponds to an isolated point C and a whole line
segment DE (note that the point on the curve does not move at all
ast traversesthe segment DE).

We now give aformal definition of a curve, embodying these qualitative
ideas. Two continuous functions

P=f("), P=g(t"),
defined on intervals

7

a < t/< bl’ a// < tll < b//

and taking valuesin a metric space R, are said to be equivalent if there exist
two continuous nondecreasing functions

=0, t"=9@),

defined on the sameinterval

a<t< b,
such that
ela) =4, o(b) =D,
Y@ =4d", Y =">
and

f(o(1) = g((») forall € la,b].

It is easy to see that this relation of equivalenceis reflexive (f is equivalent
tof), symmetric (iff isequivalenttog, thengisequivalent tof ) and transitive
(iff isequivalent to g and g is equivalent to h, thenf is equivalent to h).
Hence the set of all continuousfunctions of the given type can be partitioned
into classes of equivalent functions (cf. Sec. 1.4), and each such classis said
to define a (continuous) curve in the space R.

For each function P= f(t') defined on an interval [&, b1, thereis an
equivalent function defined on theinterval [a", "] = [0, 1]. In fact, we need
only make the choice

'=9(t)=@0 —dyta, " =y@) =1

Thus every curve can be regarded as specified parametrically in terms of a
function defined on the unit interval | = [0, 1]. By the same token, it is
often convenient®=to introduce the space C(Z, R) of continuous mappingsf
of theinterval I into the space R, equipped with the metric

o(f, 2 =os<utglp(f(t), g(1)), (3)

where ¢ is the metric in the space R.

18 Cf. Problems 7-12.




114 ToPoLOGICAL SPACES CHAP. 3

Problem |. Let the functionals £, F,, Fs, Fy, F5 and the space C be the
same as on p. 108. Prove that

a) F,, F, and F; are continuous on C;
b) F,iscontinuous on Cifthe function ¢ iscontinuousin al itsarguments;
¢) F, isuniformly continuous on C.

Define Fy, F,, F; and F, on a space larger than C.

Problem 2. Let the functionals F,, Fy and the spaces C, C*V be the same
ason p. 108. Prove that

a) Fyisdiscontinuouson C;
b) F and F; are continuous on CV,

Problem 3. Let M be the space of all bounded real functions defined on
the interval [a, b], with metric ¢(f,g) = sup|f — gl. By the length of the
curve

y=fx) (a<x<b)
is meant the functional

L(f) = sup z VG — %P+ ) — f )l

wheretheleast upper bound (which may equal + o) istaken over al possible
partitions of [a, b] obtained by introducing points of subdivision x,, X,,
Xgy « « « y X, such that
a=1Xy <Xy <Xy<-'"<x,=5b.
Prove that
a) For continuous functions

K= i3 x (0 — s

max |&;—®;-1|~0

b) For continuously differentiable functions
L) = ['VT+77 dx;
€) Thefunctional L(f) islower semicontinuous on M.

Problem 4. Let ,f and » be the same asin Definition 3. Prove that

a) fisupper semicontinuous;

b) f islower semicontinuous;

c)—fis continuous at X, if and only if —oo < f(xg) = f(xe) < 0, ie., if
and only if of'(x,) = 0.
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Problem 5. Let K be a metric compactum and A a mapping of K into
itself such that p(4x, Ay) < p(x,y) if x #%y. Prove that A has a unique
fixed point in K. Reconcilethis with Problem 1, p. 76.

Problem 6. Let K be a metric compactum and {f,(x)} a sequence of
continuous functions on K, increasing in the sense that

) <filx) < < fulx) <o

Prove that if {f,(x)} converges to a continuous function on K, then the
covergence is uniform (Dini’s theorem).

Problem 7. A sequence of curves {I?} in a metric space R is said to
converge to a curve I' in R if the curves I', and I" have parametric repre-
sentations

P=f.) O<t<])
and

P=f1 (O<t<),
respectively, such that

lim 3(f,/,) =0,

n— o0

where % is the metric (3) of the space C(J, R) introduced on p. 113. Prove
that if a sequence of curvesin a compact metric space R can be represented
parametrically by an equicontinuous family of functions on [0, 1], then the
sequence contains a convergent subsequence.

Hint. Use Problem 5, p. 107.

Problem 8. Let 1? be a curve in a metric space R, with parametric repre-
sentation

P=f(t) (a<t<b).
By the length of I' is meant the functional

L(T) = L(f) = sup z o(f(to s f(1),

where pisthemetricin R and the least upper bound (which may equal +-c0)
is taken over all possible partitions of [a, b] obtained by introducing points
of subdivision ¢, ¢, %5, . .. , t,, . . . SUCh that

a=1ty <t <ty<:--<t,=0>

Prove that ZL(I") is independent of the parametric representation of T'.
Suppose we choose a = 0, b = 1, thereby confining ourselves to parametric
representations of the form

P=f() (0<r1<l).
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Prove that L(f) is then a lower semicontinuous functional on the space
C(I, R) introduced on p. 113. Equivalently, prove that if a sequence of
curves {I",} convergesto a curve 1?, in the sense of Problem 7, then L(I")
does not exceed the smallest limit point (i.e., thelower limit) of the sequence

{L(T,)}-

Problem 9. Given a metric space R with metric g, let " bea curvein R
of finite length S with parametric representation

P=f(t) (a<i<b).
Lets = ¢(T) be the length of the arc
P=f() (a<t<T)

(where T < b), i.e., the arc of I' going from the "initial point" P, =f (a)
to the "fina point™ P, =T (T). Then I' has a parametric representation
of the form

P =g(s) O<s<S),
whereg(s) =T (¢~(s)) if ¢ is one-to-one. Prove that
p(g(sy), g(s2)) < Isy — saf.
Hint. Thelength of an arcisnolessthan thelength of theinscribed chord.

Problem 10. In the preceding problem, let = = s/S. Then I' hasa para-
metric representation

P= F(x) = g(Sv) OD<t<)

in terms of a function F defined on the unit interval [0, 1]. Prove that
Fsatisfiesa Lipschitz condition of the form

p(F(t), F(t2)) < S' |7 — Tl

Suppose R is compact and let {I',} be a sequence of curves, al of length
less than some finite number M. Prove that {I",} contains a convergent
subsequence, where convergence of curvesis defined asin Problem 7.

Problem 11. Givenacompact metric space R, suppose two points A and B
in R can be joined by a continuous curve of finite length. Prove that among
all such curves, there is a curve of least length.

Comment. Even in the case where R is a "smooth" (i.e., sufficiently
differentiable) closed surfacein Euclidean 3-space, this result is not amenable
to the methods of elementary differential geometry, which ordinarily deals
only with the case of ""neighboring'* points A and B.

Problem 12. Let ¥ be the set of al curvesin a given metric space R.
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Define the distance between two curves I'y, I', € € by the formula

8Ty, T'p) = inf 3(/1, £, “

where p isthe metric (3) in the space C(J, R), and the greatest lower bound
is taken over al possible representations

P=fit)y @O<:t<l &)
of I'; and

P=fit) O<t<]) (6)
of 1. Prove that the metric § makes% into a metric space.

Comment. The fact that 5(T', T';) = 0 implies the identity of |2 and I',
follows from the (not very easily proved) fact that the greatest lower bound
in (4) is achieved for a suitable choice of the parametric representations (5)
and (6).
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LINEAR SPACES

3. Basic Concepts

13.1. Definitions and examples. One of the most important concepts in

mathematics is that of a linear space, which will play a key role in the rest
of this book:

DEFINITION 1. A nonempty set L of elementsx,y, z,. .. issaidtobea
linear space (or vector space) f it satisfies the following three axioms:

1) ArX two elements x, y EL uniquely determine a third element

X TyeL,caledthesum of x and y, such that

a) X-+Yy :-IY + X (commutativity);

b) (xty) Fz=x+ (y + z) (associativity);

c) Thereexists anelement 0 € L, called the zero €lement, with the
property that x + 0 = xfor every x e L;

d) For every x € L there exists an element —x, called the negative
of x, with the property that x + (— x)=0;

2) Any number a and any element x E L uniquely determine an element
ax E L, called the product of a and x, such that

a) x(Bx) = (af)x;

b) Ix=x;
3) The operations of addition and multiplication obey two distributive
laws:

a) (e + B)x = aa + Bx;
b) a(x 4+ y) = ax + ay.
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Remark. The elements of L are called "' points' or **vectors," while the
numbersa, g, ... areoftencalled" scalars."” If aisan arbitrary real number,
L iscaled areal linear space, whileif a isan arbitrary complex number, L
is called a complex linear space.* Unlessthe contrary is explicitly stated, the
considerations that follow will be valid for both real and complex spaces.
Clearly, any complex linear space reduces to a real linear space if we allow
vectors to be multiplied by real numbers only.

We now give some examples of linear spaces, leaving it to the reader
to verifyin detail that the conditionsin Definition 1 are satisfied in each case.?

Example 1. The rea line (the set of al real numbers) with the usual
arithmetic operations of addition and multiplication is a linear space.

Example 2. The set of all ordered n-tuples
X = (x17x2:-- . 3xn)

of real or complex numbers x;, x,, . .., x,, with sumsand ** scalar multiples”
defined by the formulas

(x5 Xa5 , ., ’xn) + (yl?.yﬁ”. . ,yn) = (% +y1, Xo + Yos i 0 Xy +)’n),
Xy, Xay v v vy Xp) = (0Xg, 00X5, .. ., AX,),

is also a linear space. This space is called n-dimensional (vector) space, or
simply n-space, denoted by R" in the real case and C™ in the complex case.
(Concerning the precise meaning of the term "n-dimensional,"" see Sec.
13.2)

Example 3. The set of all (real or complex) functions continuouson an
interval [a,b], with the usual operations of addition of functions and multi-
plication of functions by numbers, forms a linear space C, ,;, one of the
most important spacesin analysis.

Example4. The set /, of al infinite sequences

X = (X1, Xas e ev s Xps o+ 2) 1)
of real or complex numbers x;, x,, ..., X, . .. satisfying the convergence
condition

Sxl® < o,

k=1

1 More generally, one can consider linear spaces over an arbitrary field.

2|t will be noted that certain symbols like R", Ci, 53, - and m are used here with
somewhat different meanings than in Sec. 5.1. The point is that there is no metric here,
at least for the time being, while on the other hand, sums and scalar multiples of vectors
were not definedin Chaps. 2 and 3.
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equipped with operations
(X1 Xgs oo o5 X o) F (P Var oo s Vis e o)
= +yu Xt Ve X+ Yo,
X1y Xap v vv s Xy o v ) = (@Xg, 6Xgy v vy AXps v 0 2), ¥))
isalinear space. Thefact that

ZIXklz < @, 2nl® < o
. X %=1 =1
implies
kgl [x5 + J’klz <
is an immediate consequence of the elementary inequality

(% + yi)* < 2(x5 + y3).

Example 5. Let ¢ be the set of all convergent sequences (1), ¢, the set of
all sequences (1) converging to zero, m the set of all bounded sequences,
and R* the set of all sequences(1). Thenc, ¢y, mand R* areall linear spaces,
provided that in each case addition of sequences and multiplication of
sequences by numbers are defined by (2).

Since linear spaces are defined in terms of two operations, addition
of elements and multiplication of elements by numbers, it is natural to
introduce

DerinITioN 2. Two linear spacesL and L* are said to be isomorphict
there is a one-to-one correspondence x < x* between L and L* which
preserves operations, in the sense that

X xX*, yery*E
(wherex,y EL, x*,y* EL*) implies

X 4y x* 4 p*
and

ox <> ax*
(aan arbitrary number).

Remark. It is sometimes convenient to regard isomorphic linear spaces
as different "'redlizations' of one and the same linear space.

13.2. Linear dependence We say that the elementsx, y, . .., wof alinear

space L arelinearly dependent if there exist numbers«, B, .. . , A, not all zero,
such that®

ox + By -+ aw =0, (3)

2 The left-hand side of (3) is called a linear combination of the elementsx,Y,...,w
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If no such numbers exist, the elements x,y, ..., w are said to be linearly
independent. In other words, the elements x,y,...,w are linearly inde-
pendent if and only if (3) implies

a=@=-=A=0.

More generaly, the elements x, y, . . . belonging to some infinite set E < L
are said to be linearly independent if the elements belonging to every finite
subset of E are linearly independent.

A linear space L issaid to ben-dimensional (or of dimensionn)if # linearly
independent elements can be found in L, but any » -+ 1 elements of L are
linearly dependent. Suppose » linearly independent elements can be found
in L for every n. Then L is said to be infinite-dimensional, but otherwise L
issaid to be finite-dimensional. Any set of » linearly independent elements of
an n-dimensional space L iscalled a basisin L.

Remark. Thetypical courseon linear algebradeal swith finite-dimensional
linear spaces. Here, however, we will be primarily concerned with infinite-
dimensional spaces, the case of greater interest from the standpoint of
mathematical analysis.

13.3. Subspaces. Givenanonempty subset L' of a linear spacel, suppose
L isitself alinear space with respect to the operations of addition and multi-
plication defined in L. Then L’ is said to be a subspace (of L). In other
words, wesay that L' < Lisasubspaceif x € L',y E L' impliesax + Byel
for arbitrary e and B. The"'trivial space'* consisting of the zero element alone
isa subspace of every linear space L. At the opposite extreme, L can always
be regarded as a subset of itself. By a proper subspace of a linear space L,
we mean a subspace which is distinct from L itself and contains at least
one nonzero element.

Example |. Let L be any linear space, and x any nonzero element of L.
Then the set { Ax) of all scalar multiples of x, where A ranges over all (real or
complex) numbers is obviously a one-dimensional subspace of L, in fact a
proper subspace if the dimension of L exceeds1.

Example 2. Theset 7, ;) of al polynomials on [a,b] isa proper subspace
of the set C, ;; of all continuous functionson [a,b]. Like Ci,,y, itself, Fig. 51
isinfinite-dimensional. At the same time, C, 1, isitself a proper subspace of
the set of al functionson [a,b] ,both continuous and discontinuous.

Example 3. Each of the linear spaces/,, ¢,, ¢, mand R” (in that order)
is a proper subspace of the next one.

Given a linear space L, let {x,} be any nonempty set of elements x, € L.
Then L has a smallest subspace (possibly L itself) containing {x,}.* In fact,

4 Here we use curly brackets in the same way as in footnote 10, p. 92.
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there is at least one such subspace, namely L itself. Moreover, it is clear
that the intersection of any system of subspaces {L,} is itsalf a subspace,
sinceif L* =} L,and x,y € L*, then ax + By e L* for all aand g (why?).

The smallest stspace of L containing the set {x,} isthen just theintersection
of all subspaces containing {x,}. This minimal subspace, denoted by Z({x,}),
is called the (linear) subspace generated by {x,) or the linear hull of {x,}.

13.4. Factor spams. Let L be a linear space and L' a subspace Of L.
Then two elements X,y EL are said to belong to the same (residue) class
generated by L' if the difference x — y belongs to L'. The set of al such
classesis called thefactor space (or quotient space) of L relativeto L', denoted
by L/L’. Theoperationsof addition of elementsand multiplication of elements
by numbers can beintroduced in afactor space L/L’ in the following natural
way: Given two elements of L/L’, i.e., two classes € and v, we choose a
"'representative™ from each class, say x from 5 and y from 4. We then
define the sum ¢ + 7 of the classes £ and  to be the class containing the
gement x + y, while the product «£ of the number a and the class £ is
defined to be the class containing the element ax. Here we rely on the fact
that the classes £ + 7 and «& are independent of the choice of the *'repre-
sentatives' x and y (why?).

THEOREM 1. Every factor space L/L’, with operations defined in the
way just described, isa linear space.

Proof. We need only verify that L/L' satisfies the three axioms in
Definition 1. Thisisalmost trivial (givethe details). B

Let L be alinear space and L' a subspace of L. Then the dimension of
the factor space L/L' is called the codimension of L' in L.

THEOREM 2. Let L' bea subspace of alinear spaceL. Then L' hasfinite
codimension » if and only if there arelinearly independent elements x,, . . . ,
X, in L such that every element x € L has a unigque representation of the
form

X =oyx + "+ %, +y, 1€
wherea,, ..., a, arenumbersandy € L".

Proof. Supposeevery elementx e L hasa unique representation of the
form (4). Given any class £ € L/L’, let x be any element of &, and let
£, be the classcontaining x, (k =1, ...,n). Then (4)clearly implies

E:“1§1+"'+“n£w

Henceé,, ..., &,isabasisfor L/L’ (thelinear independenceof ¢, ...,
£, followsfromthat of xy, ..., x,). In other words, L/L’ hasdimension
n, or equivalently L' has codimension n.
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Conversely, supposeL’ hascodimensionn, sothat L/L’ hasdimension
n. Then L/L hasabasis§,, ..., &, Givenany xe L,let £ betheclass
in L/L’ containing x. Then

E:a1€1+'°°+“nin

for suitable numbers a,, ..., a. But this means that every element in
g, in particular x, differs only by an element y € L’ from a linear com-
bination of elements x;,...,x, where x, is any fixed element of
E.(k=1,...,n),le.,

X=X+ Fax, +y (el &)
(the linear independenceof x,, . .., X, followsfrom that of &, ..., &,).
Suppose there is another such representation

X = )Xy +... + X, + ¥ (y €L). (59

Then, subtracting (5) from (5), we get

0=(x —oa)x,+-".+(a,—a)Fty (el
and hence

0=(on — aDls+ .- F (a,— a)é

wherein the last equation & means the class containing the zero element
of L, ie., the space L' itself. But &,,..., 5, arelinearly independent,
and hencea, = «/,...,a, = a,. B

13.5. Linear functionals. A numerical function f defined on alinear space
Liscdled a functional (on L).* A functional f is said to be additive if
Je+p) =1 +7O)
for al x, y € L and homogeneous if
Sox) = af (x)

for every number a. A functional defined on a complex linear spaceiscaled
conjugate-homogeneousif
Slax) = af (x)

for every number a, where & is the complex conjugate of a. An additive

5 The word ""functiona™ has already been used in a somewhat different sensein Sec.
12.1, where a functional means a real function defined on a function space (topological
or metric). Later on, we will dea with linear spaces which are also metric spaces and
have functions as their elements. The two uses of the word"* functional** will then coincide
(if we allow complex-valued functionals).




124  LINEAR SPACES CHAP. 4
homogeneous functional is caled a linear functional, while an additive
conjugate-homogeneous functional is called a conjugate-linear functional.

Example 1. Let R" be real n-space, with elements x = (x,, ..., X,), and
leta=(a, ...,a) beafixed element of R". Then

S(X) =2 apx,
k=1
isalinear functional on R". Similarly,
f(x) =2 ax i
k=1

is a conjugate-linear functional on complex n-space C*
Example 2. Consider the integral

1) = ["x(o) o,
or more generally

1) = ["x()(0) dt,

where ¢(z) is a fixed continuous function on [a,b]. It follows at once from
elementary properties of integrals that 7(x) is a linear functional. Similarly,
theintegral

i) = [ 5@ o,
or more generally
1) = [ X)) dt,

is a conjugate-linear functional on Ci, ;3.

Example 3. Another kind of linear functional on the space Ci, ;; is the
functional
3, (%) = x(to),
which assigns to each function x(¢) € C, ,; its value at some fixed point
t, € [a,b]. In mathematical physics, particularly in-quantum mechanics, this
functional is often written in the form

8,) = ["x(0)8(t — o) dl

where 3(¢ — 1,) isa*fictitious or "' generalized" function, called the (Dirac)
delta function, which equals zero everywhere except at t = 0 and has an
integral equal to 1.6 As we will see in Sec. 20.3, the delta function can be

¢ Clearly, no *""true™ function can have these properties!
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represented as the limit, in a suitable sense, of a sequence of "*true" functions
9., €ach vanishing outside of some ¢,-neighborhood of the point t = 0 and
satisfying the condition

[ouyar=1

(g, > 0asn— o0).
Example 4. Let » be a fixed positive integer, and let
X = (Xq, Xos v ooy Xpsens)
be an arbitrary element of /,. Then

fn(x) = Xy,
is obviously a linear functional on I, The same functional can be defined

on other spaces whose elements are sequences, e.g., on the spaces ¢,, ¢, m
and R considered in Example 5, p. 120.

13.6. The null space of a functional. Hyperplanes. Let f be alinear func-
tional defined on alinear space L. Then the set L, of all elements x e L such
that

f(x)=0
is called the null space off. It will be assumed that f is nontrivial, i.e., that
f(x) == 0 for at least one (and hence infinitely many) x EL, so that the set
L — L, isnonempty. Obviously L, isasubspace of L,sincex,y € L, implies

floax + By) = of (x) + Bf(») = 0.
THEOREM 3. Let x, beany fixed element of L — L,. Then every element
X € L has a unique representation of the form
X = aXg + ),
wherey e L,.

Proof. Clearly f (x¢) 7 0, and in particular x, % 0. Thereis no loss
of generality in assuming thatf (x,) = 1, since otherwise we need only
replace x, by x,/f (x,), noting that

Y= X-— ax,

Givenany xe L, let

where
a="f(x).
ThenyeL,, since

FO) =[x — axg) = f(x) — of (xo) = f(x) — « = 0.
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Thus
x—ax, Ty (vel). (6)

Moreover, the representation (6)is unique. In fact, if there is another
such representation

x=da'x T y (y € Ly), (6"
then, subtracting (6') from (6), we get
(o — a)xg =y — y.
If « = a’, then obviously ' = y. On the other hand, if a # a', then

yV—y
o — of

X = el

contrary to the choice of x,. §

CoroLLARY 1. Two elements x, and x, belong to the same class gener-
ated by L, if and only i ff (x;) = ).
Proof. It followsfrom
Xy = f(x1)%o + ¥1,
Xg = f(xz)xo +)’2
that
X1 — Xog = (f(xl) — f(xa))xg + (}/1 — )’2)-

Hence x; — x, € L, if and only if the coefficient of x, vanishes. [
CoROLLARY 2. L, has codimension 1

Proof. Given any class £ generated by L,, let x be any element of &
and choose f (x)x, = ax, as the "representative’ of £. By Corollary 1,
this representative is unique, and there is obviously a nonzero class
since x, 7% 0 and f(x)# 0 for some x e L. Moreover, given any two
distinct classes £ and v with representatives ax, and Px,, respectively,
we have

Blaxg) — a(Bxo) =0
and hence
Ba — oM = 07

whereat least cine of the numbers a, g is nonzero (why ?). Therefore any
two distinct elements of L/L, are linearly dependent. It follows that
L/L,isone-dimensiondl, i.e., L, has codimension . J

CoroLLARY 3. Two nontrivial linear functionals f and g with the same
null space are proportional.
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Proof. Again let x, be such that f (x;) = 1. Then g(x,) # 0. Infact,

x=f(X)x+y (yeL,,
and hence

g(x) = f (g xe) T 2(0) = f (¥)g(x0),

since L, = L,. But then g(x,) = 0 would imply that g istrivial, contrary
to hypothesis. It follows that

g(x) = g(x0)f (%),
i.e., g(x)isproportional tof (x)withconstant of proportionality g(x,). |

Given a linear space L, let L' < L be any subspace of codimension 1.
Then every classin L generated by L' is caled a hyperplane' parallel to L'
(in particular, L' itself is a hyperplane containing 0, i.e., " going through the
origin™). In other words, a hyperplane M’ paréllel to a subspace L' is the
set obtained by subjecting L' to the parallel displacement (or shift) determined
by the vector x, & L, so that’

M =L +xo={xix=x,+y,ye L}

It is clear that M’ = L' if and only if x4 EL'. We can now give a simple
geometric interpretation of linear functionals:

THEOREM 4. Givenalinear spacel,letf beanontrivial linear functional
on L. Thenthesat M, = {x:f (x)= 1) isahyperplaneparallel to the null
space L, of the functional. Conversely, let M' = L' + X, (x, ¢ L") be any
hyperplane parallel to asubspace L' < L of codimension1 and not passing
throughthe origin. Then there exists a uniquelinear functional f on L such
that M' = {x:f (x)=1).

Proof. Given f£, let x, be such that f (x,) = 1 (such an x, can always
befound). Then, by Theorem 3, every vector x € M, can be represented
in theform x = x, T y,wherey e L,.

Conversely, given M' = L' —+ x, (x, ¢ L"),it followsfrom Theorem 2
and its proof that every element x € L can be uniquely represented in the
form x = ax, +y, wherey € L'. Setting f(x)= a, we get the desired
linear functional. The uniqueness off follows from the fact that if
g(x) = 1for xe M’, then g(y) = 0 fory e L’ (why?), so that

glaxg +y) = a = fax, +3). 0

Remark. Thus we have established a one-to-one correspondence be-
tween the set of all nontrivial linear functionals on L and the set of all
hyperplanes in L which do not pass through the origin.

? The expression on the right is shorthand for the set of all x such that x = x, + VY,
YE L’ (thecolon isread "*such that™). Similarly, {x : f(x) = 1) isthe set of all x such that
f(x)=1, and so on.
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Problem |. Prove that the set of all polynomials of degree n — 1 with
real (or complex) coefficientsisalinear space, isomorphic to then-dimensional
vector space R" (or C").

Problem 2. Veify that R and C* are n-dimensional, as anticipated by the
terminology in Example 2,.p. 119.

Problem 3. Veify that the spaces Cp, 3 f5, C, ¢g, m and R are all
infinite-dimensional.

Problem 4. Given a linear space L, a set {x,) of linearly independent
elementsof L issaid to bea Hamel basis(in L) if thelinear subspace generated
by {x,) coincideswith L. Prove that
a) Every linear space has a Hamel basis;
b) If {x,) is a Hamel basisin L, then every vector x EL has a unique
representation as a finite linear combination of vectors from the set
{xa};

¢) Any two Hamel bases in a linear space L have the same power
(cardinal number), called the algebraic dimension of L ;

d) Two linear spaces are isomorphic if and only if,they have the same

algebraic dimension.

Problem5. Let L' beak-dimensional subspace of an n-dimensional linear
space L. Prove that the factor space L/L" has dimensionr — k.

Problem6. Letf,f1, ... ,f, belinear functionals on alinear spacel such
that fi(x) = ... =f.(x) = 0 impliesf (x) = 0. Prove that there exist con-
stantsa, ...,a, suchthat

S6) = S a0
for every X ELL. -

8. Convex Sets and Functionals. The Hahn-Banach Theorem

14.1. Convex sets and bodies. Many important topics in the theory of
linear spaces rely on the notion of convexity. This notion, stemming from
intuitive geometric ideas, can be formulated purely analytically. Given a
real linear spacel, let x and y be any two points of L. Then by the (closed)
segment in L joining x and y we mean the set of all pointsin L of the form
ax + By where a, 8 > 0 and at B = 1. Such a segment minus its end
points x and y is called an open segment. By the interior of a set M < L,
denoted by I(M), we mean the set of all points x e M with the following
property: Given any y EL, there exists a number ¢ = <(y) = 0 such that
X+yeMifjt|<e
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DeriniTioN 1. Aset M < L issaid to be convex ifwhenever it contains
two points x andy, it aso containsthe segment joining x andy.

DerINITION 2. A convex set is called a convex dedy if its interior is
nonempty.

Example 1. The cube, ball, tetrahedron and half-space are all convex
bodies in three-dimensional Euclidean space R3. On the other hand, the
line segment, plane and triangle are convex setsin R3, but not convex bodies.

Example 2. As usud, let Cp, ,; be the space of all functions continuous on
theinterval [a, b], and let M be the subset of Cj, ,; consisting of all functions
satisfying the extra condition

f@Ol < 1.

Then M is convex, since
i<l  |gBl<1
together with a, £ > 0, at B = 1implies
lof (1) + g < « T B =1.

Example 3. The closed unit sphere in J,, i.e., the set of al points x =
(%4, X2y . .y X,,, . . .) SUCh that

2xh <1,

n=1
isaconvex body. Itsinterior consistsof all poinNtSX = (x;, xp, «+ ++ 5 Xy + = 2)
satisfying the condition

2xi < 1.

n=

Example 4. The Hilbert cube I (see Example 5, p. 98) is a convex set in
1,, but not a convex body. In fact,

1
2n—1

1 1
- 1-—)
Yo ( 2 n

and suppose x + ty, EIT, i.e.,

Jx,] < n=1,2,...)

if xeIl. Let

t 1
Xo + ;;l < Py .
Then
t t 1 1 1
i R E Al R AR =
n + n ’ + lx l 2n—1 + 2n——1 2%—2

for dl n=1,2,...,which implies t = 0. Therefore the interior of I is
empty.
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THeorem 1. If M is a convex set, then so isits interior /(M).

Proof. Suppose X, y e I(M), and let z= ax +gy,a 8>0 a+
B = 1. Then, given any a€eL , there are numbers e; > 0, ¢, = 0 such
that the points x + tya, y + f,a belong to M if [f] < e, |t] < ..
Therefore
oc(x+ta)+ﬁ(y+ta):z+ta

belongsto M if {¢| < e = min {e,, 2}, i.e., ze I(M). 1§
THEOREM 2. The intersection
M=0NM,
d any number d convex sets M, isitself a convex set.

Proof. Let x andy beany two points of M. Then x andy belong to
every M,, and hence so does the segment joining X and y. But then the
segment joining X andy belongsto M. §

Given any subset A of a linear space L, there is a smallest convex set
containing A, i.e., the intersection of all convex sets containing A (there
is at least one convex set containing A, namely L itself). This minimal
convex set containing A is called the convex hull of A. For example, the
convex hull of three noncollinear pointsis the triangle with these points as
vertices.

14.2. Convex functionals. Next we introduce the important concept of a
convexfunctional:

DeriNITION 3. Afunctional p defined on a real linear space L issaid to
be convex f

1) p(x) » Ofor all x e L (nonnegativity);
2) p(ocx-)l_: ap(x)for all xe Landall a > 0;
3) px T y) < p(x) + p(y) for all x,y € L.

Remark. Here, unlike the case of linear functionals, we do not assume
that p(x) is finite for all x € L, i.e., we alow the case where p(x) = +x
for somex EL.

Example 1. The length of a vector in Euclidean n-space R is a convex
functional. The first and second conditions are immediate consequences of
the definition of length in R™ (length is inherently nonnegative), while the
third condition means that the length of the sum of two vectors does not
exceed the sum of their lengths (the triangle inequality).
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Example2. Let M bethe space of bounded functions of x defined on some
set S, and let s, be afixed point of S. Then

Ps(%) = [x(50)|
is a convex functional.

Example 3. Let m be the space of bounded numerical sequences X =
(X, Xg5 «+ - y Xy, - - .). Then the functional

p(x) = sup |x;]
iS convex.

143 The M nkowski functional. Next we consider the connection be-
tween convex functionals and convex sets:

THeEOREM 3. If p is a convexfunctional on a linear space L andk isany
positive number, then the set

E={x:p(X) < k)
isconvex. If p is finite, then E is a convex body with interior
I(E) = {x:p(x) < k}
(so that in particular O E /{E)).
Proof. 1fx,yeE, a,8>0,«+p=1then

plox + By) < ap(x) + fp(y) < k,
i.e., Eisaconvex set. Now supposep isfinite, and let p(x) < k, t > 0,
Yy EL. Then
plx £ 1) < p() T 1p(+y).

If p(—y) = p(y) = 0, then x - 7y e Efor al t. On the other hand, if at
least one of the numbers p(y), p(—y) is nonzero, then x + ¢y € E if

, k — p(x) '
max {p(y), p(—y)}

Suppose we choose a definite value of k, say k = 1. Then every finite
convex functional p uniquely determines a convex body E in L, such that
0 EI(E). Conversely, suppose E is a convex body whose interior contains
the point 0, and consider the functional

py(x) = inf {r: f CE 1> 0}5 1)

called the Minkowskifunctiona of the convex body E. Then we have

THEOREM 4. The Minkowski functional (1) is finite and convex.
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. Proof. Given any x L, the element x/r belongs to E if r is suffi- Proof. Suppose L, # L, since otherwise the theorem is trivial. We
ciently large (why ?), and hence p{x) is nonnegative and finite. Clearly begin by showing that f; can be extended onto a larger space L without
pe(0) =0. If a=0, then violating the condition (4). Let z be any element of L — L,, and let L
ax x ‘ bethesubspace generated by L, and theelement z, i.e., the set of all linear
pE(ocx) = inf {r >0:—¢€ E} = inf {CXJ" > 0: :‘; EE} . combinations
r 4 | xtez  (xeLy.
= ainf{r’ > 0: 1/ € E} = gpg(X). (2) ‘ | If fis to be an extension off, onto Z, we must have
r |
: , i Jx + 12) = fo(x) + 1 /(2)
Next, given any € = 0 and any x;, x, € L, choose numbersr; (i=1, 2) P or
such that ' ' Fx + t2) = fo(x) + te ©)
Pr(x) <ry <pg(x) + = .o e
+ after setting f(z) = ¢. We now choose ¢ such that the **majorization
Then x,/r,e E. If r =r; T ry, then ,} condition f(ix F tz) < p(x + tz)is satisfied, i.e., such that
Xk Xe TN Taa | Sl F e < plx T 12).

r r ¥ . . -
1 "y We can write this condition as

belongsto the segment with end paints x,/r, and x,/r,. SinceEisconvex, . X X
this segment and hencethe point (x, -+ x,)/r belongsto E. It follows that P fo(t_) te< p(t— + c)

Pe(X + Xo) < 1 =ry + 1y < pr(xy) + pglx) + 2 or

: <ol )
Pr( + x2) < pulx) + pr(x), 3 1 , ‘ "\
1 if t >0, and as
sincee is arbitrary. Together (2)and (3) imply that pz(x) isconvex. g ‘ x x
* #f) ren (-5
13.4. The Hahn-Banach theorem. Given a real linear space L and any i or
subspace Ly < L, let f; be alinear functional defined on L,. Then a linear X x 7
functional f defined on the whole space L is said to be an extension of the €= _p(_ : Z) "f"('t") @
functiona f; if ' , . o
f(x)=fo(x) foral xe L, if #<0. Hence wewant toshowthat there|salwaysavalueofcgansfylng
o (6) and (7). Let y and y' be arbitrary elementsof Z,. Then it follows
A problem frequently encountered in analysisisthat of extendingan arbitrary from the inequality
linear functional, originally defined on some subspace, onto a larger space. " / v " '+
A central rolein problems of this kind is played by SO~ S0 <207 =) =207 42 _<(yp(y”z—): )+ p(—y _ 2)
THEOREM 5 (Hakn-Banack). Let p be a finite convex functional defined that
on a real linear space L, and let Z, be a subspace of L. Supposef, isa ' —f(" +p(y” +2) > —fO) — p(—y" — 2). ®
linear functional on L, satisfying the condition ‘ Let
fo®) < p(x (4) ¢ = sup [—/0) — p(=y — 2)],
on Ly Then f; can be extended to a linear functional on L satisfying () ¢ =inf [—f4(") + p(y" + 2)].
on the whole space L. More exactly, thereisa linear functional f defined v”
on L and equal to f; at every point of L,, such that f (x)< p(x) on L. Then ">
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by (8) and the fact that y andy" are arbitrary. Hence, choosing c such
that

”

¢">c>c,

wefind that the functional £ defined on L by the formula (5) satisfies the
condition f{x) < p(x). Thus we have succeeded in showing that if £y is
defined on a subspace L, < L and sdtisfies (4) on Z,, then f, can be
extended onto alarger subspace L with the condition (4)being preserved.

Tocompletethe proof, supposefirst that L isgenerated by acountable
set of elementsxy, x,, ..., x,,...iNn L. Then we construct afunctional
on L by induction, i.e., by constructing a sequence of subspaces

LY = {L,x}, L3 ={LD x,},...,

each contained in the next. Here {L™®, x, .} denotes the minimal linear
subspace of L containing L% and x,,.,. This process extends the
functional onto the whole space L, since every element x E L belongsto
some subspace L*,

More generdly, i.e., in the case where there is no countable set
generating L, the theorem is proved by applying Zorn's lemma (see
p.28). Theset # of al possibleextensions of the functional f; satisfying
the majorization condition (5) is partially ordered, and each linearly
ordered subset %, = % has an upper bound. This upper bound is the
functional whichisdefined on the union of the domainsof all functionals
fe %, and coincides with every such functional 7 on the domain of f.
Hence, by Zorn's lemma, % hasa maximal elementf. Clearly f must be
the desired functional extending £, onto L and satisfying the condition
p(x) < T (x),since otherwise we could extend f in turn, by the method
described above, from the proper subspace on which it is defined onto a
large subspace, thereby contradicting the maximality off. i

Next we turn to the case of complex linear spaces:

DeriniTioN 3. A functional p defined on a complex linear space L is
said to be convex if

1) p(x) > 0 for all x L (nonnegativity);

2) p(ax) = |«| p(x) for all x e L and all complex «;

3) p(x +y) < p(x) T p(y) for all x,y € L.

The corresponding complex version of the Hahn-Banach theorem is
given by

THeOReM 5'. Let p be @ finite convex functional, defined on a complex

linear space L, and let L, be a subspace of L. Suppose f, is a linear
functional on L, satisfying the condition

o) < p(x) #)
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on L,y. Then f, can be extended to a linear functional on L satisfying (4')
on the whole space L.

Proof. Let Ly and L,z denote the spaces L and L, regarded as real
linear spaces. Clearly p is afinite convex functional on Ly, while

Jor(®) = Re fo(x)
isa real linear functional on L,g satisfying the condition
[for(¥)] < p(x)
and hence (afortiori) the condition
Sor(¥) < p(x).

By Theorem 5, there existsa real linear functional f;, defined onall of Lz,
satisfying the conditions

fr(x) < p(x) if xeLg(=L),
Jr(x) = for(x) if x€Log (= Ly).
Clearly
—f2(X) = fa(—x) < p(—x) = p(x),
and hence

o) < px)  if xeLlgp(=L). ©

We now define the functional
F(x) = frlx) — ifg(ix)

on L, using the fact that L isa complex linear space in which multipli-
cation by complex numbersisdefined. It iseasily verifiedthat f isacom-
plex linear functional on L such that

f(x) = fo(x) if xelL,,
Ref (X)= fr(x) if XEL.

Finally, to show that | f(x)] < p(x)for all x € L, supposeto the contrary
that [ f(xo)l > p(x,) for some x, € L. Writingf (x,) = e wherep = 0,
We%tyo = e_up.xo- Then

Jr(yo) = Re f(po) = Re [e 7 f(xo)] = p > p(x0) = p(y0)
which contradicts (9). §

14.5. Separation of convex setsin alinear space. Given aredl linear space

L,let M and N be two subsets of L. Then a linear functional f defined on
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L issaid to separate M and N if there existsa number C such that
fxy=>¢C if XEM,

fx)<C if xeN.
It follows at once from this definition that

1) A linear functional f separates two sets M and N if and only if it
separates M — N = {z:z=x —y,xeM,y e N)and {0}, i.e., the set
consisting of all differencesx —y where x EM, y e N and the set
whose only element is O (note that the minus signin M — N does not
have the usual meaning of a set difference);

2) A linear functional T separates two sets M and N if and only if it
separates the setsM — xy ={z:z=X — X,, Xe M} and N — x, =
{z:z=Yy — X,y € N} for every x,€ L.

The following theorem on the separation of convex setsin alinear space
has numerous applications and is an easy consequence of the Hahn-Banach
theorem:

THEOREM 6. Let M and N be two digoint convex setsin a real linear
space L, where at least one d the sets, say M, has a nonempty interior
(i.e.,isaconvex body). Then thereexists a nontrivial linear functional f on
L separating M and L.

Proof. There is no loss of generality in assuming that the point 0
belongsto the interior of M, since otherwise we need only consider the
sets M — xg ={z:z = x — x,, x € M} and N —xy=1{z:z=y — x,,
y € N), where x, issome point of theinterior of M. Let y, be a point of
N. Then the point —y, belongs to the interior of the st M — N =
{ziz=x—y,xeM,y e N), and O belongs to the interior of the set
M—N+4y,={z:z2=x—y + yp, x€ M, y€ N}. Since M and N are
disoint, wehave0 ¢ M — N,y ¢ M — N + y,. LetpbetheMinkowski
functional for theset M — N + y,. Then p(y,) > 1since y, ¢ M — N
+ ¥o. Consider the linear functional

Jo(wyo) = ap(po)

defined on the one-dimensional subspace of L consisting of all elements
of the form ay,. Clearly f, satisfies the condition

_ Jo(wyo) < playy),
ance
pleye) = ap(yo)  if >0,
while
Soloyo) = afy(ye) < 0 < p(ayy)  if a<o.

Hence, by the Hahn-Banach theorem, the functiona f; can be extended
to alinear functional T defined on the whole space L and satisfying the
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conditionf (y) < p(») onL. Itfollowsthatf(y) < 1ifyeM — N + y,,
while at the same timef (y,) > 1, i.e., f separates the sets M — N + y,
and {y,}. Thereforef separates the sets M — N and {0}. But then f

separates the setsM and N.  §
Problem 1. Let M be the set of all points X = (x4, X,, - . .
satisfying the condition

s Xy n) iny

oo
Safxi< L
n=1
Prove that M is a convex set, but not a convex body.

Problem 2. Give an example of two convex bodies whose intersection is
not a convex body.

Problem 3. Wesay that » + 1 points x;, xs, . . ., X,,1 in alinear spacelL
are"'in general position™ if they do not belong to any (n — 1)-dimensional
subspace of L. The convex hull of a set of 7 + 1 points x¢, X,, . .. , Xpg1 iN
general position iscaled an n-dimensiona simplex, and the points x;, xs, . . . ,
xn41 themselves are called the vertices of the simplex. Describe the zero-
dimensional, one-dimensional, two-dimensional and three-dimensional
simplexesin Euclidean three-space R®. Prove that the simplex with vertices

X,, Xz, .+ 5 Xay1 iSthe sat of all pointsin L which can be represented in the
form
nH
X = D 0gXps
k=1
where

n4+1l
o > 0, oy = 1.

Problem 4. Show that if the points xy, X,, . . . , X,.1 @eingeneral position,
then so are any k +1 (k < n) of them.

Comment. Hence the k + 1 points generate a k-dimensional simplex,
called a k-dimensionalface of the n-dimensional simplex with vertices x;,
Xy oo s Xpyle

Problem 5 Describe all zero-dimensional, one-dimensional and two-
dimensional faces of the tetrahedron in R3 with verticese,, e,, €, €.

Problem 6. Show that in the Hahn-Banach theorem we can drop the
condition that the functionalp befinite.

i5. Normed Linear Spaces

15.1. Definitions and examples. Chapters 2 and 3 deal with topological
(in particular, metric) spaces, i.e., spaces equipped with the notion of
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closeness of elements, while Secs. 14 and 15 deal with linear spaces, i.e.,
spaces equipped with the operations of addition of elements and multipli-
cation of elementsby numbers. We now combine thesetwo ideas, arriving at
the notion of a topologica linear space, equipped with a topology as well
as with the algebraic operations characterizing a linear space. In this section
and the next, we will study topological linear spaces of a particularly
important type, namely normed linear spaces and Euclidean spaces. Topo-
logical linear spacesin general will be considered in Sec. 17.

DeriniTion 1. Afunctional p defined on a linear space L issaid to be
a norm (in L) if it has thefollowing properties:

a) p is finite and convex;

b) p(x) =0 only ifx = 0;

0) p(ax) = |a| p(x)for all x e L and all «.

Recalling the definition of a convex functional, we see that a norm in
L is afinite functional on L such that

1) p(x) > Ofor al x EL , where p(x) = 0if and only if X = 0;
2) p(ax) = || p(x) foral x EL and al a;
3) p(x ty) < p(x) +p() forall x,y € L.

DerINITION 2. A linear space L, equipped with a norm p(x) = | x|, is
caled a normed linear space.

The notation | x|| will henceforth be preferred for the norm of the element
X EL. In terms of this notation, properties 1)—3) take the form:

1) Ix}f » Ofor al x €L, where ||x| = 0if and only if x = O;
2) Jex| = |«| x| for al x eL and dl a;
3) Triangleinequality: |lx + y|l < x| + Iyl forall x,y eL.

Every normed linear space L becomes a metric space if we set

e(x, ») = lx _ vyl 1)

for arbitrary x,y eL. The fact that (1} is a metric follows at once from
properties 1)-3). Thus everything said about metric spaces in Chap. 2
carries over to the case of hormed linear spaces.

Many of the spaces considered in Chap. 2 as examples of metric spaces
(or in Sec. 13 as examples of linear spaces) can be made into normed linear
spaces in a natural way, as shown by the following examples (in each case,
verify that the norm has all the required properties):

8 One o the pioneer workersin this field was Stefan Banach (1892-1945), author of
the classic Théorie des Opérations Liniaires, reprinted by Chelsea Publishing Co., New
Y ork (1955).

ol S
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Example 1. The real line R* becomes a normed linear space if we set
x| = |x| for every number x E RL.

Example 2. To make real n-space R" into a hormed linear space, we set

nw:/éﬁ

for every element X = (x4, X2, ..., x,,) in R". Theformula

o(x, ) = lx — yll = \/kil(Xk - J’k)2

then definesthe same metric in R" asalready considered in Example 3, p. 38.
Example 3. We can also equip real n-space with the norm

lxlly :k,§1|xk| @

or the norm
[xllo = max [xg]. 3

=HA=N

The corresponding metrics lead to the spaces R} and R} considered in Ex-
amples 4 and 5, p. 39.

Example 4. The formula
= 3
Ixll = \ kgllxkl
introduces a norm in complex n-space C". Other possible normsin C" are
given by (2) and (3).

Example 5. The space C;, ,, of all functions continuous on the interval
[a, b] can be equipped with the norm

/1 = max | f(9)].

The metric space corresponding to this norm has aready been considered in
Example 6, p. 39.
Example 6. Let m be the space of all bounded numerical sequences
X = (xhxz: e ’xka--')a
and let
Ixll = sup |l 4

Then (4) obviously has al the properties of a norm. The metric "induced"
by this norm is the same as that considered in Example 9, p. 41.
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Example 7. A complete normed linear space, relative to the metric (1), is
called a Banach space. It is easy to see that the spacesin Examples 1-6 are
all Banach spaces (the details are |eft as an exercise).

15.2. Subspaces of a normed linear space. In Sec. 13.3 we defined a
subspace of alinear space L (unequipped with any topology) as a nonempty
set L, with the property that if x, y € L,, then ax + By € L, for arbitrary a
and 8. The subspaces of greatest interest in a normed linear space are the
closed subspaces, i.e., those containing all their limit points. In the case of an
infinite-dimensional space, it is easy to give examples of subspaces that are
not closed:®

Example 1. In the space of all bounded sequences, the sequences with
only finitely many nonzero termsform a subspace, but not a closed subspace,
since, for example, the closure of the subspace contains the sequence

(151)
2 n

Example 2. The set P, ,, of all polynomials defined on the interval [a, 5]
is a subspace of C,,,;, but obviously not a closed subspace. On the other
hand, the closure of P, ,; coincides with C, ;;, since every function con-
tinuous on [a,b] is the limit of a uniformly convergent sequence of poly-
nomials, by Weierstrass approximation theorem.1®

In what follows, we will be concerned as a rule with closed subspaces.
Henceit is natural to modify somewhat the terminology adopted in Sec. 13.3,
i.e., by asubspace of a normed normed linear space we will always mean a
closed subspace. In particular, by the subspace generated by a set of elements
(x,) we will always mean the smallest closed subspace containing {x,}. This
subspace will also becalled thelinear closureof {x,}. Theterm linear manifold
will be reserved for a set of elements L, (not necessarily closed) such that
X,y € Ly implies ax + 8y EL, for arbitrary numbers a and 8. A set of
elements {x,) in a normed linear spacel is said to be complete (in L) if the
linear closure of {x,} coincideswith L.

Remark. Thisisanother meaning of theword " closed,"" hot to beconfused
with its meaning in Sec. 6.4. The context will always make it clear which
meaning isintended.

Example 3. By Weierstrass approximation theorem, the set of functions
1,2, t%, ... ,t", ... is completein C, 4.

® This contingency cannot arise in afinite-dimensional subspace (see Problem 5a).
* Seee.g., G. P. Tolstov, Fourier Series(translated by R. A. Silverman), Prentice-Hall,
Inc., Englewood Cliffs, N.J. (1962), p. 120.
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Problemi. Asubset M of a normed linear space R is said to be bounded
if there isa constant C such that | x|} < Cfor all x e M. Reconcile thiswith
Problem 5, p. 65.

Problem 2. Given a Banach space R, let {B,} be a nested sequence of
closed spheresin R (so that B, @ B, = ..- > B, > ." ). Provethat (3 B,
is nonempty (it isnot assumed that the radius of B,, approaches0 as# — o).

Give an example of a nested sequence {E,} of nonempty closed bounded
convex sets in a Banach space R such that {1 E, is empty (cf. Problem 6,

p. 66). "
Problem 3. Prove that the algebraic dimension (defined in Problem 4c,
p. 128) of an infinite-dimensional Banach space is uncountable.

Problem4. Let R be a Banach space, and let A be a closed subspace of R.
Define a norm in thefactor space P = R/M by setting

&1 = inf x|

for every element (residue class) & € P. Prove that
a) Al isactually a normin P;
b) The space P, equipped with this norm, is a Banach space.

Problem 5. Let Rbe a normed linear space. Prove that

a) Every finite-dimensional linear subspace of R is closed;

b) If M isaclosed subspace of R and N a finite-dimensional subspace
of R, then the set

MA+N={zz=x+y,xeM,yeN} 5)

is a closed subspace of R;

¢) If Qisan open convex st in R and x, ¢ Q, then there exists a closed
hyperplane which passesthrough the point x, and does not intersect Q.

Problem 6. Let x = (xy, Xa, ..., %3, . ..) be an arbitrary element of /.
Prove that /, is a hormed linear space when equipped with the norm

< 2
Il = | 3k
k=1

Give an example of two closed linear subspaces 4/ and N of |, whose “linear
sum' M 4 N is not closed.

Problem 7. Two norms {*ll;, I*{s in a linear space R are said to be
equivalent if there exist constants a, b > 0 such that
alixl, < lIxle < blxly
for al x € R. Prove that if R isfinite-dimensional, then any two norms in
R are equivalent.
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16. Euclidean Spaces

16.1. Scalar products. Orthogonality and bases. We begin with two key
definitions:

DeriNITION 1. By a sealar product in a real linear space Ris meant a
real function defined for every pair of elements x,y € R and denoted by
(x,y), with the followingproperties:

1) (x,X) = 0 where(x,x)=0f andonlyif x =0;

2) (%, ) = (¥, );

3) (x, ) = Mx, y);

4) (-x’ y +z)= (x,,}’) + (x, Z)

(validfor all x,y,ze Randall real A).

DeriNniTION 2. Alinear space Reguipped witha scalar product is called
a Euclidean space.

LEmMMA. Any rwo elements x, y of a Euclidean space R satisfy the
Schwarz inequality

[Ce, < Il iyl )
where

Ixl =V, %, Iyl =V,
Proof. The quadratic polynomial
o) = (O + 3,0 +3) = 22(x, x) T 2%, ») T (0, »)
— ez 2 + 2, o F Iyl
is obviously nonnegative. Therefore
(e, ) — lIx® Iyl* < 0, @
since otherwise ¢(}) would become negative for some » (why ?). But (2)
isequivalent to (1). §

We now use the scalar product in a Euclidean space R to introduce a
normin R:

THeorem 1. A Euclidean space R becomesa normed linear space when
equipped with the norm

Ixl =V(x,x)  (x€R).

Proof. Properties 1) and 2') on p. 138 are immediate consequences
of the definition of a scalar product. To prove property 3'), i.e., the
triangle inequality, we note that

lx +yP=(x+y,x+p)=0,x+2x,) + Q)
< (x, %)+ 210+ .
< fx)2 42 xl iyl A iyl = (ixl - 11D,
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because of the Schwarz inequality (1), and hence

Ix + oyl < Ixl + Iyl. B

The scalar product in R can be used to define the angle between two
vectors as well as the length (i.e., norm) of a vector:

DeriNnITION 3. Given any two vectors x and y in a Euclidean space R,
the quantity 0 defired by the formula

(x, »)

fxh Uyl
is called the angle between x and y.

(0< 6<m) (3

Remark. It follows from Schwarz's inequality (1) that the right-hand
side of (3) cannot exceed 1. Therefore, given any x and y, (3) actualy
determines a unique anglein theinterval [0,=].

Suppose (x,y) = 0, so that (3)implies 0 == =/2. Then the vectorsx and y
are said to be orthogonal. A set of nonzero vectors {x,) in R is said to be
an orthogonal system if

(X, xg) =0 for a8

and an orthonormal system if
0 for az£8,
(x4 Xp) =
1  for a=28.

If {x,) isan orthogonal system, then clearly

{ui:n}

THEOREM 2. The vectors in an orthogonal system {x,} are linearly
independent.

isan orthonormal system.

Proof. Suppose
01X, + CaXy, +.+ CoXy, = 0.

Then, taking the scalar product with x, , we get
(Xaps CrXay F €y .0 F CaXa) = €K %) = 0,
by the orthogonality of {x,). But (x,,, x,) # 0, and hence
;=0 (i=12,...,n). §

An orthogonal system {x,) is caled an orthogonal basisif it is complete,
i.e., if the smallest closed subspace containing {x,) is the whole space R.
Similarly, a complete orthonormal system is called an orthonormal basis.
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16.2. Exanpl es. We now give some examples of Euclidean spaces and
orthogonal basesin them:

Example | . Let R" be rea n-space, i.e., the set of al ordered n-tuples

X = (X1, X2, ..., X0, Y= (V1, V2>« + -y Vu)s ..., €Quipped with the same
algebraic operations asin Example 2, p. 119. Using the formula

(5 9) = X e @

to define a scalar product in R", we get Euclidean n-space.’* The corre-
sponding horm and distancein R" are

Il = \/ gx

and

The vectors h
e =(10,0,...,0),
e, =(0,2,0,...,0),

form an orthonormal basisin R", one of infinitely many such bases.

Example 2. The space I, with elements x = (x;, X,, v ey X - .), Y =
Y2 e 3 Yer oo o) ..., Where

o0
2 2
Xy < 0, Sy < 0,...,
1 k=1

s

k:

becomes an infinite-dimensional Euclidean space when equipped with the
scalar product

(x, ) Zkglxkhv (6)

The convergence of the right-hand side of (6) follows from the elementary
inequality

Iayal < (el 4 19:)® < 20x + ¥,
and it is an easy matter to verify that (6) has all the properties of a scalar

11 The term "* Euclidean n-space'" has already been used in Example 3, p. 38 to describe
the metric space with distance (5). In so doing, weanticipated the eventual introduction of
the scalar product (4).
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product. The simplest orthonormal basis in /, consists of the vectors

)
5 M

The orthonormality of the system (7) is obvious. As for the completeness
of the system, given any vector x = (xy, Xg, . . . , Xz, - - -) IN L, l€t

X = (xy, X5, -4 - » X2 0,0, .. ).
Then x* is a linear combination of the vectors e, e;, ..., e, and
[x* — x| —0ask — .

Example 3. The space C}, ,; consisting of al continuous functions on
[a, b] equipped with the scalar product

(s &) =[f()e(e)

is another example of a Euclidean space. Among the various orthogonal

bases in Cf, ,;, one of the most important is the system of trigonometric

functions

s 27nt . sin 2mnt
b—a b—a

1, co

(n=1,2,...). (8)

The orthogonality of this system can be verified by a simple calculation.
Making the choicea = —=, b = =, we simplify (8) to

1, cosmt, snnt (m=1,2,..). (8"

Thus (8') isan orthogonal basisin the space C%_; ;- Asfor the completeness,
we have

THEOREM 3. The system (8) is complete in CLorr

Proof. By another version of Weierstrass' approximation theorem,**
every function ¢ continuous on theinterval [a, b] and such that ¢(a) =
o(b) is the limit of a uniformly convergent sequence of trigonometric
polynomials, i.e., linear combinations of elements of the system (8).
This sequence converges (afortiori) to ¢ in the norm of the space C?, ;-
But an arbitrary functionf e C, ,; can be represented as the limit in the

12 Seee.g., G. P. Tolstov, op. cit., Corollary 1, p. 117.
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Ct, ,; norm of a sequence of functions {¢,}, where

) if a<x<b—1
@u(®) = . ) "
[nf(b — -—) _ nf(a)}(b o 4f@ if b—Yox<b
n n
coincides with f in the interva
[ab— (1/m)], islinear on [b — (1/n), b]
A\ and takes the same value at the point
I\ b as at the point a (see Figure 16).
| \\ Hence every element of Cf,, can
I i be approximated arbitrarily clpsely
- 5 (in the C ., norm) by a linear

combination of elements of the system
Ficure 16 ®. 1

16.3. Existence of an orthogonal basis. Orthogonalization. From now on,
we will be mainly concerned with the case of separable Euclidean spaces,
i.e., Euclidean spaces containing a countable everywhere dense subset. For
example, the spaces R*, I, and C¢, ,) are all separable, as shown in Sec. 6.3.
An example of a nonseparable Euclidean space isgiven in Problem 2.

THeorReM 4. Every orthogonal system {x,} in a separable Euclidean
space R has no more than countably many elements x,,. °

Proof. There is no loss of generality in assuming that the system
{x,} isorthonormal as well as orthogonal, since otherwise we need only

replace {x,} by
{ni:u}'

Il — xgl = V2w B ©)

Consider the set of open spheres S(x,, 4). These spheres are pairwise
disjoint, because of (9). Moreover, each sphere contains at least one
element from some countabl e subset {y,) everywheredensein R. Conse-
guently there are no more than countably many such spheres, and hence
no more than countably many elements x,. §

We then have

We have already exhibited an orthogonal basisin each of the spaces R",
I, and C?, ;. Theexistenceof an orthogonal basisin any separable Euclidean
space is guaranteed by the following theorem and its corollary, analogous

SEC. 16 EUCLIDEAN SPACES [47

tothetheorem on theexistenceof an orthogonal basisin any finite-dimensional
Euclidean space:'?

THEOREM 5 (Orthogonalization theorem). Let

,f19f2:-..sfn’-.. (10)

be any (countable) set of linearly independent elements of a Euclidean
space R. Then R containsaset d elements

Pr> Doy e v vs Prsv v s (11)
such that
1) The system (11) is orthonormal;
2) Every element ¢,, isalinear combination

cpnzanlf1+an2f2+...+annfn (a,m;ﬁO)

of the dementsf,, f5, ...,/ 03
3) Every element £, isalinear combination

fn - bm‘Pl + bn2(P2 R bnncpn (bn'n 7+ 0)
of the elements ¢4, 92, ..., @p.

.Moreover, every element of the system (10)is uniquely determined by these
conditionsto within a factor of -+ 1.

Proof. First we construct ¢,. Setting
9 = ayf1s
we determine a,; from the condition

(91> ) = a%l(_fl’_fl) =1,

_ 1t
NI

This obviously determines ¢; uniquely (except for sign).

Next suppose elements o, @z, . . . , ¢,_; Satisfying the conditions of
the theorem have already been constructed. Then £, can bewrittenin the
form

which implies

fn = bnl(Pl + - + bn,’n~lcpn——1 + hm (12)
where
(hyy o) =0  (k=1,2,...,n—1).

1 Seee.g., G. E. Shilov, An Introduction to the Theory of Linear Spaces (translated by
R. A. Silverman), Prentice-Hall, Inc., Englewood Cliffs, N.J. (1961), Theorem 28, p. 142.
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In fact, the coefficients 4,;, and hence the element 4, are uniquely
determined by the conditions

(hna cPk) = (fn - bnlcpl —_ bn,n—lcpn—la cPk)

. = (fm cPk) - bnk((Pka <Pk) =0,
ie.,

b = (fos @r) k=12,...,n— 1.

Clearly (h,, h) >0, since (h,, h) = 0 contradicts the assumed linear
independence of the elements (10). Let

P _hn
" by
Using (12)and (13), we express /,, and hence ¢,, in terms of the functions

flf_f2a P ,fn’ i.e.,
Pn = A1 fr + uafo + . Gyt

(13)

where
App = 1 #* 0.
(B> )

Moreover

(©n, 9) = 0 k=1,2,...,n_1),

(90> @) = 1
and

fn = bn1<P1 + bnchz + “aa + bm;CPn,

where
Thus, starting from elements ¢,, ., .. . , 9,_; Satisfying the conditions
of the theorem, we have constructed elements oy, @5, ... 5 9,1, ¢,

satisfying the same conditions. The proof now follows by mathematical
induction. §

Remark. The processleading from the linearly independent elements (10)
to the orthonormal system (11) is called orthogonalization. It is clear that
the subspace generated by (10) coincides with that generated by (11).
Hence the set (10) is complete if and only if the set (11)is complete.

CoroLLARY. Every separable Euclidean space R has a countable
orthonormal basis.

Proof. Let ¢y, $s,...,¢,,... be a countable everywhere dense
subset of R. Then a complete set of linearly independent elements f£;,
Sor v vy S - .. Can beselected from {¢,,}. Infact, we need only eliminate
from the sequence {¢,,} all elements ¢, which can be written as linear
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combinations of elements ¢, with smaller indices (i < k). Applying the

orthogonalization processto f1, fa» « + - 3 fn» - - - » We gt an orthonormal
basis. §
16.4. Bessel’s inequality. Closed orthogonal systems. Let e, e, ..., ¢,

be an orthonormal basisin R". Then every vector x € R* can be written in
theform

n
X = Cp,
k=1
where
¢, = (x, &).

We now show how this generalizes to the case of an infinite-dimensional
Euclidean space R. Let ¢, 92, ..., ¢, ... be an orthonormal system in
R, and letf be an arbitrary element of R. Suppose that with f we associate

1) The sequence of numbers
Cp = (f: CPk) (k: 152’.")9 (14)

caled the components or Fourier coefficients off with respect to the
system {@x};
2) The series

Z CrPr (15)
=1

(for the time being, purely formal), called the Fourier series off with
respect to the system {¢y}-

Then it is natural to ask whether the series (15) converges,** and if so,
whether the sum of the series coincides with the original function f. To
answer these questions, we first prove

THEOREM 6. Given an orthonormal system
@1’@2’---,(%(::". (16)

in a Euclidean space R, let f be an arbitrary element of R. Then the
expression

’f“* Zam
k=1
achieves its minimum for
a, = ¢ = (f, 1) (k=1.2,....m.

14 More exactly, whether the sequence of partial sums corresponding to (15) converges
in the metric of R.
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This minimum equals Remark. Geometrically, Bessd's inequality (17) means that the sum of
1712 — z 2 thesquares of the projectionsof avector fonto a set of mutually perpendicular
Moreover = directions cannot exceed the square of the length of the vector itself. For a
geometric interpretation of the rest of Theorem 6, see Problems 5 and 6.
2 2
kglck <71 (17 The case where Bessd's inequality becomes an equality is particularly

a result known as Bessdl's inequality. Important:
DeriniTION 4. Suppose equality holds in (17) for every fe R, i.e.,

Proof. Let
n suppose
S =2, ap P (18) S 2 2
k=1 k; Crp = ||f” (22)
Then, by the orthonormality of (16), for every f € R. Then the orthonormal system ¢;, @5, ..., ¢, ... iSSad
to be closed.

If— S.l* = (f_kéak‘aokaf—kélak%>

Remark. This is another meaning of the word "closed," not to be
confused with its meaning in Sec. 6.4. The context will always make it
clear which meaning is intended. Formula (22) is known as Parseval’s
theorem.

=) — 2(ﬁk§nlam) + ( élawk él az‘Pz)

= ”f”2 - Zzakck -+ za,zc
=1 oo

or

If = Sl = 1f 12— 3 e 4 3 (a — e, (19)
where ’ k=t =
a=(fe) (k=1,2,...,n)

The expressionin the right-hand side of (19) obviously achievesits mini-
mum when itslast term vanishes, i.e., when

a, = ¢y k=1,2,...,n),
and this minimum is just
If =S = IF1F =3k (20)
k=1
Moreover, since f — S,z > 0, it followsfrom (20) that

§4<nﬂﬁ 1)

for every n. Hence the series
2
=1

is convergent. Taking thelimit as» — oo in (21), we get (17).

THEOREM 7. An orthonormal system ¢, ¢q, ..., 4 . .. iNa Euclidean
space R isclosed if and only if every element f € R isthe sum of its Fourier
series.

Proof. According to Definition4, Risclosed if and only if (22) holds
for every fe R. Teking thelimit as»z — oo in (20) and using (18), we see
that (22) holds for every f € R if and only if

I n I
lim ”fchkq)k l. =0,
n= k=1

or equivalently
f = ]ZICkCPka
forevery fe R. 1§
The properties of being complete and being closedareintimately connected,
as shown by

THEOREM 8. An orthonormal system ¢y, @, .. ., ¢y, . . . in@ Euclidean
space Ris complete i fand only if it is closed.

Proof. Suppose {¢,} is closed. Then, by Theorem 7, every element
f € Risthelimit of the partial sumsof its Fourier series. In other words,
linear combinations of elements of {¢,} are everywhere dense in R,
i.e., {9} is complete.
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Conversely, suppose {¢,} iscomplete. Then every elementf € R can
be approximated arbitrarily closely by a linear combination

Eak%
k=1

of elementsof {¢,}. But the partial sum

E i Pr
%=1

of the Fourier series off isat least as good an approximation. Hence f/
is the sum of its own Fourier series. It follows from Theorem 7 that
{0,y isclosed. §

CoroLLARY. Every separable Euclidean space R contains a closed
orthonormal System @y, Qay .« vy Qi v s »

Proof. An immediate consequence of Theorem 8 and the corollary
to Theorem 5. §
Example 1. The orthonormal system (7) is closed in /,.

Remark. In introducing the concepts of Fourier coefficientsand Fourier
series, we assumed that the system {¢,} is orthonormal. More generally,
suppose {¢;} is orthogonal but not orthonormal, and let

=
+ e

Then the system {{,.} is orthonormal. Givenanyf € R, let

1
Cr = (f’ $) = m (f, Pr)s
and consider the series g

@K

2l =2, —E_ Pe = 2, 4Py
x=1 =1 [ oy k=1
where

=% (Lo

Foell  Nepslt®

Then the coefficients (23) are called the Fourier coeficients of the element
T € R with respect to the orthogonal (but not orthonormal) system {o,}.
Substituting ¢;, = a;, [ ¢4l into (17), we get the following version of Bessdl's
inequality for arbitrary orthogonal systems:

(23)

Zailad® < 171 a7)
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If equality holdsin (17" for everyf € R, the orthogonal system {¢,} is sad
to be closed, just asin Definition 4.

Example 2. The orthogonal system (8) is closed in C}, .

86.5. Complete Euclidean spaces. The Riesz-Fischer theorem. Given a
Euclidean space R, let {¢,} bean orthonormal (but not necessarily complete)
systemin R. It follows from Bess's inequality that a necessary condition
for the numbers c,, ¢;, ..., ¢ ... t0o be Fourier coefficients of an element
T e Risthat the series

i

s

k=1

i

converge. It turns out that this condition is also sufficient if R is complete,
as shown by

THEOREM 9 (Riesz-Fischer). Given an orthonormal system {o;} in a

complete Euclidean space R, let the numbers ¢;, c,, ..., ¢, ... be such
that
> ch (24)
=1
converges. Then there exists an elementf € R with ¢y, C,, ..., ¢4 ... S
its Fourier coeficients, i.e., such that
< 2 2
e, = Ilf1
k=1
where

ck:‘:(facPk) (k:1,2,)
Proof. Writing

n
fn =ch<Pka
k=1

we have
n+p
”fn+p _fnnz = ch—klcpn—kl + o + cn+mCPn+pn2 = Z cli'

k=nd-1

Hencef converges to some element f € R, by the convergence of (24)
and the completeness of R. Moreover,

(f7 cPlc) - (fn? (P/c) + (f_'f'm th)’ (25)

where the first term on the right equals ¢, if n > k and the second term
approaches zero as h — oo, since

I(f = far @] < ILf — foll Heill-
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Taking the limit as» — oo in (25), we get
(/> or) =

since the left-hand sidevis independent of n. Moreover,

If = full >0

asn — oo, and hence

(F=Zaens —Zae) = -Zd~0
k=1 k=1 k=1
as n - o0, i.e.,

n m
lim Sei=Yci=|fI> &
n—ro k=1 k=1
THEOREM 10. Let {9,} be an orthonormal system in a complete Eu-
clidean space. Then {¢,} iscompletef andonly f R containsno nonzero
element orthogonal to 4/l the dlementsd {o,}.

Proof. Suppose {¢;} is complete and hence closed (by Theorem 8),
and supposef is orthogonal to al the elements of {¢,}. Then all the
Fourier coefficientsoff vanish. Hence

IfIF=Sct—0
k=1

by the Riesz-Fischer theorem, i.e., f = 0.
Conversely, suppose {¢,} is not complete. Then R contains an
element g # 0 such that

o0
lgl? >3 ¢k,  where ¢ = (g o)
k=1

(why?). By the Riesz-Fischer theorem, there exists an element fe R
such that

(frod=cw IfI* =§10;5.

Butf — g is orthogonal to al the ¢,, by construction. Moreover, it
followsfrom

iVW=§d<uﬂ2
that f — g # 0. | '

16.6. Hilbert space. The isomorphism theorem. Continuing our study of
complete Euclidean spaces, we concentrate our attention on infinite-
dimensional spaces, since finite-dimensional spaces are considered in great
detail in courses on linear algebra.
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DeriniTION 5. By a Hilbert space's is meant a Euclidean space which
is complete, separable and infinite-dimensional.

In other words, a Hilbert spaceis a set H of elementsf, g, ... of any
kind such that

1) H is a Euclidean space, i.e., a red linear space'® equipped with a
scalar product;

2) Hiscomplete with respect to the metric o(f,g) = If — gli;

3) His separable, i.e., H contains a countable everywhere dense subset;

4) Hisinfinite-dimensional, i.e., given any positiveinteger n, H contains
n linearly independent elements.

Example. The real spacel, is a Hilbert space (check al the properties).

DeriniTioN 6. Two Euclidean spaces R and R* aresaid to be isomor-
phic (to each other) f thereisa one-to-one correspondencex < x*, y«>y*
between the elements d R and those d R* (X,y € R, x*,y* € R*)
preserving linear operationsand scalar productsin the sense that*?

Xy X Y%, axerax®, (X,y) = (X*,y*).

It is wdl known that any two n-dimensional Euclidean spaces are iso-
morphic to each other, and in particular that every n-dimensional Euclidean
space is isomorphic to the space R* of Example 1, p. 144.2% On the other
hand, two infinite-dimensional Euclidean spaces need not be isomorphic.
For example, the spaces, and C%, ,, are not isomorphic, as can be seenfrom
the fact that /, is complete while Cf, ,; is not (recall Examples 4 and 5,
p. 57). Nevertheless, for Hilbert spaces we have

THeEOREM 11 (Isomorphism theorem). Any two Hilbert spaces are
isomorphic.

Proof. The theorem will be proved once we manage to show that
every Hilbert space H is isomorphic to I, Let {¢,} be any complete
orthonormal systemin H (such exists by the corollary to Theorem 5),
and with every elementf € H associateits Fourier coefficients {c,} with
respect to {¢,}. Since

S ek < oo,
fanl

15 Named after the celebrated German mathematician David Wilbert (1862-1943).

6 However, see Sec. 16.9.

17 |lsomorphism of two normed linear spaces R and R* is defined in the same way,
except that preservation of scalar products is replaced by preservation of norms, i.e., by
the condition |x|| = [[x*].

18 Seee.g., G. E. Shilov, op. cit., Theorem 29, p. 144.
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by Theorem 8, the sequence (¢4, ¢, - . . , ¢ - - .) belongs to 4. Con-
versely, by the Riesz-Fischer theorem, to every element (¢, cC, ...,
¢y, - - -) IN Iy there corresponds an elementf € H with the numbers ¢,,

Cay . -, Cyy - - - BSItS Fourier coefficients. This correspondence between
the elements of H and those of 1, is obviously one-to-one. Moreover, if
fH(clacb'-. ,ck7~.')>
f("’)(abgm--- ’Ek,___)'

then clearly B
f +f"_>(cl+51’c2+c~2"..:ck—i—gk:--')a
aft, (aeq, acyy oue, 00y 00,

i.e., sumsgointo sumsand scalar multiplesinto scalar multipleswith the
samefactor. Finally, by Parseval's theorem,

ff) =§1 &
U)+ 25D + G = (f 4 Tf 1) = S(es + &)

=1
=2 ch+ 230+ D 6
k=1
and hence
() =2 ab,
k=1
so that scalar products are preserved. g

Remark. Theorem 11 shows that to within an isomorphism, there is
only one Hilbert space (i.e., only one space with the four properties listed
above, and that this space has /, as its "' coordinate realization,” just as
the space of all ordered n-tuples of real numbers with the scalar product

i x5 IS the "coordinate redlization' of axiomatically defined Euclidean
fe=1
n-space.

16.7. Subspaces. Orthogonal complements and direct sums. In keeping
with the terminology of Sec. 15.2, by a linear manifold in a Hilbert space H
we mean a set L of elements of H such thatf, g € A impliesaf + g € L for
arbitrary numbers a and 8, while by a subspace of H we mean a closed linear
manifold in H.

LemMMA. If a metric space R has a countable everywhere dense subset,
then so does every subser R’ < R.
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Proof. Let
£1,E2,...,gm..

be a countable everywhere dense subset of R, and let
a, = inf p(%,, 7).
ner

Then, given any positiveintegers» andp, there is a point »,, € R such
that

1
p(gm y]np) < ay + l_)

Givenany ¢ > 0 and any 0 € R', let

<

T ik
w e

and choose » such that

e(€m) < §
Then

" 1 e g 2
ns lin <an+'—<—+—:—5
(€ s Mnp) , 37373

and hence e(v, 1,,) < e In other words, R has an everywhere dense
subset {7,,,} (n,p=1,2,...) containing no more than countably many
elements. §

THeorRem 12. Every subspace M d a Hilbert space H iseither a (com-
plete separable) Euclidean space or itself a Hilbert space. Moreover, M
has an orthonormal basis, like H itself.

Proof. The fact that M has properties 1) and 2) of Definition 5 is
obvious. The separability of M followsfrom thelemma. To construct an
orthonormal basisin M, apply Theorem 5 to any countable everywhere
densesubset of M. §

Subspaces of a Hilbert space H have certain specia properties (not shared
by subspaces of an arbitrary normed linear space), stemming from the
presencedf a scalar product in Hand the associated concept of orthogonality:

THEOREM 13. Let M be a subspace of a Hilbert space H, and let
M=HoM

denote the orthogonal complement of M, i.e., theset d all elements h' € H
orthogonal to every he M. Then M’ is also a subspace of H.




I58 LINEAR SPACES CHAP. 4

Proof. The linearity of M' is obvious, since
o (ki h) = (hi, h) =0
implies
(oh; T aghy, h) =0
for arbitrary numbers «;, and a,. To show that M' is closed, suppose

{h} is a sequence of elementsof M' converting to h'. Then, given any
heM,

(h',h)=Ilim(h;, h)=0,
and hencehl EM'. f e
Remark. By definition, i € M" if and only if H is orthogonal to every
h e M. But then h € H if and only if his orthogonal to every H € M'. Hence

M'=H & MimpliesM =H o M, and wecan cal M and M’ (mutually)
orthogonal subspaces of H.

THEOREM 14. Let M be a subspace of a Hilbtrt space H, and let
M' = H @ M be the orthogonal complement of M. Then every element
f € H has a unique representation of the form

f=h+H, (26)
wheeheEM, H € M".

Proof. Givenany f € H, let {¢,} be an orthonormal basisin M, and
let

h = zlckcpka Clc = (.f’ cpk)
=
By BesH's inequality,

Sci< o,

k=1
and hence, by the Riesz-Fischer theorem, h exists and belongs to M.
Let

h =f—h
Then obviously

(', 9) =0

for al k, and since any element g € M can be represented in the form

g = 2 Ay Pps
k=1
we have

(n', g) :kZI a(h's o) = 0,

i.e., H € M'. This proves the existence of the representation (26).
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To prove the uniqueness of (26), suppose there is another represen-
tation
f—h T h,
whereh; e M, Ay € M'. Then

(h1s 9) = (s or) = C;
for al k, and hence

hi=h, hi=nh. §

CoroLLARY 1. Every orthonormal system {¢,} in a Hilbert space H
can be enlarged to give a complete orthonormal systemin H.

Proof. Let M be the linear closure of {¢,}, so that {¢,} is complete
in M. Let M' = H © M be the orthogonal complement of M, and let
{9,} beacompleteorthonormal systemin M' (suchexistsby Theorem 12,
since M’ is a subspace). Recalling (26), we see that the union of {q,}
and {¢,} is a complete orthonormal systemin H. B

CoroLLARY 2. Let M be a subspace of a Hilbert space H, and /et
M' = H © M. Then M’ has codimension» if A has dimension » and
dimension »n i f M has codimensionn.

Proof. An immediate consequence of the representation (26) and
Theorem 2, p. 122. J

Let M be a subspace of a Hilbert space H, with orthogonal complement
M’ = H o M. If every vectorf € H can be represented in the form

f=h-+hk (heM,WeM),

we say that H is the direct sum of the orthogonal subspacesM and M', and
write

H=Mo M.

The concept of a direct sum generalizes at once to the case of any finite or

even countable number of subspaces: Thus H is said to be the direct sum
of the subspaces M,, M,, ..., M,, ... and we write

H=MoM,® - @M, ® -

if
1) The subspaces M, are pairwise orthogonal, i.e., every element in M,
is orthogonal to every elementin M, whenever j # k;
2) Every element f € H has a representation of the form
f=hy 4 byt +h, - @n
whereh, e H, (n=1,2,...).
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It is easy to see that the representation (27)is unique if it existsand that

£z =2 Ih,)2
n=1 - ™
(givethe details).

Besides direct sums of subspaces, we can also talk about direct sums of a
finite or countable number of Hilbert spaces. Thus, given two Hilbert spaces
H, and H,, by the direct sum

H == Hl @ H2

is meant the set of all ordered pairs (#;, h,) with », € H;, h, € H,, where
linear operations and the scalar product in H are defined by
(s ho) F (i hy) = (b F b, by T B,
O('(.hl’ hZ) = (ahh O(hg),
((hyy ho), (his h3)) = (hyy b)) F (hay hY).

Consider the subspace of A consisting of all pairs of the form (#;, 0) and
the subspace consisting of all pairs of the form (0, 4;). Then clearly these
two subspaces are orthogonal and can be identifiedin a natural way with H;
and H,, respectively. More generally, given any Hilbert spaces #,, H,, ...,
H,,...,bythedirect sum

H:Hl@Hz@"'@Hn@"'
is meant the set of all sequences

h=(hy, hoy .., hpyr... (h, e H,)
such that

3 Ik < oo,

with linear operations defined in the obvious way and the scalar product of
two elementsh = (A, h,, oo, Bys . .), 9= (g1, 82>« - - 5 Zn» - - -) defined by

(s g) = 3 (h £

16.8. Characterization of Euclidean spaces. Given a normed linear space
R, we now look for circumstances under which R is Euclidean. In other
words, we look for extra conditions on the norm of R which guarantee that
the norm be derivable from some suitably defined scalar product in R.

THeorem 15. A necessary and sufficient condition for a normed linear
space R to be Euclidean is that

if gl + 1 — gz =201+ lgl® (28)
forevery f,ge R
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Proof. Thinking off +gandf — gasthe" diagonals of the parallelo-
gram in R with sidesf and g,”” we can interpret (28) as the analogue of a
familar property of parallelograms in the plane, i.e., the sum of the
squares of the diagonals of a parallelogram equals the sum of the
squares of its sides. The necessity of (28) is obvious, since if R is
Euclidean, then

If+glt+1f—glP=(+gf+)+—gf—9
= (L) +2f8) + (g + LN
—2(f,8) +( 9

=2(I717 + lgl®.
To prove the sufficiency of (28), we set
(i) =S el = iif — gl 29)

and show that if (28) holds, then (29) has al the properties of a scalar
product listed on p. 142. Since (29) implies
L) =221 — 1= F1B = | I3, (30

the scalar product (29) clearly generates the given norm |-j in R. More-
over, it follows at once from (29) and (30) that
1) (ff) = 0 where (f,f)= Oif andonlyiff = 0;

2) (/,8) = (&N-
The proof of the linearity properties

F+eh==U0nTEh 31

and

(of, 8) = (/. ©) (32)

requires a little work. To prove (31), consider the function of three
vectors

Of, 8 ) =4S+ g ) — (fi ) — (g, W],
or equivaently
ofy gy =Iftg+nlr—1f—g—n2_IftnEtir— npe
—lg Falz+ lig — aj? (33)
after using (29). It followsfrom (28) that
If+g+hlP=2lfLh+2]gl2=Ilfh_gl. (34)
Substituting (34)into (33), we get
O, g, h) = —If+h—glt+ I f—h _gl* + I f T &)
— I~ h2—lg T apz+ g — e (35)
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Taking half the sum (34) and (35), we find that
O(f,g.h) = 3lg +h +FlIt g Hh _F1»
—3(lg—h+fIP+lg—h _FI»
—lig — hl* + lg — Al*,
which becomes
o(f, g, ) = (g T Az + [F 1) — (g — #I* _ 1£1®)
~lg +nl2t g — Al =0
after applying (28) to both expressionsin parentheses. But @(f, g, h) =0
isequivaent to (31).
To prove (32), we introduce the function
o(c) = (cf, &) — (/. &)
wheref and g are fixed but arbitrary elements of R. It follows at once
from (29) that .
¢(0) = x(lgl* — ligh® =0
and ¢(—1) =0, since (-, g) = —(f, g). Hence, given any integer n,
(nf,8) = (sgnn(f + -+ + 1), 8) =sgnnl(f, &)+ + (/8]
= |nl sgn n(f’ g) = n(f5 g)’
i.e., o(n) = 0. Moreover, given any integersp, g (q # 0),

()=o) =Sl o

i.e., ¢(c) = 0 for all rational c. But ¢{c) is a continuous function of ¢
(why?), and hence ¢(c) = 0, which isequivalent to (32). §

Example | . The n-dimensional space R, equippéd with the norm

n 1/p
|mu=(zum),
K1

isa normed linear spaceif p > 1 (see Example 10, p. 41) and a Euclidean
space if p= 2 (see Example 1, p. 144). However, R} fails to be Euclidean
ifp# 2. Infact, for the two vectors

f=(1,1,0,...,0),

g=(1,-1,0,...,0),

we have
f+g=,0,0,...,0),

f—g:(0,250’...,0)7
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and hence
1fl,=lgl, = 2Y», If+gl=1f—gl=2

Therefore the ** parallelogram condition™ (28) failsif p # 2.

Example 2. Consider the space C, /5, Of all functions continuous on the
interval [0, =/2], and let

f(t)=cost,  g()=sint.

Then
I/l =lighh =1,
and
If + gl = max [cost + sin t = \/5,
ost<n/2
If —gll = max jcost —sin¢f = 1.
o<e<n/2
Therefore

17+ g2+ 1f — glie = 20712 F pgle).
It followsthat the normin Cy, .., cannot be generated by any scalar product

whatsoever, i.e., the space Cy, .,; failsto be Euclidean. It is easy to see that
the sameis true of the space Cy, ,; for any a and b (a < b).

16.9. Complex Euclidean spaces. Besides real Euclidean spaces, we can
also consider complex Euclidean spaces, i.e., complex linear spaces equipped
with a scalar product. However, we must now modify the properties of the
scalar product listed on p. 142, since in the complex case these properties
are contradictory as they stand. In fact, it follows from properties 2) and
3), p. 142 that

(AX, AX) = *(x, X),

and hence, after choosing h = i, that
(ix, ix) = —(x, x),
i.e., the norms of the vectorsx and ix cannot both be positive, contrary to
property 1). To remedy this difficulty, we define the scalar product in a
complex Euclidean space R as a complex-valuedfunction (x,y), defined for
every pair of elementsx,y € R, with the following properties:
1) (x, x) > 0 where (x,x) = 0if and only if x =0;

2 (x,)) = (> x);
3 (x, ) = Mx, ¥);
4 (vy +2)=x2T @ 2)

(vaid for al x,y, ze R and all complex A). It follows from 2') and 3') that

x, 2) = O, X) = My, x) = A(x, p)
(as usual, the overbar denotes the complex conjugate).
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Example |. The space C" introduced in Example 2, p. 119 becomes a
complex Euclidean space if we define the scalar product of two elements

X=Xy, e s %)Y =5...,¥)inC" &S
(x> y) =Zxk.j;k
k=1

Example 2. The complex spacel, withelementsx = (X,, X, -« , X, - - ),
Y= V1, Vareees Voo o)y oo, Where

L) o0
Slxl* < oo, SimlP< oo, ..,
k=1 k=1

becomes an infinite-dimensional complex Euclidean space when equipped
with the scalar product

(x,y) = zkak-
%=1

Example 3. The space C[Zu,',,] of al complex-valued functions continuous
on theinterval [a,b],equipped with the scalar product

(/9 = f0gm at,
is another example of an infinite-dimensional complex Euclidean space.

The norm (length) of a vector in a complex Euclidean space is defined
by the same formula

Ixl = v/ (x, %)

as in the real case. However, the notion of the angle between two vectors
x and y plays no rolein the complex case, since the quantity

(x,y)
Ixl Nyl

is in general complex and hence cannot be the cosine of a real angle. On
the other hand, the notion of orthogonality is defined in the same way as
before, i.e., two elements x and y of a complex Euclidean space are said
to be orthogonal if (x,y)= 0.

Let {«,} beany orthogonal systemin a complex Euclidean space R, and
letf be any element of R. Then, just asin the real case, the numbers

Ay “———12 (f, o)
el

and the series

[20]
Zak(Pk
E=1
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are called the Fourier coefficients and the Fourier series of the functionf,
with respect to the system {¢,}. In the complex case, Bess's inequality
(17") becomes

gllaklz el ® < 1P

If the system {¢,} is orthonormal, the Fourier coefficients become

a = ¢ = (f, Pp)»
and Bessd's inequality simplifiesto

Sled® < £
k=1

By a complex Hilbert space is meant a complex Euclidean space whichis
complete, separable and infinite-dimensional. Theorem 11 carries over at
once to the complex case, with isomorphism being defined exactly as in
Definition 6:

THEOREM 11’ (Isemorphism theorem). Any two complex Hilbert spaces
are isomorphic.

Proof. Thistimeshow that every complex Hilbert spaceisisomorphic
to the complex space /,, the " coordinate realization™ of a complex
Hilbert space. §

Remark. As an exercise, the reader should state and prove the complex
analogues of all the other theorems of Sec. 16.

Problem | . Prove that in a Euclidean space, the operations of addition,
multiplication by numbers and the formation of scalar products are all
continuous. More exactly, prove that if x, - x, Yy, -V (in the sense of
norm convergence) and A, — A (in the sense of ordinary convergence), then

Xpt Yo > x+ Y, Ax, —hx, (xmyn) _’(X,)’)-
Hint. Use Schwarz's inequality.

Problem 2. Let R be the set of all functionsf defined on theinterval [0, 1]
such that

1) f (t) is honzero at no more than countably many points #,, f,, . . . ;

2) g [t < .

Define addition of elementsand multiplication of elements by scalarsin the
ordinary way, i.e., (f + g)(t) = f (t) + g(#), (af )(#) = af(?). Iff andg are
two elements of R, nonzero only at the points ¢, £, ... and ¢, 25, . ..,
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respectively, define the scalar product off and g as

(f8)=3 f(t)e(t).

2, 7=
Prove that this scalar product makesR into a Euclidean space. Prove that R
is nonseparable, i.e., that R contains no countable everywheredense subset.

Problem 3. Give an example of a (nonseparable) Euclidean space which
has no orthonormal basis. Prove that a complete Euclidean space (not
necessarily separable) adways has an orthonormal basis.

Problem 4. Provethat every nested sequenceof nonempty closed bounded
convex setsin a complete Euclidean space (not necessarily separable) has a
nonempty intersection.

Comment. Cf. Problem 6, p. 66 and Problem 2, p. 141.

Problem 5. Given a Euclidean space R, let oy, ¢s, «.., ¥, ... bean
orthonormal basisin R and f an arbitrary element of R. Prove that the
element

n
f— Eak%
k=1
is orthogonal to al linear combinations of the form

kgl by
if and only if
ar = (f, on) k=1,2,...,n).
Problem 6. According to elementary geometry, the length of the perpen-
dicular dropped from a point Pto aline L or plane Il is smaller than the

length of any other line segment_joining P to L or II. What is the natural
generalization of thisfact to the case of an arbitrary Euclidean space?

Hint. Use Theorem 6 and the result of the preceding problem.

Problem 7. Let R be a complete Euclidean space (not necessarily separ-
able), so that R has an orthonormal basis {¢,}, by Problem 3. Prove that
every vectorf € R satisfies the formulas

f = Z (foca (P)‘Pou “f”2 - z l(f’ <Poc)]2,

where neither sum contains more than countably many nonzero terms.

Problem 8. Give an example of a Euclidean space R and an orthonormal
system {¢,,} in R such that R contains no nonzero element orthogonal to every
9., even though {¢,} failsto be complete.
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Comment. By Theorem 10, R cannot be complete.

Problem 9. Given a Euclidean space R, not necessarily complete, let R*
be the completion of R as defined in Sec. 7.4. Define linear operations and
the scalar product in R* by "continuous extension™ of those in R < R¥.
More exactly, if x,, - x, ¥, —y wherex,, y, € R, let

xty=lim(x, ¥ y,), ax=lima, (xy)=lime,, y,).
Prove that

a) Theselimits exist and are independent of the choice of the sequences
{x.} {¥.} in R convergingto x and y;
b) R* isitsdlf a Euclidean space.

Complete Cf, 5; in this way, and show that the resulting space is a Hilbert
space.

Comment. The elements belonging to the completion of CE, ,; but not to
Ct, 5y arethemselvesfunctions, in fact discontinuous functions whose squares
are Lebesgue-integrableon [a, b], as definedin Sec. 29.

Problem 10. Prove that each of the following sets is a subspace of the
Hilbert space /,:

a) The set of al (x5, x2, .. ., X, .. .) €1, Such that x; = x,;
b) Thesetof al (x,, Xz, ..., % ...) €L suchthat x, = 0for al evenk.

Problem 11. Show that every complex Euclidean space of finite dimension
n isisomorphic to the space C* of Example 1, p. 164. Generalize Problem 9
to the case where C%, ; is the complex space of Example 3, p. 164.

17. Topological Linear Spaces

17.1. Definitions and examples. Specification of a norm is only one way
of introducing a topology into a linear space. There are many situations in
analysis, notably in the theory of generalized functions (to be discussed
in Sec. 21), whereit is desirable to use other methods of equipping a linear
space with a topology:

DeriniTION 1. By a topological linear space is meant a set E with the
following properties:

1) Eisalinear space;

2) Eisatopological space;

3) The operationsd addition d elementsd E and multiplication d
elements & E by numbers (real or complex) are continuous with
respect to the topology in E, in the sense that
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a) If zy = x4 4 yo, then, given any neighborhood U of the point z,,
there are neighborhoods V and W of the points x, and yg,
respectively, such that x + ye Uwhenever xeV,y W,

b) IF agx, = y,, then, given any neighborhood U of the paint y,,
there is a neighborhood V of the point x, and a number e = 0
such that ax € U whenever x eV, |a — o} < E.

THeOREM 1. Let E be a topological linear space, and let U be any
neighborhood of zero. Then the set

U+ xy={y:y =X+ X0, XEU}
is aneighborhood of x,. Moreover, every neighborhood of x, isa set of this
form, i.e., some neighborhood of zero" shifted by the vector x,.”

Proof. It followsfrom property 3a) that the mappingf (x)= x — x,
carrying E into itself is continuous. Hence, by Theorem 10, p. 87, the
preimage f~(U) of any neighborhood U of the point zero isitself a
neighborhood. But f-}(U)=U + X Therefore U + X, IS @ neighbor-
hood, obvioudly of the point x,. Similarly, given any neighborhood V
of the point x;, let U =V — x =V + (—xy). Then U is a neighbor-
hood of zero, by the continuity of the mapping g(x) = x + x,. But
clearly U '|'x0 =V. §

Remark. Thus the topology in E is determined by giving a neighborhood
base at zero, i.e., a system -#; of neighborhoods of zero with the property
that, given any open set G < Econtaining the point zero, thereisa neighbor-
hood N & .4; contained in G. In fact, the mappingf (x) = x + x, carriesa
neighborhood base at zero into a neighborhood base at x,. Hence .#;
and its "'tranglates," i.e., the system of al sets of theform {V:V = U + x,
U e A, xe E}, constitute a base for the topology in E. In this sense, .4
""generates' the topology in E.

Example 1. Every normed linear space is clearly a topological linear
space. |nfact, it is an immediate consequence of the properties of a norm
that the operations of addition of vectors and multiplication of vectors by
scalars are continuous with respect to the topology "'induced™ by the norm.

Example 2. Let RY be the linear space of all numerical sequences x =

(Xyy «+«y X, «..), rea or complex, and let /5 consist of all sets of the form
Uiy, oo s bie = {X:XERw,|xk,l <& ., .,» |xk,| <€}
for some number e = 0 and positiveintegersk,, ... , k.. Then R® becomes

a topological linear space when equipped with the topology generated by
N 19

As an exercise, verify that .4; and its transates satisfy Theorem 2 (or Theorem 3)
of Sec. 9.3and that the linear operationsin RM are continuous with respect to the topology
generated by ;.
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Example 3. Let K, ,; be the linear space of all infinitely differentiable
functions on the interval [a,51,2° and let A, consist of al sets of the form

Ue = {(P:9 € K, [9P(0)] < €., ¢(x)] < eforall xe [ab]}

for some number £ = 0 and positiveinteger r. Then X, ,; becomes a topo-
logical linear space when equipped with the topology generated by this
neighborhood base (again supply some missing details).

DeriniTiON 2. A subset M of a topological linear space E is said to be
bounded i7; givenany neighborhood U of zero, thereisa number o = 0 such
that M < aU = {z:z = ax,xe U}.2

DeriniTioN 3. A topological linear space E issaid to belocally bounded
f it containsat least one nonempty bounded open set.

THEOREM 2. Every normed linear space E is locally bounded.

Proof. Given any e > 0, the set of all x € E such that x|} <e is
obviously nonempty, bounded and open. §

DerINITION 4. A topological linear space E is said to belocally convex
if every nonempty open set in E contains a nonempty convex open subset.

THeOREM 3. Every normed linear space E is locally convex.

Proof. Merely note that every nonempty open set in E contains an
open sphere.  §

Remark. Itfollowsfrom Theorems 2 and 3 that every normed linear space
is both locally bounded and locally convex. Conversely, it can be shown that
every locally bounded and locally convex topological linear space satisfying
the first axiom of separation is normable, in the sensethat E can be equipped
with a norm ||-|| generating the given topology in E, viathe metric p(x, y) =

lx — yll.

17.2. Historical remarks. For some time it was thought that the concept
of a normed linear space (introduced in the thirties, notably in the work of
Banach) was general enough to serve all the concrete needs of analysis.
However, it subsequently became apparent that this was not so and that
there are a humber of problems involving such spaces as the space of in-
finitely differentiable functions, the space RY of all numerical sequences,
etc., in which the natural topology cannot be specifiedin terms of any norm
whatsoever. Thus topological linear spaces, as opposed to normed linear

% A function ¢ is said to beinfinitely differentiable if it has derivatives ¢t of all orders
k=0,1,2,...(the zeroth derivative ¢ is just the function ¢ itself).

21 A sequence {x,} of pointsin E issaid to be bounded if the set {x, x5, -+ « y Xps - - -},
consisting of all terms of the sequence, is bounded.
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spaces, are by no means'*exotic" or "' pathological." On the contrary, some
of these gpaces are no less natural and important a generalization of finite-
dimensional Euclidean space than, say, Hilbert space.

Problem 1. Reconcile Definition 2 with Problem 1, p. 141 in the case
where E is a normed linear space.

Problem 2. Let E be a topological linear space. Prove that

a) If Uand Vareopen sets, thensois U + V= {z:z=x +y,xe U,
yeVy

b) If Uis open, then soisalU = {z:z = ax, x € U} provided that a = 0;

¢) If F< Eisclosed, then sois «F for arbitrary a.

Problem 3. Prove that a topological linear spaceisa T;-space if and only
if theintersection of al neighborhoods of zero contains no nonzero elements.

Problem 4. Prove that a topological linear space E automatically has the
following separation property: Givenany point x € Eand any neighborhood
U of x, thereis another neighborhood V of x such that [V] < U.

Hint. If U is a neighborhood of zero, then, by the continuity of sub-
traction, thereis a neighborhood V of zero such that —,

V- V=4{zizz=x—y,xeV,yeVi< U

Suppose y € [V]. Then every neighborhood of y, in particular V 4+,
contains a point of V. Hence there isa point ze Vsuch that z+ye V. It
followsthaty e V— V< U.

Problem 5. Prove that a topological space T has the separation property
figuring in Problem 4 if and only if for each point x € T and each closed set
F < T not containing X, thereisan open set O, containing X and an open set
0, containing F such that 0; N 0, = &.

Comment. Thus, for Ti-spaces, this separation property is "halfway
between™ that of a Hausdorff space and that of a normal space.

Problem 6. Given a topological linear space E, prove that

a) If {x,) is a convergent sequence of points in E, then the set M =
{x1, X,y «+, X, ...} IS bounded;

b) A subset M < E is bounded if and only if, given any sequence{x,)
of pointsin M and any sequence{e,) of positive numbers converging
to zero, the sequence{e,x,} also convergesto zero.

22 Here the minus sign in V — V does not have the usual meaning of a set difference
(the same kind of notation was used in Sec. 14.5).
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Problem 7. Prove that

a) The space R™ of Example 2, p. 168 is not localy bounded;
b) Every locally bounded topological linear space satisfies the first axiom
of countability.

Problem 8. Let x be any point of a locally convex topological linear
space E, and let U be any neighborhood of x. Prove that x has a convex
neighborhood contained in U.

Hint. It is enough to consider the case x = 0. Suppose U is a neighbor-
hood of zero. Then there isaneighborhood Vof zerosuchthat V— V< U,
where V — V is the same as in the hint to Problem 4. Since E is locally
convex, thereis anonempty convexopenset ¥V’ < V. If x, € V', then V' — x,
is a convex neighborhood of zero contained in U.

Problem 9. Prove that an open set U in a topological linear space is
convex if and only if U +u=2u

Problem 10. Given alinear space E, aset U < E issaid to be symmetric
if xe Uimplies—x e U. Let # be the set of al convex symmetric subsets
of E such that each coincides with its own interior. Prove that

a) 4 isasystem of neighborhoods of zero determining a locally convex
topology = in E which satisfies the first axiom of separation;

b) The topology ~ is the strongest locally convex topology compatible
with the linear operationsin E;

¢) Every linear functional on E is continuous with respect to .

Problem 11. Two norms |-l and |-ll, in a linear space E are said to be
compatible if, whenever a sequence{x,) in E is fundamental with respect
to both norms and convergesto alimit x € E with respect to one of them, it
also converges to the same limit x with respect to the other norm. A linear
space E equipped with a countable system of compatible norms |-)|,, is said
to be countably normed. Prove that every countably normed linear space
becomes a topologica linear space when equipped with the topology
generated by the neighborhood base consisting of all sets of the form

U,.={xxek, |xl <e, ..., Ixl, <e 0

¥, e

for some number = > 0 and positiveinteger r.

Problem 12. Prove that each of the following spacesis countably normed,
i.e., in each case verify the compatibility of the given system of norms |-||,,:

8 Thespace K|, of infinitely differentiablefunctions on [a,b] ,equipped
with the norms

Ifla=sup If @I  (n=0,1,2,...); )
a<t<h
0O<k<n
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b) Thespace S of al infinitely differentiablefunctionsf (t)on (— oo, o)
such that f (t) and al its derivatives approach zero as |¢| — oo faster
than any power of 1/|¢| (i.e., such that #2f®(z) — O as|t| — oo for
arbitrary p and ), equipped with the norms

I, :rsyion}t”f‘“’(t)[ n=0,1,2,..);

¢) The space ® of al numerical sequences X = (xy, ..., Xy, - ..) Such
that
2 kg
k=1
convergesforal »n =0, 1, 2,. .., equipped with the norms

Ixll, = Sk™; (n=0,1,2,...).
k=1

Show that (1) and (2) define the same topology in K, ,;, asin Example 3,
p. 169.

Comment. & might be called the space of **rapidly decreasing sequences.

Problem 13. A norm |-|l; issaid to be stronger than a norm |||, if thereis
a constant ¢ > 0 such that [jx|\> c [x], for all x € E (then {-{, is said to
be weaker than |-||;). Discussthe norms (2)in thislanguage.

Comment. Two norms are said to be comparable if one is stronger than
the other, and equivalent if one is both stronger and weaker than the other
(cf. Problem 7, p. 141).

Problem 14. Prove that every countably normed space satisfies the first
axiom of countability.

Hint. Replace the system of neighborhoods U, . by the subsystem such
that e takes only the values
1 1

1,=...,=,...
2 n

(this can be done without changing the topology).

Comment. Thusthe topology in Ecan be describedin terms of convergent
sequences (recall Sec. 9.4).

Problem 15. Prove that the topology in a countably normed space can be
specifiedin terms of the metric

=1 x—yl,
P y) =2 = T, ren 3)
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First verify that p(x, y) has all the properties of a metric, and is invariant
under shiftsin the sense that p(x + z,y + z) = p(x, y) for al x,y,z€E.

Comment. A countably normed space is said to be complete if it is
complete with respect to the metric (3).

Problem 16. Prove that a sequence {x,} in a countably normed space is
fundamental with respect to the metric (4) if and only if it is fundamental
with respect to each of the norms |-||,. Prove that {x,} convergesto an
element x € E with respect to the metric (3)if and only if it converges to
x with respect to each of the norms |||,..

Comment. Thus, in particular, a countably normed space E is said to be
complete if a sequence {x,} in E converges whenever it is fundamental with
respect to each of the norms |-{,,.

Problem 17. An infinite-dimensional separable linear space H equipped
with a countable system of scalar products (-, -}, is said to be countably
Hilbert if the norms

Ixl, =6 %), (xeH)

generated by these scalar products are compatible and if the space H is
complete. Prove that the space @ of Problem 12c¢ is countably Hilbert when
equipped with the scalar products

(%, yY)n = Zlk”xkyk (n=0,1,2,..),
-

whereX = (X,, e+ v y X520 ), Y= (150 ooy Vo .. .) @r€@NY two elementsof @.

Problem 18. The norms |||, in a countably normed space E can be
assumed to satisfy the condition
Ixll < lxll, i k<l “

since otherwise we can replace fl-Il» by

I-ln=sup{l ol le..., B0}

(Prove that this does not change the topology in E.) Let E, denote the
completion of E with respect to the norm ||:[|,,. Using (4), prove that

E>2E > - +-DE, 2.
Clearly,
E< NE,.
n=1

Prove that E is completeif and only if
E=0NE,.

n=1
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Problem 19. Let C{™,, be the space of all functionsdefined on the interval
[a,b] with continuous derivatives up to order » inclusive, equipped with the

norm

1/ = sup || @)

asSE<h
O<p<n

(note that C{,; = C, ). Prove that C{™), is complete. Prove that K,
equals the intersection

~ (n)

n
n C[a,b]‘
n=0

and henceis complete (by Problem 18).

5

LINEAR FUNCTIONALS

18. Continuous Linear Functionals

18.1. Continuouslinear functionals on a topological linear space. A (real)
functional f defined on a topological linear space Eissaid to belinear on Eif

Slax + By) = of (x) + Bf (»)

for all X, y € Eand arbitrary numbers a, 8 (recall Sec. 13.5), and continuous
at the point x, € E if, given any £ > 0, there is a neighborhood U of X, such
that

If () —fGxa)l < e M

for al X € U (recall Sec. 9.6). We say that the functional f is continuous (on
E) if it iscontinuous at every point x, € E.

THeorem 1. Let f bealinear functional ona topological linear spaceE,
and suppose f is continuous at some point x, € E. Then f i's continuous on
E, i.e., at every point of E.

Proof. Given any point y € E and any number ¢ > 0, let U be a
neighborhood of x, such that x € U implies (1). Then

V=U+((y—x)={ziz=x+y — x5, x€ U}

is a neighborhood of y, by Theorem |, p. 168. Moreover, x € Vimplies
x+x0_ye U and hence

G =S = 1/ +x0 = p) — [l <,
ie., fiscontinuousaty. §
175
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CoROLLARY. Thecontinuity of alinear functional ona topological linear
space need only be checkedat a single point, for example, at the point zero.

THeEOREM 2. Let f bealinear functional on a topological linear space E.
Thenf iscontinuouson E if and only i ffisbounded in some neighborhood
of zero.}

Proof. Supposef iscontinuous on E, in particular at the point zero.
Then, given any = >0, there is a neighborhood of zero in which
[f(x)| <e. Obviously, f is bounded in this neighborhood.

Conversely, suppose f is bounded in some neighborhood U of zero,
so that | f(x)| < Cfor all x € U, where Cis a suitable constant. Then,
given any ¢ > 0, we have|f(x)| < e for dl x in the neighborhood

U:{Z:z=§~x,er},
C

Qe

i.e., f iscontinuous at zero and henceon al of E.  §

THEoREM 3. A necessary condition for a linear functional f to be
continuous on a topological linear space E isthat f be bounded on every
bounded set. The condition isalso sufficient if E satisfiesthe first axiom of
countability.

Proof. To prove the necessity, supposef is continuous on E. Then f
is bounded in some neighborhood U of zero:

f@l<C  (xel)

Let M < Ebeany bounded set, as definedin Definition 2, p. 169. Then
M < «U for some a > 0, and hence

lf®)] < Ca  (xeM),

i.e., f isbounded on M.
Asfor the sufficiency, let {U,} be a countable neighborhood base at
the point zero such that

UID UgD"'D U,,,,D"‘

(cf. the proof of Theorem 7, p. 84). Iff failsto be continuous on E, it
cannot be bounded on any of these neighborhoods of zero. Thereforein
each U, thereisa point x, such that | f(x,)| = n. The sequence{x,) is
bounded (recall footnote 21, p. 169), and even converges to zero, while
the sequence {f (x,)} is unbounded. But then f fails to be bounded on
the bounded set {x;, x5, ..., X, ...), contrary to hypothesis. §

Guided by Theorem 3, we introduce

* Recall footnote 14, p. 110.
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DeriniTioN 1. Given a linear functional f on a topological linear space
E, suppose f ishounded on every bounded subset ¢ E. Thenf issaid to be
a bounded linear functional.

Remark. 1ngeneral, a bounded linear functional need not be continuous.

18.2. Continuouslinear functionals on a normed linear space. Suppose
E isanormed linear space, so that in particular E satisfies the first axiom of
countability (recall the remark on p. 83). Then, by Theorem 3, a linear
functional on Eis continuousif and only if it is bounded. But by a bounded
set in a normed linear space we mean a set contained in some closed sphere
x|l < C (recal Problem 1, p. 141). Therefore a linear functional f on a
normed linear space is bounded (and hence continuous) if and only if it is
bounded on every closed sphere |lx|| < C, or equivaently on the closed unit
sphere ||x| < 1, because of the linearity off. In other words, f is bounded
if and only if the number

Il = sup [ () 2)
e lz)l <1
isfinite.
DeriNniTION 2. Given a bounded linear functional f on a normed linear

space E, the number (2), equal to the least upper bound of | f(x)| on the
closed unit sphere {{x| < 1, iscalled the norm off.

THEOREM 4. The norm | f || has the following two properties:

Il = 'ﬁ' (E)' , ®)

FG < Ifl =l forall xeE. 4)
Proof. Clearly,
1/ = sup | f(x)| = sup |f(x)[

el <1

(why?). But the set of all vectorsin E of norm 1 coincides with the set
of all vectors

L (xeE,x#0), 5)

f(II II)

which proves (3). Moreover, since the vectors (5) al have norm 1, it

followsfrom (2) that
|f )-8 werxz0,
llxll lIx

whichimplies (4) for x == 0. Thevalidity of (4) for x = 0isobvious. §

and hence

— sup &,

a0 |x]|

£ = sup H (x)| = sup

z#0
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Example . Let R™ be Euclidean n-space, and let a be any fixed nonzero
vector in R". Then the scalar product

fx)=(x,a) (xeRY

definesa functional on R™ whichisobvioudly linear. By Schwarz'sinequality,

) = 1(x, d)l < [l a]. (6)
Thereforef is bounded and hence continuous on R*. It followsfrom (6) that
“”"(’ﬁ)' <lal  (x#0). ™)
The right-hand side of (7) isindependent of x, and hence
/()]
| sup == ™ < lal,
ie.,
I£1 < llal.

But choosing x = a, we get

I/ (@) = (a, )| = ]al?,

or equivaently
PACYI S
It follows from (3) that lal
[£1 = llall.

Example 2. More generdly, let R be an arbitrary Euclidean space, and
let a be a fixed element of R. Then the same argument as in the preceding
example shows that the scalar product

f(x) = (x,a) (xeR)

defines a bounded linear functional on R, with norm

, If 1= lal.
Example 3. The integral

I(x) = f:x(t) di

isa linear functional on the space C, ,;. Since

16O1 = [ ["x(0) de | < max 1501 (6 — @) = ¢l (0 — o),

where the equality holds if x(#) = const, we see that the functional 1 is
bounded, with norm

I =b—a (8
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Example 4. More generally, let yo(7) be a fixed function in C, ,,, and let
b
1) = [ "x()po(0) dt.
Then I isalinear functiona on C ;. Since

1 = [xopo de | < el ["Iyoo) at,

where the equality holds if x(¢) = const, the functional 1 is bounded, with
norm

111 = [Nyl d. ©

Note that (9) reduces to (8) in the case y,(t) = 1.
Example 5. Asin Example 3, p. 124, |et
81,(%) = x(to)

be the linear functional on Cy,,»; which assigns to each function x{¢) € C, 5
its value at some fixed point #, € [a, b]. Clearly

[x(to)] < maXIX(t)I = lixi},

ASEY

where equality holdsif x(f) = const. Hence 3, is bounded, with norm
18, =

The concept of the norm of a bounded linear functional on a normed
linear space can be given a simple geometric interpretation. As shown in
Theorem 4, p. 127, every nontrivial linear functional f can be associated
with a hyperplane

= {x:f(x) = 1).
Let d be the distance from the hyperplane M; to the point x = 0, defined as
d=inf ||x|
fle)=1

(cf. Problem 9, p. 54). Since, as dways

Sl < 171 It
f(x) = Limplies

lIx] L (xeM,)
1. ,
£ ¢

Le.,

d> -1 (10)

IA1




180  LINEAR FUNCTIONALS CHAP. 5

On the other hand, it follows from (3) that, given any e > 0, there is an
element X, such that f.(x) = 1 and

f =9 lIxl < 1.
Therefore
- 1
= < =
d= ot =i —=
and hence
1
d< 20 1
= (n
sincee > 0 is arbitrary. Comparing (10) and (11), we get
d=-
(WAl

i.e., the norm of the linear functional f equals the reciprocal of the distance
between the hyperplane f (x) = 1 and the point x = 0.

18.3. TheNahn-Banachtheoremfor a normed linear space. Let fi(x) bea
linear functional defined on a subset L of a linear space E, satisfying the
condition

[fo() < p(x), (12)

where p is a finite convex functional on E. Then, according to the Hahn-
Banach theorem (Theorem 5, p. 132), f, can be extended onto the whole
space E without violating the condition (12) As applied to bounded linear
functionals on a normed linear space E, this result can be formulated as
follows:

THeOREM 5 (Hahn-Banach). Given a real normed linear space E, let
L be a subspace of E and f, a bounded linear functional on L Then f; can
be extended to a bounded linear functional f on the whole space E without
increasing its norm, i.e.,

”f”onE = ”fo”on L

Proof. We need only choose the functionalp in Theorem 5, p. 132 to
be the convex functional k ||x]|; where

k=lfllonz. §
This form of the Hahn-Banach theorem has a simplegeometric interpreta-
tion. The equation
Jo(x) =1 (13)
specifiesa hyperplane in the subspace L, at distance
1

1%l
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from the origin (the point x = 0) The fact that the functional f, can be
extended onto the whole space E without increasing its norm means that the
hyperplane (13) can be extended to a larger hyperplane in the whole space
E in such a way that the distance between the larger hyperplane and the
origin isthe same as the distance between the hyperplane (13)and the origin.

I n the same way, starting from the complex version of the Hahn-Banach
theorem (Theorem 5', p. 134), we get

THeEOREM 5. Given a complex normed linear space E, let L be a
subspace of E and f, a bounded linear functional on L. Then f; can be
extended to a bounded linear functional f on the whole space E without
increasing itsnorm, i.e., .

”f”onE o ”ﬁ)”on L

In the case of an arbitrary topological linear space E, a nontrivial con-
tinuous linear functional on E may not even exist. However, by imposing
suitable restrictions on E, we can guarantee the existence of " sufficiently
many™ continuous linear functionals on E.2

DeriniTioN 3. A topological linear space E is said to have sufficiently
many continuous linear functionals if for each pair of distinct points
X;, X, € E there exists a continuous linear functional f on E such that
f (xy) # f(xy), or equivalently, if for each nonzero element x, € E there
exists a continuouslinear functional on E such that f (x,) = 0.

THeEOREM 6. Every normed linear space E has sufficiently many con-
tinuous linear functionals.

Proof. Given any nonzero element x, € E, we define a linear
functional
Jo(hxe) = A

on the set L of al elements of the form ix,. We then use the Hahn-
Banach theorem to extend f, onto the whole space E. This gives a
continuous linear functional on E such thatf (x,) =1+ 0. §

Problem 1. Prove that a functional f on a Ti-space E is continuous at a
point x € E if and only if x, — x impliesf (x,) — f(x).

Problem 2. Prove that every linear functional on a finite-dimensional
topological linear space is automatically continuous.

Problem 3. Let E be a topologica linear space. Prove that a linear
functional f on E is continuousif and only if

a) Its null space { xf (x)= 0} isclosed in E;

b) There existsan open set U < E and a number ¢ such that t ¢ f (U).

2 See Theorem 6 and Problems 7-8.
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Problem 4. Given a topological linear space E, prove that

a) If every linear functional on E is continuous, then the topology in
Eis the topology = of Problem 10, p. 171;

b) If E isinfinite-dimensional and normable, then there exists a non-
continuous linear functional on E;

¢) If E has a neighborhood base at zero whose power does not exceed
the algebraic dimension of E, then there existsa noncontinuous linear
functional on E.

Hint. In b) use the existence of a Hamel basisin E (recall Problem 4,
p. 128, where algebraic dimension is also defined).

Problem 5. Prove that
f(x) = ax(0) + bx(1),

g0 =[xy di — [ <) i

are both bounded linear functionals on the space Ci, ;. What are their
norms?

Problem 6. Asin Problem 11, p. 171, let E be a countably normed space
with norms |-|{,,, where

xlly < Ixlle < oo << Il < -0 (14)

(as in Problem 18, p. 173, this condition entails no loss of generality).
Let E* be the set of al continuous linear functionals on E, and let E* be
the set of al linear functionals on E which are continuous with respect to
the norm |-||,,. Prove that

and

E* =UE% (15)
n=1

Hint. I1ff is a continuous linear functional on E, then, by Theorem 2,
there is a neighborhood U of zero in whichf is bounded. It follows from
(14) and the definition of the topology in E that thereisa number ¢ = 0 and
a positive integer k such that the open sphere ||x||,, < ¢ is contained in U.
Being bounded on this sphere,f is bounded and continuous with respect to
the norm |.},.

Comment. Letf be a continuous linear functional on E, i.e., letf € E*.
Then by the order off is meant the smallest integer » for whichf € E¥. It
follows from (15) that every continuous linear functional on E is of finite
order.
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Problem 7. Prove that every countably normed space E has sufficiently
many continuous linear functionals.

Hint. Given any nonzero element x, € E, use Theorem 6 to construct a
linear functional f continuous with respect to the norm |-, such that
f (xo) # 0.

Problem 8. Show that every real locally convex topological linear space
E satisfying the first axiom of separation has sufficiently many continuous
linear functionals.

Hint. Given any nonzero element x, € E, show that there is a convex
symmetric® neighborhood U of zero such that x,¢ U. Let py be the
Minkowski functional of U. Then, asin the proof of Theorem 6, p. 136,
po isafinite convex functional on E such that p,(—x) = p,(x) and

puxy <1l if xeU, Po(x) > L.

Define a linear functional fy(3x,) = A on the set L of all elements of the
form Ax. Clearly | f(x)] < po(x) on L and fo(x) = 1. Now use the Hahn-
Banach theorem to extend f, onto the whole space E.

Comment. The importance of locally convex spacesis mainly due to this
property (which continues to hold in the complex case).

19. The Conjugate Space

19.1. Definition of the conjugate space. The operations of addition of
functionals and multiplication of functionals by numbers are defined in the
obvious way':

DeriniTion 1. Letf and g be twofunctionals defined on a topological
linear space E, and let a be any number. Then by the sum off and g,
denoted byf + g, is meant thefunctional whose valueat every point x € E
isthe sum ¢ the values df andg at x, while by theproduct & a and f,
denoted by &, is meant thefunctional whose value at every point x € E is
theproduct & a and the value of at x. More concisaly,

[+ =/ +g(),

of (x) = of (x)
for every x e E.

Clearly, iff and g arelinear functionals, then so aref + g and «f. More-
over, iff and g are bounded (and hence continuous), so aref + gand af.

# Recall Problem 10, p. 171.
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Let E* be the set of all continuous linear functionals on E. Then the
space E*, called the conjugate space of E, is itself a linear space, when
equipped with the operations of addition of functionals and multiplication
of functionals by numbers. This can be seen at once by verifying the three
axioms in Definition 1, p. 118. Note that the zero element in E* is the
functional f' = 0, equal to zero for all x € E.

The next step is to introduce a topology in E*, besides the linear operations

just described. This can be done in various ways. First we consider the
particularly simple case where the original space E is a normed linear space.

19.2. The conjugate space of a normed linear space. Let f be a continuous
linear functional on a normed linear space E. In Sec. 18.2 we introduced the
concept of the norm of f, equal to

I/1l = sup )
' a0 [|x]|

(recall Theorem 4, p. 177). This quantity clearly has all the properties of a
norm, as listed on p. 138. In fact,

1) I/ > 0 where | f|| = 0if and only if f = 0;

2) lleafll = loed 1115
3 Uf+ gl < 1fI + ligll, since obviously

up )£ 8O _ (1)

P x|l Tero x| w0 x|

Hence the space E* conjugate to E can be made into a normed linear space
by simply equipping each functional f'e E* with its norm ||f). The corre-
sponding topology in E* is called the strong topology in E*. In cases where
we want to emphasize that E* is equipped with the norm |-, we will write
(E*, |- instead of E*.

Example 1. Let E be Euclidean n-space (real or complex), and let

e, ..., e, be any basis in E, so that every vector x € E has a unique repre- -

sentation of the form

X =
k

If fis a linear functional on E, then clearly

Xl
1

1) =z Fleoxs. (1)

Thus a linear functional on E is uniquely determined by its values on the
basis vectors ey, ..., e,, where these values can be assigned arbitrarily.
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Consider the linear functionals f1, . . . , f,, defined by
) 1 if j=k,
A€ ==
Hed=1o i j#k.

- It is clear that these functionals are linearly independent, and moreover that

Ji(x) = x;.

Hence we can write (1) in the form

£ =3 fe i)

Thus the functionals f;, . . . , f,, form a basis in the space E*, called the dual
of the basis ey, ..., e, in the original space E. Therefore E* is itself an
n-dimensional linear space. Of course, different norms in E “induce”
different norms in E* (see Problem 1).

Example 2. Let c, be the space of all sequences x = (Xy, ..., Xp, . . »)
converging to zero, with norm

Il = sup (B2

Then the space (cf, ||I]) conjugate to ¢, is isomorphic (see footnote 17,
p- 155) to the:space /; of all absolutely summable sequences /= (f1,. ..,
S - - ), with norm

Il =2 1Al
k=1
Toprove this, we first noté that, given any-element f = (f3, ..., f .. ) €L,
the formula
fx) =35 @

defines a functional f on the space c,, where f is clearly linear. Moreover,
it follows from (2) that

7@l < ||xn§1 1A

and hence .
1A < 11 3)
* % A sequence {fi}, or £ = (f1, -+ .5 fr» - - -).J00 *“point notation,” is said to be absolutely
summuable if
2l < .

k=1

]
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Consider the vectors

in ¢q, and let
(n) _ < _flg_
¥ kgl Ll
(if f = 0, we set £,/ fx| = 0). Then x" e ¢;, and
[x < 1. 4
Moreover
ey =3, {5 Je) =ZIA.
so that o
lim () =31/l = 1] )
It followsfrom (4) and (5)that \
170 = 11 (6)
(why?). Comparing (3) and (6), we get
L1 = 111

Thus the mapping carrying f into £is a " norm-preserving'* mapping of
I, into ¢f. We must still verify that this mapping is one-to-one and " onto™"
(see p. 5), i.e., that every functional fe ¢} has a unique representation of
theform (2), wheref = (f1, ..., fro- ) €L Let X = (%, ..., Xpp...) ECpe
Then

0
X = 2 Xyl
k=1

where the series on the right convergesin ¢, to the element x, since

n
X — 2 Xpep || = sup |x] -0
k=1 k>n

asn — «. Sincethe functional /'€ ¢§ is continuous,

7= :i X7 (e

(where is the continuity used?). Hence f has a unique representation of the
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form (2), and we need only verify that

217 < co. (7)
Thistimelet
X7 =3 —f:(f’—“)—ek.
=1 [ f (el
Noting that x™ e ¢, and [|x™| < 1, wefind that
317t =3 2. 7y — 7™ < 171
r=1 P=V{Ch]

But thisimplies (7), since n can be made arbitrarily large.

whether or not the original space E is complete, we have
THeoREM 1. The conjugate space (E*, |-||) is complete.

Proof. Let{f,} beafundamental sequenceof functionalsinE*. Then,
given any ¢ > 0, thereisan integer N such that n, »” = Nimplies

”fn _f'n’” <,
|fa(2) = [l < N fo — Sl X < & |1

for every x € E. Therefore the sequence{f,(x)} isfundamental and hence
convergent for every x e E. Let

FGx) = lim fu(x).

so that

Then f islinear, since
Sfex 4 By) = lim Soex -+ By)

=lim [ofu(x) + Bfa(D] = of(x) + Bf (y).

Moreover, choosing » so large that || f, — fo.ll <1 for al p > 0, we
have | frioll < 1121 + 1 for allp > 0, and hence

e < (Sl 1) I
It follows that
Him| £ (0l = 1/ < (£l F D) D,

so that f is bounded and hence continuous.
To complete the proof, we now show that the functional f isthelimit
of the sequence{f,}, i.e., that
lim || f, — f] = 0. ©)

oo
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Given any £ = 0, let n be so large that
1o = fassll <3 ©)

for al p > 0. By the definition of the norm in E*, there is a nonzero
element x,, . € E such that

”fn '—‘f“ <|f‘n(xn,a) '—f(xn,E)I -+ f____: Ifn(un,s) '—f(un,e)l + f
x,.l 3 3’
where
Xn,e
u, s T .
B B
Therefore

L — £ < 1t — Fraaltim | + [frnratine) — f )| + -3“?

< N fw = Fusall Mot ol + | frrnttne) — F@n )l + 3
or
2e

1o =1 < o) — fun,l + 3 (10)

after using (9) and the fact that jju, .| = 1. But
limfn+p(un,s) :f(un,s)a

by the very definition off.\Hence, taking the limit asp — « in (10),
we get
Ife = fil <e,

whichimplies (8), sincee = O isarbitrary.

Next we examine the structure of the space conjugate to a Hilbert space:

THEOREM 2. Let H be a real Hilbert space. Then, given any x, € H,
the formula

) = x) (xeH) (In

defines a continous linear functional on H, with || f [| = [lx,]]. Conversely,
given any continuous linear functional f on H, there is a unique element
X, € H such that (11) holds, with {[x,]| = | fIl.

Proof. Given any x, < H, formula (11) obvioudly defines a linear
functional on H. By Schwarz's inequality,

G = 10x, xo)l < lix]l Ixoll5 (12)
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so that f is bounded and hence continuous. Moreover ||f || = |x,],
because of (12) and the fact that f (xo) = [lx,/12.

Conversely, let f be any continuous linear functional on H. Iff =0,
then f obviously has the representation (11) with x, =0 (in this case
%ol = lIf ]| = 0). Otherwise, let

Hy={xf(x)=0)

be the null space off. Sincef iscontinuous, H, isa closed subspace of H.
According to Theorem 3, Corollary 2, p. 126, the codimension of the null
space of any nontrivial linear functional f equals 1. Therefore, by
Theorem 14, Corollary 2, p. 159, the orthogonal complement H, of the
space H, is one-dimensiona, i.e., there exists a nonzero vector y,
orthogonal to H, such that every vector x e H has a unique repre-
sentation of the form

X = y + 7\y0, (13)

wherey € H,. Clearly, there is no loss of generality in assuming that
I3l = 1. Now let
Xo = f (o)yo- (14)

Then, given any x € H, we have

fG) =70+ 10) =2 (o)
because of (13), and

(.X', x()) == 7\()’0, xO) == 7\f‘(yo)(yo’ y()) == 7\_](‘(y())
because of (14). Therefore (11) holds for al xeH. To prove the
uniqueness of x,, suppose

f(x) = (x, x{) (x e H). (11
Then, subtracting (11") from (11), we get
(%, xg — x3) =0 (x € H),
which immediately implies x; = x, after choosing X = x, — x;.
CoROLLARY. The correspondence x,<— f is an isomorphism between
H and H*, regarded as normed linear spaces.

Proof. If
fO) = (%), g = (x,70),
then
of () F Bg(x) = (x, axo T Byy).
Moreover [xol = Ifl. §

19.3. Thedrongtopology in the conjugate space. Let E be a normed lin-

ear space. Then as we have seen, the conjugate space E* isitself a hormed
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linear space, and a neighborhood of zero in E* meansthe set of all continuous
linear functionals on E satisfying the condition || f || < e for somee > 0. In
other words, for a neighborhood base at zero in the space E* we can take
the set of al functionals in E* such that | f(x)| < e when x ranges over the
closed unit sphere ||x|| < 1in the space E. Suppose E is a topological linear
space, but not a normed linear space. Then in defining the topology in E* it
seemsnatural to start from an arbitrary bounded set A < E, since thereisno
longer a ""unit sphere."" This suggests

DeriniTioN 2. Let E be a topological linear space, with conjugate
space E*. Then by the strong topology® in E* is meant the topology
generated by the neighborhood base at zero consistingof all setsof theform

Ugo={F:1f ()| <eforall xe A) (15)

for some number £ = 0 and bounded set A < E.¢
Regardless of the topology in the origina set E, we have

THEOREM 3. The conjugate space E*, equipped with the strong
topology, is a locally convex 7'y-space.

Proof. If f, € E* and f; s 0, then there is an element x, € E such
that fo(x,) 5= 0. Let

e =% f(x)l, A = {xg}.

Then clearly f, ¢ U, ., and hence E* s a T,-space. To veify that the
strong topology in E* islocally convex, we need only note that U, . is
aconvex st in E* for any « = 0 and any bounded set A = E. i

Remark. The strong topology in E* will be denoted by the symbol b.
In cases where we want to emphasize that E* is equipped with the strong
topology, we will write (E*,b) instead of E*.

19.4. The second conjugate space. Since the set of all continuous linear
functionals on a topological linear space E isitself a topological linear space,
namely the conjugate space (E*,b), we can aso talk about the second
conjugate space E** = (E*)*, i.e., set of al continuous linear functionals
on E*, the third conjugate space E* ** = (E* *)*, and so on.

THEOREM 4. Given a topological linear space E with conjugate space
E*, let X, be any fixed element of E. Then

ey (f) = [ (x0)

 As opposed to the weak topology in E*, to be discussed in Sec. 20.3
8 See Problem 8.
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is a continuouslinear functional on E*,
Proof. The linearity is obvious, since

Yoo + B8) = of (xo) + Bg(xe) = o, (/) + Bl (&) (fs g € E¥).

Asfor the continuity, given any € = 0, let A be a bounded subset of E
containing x,, and let U . be the neighborhood (15). Then

[N =1f(x)l <& if felUy,,

i.e., the functional ¢, is continuous at 0 and hence continuous on the
whole space E*. §

Thus the mapping
(%) = Yal /)

caled the natural mapping of E into E*, is a mapping of the whole space
E onto some subset =(E) of the second conjugate space E**. Clearly = is
linear, in the sense that

nlax + By) = fax + By) = of (%) + Bf (1) = an(x) + Lr(p).

Suppose E has sufficiently many continuouslinear functionals, e.g., suppose
E is a normed linear space or a locally convex topologica linear space
satisfying the first axiom of separation.” Then = is one-to-one, since, given
any two distinct elements x;, x, € E, there is a functional f € E* such that
f (xy) # f(x,) and hence =(x;) # 7(x,). Being the conjugate spaceof (E*,b),
E** can also be equipped with a strong topology (introduced by the obvious
analogue o Definition 2), which we denote by b*.

If =(E) = E**, the space E is said to be semireflexive. 1t can be shown
(see Problem 9) that the inverse mapping =~ carrying =(F) into E is aways
continuous. If E is semireflexive and if = (as well as =—*) is continuous,
the space E is said to be reflexive and = then establishes a homeomorphism
between the space E and (E**, b*). In this case, each element x € E can be
identified with the corresponding element =(x) € E**, and hence it is con-
venient to denote the value of a functional f € E* at the point x € E by the
more symmetric notation

F) = ().

Thus (f, x) can be regarded as afunctional on Efor each fixed f € E*, and as
a functional on E* for each fixed x € E (in the latter case, x aso acts like
an element of E**).

THeEOREM 5. If E is a normed linear space (so that in particular E*
and E** are also normed linear spaces), then the natural mapping of E
into E* * is an isometry.

7 Recall Problem 8, p. 183.
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Proof. Givenanelementx € E, let |x| denotethe norm of x in Eand

flxll; the norm of itsimagein E**, We want to show that ||x]| = I|x|,.
To thisend, letf be any element of E*. Then
. 1)< 1F1 Ixs
1.e.,
I(f, )|
Ixl > —— f +0),
11 ( )
and since the left-hand side is independent off,
(/5 %)
Ixll > sup == = [xla. 16
Ti = |x. (16)

On the other hand, by the Hahn-Banach theorem, for every x, € E there
isalinear functional f, such that

[(Sor Xo)l = /o]l 1%l (17

Infact, to construct such afunctional, we need only set fo(x) = hfor any
element of theform Ax,, and then extend f, to afunctional on the whole
space E (without changing its norm). It followsfrom (17) that

[
Ixla = st S

Comparing (16) and (18), we get
Ixll = fxlle. |

CoROLLARY. The concepts d semireflexivity and reflexivity coincide
for anormed linear space.

> [x]. (18)

Proof. If the natural mapping = is an isometry, then obviously both
= and =—* are continuous. g

Remark. According to Theorem 5, every normed linear space E is iso-
metric to the linear manifold w(E) < E**8, |dentifying E with =(E), we
can assert that E < E** in general, and E = E** if E is reflexive (or
semireflexive).

THEOREM 6. Every reflexive normed linear space is complete.

Proof. If Eisreflexive,then E= E**. ButE** = (E*)*iscomplete,
by Theorem 1, p. 187. g

8 The set #(E) need not be closed.
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Example 1. Finite-dimensional Euclidean spaces and Hilbert space are
the simplest examples of reflexive spaces (in fact, for such spaces E = E*).
Thisfollowsfrom Theorem 2 (cf. Problem 5).

Example2. Thespacec, of all sequencesx = (X,, .. ., X3, - . .) cOnverging
to zero is an example of a complete nonreflexive space. In fact, as we saw
in Example 2, p. 185, the conjugate space of ¢, is the space/; of all absolutely
summable sequences, whichin turn has the space m cf all bounded sequences
(not necessarily converging to zero) as its conjugate space (see Problem 2c).

Example 3. It can be shown that the space C,,, of al continuous
functions on [a, b] is nonreflexive, and even that there is no normed linear
space with Cy, ,, as its conjugate space.

Example 4 The space/,, where 1 < p # 2, is an example of a reflexive
space which does not coincide with its conjugate space. In fact, I* =,
where

} + _1: 1 s
P 4

and hence I}* = I¥ = I,

Problem 7. Let E be Euclidean n-space (real or complex), and let
e,...,6 beabassinE. Let x,,...,x, be the coordinates of a vector
x € E with respect to the basise, ..., e,, and letf:, ..., f" be the coordi-
nates of a functional f € E* with respect to the dual basisf;, ... ,f, Prove
that in each of the following pairs, the norm in E* is the norm " induced"
by the corresponding norm in E:

a>wu=(iwmyi lvuz(évai

k=1

b”“zfgmﬁﬁ nm=(§ﬁ@“

whee 14+1_1 (p,qg>=1);

O
N

©) lxll = sup jx[, IS =§1!f’°l;

<k<sn

d) llx| =g}xm I/l = sup /-

0O<E<n

Problem 2. Let /, be the normed linear space of all seguences x =
(X500 y Xg, .. .) With norm

4 0 1/p
hn=(gyw)<<w (> 1.
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Prove that
a) If p> 1, the space I} conjugate to /, is isomorphic to the space /,
where
p 4

b) If p > 1, the genera form of a continuous linear functional on /, is

f(x) :k:%xkfka

wherex = (xg, 0 oo, Xgo .. ) €L, F =1, oo S o ) ELG
c) If p=1, I* is isomorphic to the space m of all bounded sequences
X = (Xy « vy Xgs---) With norm [[x[| = sup [x;].
k

Problem 3. Let E be an incomplete normed linear space, with completion
E. Prove that the conjugate spaces E* and (£)* are isomorphic.

Hint. Given anyf e E*, extendf by continuity to a functional £ e (E)*.
Conversely, given any f € (E)*, letf be the restriction of £ to E, namely
the functional f (x) = f(x) for dl x € E. Show that f<f is the desired
isomorphism (with [[f | = (/1.

Problem 4. Let E be an incomplete Euclidean space with the Hilbert
space H as its completion. Prove that E* and Har e isomorphic.

Problem 5. Particularize Theorem 2 to the case of a finite-dimensional
Euclidean space.

Problem 6. Generalize Theorem 2 to the case of a complex Hilbert space.

Hint. Write x, =T (yo}y, instead of (14). Theisomorphism of H and H*
associating the functional f (x) = (X, x,) with x, is then ** conjugate-linear"
in the sense that «f'is associated with «.x,.

Problem 7. Let ® be the same countably normed space of "rapidly
decreasing sequences' asin Problem 12¢, p. 172. Find the conjugate space®*.

Hint. Use Problem 6, p. 182.
Ans. @* is the space of all functionalsf of the form
FC) =2 % fo
Te==1
wheref = (f, ..., fw .. .) IS @y sequence satisfying the condition
SKfE< oo
k=1

for some nonnegative integer n.
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Problem 8. Let E, E*,and U, . be the same as in Definition 2. Verify
that the system U, , actually generates a topology b in E* such that the
linear operations in E* are continuous with respect to b. Prove that if E
is a normed linear space, then b coincides with the " norm topology" of
Sec. 19.2.

Problem 9. Let E be a topological linear space, and let b* be the strong
topology in E** and = the natural mapping of E into £**. Prove that =~
is continuous.

Hint. The topology b* induces a topology =—'(#*) in the space E, in
which a set G = E issaid to be open if itsimage =(G) is the intersection of
w{E) with an open subset of (E**, b*). Show that =—*(b*) is stronger than
the original topology in E.

Problem 10. Prove that every closed subspace of a reflexive spaceisitself
reflexive.

20. The Weak Topology and Weak Convergence

20.1. The weak topology in a topological linear space. Let E be atopo-
logical linear space, with conjugate space E*. Given any « = 0 and any
finite set of continuouslinear functionals 3, . . . , f, € E*, the set

U=U,, = lA@I<e ... L@ << o)

is open in E and contains the point zero, i.e., U is a neighborhood of zero.
Let .45 be the system of all setsof theform (1). Then 4 isaneighborhood
base at zero, generating a topology in E which is again the topology of a
topological linear space (the details are left as an exercise). This topology is
called the wesk topology in E. Every subset of E which is open in the weak
topology is also open in the original topology of E, but the converse may
not be true, i.e., «#; may not be a neighborhood base at zero for the original
topology in E. In other words, the weak topology is weaker (as defined on
p. 80) than the original topology, as anticipated by the terminology.
Clearly, the weak topology in E is the weakest topology « with the property
that every linear functional continuous with respect to the original topology
is also continuous with respect to .

.....

20.2. Weak convergence. The weak topology in E may not satisfy the
first axiom of countability, even in the case where E isa normed linear space.
Hence the weak topology cannot in general be described in the language of
convergent sequences. Nevertheless, the weak topology determines an
important kind of convergencein E, called wesk convergence. By contrast,
the convergencein E determined by the original topology (by the norm, if
E is a normed linear space) is called strong convergence.
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THeOREM 1. A seguence {x,} of elementsin a topological linear space
E is weakly convergent to an element x, € E if and only if the numerical
sequence {f (x,)} converges to f(x,) for every f e E*, ie., for every
continuous linear functional f on E.

Proof. Clearly, there isnolossof generality in assuming that x, = 0.
Suppose f (x,) — 0 for every f € E*. Then, given any "weak neighbor-
hood" (1), let N, besuchthat | f;(x,)] < efordln > N, (i=1,...,r),
and let N=max {N,,...,N,}. Then x, e U for al »n > N, ie., {x,}
convergesto x, in the weak topology.

Conversely, suppose that for each neighborhood (1), thereisan inte-
ger N = N(U)suchthat x,, € Uforaln > N. Then obvioudlyf (x,) —0
for any givenf € E*, aswe see by choosing f to be one of thefunctionals
Jfi» o5 fy figuring in the definition of U. i

Specializing to the case where E is a normed linear space, we have

THEOREM 2. Let {x,} be a weakly convergent sequence of elementsin
anormed linear space E. Then {x,} isbounded, i.e., there isa constant C

such that
”‘xn” < C (n = 1) 2, - .).

Proof. Suppose {x,} isunbounded. Then {x,} isunbounded on every
closed sphere
* SUo Sl = {217 = fioll < ¢}
in E*, in the sense that the set of numbers

{(fix):feSlfi,el,n=1,2,..]

is unbounded for every S[f,, e] < E*. In fact, if the sequence {x,} is
bounded on S{f;, ¢}, then it is also bounded on the sphere

S[0, ] = {g:llgll < <},

sinceif g € S[0, <], then
Jo+g eS8l el

(g’ x’n) == (ﬂ) +g7 xn) - (fO: xn)>

where the numbers (f,, x,,) are bounded, by the wesk convergence of
{x,). Butif (g, x,)| < Cforall g e S[0, g1, then, by theisometry of the
natural mapping of E into E* *,

h=1,2,...),

o [0

1
lx,ll = sup |(g, x,)| == Sup (g, x,)l <

lTgll<1 € llgll<e

sothat{x,) isunbounded, contrary to assumption. Itfollowsthat if {x,}
is unbounded, then {x,) is unbounded on every closed sphere in E*.
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Next, choosing any closed sphere S, = E*, wefind an integer », and
an element f € S, such that

1y xu)] > 1. @

Since (f, x) depends continuously on x, the inequality (2) holdsfor all f
belonging to some closed sphere S; = S,. Repeating this argument, we,
find an integer n, and a closed sphere S, < §, such that

I(fs %)l > 2

for al f € S,, and so on, wherein general there is an integer n,, and a
closed sphere §;, < S;_; such that

(s X )1 > ke

for dl f e S,. At the same time, we can obviously see to it that the
radius of the sphere S, approaches zeroask - «. SinceE* iscomplete,
by Theorem 1, p. 187, it follows from the nested sphere theorem
(Theorem 2, p. 60) that there is an element f contained in al the
spheres S. But then

l(ﬂxnk)}>k (k=1,2,...),
contrary to the assumed wesk convergenceof the sequence{x,}. g

CoroLLARY 1. Let {x,) be a sequence of elementsin a normed linear
space E such that the numerical sequence { (f,x,)} is bounded for every
f e E*. Then {x,} is bounded.

Proof. In proving Theorem 2, the wesk convergence of {x,) was
invoked only to infer the boundedness of the sequence{(f,, x,)). §

Generalizing Corollary 1, we get

CoROLLARY 2. Let M be a weakly bounded subset of a normed linear
space E, i.e., a subset bounded in the weak topology. Then A/ is strongly
bounded, i.e., M is contained in some closed sphere.

Proof. Suppose M contains a sequence{x,) suchthat ||x,|| — «,and
let M' be the set of al points x, (n=1,2,...). Since M is weskly
bounded, so is M'. This means that M' is ""absorbed" by any weak
neighborhood of zero, in particular by any neighborhood

U={x|(f, 0l <1,feE*},

in the sense that there is a number « = 0 such that A’ < «U. But then
[(f, x,)| < aforal r, which, by Corollary 1, contradicts the assumption
that lx,] —0. §
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CoroLLARY 3. A necessary and sufficient conditionfor a subset M d
a normed linear space E to be (strongly) bounded is that every continuous
linearfunctiona f € E* be bounded on M.

Proof. The necessity follows at once from the inequality

100 < IFIF I

while the sufficiency is an immediate consequence of Corollary 2 and the
meaning of weak boundedness. §

A useful test for weak convergence of a sequenceis given by

THEOREM 3. A bounded sequence {x,,} ¢ elementsin a normed linear
space E is weskly convergent to an element x € E i ff (x,) =T (x)for
everyf € A, where A isany set whose linear hull iseverywheredensein E*.

Proof. Let ¢ bean arbitrary element of E*, and let {¢,} be asequence
of linear combinations of elementsof A converging to ¢ (such a sequence
exists, since A is everywheredense in E*). Let C be such that

Ixl<C, Ixd<C (=12..)
Moreover, given any £ = 0, choose k so large that ¢ — ¢,/ < e (this
is possible, since ¢, — ¢). Then
lo(x,) — o) < [o(x,) — @u(x,)] + [@r(xn) — x(x)]
+ | 9x(x) — o(x)]

< Ce + Ce + |pu(x,) — 9p(X)]. 3
But ¢,(x,) = ¢.(x) @ n — o, since ¢, is a linear combination of
elements of A, andf (x,) —Tf (x) for everyf € A, by hypothesis. There-
fore we can make the right-hand side of (3) as small as we please, by

choosing e sufficiently small and » sufficiently large. It follows that
¢(x,) — o(x) for every ¢ € E*, i.e., {x,} converges weakly to x. i

The meaning of weak convergence in various spacesis illustrated by the
following examples:

Example 1. Given afinite-dimensional Euclidean space R”, let ey, ..., e,
be any orthonormal basisin R", and let {x‘*)} be a sequencein R* converging
weakly to a vector x = (x;,...,%) € R". Then

(x,8) =xF > (xe)=x,  (j=1,..,n),
i.e., for every j the sequence {x*} of components of the vectors x‘*! converges
to the corresponding component of the limit vector x. But then

P, x) = \/ 27— x)" 0
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ask — w0, so that {x‘®} converges strongly to x. On the other hand, strong
convergence obviousdly impliesweak convergence in any space. Thus we see
that wesk convergenceand strong convergenceare equivalent conceptsin R™.

Example 2. Let {x'®} be a (strongly) bounded sequence of elements of /,.
Then {x*} converges weakly to an element x € /, if

(x?, g) = xW—>(x,e) =%, (j=1,2,...),
where
el:(lao:vo"..), 822(07150,--.),...

is an orthonormal basis in /. This follows from Theorem 3, since linear
combinations of the elements e;, e, . . . are everywhere dense in /,, which
coincides with its own conjugate space (recal Problem 2a, p. 194). Thus
weak convergence in /, has the same interpretation in terms of components
asin R, ie., for every j the sequence {x{¥} of components of the vectors
x®) converges to the corresponding component of the limit vector x. How-
ever, the concepts of weak convergence and strong convergence no longer
coincide in J,. In fact, athough obviously not strongly convergent, the
sequence of basis vectors {e,} convergesweakly to zero. To seethis, we note
that by Theorem 2, p. 188, every continuous linear functional f on 7, can be
written as a scalar product

f()=xa
of a variable vector x € /, with afixed vectora= (a,, ...,a, ..) €l,, SO
that in particular
f (ep) = a.

Buta, ~ 0ask — « for every ael,, and hencef (¢,) —0 =f (0).

Example 3. Consider the space C,,, of al functions continuous on
[a b], and let {x,(¢)} be a sequence of functionsin C,, »; converging weakly
toafunction x(¢) € Ci,.,;. Among thecontinuous linear functionalson Cp, 43,
we have the functionals 3;,, a < 7, < b (see Example 5, p. 179), where 3;,
assigns to each function x(¢) € Cy, 5 its value at the fixed point ¢,. Clearly,

Sto(x'n) - 8to(x)
means that
X(ta) = x(to).
Hence, if the sequence {x,,(#)} is weakly convergent, then

1) {x,(0)} isuniformly bounded on [a, b], i.e., there is a constant C such
that |x,(¢)] < Cforaln=1,2,...and al te [a b];*

2) {x,(1)} is pointwise convergent on [a, b, i.e., {x,(¢)} is a convergent
numerical sequence for every fixed t € [a, b].

? This followsfrom Theorem 2.
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20.3. The wesk topology and weak convergencein a conjugate space. Let
E be a topological linear space, with conjugate space E*. Suppose that
in Definition 2, p. 190, we require A to be finite instead of bounded. Then
the resulting topology, generated by the neighborhood base at zero consisting
of al sets of theform

Uy.={iIfx)] <eforal A) 4

for some number e = 0 and finite set A < E, is called the wegk topology in
E* instead of the strong topology. Clearly, the set (4) can also be written as

Ui ivawe = Uae = {/11f D] <&y [ f (3] < &} 4)

for some e > 0 and points x;, ..., x, € E. Since every finiteset A < E is
bounded, while in general there are bounded infinite sets in E, the weak
topology in E* isin fact weaker than the strong topology in E* (and in
general does not coincide with the strong topology).

The weak topology in E* determines a kind of convergencein E*, called
wesk convergence (of functionals). Weak convergence of functionals plays
an important role in many problems of functional analysis, in particular in
the theory of generalized functions (to be discussed in the next section).
Obviously, a sequence {f,,} of functionals f,, € E* is weskly convergent to a
functionalf € E* if and only if {f,(x)} convergestof (x) for every x € E.

For weakly convergent sequences of functionals, we have the following
analogues of Theorems 2 and 3:

THEOREM 2'. Let {f,} be a weakly convergentsequenced continuous
linearfunctionals on a Banach space E. Then {f,.} isbounded, i.e., there is
a constant C such that

Ifil <€ (m=1,2,..)).

Proof. The proof is the exact analogue of that of Theorem 2." Note
that this time we must specify that E is a complete normed linear space
(i.e., a Banach space). §

THEOREM 3'. A bounded sequence{f,} d continuouslinearfunctionals
on a Banach space E is weskly convergent to afunctional f € E* if f,,(x) —
f (X)for every x € A, where A is any set whose linear hull is everywhere
densein E.

Proof. The exact analogue of the proof of Theorem 3.
Example. Let E be the space (i, ,; of all functions continuous on [a, by,

and consider the functional
8, (%) = (1), (5)

asin Example 3 above. For simplicity (and without loss of generality), we
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assumethat ¢, = 0 € (a, b), so that (5) becomes
84(%) = x(0). (6)

Let {£,(¢)} be a sequence of functions continuous on [a, b] such that!®

1) £.(» is positiveif |1] <  and zero if 11 = 1,
n n

2 [fpdi=1fordin=12,...,
and let
37(x) == [* fu(Hx(o) dt.

Then 3{" is a continuous linear functional on Cj,,; (recal Example 4,
p. 179). Moreover, given any function x(¢) € C, ,;, we have

) = [ fuox e = [ £,00x0) dit = x| £, dt = x()
for somet € [—1/n, 1/n], by the mean value theorem for integrals, and hence

37 (x) = x(0) = 8y() Y]
as»n — o, Thus the sequence of functionals {3{} converges weakly to the
functional 8. Suppose we write (6) in the form

Sy(x) = Lb S()x(t) dr,

in termsof the ""deltafunction™ 3(¢), asin Example 3, p. 124. Then, loosely
spesking, (7) saysthat '"the generalized function (11 is the wesk limit of the
sequence of ordinary functions f,,(z).”

20.4. Theweak* topology. There are two ways d regarding the space E*
of continuous linear functionals on a given space E, either as the space
conjugate to the original space E, or else as an "original space' in its own
right, with conjugate space E**. Correspondingly, there are two ways of
introducing a weak topology into E*, either by using neighborhoods of the
form (4'), or else by using the values of functionals in E** on the space E*,
asin Sec. 20.1. Clearly, the two topologies will be the same if and only if
E is reflexive (why?). Suppose E is nonreflexive. Then, to avoid confusion,
the wesk topology determined in E* with the aid of E** will be called simply
the wesk topology, while the topology determined in E* with the aid of E

o Asan exercise, give an explicit example of such a sequence {f,(#)}.
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will be called the weak* ropology.** Clearly, the weak* topology in E* is
weaker than the weak topology in E*, i.e., the weak* topology has fewer
open sets than the weak topology. Note that weak convergence as defined
in Sec. 20.3 now means weak* convergence.

The following theorem is important in various applications of the
concept of weak convergence of functionals:

THeoREM 4. Everyboundedseguence{f,) offunctionalsin the space E*
conjugate to a separablenormed linear space E containsa weakly* conver-
gent subsequence.

Proof. Since E is separable, there is a countable set of points
X1, Xgy - o+ 5 Xpy .+ » » EVEYyWhere dense in E. Suppose the sequence {7}
of functionals in E* ,i.e., continuous linear functionals on E, is bounded
(in norm). Then the numerical sequence

fi(xl)’fz(xl)’ - >f'n(x1): P
is bounded, and hence, by the Bolzano-Weierstrass theorem (see p. 101),
{f,.} contains a subsequence

(1) (1) (1)
1 2 3wy moy e

such that the numerical sequence

f(ll)(xl)’f(Zl)(xl)a Ceay f(nl)(xl)9 e
converges. By the same token, the subsequence {f (¥} in turn contains 3
subsequence

f§2)-f;2) L. (2) L
such that the sequence

PG fE0x), - fPx), .
converges. Continuing this construction, we get a system of subse-
quences{f*}, k =1, 2, ... such that

1) {f% isasubsequence of {f¥F}foral k=1,2,...;

2) {f®1 converges at the points x,, X,, . . . , x;.
Heuce, taking the " diagonal sequence"
SO
we get a sequence of continuous linear functionals on E such that
S0, fE0x,), .

11 Read " weak*" as" weak star.”
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converges for all n. But then, by Theorem 3, the sequence
[ERCIN PO
convergesfor all xe E. §

CoroLLARY 1. Every bounded set in the space E* conjugate to a
separable normed linear space E is relatively countably compact in the
weak* topology.

Proof. An immediate consequence of Theorem 4 and the meaning of
relative countable compactness (see Sec. 10.4). f§

CoroLLARY 2. A subset of the space E* conjugate to a separable
Banach space E is bounded /"and only if it is relatively countably compact
in the weak* topology.

Proof. An immediate consequence of Theorem 2 and Corollary

1.

As we will see in a moment, the word " countably" is superfluous in
Corollaries 1 and 2. First we need

THEOREM 5. Given a separable normed linear space E, let S be the
closed unit spherein E and S* the closed unit sphere in the conjugate space
E*. Then the topology induced in S by the weak* topology in E* is the
same as that induced by the metric

P(_f’ g) = 212_,” ](f — 8 xn)]:
where {x;,...,X, ...yisany countable set everywheredensein S

Proof. Clearly, o(f, g)hasall the propertiesof ametric, and moreover
isinvariant under shifts, in the sense that

e(f +h g+ h=relf g

Hence we need only verify that
1) Every "open sphere'
Q.= {f1e(f;0) <&}
contains the intersection of S* with some weak neighborhood of
zeroin E*;
2) Every weak neighborhood of zero in E* contains the intersection
of Swith some Q.
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Let N be such that 2-% < ¢/2, and consider the weak neighborhood of
Zero

U= Vs = (B < S < 2}
Thenf € S* N U implies

N ©
(/. 0) 2212_" I xl + =%+12_" ICf, x)l

e Y =
<‘22_n+ z 2T <,
2 p=1 n=N+1
and henceS* N U < Q. This proves ).
To prove 2), this timelet

U=Uy, . vs =LA <3, (B )l < 8)
be any weak neighborhood of zeroin E* ,whereit can clearly be assumed
that [yl <1,...,lly.l <1. Since {x;,...,x,,...} is everywhere
densein S, there areindicesn,, . . . , n,, such that
3

I|yk—xnk“<é (k:L,m)
Let

N — 3

=max{n,...,n,}, &= e

Thenf e S* N Q implies

212'” I(fs %)l <e
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Proof. Use Theorem 5 and the fact that compactness and countable
compactness are equivalent conceptsin a metric space (seeSec. 11.2).  j

CoroLLARY 2. A subset ¢ the space E* conjugate to a separable
Banach space E isbounded if and only if it isrelatively compact in the weak*

topology.
Proof. Identical with that of Corollary 1. g
Finally we prove

THeOREM 6. Every closed sphere in the space (E*, b) conjugate to a
separable normed linear space E is compact in the weak* topology.

Proof. Every closed spherein the space (E* ,b)isclosed in the weak*
topology. In fact, since a shift in E* carries every closed set (in the
weak* topology) into another closed set, we need only prove the assertion
for every sphere of the form

S, = {11/l < ¢
Suppose f, ¢ S.. Then, by the definition of the norm of the functional
fo, there is an element x € E such that ||x[| = 1 and
filxy=a>c.
But then the set
U={/f(x)>3(x+ o)}
is a weak* neighborhood of f;, containing no elements of S,. Therefore
S, is closed in the weak* topology, and hence compact in the weak*
topology, by Corollary 1. @

and hence
I(f, x,)| < 2%, Remark. Theorem 6 is a special case of the following more genera
in particular theorem, which will not be proved here: Every bounded subset of the space
v d (E*, b) conjugate to a locally convex topological linear space E is relatively
[(f; xa )| <2%e < 27 = > compact in the weak* topology.

Problem 1. Given a topological linear space E, suppose E has sufficiently
many continuouslinear functionals. Provethat Eisa Hausdorff space, when
equipped with the weak topology.

Thereforef € S* N Q, implies

1yl < IS %)l -+ (s yie — %01 < 58 F Iy — x,, 1 < 8,
Problem 2. Let {x,} be a sequence of elementsin a Hilbert space H such
that

1) {x,) convergesweskly to an element x € H;
2) [Ix,ll > llxfi as n— oo.

sothatS* NQ < U. §
We can now drop the word ** countably** in Corollaries 1 and 2:

CoroLLARY 1'. Every bounded set in the space E* conjugateto a separ-

able normed linear space E is relatively compact in the weak* topology. ]
Prove that {x,} convergesstrongly to x, i.e., {[x, — x| =0 asn — o,
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Problem 3. Prove that the conclusion of the preceding problem remains
vdid if the condition 2) is replaced by either of the following conditions:

2") lixall < x|l for all n;

2') lim x| < [Ix].

Problem 4. Let H be a (separable) Hilbert space and M a bounded subset
of H. Prove that the topology in M induced by the weak topology in H can
be specified by a metric.

Problem 5. Prove that every closed convex subset of a Hilbert space H
is closed in the weak topology (so that, in particular, every closed linear
subspace of Hisweakly closed). Givean example of aclosed setin H which
is not weakly closed.

Problem 6. Show that the two conditions in Example 3, p. 199 are
sufficient as well as necessary for weak convergence of a sequence {x,,(t)} in
Cl,.5p Give an example of a weakly convergent sequence in C, ,, which is
not strongly convergent.

[a,b]

21. Generalized Functions

21.1. Preliminary remarks. The degree of generality attaching to the
notion of "function" varies from problem to problem. Some problems
involve continuous functions, others involve functions differentiable one or
more times, and so on. However, there are a number of situationsin which
the classical notion of a function turns out to be inadequate, even when
understood in the most general sense (i.e., as an arbitrary rule f assigning a
number f(x) to each element x in the domain of definition off). Here are
two such cases:

1) A linear mass distribution can be conveniently characterized by giving
the density of the distribution. However, no " ordinary" function can
specify the density corresponding to one or more points with positive
mass.

2) In many problems, situations arise in which various mathematical
operations cannot be carried out. For example, a function with no
derivative (at certain, possibly all, points) cannot be differentiated if
the derivative is interpreted in the usual way, as an "ordinary"
function. Of course, such difficulties can be avoided without relin-
quishing classical definitions, by suitably restricting the class of
"admissible functions,”" for example, by considering only analytic
functions. However, restricting the class of admissible functions in
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this way is often quite undesirable. Fortunately, it turns out that
difficulties of this kind can be overcome, and just as successfully at
that, by enlarging (rather than restricting) the class of admissible
functions, i.e., by introducing the notion of a **generalized function,"
not encountered in classical analysis. In doing so, a key role will be
played by the concept of a conjugate space, considered earlier in this
chapter.

Remark. It cannot be emphasized too strongly that the introduction of
generalized functions is motivated by the need to solve perfectly concrete
problems of analysis, and not merely by a desire to see how far the notion
of function can be pushed.

Before going into details, we indicate the basic idea behind the theory
of generalized functions. Letf be afixed function on the real line, integrable
onevery finiteinterval, and let ¢ beany continuous function vanishing outside
some finite interval (such a function ¢ is said to be finite'?). Suppose each
¢ is assigned the number

(S = [7 fe0 dx, )

involving the given function f, where the integration isin effect only over a
finite interval, because of the finiteness of ¢. In other words, the function
f can be regarded as a functional (alinear functional, because of the basic
properties of the integral) defined on some space K of finite functions.
However, there are many other linear functionals on K besides functionals
of the form (1). For example, by assigning each function ¢ its value at the
point x = 0, we get a linear functional which cannot be represented in the
form (1). In this sense, the functionsf can be regarded as part of a much
larger set, namely the set of all possible linear functionals on K. The space
K of "test functions" ¢ can be chosen in various ways. For example, K
might consist of all continuous finite functions, as above. However, as will
soon be apparent, it makes sense to require the test functionso satisfy rather
stringent smoothness conditions (besides being continuous and finite).

21.2. The test space and test functions. Generalized functions. Turning
now to details, let K be the set of al finite functions ¢ on (—o0,00) with
continuous derivatives of all orders (equivalently, the set of all infinitely
differentiable functions), where every function ¢ € K, being finite, vanishes
outside some interval depending on the choice of ¢. Clearly K is a linear

2 Do not confuse the notion of a finite function (which vanishes outside some finite
interval) with the notion of a bounded function (whose range is contained in some finite
interval). Finite functions are often called "' functions of finite (or compact) support.**
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space, when equipped with the usual operations of addition of functions and
multiplication of functions by numbers. Although the space K is not
normable, thereisanatural way of introducing the notion of convergencein K:

DermNiTION 1. A sequence {¢,,} of functionsin K is said to converge to
afunction ¢ € K if
1) There exists an interval outside which all the functions ¢,, vanish;
2) The sequence {¢!®’} of derivatives of order k converges uniformly
on thisinterval to ¢® for every k =0,1, 2,... .13

The linear space K equipped with this notion of convergenceis called the
test space (or fundamental space), and the functions in K are called test
functions (or fundamental functions).

DerINITION 2. Every continuous linear functional 7(p) on the test
space K is called a genevalizedfunction on (— «, <), where continuity of
T(¢) meansthat ¢, — ¢ in Kimplies 7(¢,) — T(¢).

Let f (x) be a locally integrable function, i.e., a function integrable on
every finite interval. Then f (x) generates a generalized function via the
expression

T = (0 = [* F0e(x) dx, ®

which is clearly a continuous linear functional on K. Generalized functions
of this type will be called regular, and all other generalized functions, i.e.,
those not representable in the form (2), will be called singular. The following
are all examples of singular generalized functions:

Example 1. The " delta function™

T(¢) = 2(0) (€)

is a continuous linear functional on K, i.e., a generalized function in the
sense of Definition 2. This functional can be written in the form

T(9) = [ 5(x)6(x) dx, “

where 3(x) is a "fictitious” function,'* equal to zero everywhere except at
x = 0 and such that

f_wa(x) dx =1

13 As dways, ¢{0 = g5 9@ = ¢.
3 The term **delta function™ will be applied to both the generalized function 7T'(¢) and
the fictitious function 3(x) generating 7'(¢p) via the representation (4).
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(these properties are of course paradoxical), since then we have, purely
formally,

T(o) = [ 3(x)o(x) dx = 9(0) [ 5(x) dx = 9(0).

The advantage of regarding the delta function as a functional on the test
space K rather than on the space C,,; as in Example 3, p. 124 will soon
be apparent.

Example 2. Generalizing (3) and (4), we can write the functional

T(9) = ¢(a) 3"
in theform

T(o) = [ 8(x — @)9(x) dx, @)
in terms of the " shifted delta function™ 3(x — a).

21.3. Operationson generalized functions. Addition of generalized func-
tions and multiplication of generalized functions by numbers are defined
in the same way as for linear functionals in generdl, i.e., by the obvious
analogue of Definition 1, p. 183 (with ¢ and K playing the roles of x and E).
In the case of regular generalized functions, these are just the operations

associated with the corresponding operationsfor " ordinary** functions. More
exactly, if

T = [* f0e®dx,  Te) = [ g(x)e(x) dx,
wheref and g are locally integrable and ¢ € K, then clearly
(T F 1)(9) = Ty(9) T T,(9) = Ty, ()

(an)((‘P) = ocTf(CP) = Tocf(q))

and

for any number a.

DeriniTION 3. A sequence of generalized functions {7’} issaid to con-
verge to a generalized function T1 T,(¢) -+ T(¢) for every ¢ € K. The
space of generalized functions equipped with this notion of convergence
is denoted by K*.

Remark. In other words, convergence of generalized functions is just
weak* convergence of continuous linear functionals on K.

We will often denote a generalized function by the symbol £, as if a
representation of the form

(o) =" F(x)e(x) dx s)
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existed, even in the case where the generalized function is singular. Let f be
aregular generalized function, and let a = «(x) bean infinitely differentiable
"ordinary'* function. Then (5) implies

@y ) =" a(x)f (x)o(x) dx
= [ F o) dx = (. o),

where «¢ obviously belongs to K. Carrying this over to the singular case,
we get

DeriNITION 4. The product af of an infinitely differentiable function a
and a generalized function f is the functional defined by the formula

(ofs @) = (f, ag). (6)

Remark. It followsfrom (6) that thefunctional «fislinear and continuous,
and hence itself a generalized function.

Again let T be a regular generalized function of the form
T(e) =" fxetx) d, €)

and suppose the derivative f' exists and is locally integrable. Then it is
natural to define the derivative of T as the functional

OB A O )

Integrating (7) by parts and using the fact that every test function ¢ vanishes
outside some finite interval, wefind at once that

daT w ,
@ =—]" 1) dx, ®)
X —0oC
thereby obtaining an expression for dT/dx which does not involve the deri-
vative off. Carrying this over to the singular case, we get

DerniTioN 5. The derivative dT/dx of ageneralized functionT is the
functional defined by the formula

ar
o () = =T (). ©)

Remark 1. The functional (9) is obviously linear and continuous, and
henceitself ageneralized function. Second, third and higher-order derivatives
are defined in the same way.
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Remark 2. If a generalized function is denoted by the symbol £, asin (6),
then its derivative is denoted by f’, and (9) takes the form

(f' )= —(f 9) ®)

It is an immediate consequence of Definition 5 that

1) Every generalized function has derivatives of al orders;

2) If a sequence of generalized functions {f,.} convergesto a generalized
function f (in the sense of Definition 3), then the sequence of deri-
vatives {f,} converges to the derivative f' of the limit function.

Example | . Iff isaregular generalized function whose derivative exists
and islocally integrable (in particular, continuous or piecewise continuous),
then the derivative off as a generalized function coincides with its derivative
in the ordinary sense. In fact, integrating (8) by parts, we get back (7).

Example 2. Asin Example 1, p. 208, consider the delta function

T(e) = [ 3(x) o) dx.
It follows from Definition 5 that
L) = [ 209 dr = —90).
X

Example 3. Consider the " step function"

0 if x<0,
ro=| (10

1 if x>0,

defining the linear functional
T(o) = [ f(0e(x) dx = [ o(x) dx.
I't follows from Definition 5 that
@) = =] ¢ dx = 40,

since ¢ vanishes at infinity. Hence the derivative of (10) is just the delta
function 3(x).

21.4. Differential equations and generalized functions. The development
of the theory of generalized functions was to a large extent motivated by

15 Equivalently, every convergent series of generalized functions can be differentiated
term by term any number of times.
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problems involving differential equations, particularly partial differential,
equations. We now discuss a few simple ideas concerning generalized
functions and ordinary differential equations. The application of generalized
functions to partial differential equations is a subject lying beyond the scope
of this book.16

LemmA 1. A test function ¢, can be represented as the derivative of
another test function ¢, if and only if
I @iy ax =o. an
Proof. If o4(x) = ¢;(x), where ¢, is a test function, then

fj:o Po(x) dx = ¢,(x) lio: 0.
Conversely,

o) = J7 oy di

is an infinitely differentiable function, with derivative ¢,(x), and in fact
a finite function if (11) holds, since then ¢, and ¢, vanish outside the
sameinterval. B

LemmA 2. Let o, be a fixed test function such that

f_ozocp](x) dx =1, (12)
Then an arbitrary test function ¢ can be representedin the form

P = 9o + ¢y,
where ¢ is a constant and ¢, is a test function which is the derivative of
another test function.

Proof. Let

c— f_a:o‘P(X) dx, 0o(x) = o(x) _ <p1(x)£°(;O o(x) dx.
Then

7 a0 dx = 0,

and the proof followsfrom Lemma 1. g

% See e.g., A. Friedman, Generalized Functions and Partial Differential Equations,
Prentice-Hall, Inc., Englewood Cliffs, N.J. (1963). A key role in the development of the
theory of generalized functions was played by the pioneer work of L. Schwartz, Théorie
des Distributions, Hermann et Cie., Paris, Volume 1 (1957), Volume 2 (1959).
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THeOREM 1. Every solution of the differential equation
y' =0 (13)
(inthe space K* of generalized functions) is a constant.
Proof. Equation (13) means that
O e =0,—¢)=0 (14)
for every ¢ € K. This determines the value of the functional

(@) = f_iycp(x') dx

for every function in the space K' < K of al test functions which are
derivatives of other test functions. In fact,

(v, 90) =0

for every ¢, € K'. Let ¢ be an arbitrary test function. By Lemma 2,
P = P + co,, Where @, € K' and o, is a fixed test function satisfying
the condition (12). We are free to give (y, ¢;) any value at all, without
violating (14). Let
(¥, ©1) = a = const,
Then
s 9 = (s 90 T co) = (7, 90) + (3, 1) = e — const,

and moreover y satisfies the differential equation (13). In fact, ¢ € K
implies — ¢’ € K' and hence

¢, 9=0—9)=0 K

CoRroLLARY. |f two generalized functions f andg have the same deriva-
tive, thenf =g + const.

Proof. Obvious, since(f — g)' =0. [

THEOREM 2. Given any generalized function f, there is another
generalized function y satisfying the differential equation

Y = 1. (15)

Proof. Any generalized function satisfying (15) is called an anti-
derivative off. Equation (15) means that

09 =0, =) =(f9) = (£ [* ¥ i) (16)

for every ¢ € K. This determines the value of the functional (y, @) for
every function in the space K' < K of al test functions which are
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derivatives of other test functions. In fact,

(s @0) = (f, —f_’”wcpo(t) dt)

for every ¢, K'. Let ¢ be an arbitrary test function. By Lemma 2,
¢ = @y T coy, Where ¢, €K' and ¢, is a fixed test function satisfying
(12). We arefreeto give (y, ¢,) any vaue at all, without violating (16).
Let

(Y, ¢1) = a = const.

Then y satisfies the differential equation (15). In fact, ¢ € K implies
—¢' € K’ and hence

00 =0 =) = (1] e ) =z o) B

CoroLLARY. Any two antiderivatives of a generalizedfunction f differ
only by a constant.

Proof. Obvious by construction or from the corollary to Theorem

1. §

21.5. Further developments. We now sketch some of the many extensions
and modifications of the notion of generalized functions.

a) Generalizedfunctions d several variables. Let K" be the set of al
functions ¢(x,, ..., x,) of nvariables with partial derivatives of all orders
with respect to all arguments, such that every ¢ € K" vanishes outside some
parallel epiped

a, < x, <b

, (@=1,...,n) (17
in n-space. Then K" isa linear space, with addition of functions and multi-
plication of functions by numbers defined in the usual way. We introduce
convergence in K" by the natural generalization of Definition 1, ie., a
sequence {¢,} of functionsin K" is said to converge to a function ¢ € K" if

i

1) There exists a parallelepiped (17) outside which all the functions o,
vanish;
2) The sequence of partial derivatives

070, no
o (5)

converges uniformly on this parallelepiped to the partial derivative
(Y

ay a.
0xyt: .. 0x,"

fordlra, ...,a.
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Every continuous linear functional on K" is then called ageneralizedfunction
d » variables, and moreover every "ordinary" functionf (x;,...,x,) of n
variables integrable on every parallelepiped can be regarded as a generalized
function, in fact the one giving rise to the functional

(/o) = [ Fo() dx,
where
X = (X150, Xn) dx = dx; ... dx,

and the integral is over al of n-space. Convergence of generalized functions
is defined by the obvious analogue of Definition 3, while partial derivatives
of generalized functions are defined by the formula

7, 0"o(x)

(sl a09) = O (0 o
‘xl”'axn xl"'axn

It isclear that every generalized function of # variables has partial derivatives
of all orders.

b) Complex generalized functions. So far we have only considered real
generalized functions. Suppose the test functions are now allowed to be
complex-valued, but still finite and infinitely differentiable. Then every
continuous linear functional on the corresponding test space K is called a
complex generalizedfunction. If (f, ) issuch afunctional, then

(f, 29) = a(f; 9).

We can also consider conjugate-linear functionals on K, satisfying the
condition (cf. p. 123)
(f, 09) = &(/, @),

where the overbar denotes the complex conjugate. |ff is an "ordinary"
complex-valued function ontheline, there are two natural waysof associating
linear functionals with £, i.e.,

(fron=[" fe) dx,

(s 92 = [* TR0 dx,

and two natural ways of associating conjugate-linear functionals withf :

(/i @)= [ f()o) dx,

(s 9 = [ TG00 dx.
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Each of these four choices corresponds to a possible way of embedding the
space of " ordinary"* functions in the space of generalized functions. Opera-
tions on complex generalized functions are defined by analogy with the real
case.

0) Generalizedfunctions on the circle. Sometimes it is convenient to
consider generalizedfunctions defined on a bounded set. As asimpleexample,
consider generalized functions on a circle C, choosing the test space K to
be the set of al infinitely differentiable functions on C, equipped with the
usual operations of addition of functions and multiplication of functions by
numbers. (Note that the test functions are now automatically finite, since C
is bounded.) Then every continuous linear functional on K, is called a
generalizedfunction on the circle. Every "ordinary" function on C can be
regarded as a periodic function on the line. In the same way, we regard
every generalized function on the circle as a periodic generalized function,
where a generalized functionf is said to beperiodic, with period a, if

(f(x), o(x — @) = (f(x), 9(x))
for every test function ¢ € XK.

d) Other test spaces. There are many possible choices of the test space
other than the space of infinitely differentiablefinite functions. For example,
we can choose the test space to be the somewhat larger space S, of all
infinitely differentiable functions which, together with al their derivatives,
approach zero faster than any power of 1/]x[. More exactly, a function ¢
belongsto S if and only if, givenanyp,q =0, 1, 2, ..., thereisa constant
C,, (depending onp, g and ¢) such that'?

X0 @(x)| < C,, (—o <x< ®)
A sequence{e,} of functionsin S is said to convergeto afunction ¢ € S if
1) The sequence {¢!?} convergesuniformly to ¢@ on every finiteinterval;
2) The consgtants C, in theinequalities
X" @2 (x)] < C,,
can be chosen independently of n.

There are somewhat fewer continuouslinear functionals on S, than on K.
For example, the function f (x) = e** corresponds to a continuous linear
functional (f, ¢) on K but not on S.

Remark. As the theory of generalized functions has evolved, it has
become apparent that there is no need to commit onesdf once and for all
to any definite choice of test space. Rather it is best to choose a test space

17 As an exercise, verify that this is the same space §,, as in Problem 12b, p. 172
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which is most suitable for solving the class of problems at hand. In general,
the smaller the test space, the greater the freedom in carrying out various
analytical operations (differentiation, passageto thelimit, etc.) and the larger
the number of continuous linear functionals on the space (why?). However,
we must make sure not to make the test spacetoo small, i.e., we must require
not only that the test functions be ** sufficiently smooth™ but also that there be
""aufficiently many'* of them (in the sense of Problem 9) to alow usto "tell
ordinary functions!® apart."

Problem 1. In the test space K of all infinitely differentiable finite func-
tions, let 4, be the neighborhood base at zero consisting of all sets of the
form

Uy, = {020 € K, [o(x)] < 7o(x), -+« [0 X)] < y4lx) for all x}

Yos
for some positivefunctions vy, . . . , ¥, continuous on (— «, «). Prove that
the topology generated in K by 4 leads to the same kind of convergence
in K asin Definition 1.

Comment. There are other topologies in K leading to the same conver-
gence.

Problem 2. Let K be the test space of al infinitely differentiable finite
functions, and let X,, be the subspace of K consisting of al functions ¢ € K
vanishing outside the interval [—m, m]. We can make X, into a countably
normed space by setting

lolln = sup [o®()l  (n=0,1,2....)

O<E<<n
lel<m

(cf. Problem 12a, p. 171). Verify that the topology induced in X,, by the
system of norms |-||,, coincides with the topology induced in X,, by the
topology of Problem 1. Verify that the convergencein K, induced in K,
by the norms |-||,, coincides with the convergence induced in K, by the

convergencein Definition 1. Clearly k; < K, < ..* < K, < ..., and
K=UK%,.
m=1

Show that a set Q < K is bounded with respect to the topology in K if and
only if thereisan integer m such that Q isa bounded subset of the countably
normed space K,

Problem 3. Let K and K, be the same as in Problem 2, and let T be a
linear functional on K. Prove that the following four conditions are

18 More exactly, regular generalized functions.
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equivalent:

a) T iscontinuous with respect to the topology of the space K;

b) T is bounded on every bounded subset Q < K;

o If ¢,eK and ¢, 0, then T(¢,)—> 0 (provided convergence of
sequences is defined as in Definition 1);

d) The restriction T,, of the functional T to the space X,, < K is a
continuous functional on K,, forevery m=1,2,...

Problem 4. Let
T(9) = [ L o) dx (18)

for every ¢ in the test space K. Prove that T(¢) is a generalized function
if the integral is understood in the sense of the Cauchy principa value.
Hint. If ¢ vanishesoutside the interval [a, b], write

[* L gyan= [P D=0y peO
-0 X a X ¢ X

Problem 5. Prove that the delta function and its derivative are singular
generalized functions. Prove that the same is true of (18).

Problem 6. Prove that addition of two generalized functions and
multiplication of a generalized function by an infinitely differentiable
function a (in particular, a constant) are contl nuous operations in the sense
that f, —f, f,—f implies f, -+ f, —~Ff T 7 af, — af. Prove that there
is no way of similarly defining a continuous product of two generalized
functions, unless the functions are regular, in which case the appropriate
definition is T;, = T,T, where

TH(g) = f_if(x)(p(x) dx,  T(o) = f_": 2(x)9(x) dx,
T; (@) = f iow Jx)g(x)o(x) dx.

Problem 7. Let f be a piecewise continuous function on (— «, ),
differentiable everywhere except at the points Xx,, xz, ..., X, ..., whereit
has jumps

S +0)—flx,—0) =na, (n=1,2,...).
Prove that the generalized derivative off (i.e., the derivative off regarded as
a generalized function) is the sum of its ordinary derivative (at the points
whereit exists) and the generalized function

g(x) =§ h3(x — x,,).

Comment. Note that (g, ¢) reducesto afinitesumfor every test function ¢.
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Problem 8. Find the generalized derivative of the function of period 2n
equal to

r—x if 0<x<m,
2
fx)=4{0 if x=0, (19)
_mx if —n<x<0
2
in theinterval [—=, n].
Ans. f'(x) = —3 1t x z d(x — 2nm).

Comment. The function (19) is the sum of the trigonometric series

sin nx

(20)

3
ibvs

n

Differentiating (20) term by term, we get the divergent series

0
3 cos nx.

n==l
Hence the concept of a generalized function alows us to ascribe a definite
meaning to a series that divergesin the ordinary sense. The same can be
done for many divergent integrals (like those encountered in quantum field
theory and other branches of theoretical physics).

Problem 9. Provethat the test space K of all infinitely differentiablefinite
functions has " sufficiently many** functions in the sense that, given any two
distinct continuousfunctions f; and fz, there existsafunction ¢ € K such that

f:o fi()e(x) dx £ f:"; fi(0)9(x) dx.

Hint. Since f () = fi(x) — fa(x) £ 0, there is a point x, such that

T (xo) # 0, and hence an interval [a,B] in whichf (x) does not change sign.
Let Ve p=1/(e- )
{ if a<<x<B,

=10
o) otherwise.

Then ¢ € K and
[2 f®6 dx = [} fe(x) dx ~ 0.

Comment. This result can be extended to functions more general than
continuous functions, with the help of the concept of the Lebesgue integral
(introduced in Sec. 29).




220 LINEAR FUNCTIONALS CHAP. 5

Problem 10. Consider the homogeneous system of #» linear differential
equations

y; :Iglazk(x)yk (1 = Ia vty n) (21)
innunknowns yy, . . . , ¥,, Wherethe a,, areinfinitely differentiablefunctions.

Prove that every solution of (21) in the classK* of generalized functionsisa
set of "ordinary' (in fact, infinitely differentiable) functions.

Comment. This can be expressed by saying that every "generalized
solution™ of (21) isalso a *'classical solution."

Problem 11. Consider the nonhomogeneous system of # linear differential
equations

Vi :yélaik(x),"k + fix) (i=1...,n), 22)

where the g,,, are infinitely differentiable functions and the f; are generalized
functions. Prove that (22) has a generalized solution, which is unique to
within a solution of the homogeneous system (21). What happens if the f;
are “ordinary” functions?

Problem 12. Interpret
f(x) = 5‘, COS nx
n=I
as a periodic generalized function.

Hint. Recall Problem 8.

Problem 13. Show that S, becomes a countably normed space when
equipped with the system of norms

loln= 2 sup (1 + x[)e(x)l.

PHe=n —w<z<ow
[EStS]
N<i<q

Prove that convergence of sequences in this countably normed space is
equivalent to convergenceof sequencesin .S, as defined on p. 216.

6

LINEAR OPERATORS

22. Basic Concepts

22.1. Definitions and examples. Given two topological linear spacesEand

E;, any mapping
y = AX (xeE,y€E)

of a subset of E (possibly E itself) into E; is called an operator (from E to
E,). The operator A is said to be linear if

Aloxy + Bxy) = adx; 4 BAx,.

Let D, bethe set of al x € Efor which A isdefined. Then D, is called the
domain (of definition) of the operator A. Although in general D, need not
equal E, we will always assume that D is alinear subspace of E, i.e., that
x,Yy € D, implies ax T 8y € D, for al aand B.

The operator A is said to be continuousat the point x, € D if, given any
neighborhood V of the point y, = AX,, thereisaneighborhood U of the point
xo such that Axe V for all xe U n D,. We say that the operator A is
continuous if it is continuous at every point x, € D .

Remark |. Suppose E and E, are normed linear spaces. Then it is easy
to see that A is continuous if and only if, given any ¢ > 0, thereisad >0
such that

Ix —x" <8 (x,x" €Dy
implies
[dAx" — Ax"| <e.
221
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Remark 2. In the case where E; is the redl line, the concept of a linear
operator reducesto that of alinear functional, and the definition of continuity
reduces to that given on p. 175. As we will see below, much of the theory
of linear functionals carries over in a straightforward way to the case of
linear operators.

Example 1L Given a topological linear space E, let Ix = x for dl xe E
Then Zis a continuous linear operator, called the identity (or unit) operator,
carrying each element of E into itself.

Example 2 Let E and E, be arbitrary topological linear spaces, and let
Ox =0 for al xe E, where 0 is the zero element of the space E,. Then O
is a continuous linear operator, called the zero operator.

Example 3. Suppose A is a linear operator mapping the m-dimensional

space R™ with basis ey, . .. , e, into the n-dimensional space R" with basis
e, ... e, If xisan arbitrary vector in R™, then
m
X = DX
=1

and hence, by the linearity of A,
m
y = Ax =D x,Ae;.
=1

Thus the operator A is completely determined once we know the vectors in

R™ into which A carries the basis vectors ey, . . . , ¢,,. Suppose we expand
each vector Ae, with respect to the basise;, . .., e, obtaining
n
Ae; =3 aye;.
Then =

n m m n
y :z‘; i€ :]lea'Aei :;lxa‘;l a;;¢;
and hence
Vi =2 X,
I=1
i.e., the operator A is completely determined by the matrix |a,;| made up of
the coefficients a,,.

Example 4 Let H, be any subspace of a Hilbert space H, and let
H, = H © H; be the orthogonal complement of H;, so that an arbitrary
element h e H has a unique representation of the form

h=h + hy (hy € Hy, hy € Hy)

(see Theorem 14, p. 158). Let
Ph = &,.
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Then P is a continuous linear operator, called a projection operator. Inter-
preted geometrically, P ** projects the whole space H onto the subspace H,.”

22.2. Continuity and boundedness. A linear operator mapping E into E;
is said to be bounded if it maps every bounded subset of E into a bounded
subset of E;. The operator analogue of Theorem 3, p. 176 for functionalsis
given by

THeoReM 1. A necessary condition for a linear operator A to be con-
tinuouson a topological linear space E isthat A be bounded. The condition
is also sufficient t E satigiesthe first axiom of countability.

Proof. To prove the necessity, suppose A is continuous and suppose
there is a bounded set M in E; whoseimage AM = {y:y = AX, X e M}
isunbounded in E;. Then there isa neighborhood V of zero in E; such
that none of the sets

Tavd m=12..)
n

iscontained in V. Hence there isa sequence{x,) of elementsof M such
that none of the elements

Lax, (n=1,2..)

n

belongsto V. But then the sequence

()

converges to zero in E (recall Problem 6b, p. 170), while the sequence

e

falls to converge to zero in E;, contrary to the assumption that A is
continuous.
Asfor the sufficiency, let {U,} be a countable neighborhood base at
zero in E such that
U,>20,»::-+> Un:>....

If A fails to be continuous on E, then, by the operator analogue of
Theorem1, p. 175,  thereisaneighborhood Vof zeroin E, and a sequence
{x,} in E such that

1
xne’—zUn, Ax, ¢V (n=1,2,...).

1 Asan exercise, state and prove this analogue.
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The sequence{nx,} is bounded in E (and even convergesto zero), while
the sequence {n4x,} is unbounded in E;, since it is contained in none
of the sets nV. But then A fails to be bounded on the bounded set
{X1s X9y« 0« 5 X, « + -), CONtrary to hypothesis. f§

Next we consider the operator analogues of Definition 2 and Theorem 4,
p. 177. Suppose Eand E; are both normed linear spaces, so that in particular,
E satisfies the first axiom of countability. Then, by Theorem 1, a linear
operator A mapping E into E; is continuous if and only if it is bounded.
But by a bounded set in a normed linear space we mean a set contained in
some closed sphere | x|| < C. Therefore a linear operator A on a hormed
linear spaceis bounded (and hence continuous) if and only if it is bounded
on every closed sphere |x|| < C, or equivalently on the closed unit sphere
x| < 1, because of the linearity of A. In other words, A is bounded if
and only if the number
4l = supllleH €y
s finite. o=
DEFINITION. Given a bounded linear operator mapping a normed linear
space E into another normed linear space E;, the number (1), equal to the
least upper bound of || 4x] on the closed unit sphere ||x|| < 1, iscalled the
norm of A.

THEOREM 2. The norm || 4| has the following two properties:

A
4 = sup 12X @
aro x|
l4xl} < [l 4]l llx]l for all x € E. 3)
Proof. Clearly,
4] = sup lAx]| = sup |4x]|
Tel<t fali=1
(why?). But the set of all vectorsin E of norm 1 coincideswith the set of

al vectors
X

M (x € E, x # 0), )
and hence

) e x 14x||

Al = sup lAxlh = sup (” u) a0 [|x|

which proves (2). Moreover, since the vectors (4) al have norm 1, it
follows from (1) that

” (] — A
[Ix1 lIx1
which implies(3) for x 5= 0. The validity of (3) for x = 0 isobvious. i

<4l (xeE x#0),
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22.3. Sumsand productsof operators. Let A and B betwo operators from
one topological linear space E to another topological linear space E;. Then
by the sum of A and B, denoted by A + B, we mean the operator assigning

the element y=Ax+ Bx€E,

toeach x € E. Thedomain D of thesumC = A + Bisjust theintersection
D, N Dy of thedomains of A and B. Itisclear that Cislinear if Aand B
arelinear, and continuousif Aand Barecontinuous. Let Eand E; be normed
linear spaces, and suppose A and B are bounded operators. ThenC = A +B
is aso bounded, with norm

ICI < I14] -+ |18l
since, by Theorem 2 and Problem 10,
1CxIl = l4x + Bx| < |4x|| + [IBx]| < (I4f + §BID) lix]

for every x € E.

Next, given three topological linear spaces E, E, and E,, let A be an
operator from Eto £, and B an operator from E; to E,. Then by theproduct
of Aand B, denoted by BA (in that order), we mean the operator assigning

the element - = B(dx) € E,

to each x € E. The domain Dy of the product C = BA consists of those
x € D4 for which Axe Dg. Again it isclear that Cis linear if A and B are
linear, and continuousif Aand Barecontinuous. Let E, E; and E, be normed
linear spaces, and suppose A and B are bounded operators. Then C = BAis
also bounded, with norm
ICI < 1141 181,
since
I1CxI = | BAxX)| < Bl | 4x]} < [IBIl 4] }x]l.

Remark |. Sums and products of three or more operators are defined

in the natural way, e.g.,

CBA = C(BA) = (CB)A,
A+B+C=A+B+C)=A+B)+C.

Note that addition of operators is associative and commutative, while
multiplication of operators is associative but in general not commutative
(give an example where AB # BA).

Remark 2. By the product «4 of the operator A and the number « is
meant the operator assigning the element «4x to each x € E. Let £ (E, Ey)
betheset of all continuouslinear operatorsmapping Einto E;. Then #(E, E,)
is clearly a linear space when equipped with the operations of addition of
operators and multiplication of operators by numbers.
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Problem 1. Prove that every linear operator on afinite-dimensional space
is automatically continuous (cf. Problem 2, p. 181).

Problem 2. Let A bealinear operator mapping m-space R™ into n-space
R". Prove that the image of R™, i.e., the set {y:y = Ax, x e RM), has di-
mension no greater than m.

Problem 3. Let C, ,, be the linear space of functions continuous on the
interval a < X < b, equipped with the norm
I/l = max | f(x)].
a<e<h
Let K(x,Y) be afixed function of two variables, continuous on the square
a< X< b,a<y<b,andlet A be the operator defined by

8(0) = 41(0) = ["K(x »)f () dy.

Prove that A is a continuous linear operator mapping C, ,; into itself.

Problem 4. Let CF

equipped with the norm

111 = \/ [P0 ax,

and let A be the same as in the preceding problem. Prove that A is a con-
tinuous linear operator mapping Cg, ,;into itself.

Problem 5. Given a fixedfunction ¢(x) continuous on [a,b] ,let A be the
mapping defined by
g(x) = Af (x) = 9(x) f(x).

Prove that A is a continuous linear operator on both spaces Ci, ,; and Cg, ;;,
mapping each space into itself.

Problem6. Let C{2,, betheset of all continuously differentiablefunctions
on [a b],and let D be the differentiation operator, defined by

Df (x) = f'(x)
for alf e C{}),;. Prove that

a) C[a 5 IS alinear space;

b) D isalinear operator mapping C{ty; onto C, ,;
c) D isnot continuous on C, ;5

d) D iscontinuous with respect to the norm

[/l = max | f(x)] + max | (x)|.

asa<h e<a<h

be the space of functions continuous on [a,b],
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Problem 7. Let K, ,, be the space of infinitely differentiable functions
on [a,b] ,equipped Wlth the topology generated by the countable system of
norms

Ifln = sup |f®00)]

a<e<h
O<ESn

(cf. Problem 12a, p. 171). Prove that the differentiation operator D is a
continuous linear operator on K, ,;, mapping K, ,; onto itself.

Problem 8. Interpret the differentiation operator as a continuous linear
operator on the space of al generalized functions.

Hint. Take continuity to mean that if a sequence of generalized functions
{f:(x)} converges to a generalized function f(x), then {f, (X)) convergesto

S'().
Problem 9. Prove that

a) The operators in Problems 3-7 and Examples 1-4, p. 222 are dll
bounded;

b) A linear operator on a countably normed space is continuous if and
only if it is bounded.

Problem 10. Let A be a bounded linear operator mapping a normed
linear space Einto another normed linear space E;,. Suppose || 4] is defined
as the smallest number C such that JAf]| < C|f | for al x e E Prove that
|4} is the same number as in the definition on p. 224. Particularize this to
the case of a bounded linear functional on E.

Problem 11. Let E and E, be normed linear spaces, and let £(E, E;) be
the same asin Remark 2 above. Prove that

a) Z(E, E;) isa normed linear space;
b) If E, iscomplete, so is Z(E, E;);
¢) If E, iscomplete, 4, € F(E, E;) and

i <o
then the series
m
2, Ay
Fe==1
convergesto an operator A € Z(E, E,) and
A = 2 4 || < 2 4.
k=1 Fe==1
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23. inverse and Adjoint Operators

23.1. The inverse operator. Invertibility. Given two topologica linear
spaces E and E;, let A be an operator from E to E;, withdomain D, < Eand
range R, = {y:y = Ax,Xxe D,}. Then A is said to be invertible if the
equation

Ax=y 1)

has a unique solution for every y € R,. If A isinvertible, we can associate
the unique solution of (1) with each y E R,. This gives an operator, with
domain R, called the inverse of A and denoted by 4.

THeoREM 1. Theinverse A—! of a linear operator A is itself linear.

Proof. If
Axy =, Axy = s,
then
Aﬁl 1= X3 A_l 2 == Xg,
and hence
A7)+ apd 7y, = 00Xy = Xy, 2

On the other hand,
Afogxy + oaXa) = 01y + %o Ps,

by the linearity of A, and hence
Aoy, F asys) = ayx; + o, (3)
Comparing (2) and (3), we get
Ao yy + wys) = A7y b apd . B

LemmA. If M is an everywheredense subset of a normed linear spaceE,
then every nonzero element y E E is the sum of a series of the form

y=y-tyst-+yt---,
where y, E M and

iyl < 20—,

Proof. Since M iseverywheredensein E, givenany y € E, thereisan
element y, E M such that

_ Iyl
ly — »ll < 5
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By the same token, there are elementsy,, v,, ...,Y, ...such that
1y =y — il <%ﬂ,
1y — ¥ —y2 — »al <%’J,
Iy =3 ==l <12,
Then
‘y—zﬁ —0
k=1

asn — o0, by the construction of the sequence{y,), i.e., the series

Y

s

e
I
-

converges to y. Moreover

Iyl =My —y + 21 < llys — yI + Iyl <”2L”+ Iyl =%’J,
(sl = llys +y1—y+y—nl
<l ==yl +ly -y <2l 14301,
and in general,
Iyl =+ e+ F 11—y +y—y1—""" — Yl
<ly—=—n——=wnl+ly—y—""—rnul

3
<"2Lk“+12|{—7”1= gf".l

THEOREM 2 (Banach). Let A be an invertible bounded linear operator
mapping a Banach space E onto another Banach space E;. Then the
inverse operator A7 isitself bounded.

Proof. Let M, be the subset of E; consisting of ally € E; such that
4=yl < Kyl

Every element in E; belongs to some A4y, i.e.,

E, = UM,
k=1
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By Baire's theorem (Theorem 3, p. 61), at least one of the sets M,,
say M,, is dense in some (open) sphere S < E,. Choosing a point
Yo € SN M,, wecanfindnumbersaand $ (a < 8) such that S contains
the spherical layer

P={z:a<|z—yl <B,ze M}
Shifting P so that its center coincides with the origin, we get another

spherical layer P,. Some set My is densein P,. Infact, if ze P N A,
then z — y, € P, and

147z — yo)ll < 147z 4 147 9ol < n(lzll + [1yol)
< n(lz = yoll + 2 (¥l

= nlz (1 ) < nie— i1+ ),
@

where the quantity
= (14 2)

o

isindependent of z. Let
N=1 + vl

(recall footnote 4, p. 8). Then, by (4), z — y, € My. Hence My is
densein P,, since M, isdensein P.

Now, given any nonzero elementy € E;, we can alwaysfind a number
A Osuchthat a < |ay|| < B,i.e., suchthat Ay € P,. Since My is dense
in Py, there is a sequence {;}, 7 € M, converging to Ay. Then {x,/A}
converges to y. Clearly, if v, € My, then w,/a € My for any A 0.
Therefore My is dense in E; — {0} and hence in E; itsdf. It follows
from the lemmathat y is the sum of a series of the form

y=ntytt et

wherey, € My and

3yl
2k

lyell <

Consider the series
2 X (5)
k=1

with terms x, = 41y, € E, egua to the preimages of the elements
i € E;. Since
3yl

]l = “A_1J’k” < Nyl < N

E
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the series (5) convergesto an element x € E, where

@K

g . 1
IxI < 2 1%l < 3Nyl 2 = = 3N |yl.
F=1 k=12
Since (5) is convergent and the operator A is continuous on E (being
bounded), we can apply A term by term to (5), obtaining

Ax=Ax1+Ax2~I—---—I—Axk+~--=y1+y2+'--+yk—l—~-=y,
which implies
x = A"y,
Moreover,
471 = =l < 37yl

for ally 4 0, and hence 4" is bounded.
THEOREM 3. Let A, be an invertible bounded linear operator mapping

a Banach space E into another Banach space E;, and let AA be a bounded
linear operator mapping E into E; such that

1
1a4] < (6)
1457
Then the operator
A=A4,+ AA

maps E onto E; and has a bounded inverse.

Proof. Lety beafixed element of E;, and consider the mapping B of
the space Einto itself defined by

Bx = A7'y — A7*AAx.

It followsfrom (6) that Bisa contraction mapping. Hence, by Theorem
1, p. 66, B has a unique fixed point x such that

x = Bx = Agly — A;'AAx. @)
But (7) implies
AX = Adox + Adx =y.

Clearly, if AX' =Yy, then X isalso afixed point of B, and hence X = x.
Therefore, given any y € E;, the equation Ax =y has a unique solution
in E, i.e., the operator A isinvertible with inverse A-1. Moreover, 4~
is bounded, by Theorem 2. §

THeoREM 4. Let Ebe a Banach space, and let | be theidentity operator
on E. Suppose A is a bounded linear operator mapping E into itself, such
that

4] < 1. ®)
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Then the operator (1 — 4)~* exists, is bounded and can be represented in
the form

(L — Ay =}§0A’°. (9)

Proof. The existence and boundedness of (I — 4)~* follows from
Theorem 3 (and will also emerge in the course of the proof). It follows
from (8) that

S14H < 3 4] < .
k=0 k=0

But then, by the completeness of E, the sum of the series

> A*
k=0

is a bounded linear operator (see Problem Ilc, p. 227). Given any n,
we have
-3 A =34 —A4)=1— A"
k=0 k=0
Hence, taking the limit asn — « and bearing in mind that

4™ < [l 4]™*— 0,
we get

(I - DS A =1,
which implies (9). § =

23.2. The adjoint operator. Given two topological linear spaces E and
E,, let A be a continuous linear operator mapping Einto E;, and let g be a
continuous linear functional on Ej, i.e., an element of the conjugate space
E}. Suppose we apply g to the element y = Ax, thereby obtaining a new
functional

f() =gdx)  (xeE). (10)

Clearly, f is continuous and linear (why?), and hence an element of the
conjugate space E*. Thus (10) associates a functional f € E* with each
functional g € Ef', i.e., (10) defines an operator mapping E}* into E*. This
operator iscalled the adjoins of A, and isdenoted by A*. Using the symmetric
notation (f, x)for the functional f (x),we can write (10)in the form

(g, 4x) = (f, x).

(g, Ax) = (4*g, x). 1n
Equation (11) can be regarded as a concise definition of the adjoint of A.

or
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Example. Asin Example 3, p. 222, suppose A is a linear operator with

matrix | a;|| mapping m-space R™into n-space R". Then the mappingy = Ax
can be written as a system of equations

m
Vs :;la”xj (\ = 1, caay n), (12)
while the functional T (x)can be written in the form

J(x) =§:1fixa"

where f; = f(e,) in terems of a basise, ..., e, in R™. Since
f(x) = g(4x) = _zlgiyi = z Zgia”x,- =Elx,- z 8:3ijs
i= i=1j=1 J=1 4=1
we find that ’
fi= _Zlaijgia
or
fi= zlaiigi (13)
o

after interchanging the roles of theindicesi and j. But f = 4*g, and hence
comparing (12)and (13), we see that the matrix of the operator A* is ||a,,],
i.e., the transpose of the matrix of A.

It follows at once from the definition of the adjoint of an operator that

1) A* islinear,;
2) (A+ B)* = A* 4 B*;
3) (xd)* = ad* for arbitrary complex a.

A somewhat less obvious property of the adjoint operator is given by

THeOREM 5. Let A be a bounded linear operator mapping a Banach
goace E into ancther Banach space E,, and let A* be the adjoint of A.
Then A* is bounded and

4*] = 4] (14)

Proof. By the properties of the norm of an operator, we have

[(A*g, x)| = (g, AX)| < lgll 141l =l
which implies
lA*gl < 141 lgl,
and hence
4% < j141. (15)
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Suppose x € E, Ax = 0, and let
Ax
=-—c
Il Ax|l
so that, in particular, {y,| = 1. Let g be the functional such that

gyo) = A
onthesetL < E, of al elementsof theformay,. Thenclearly (g, y,) =1,
lgllon » = 1. Using the Hahn-Banach theorem, we can extend g to a
functional on the whole space E; such that ||g| = 1 and

Yo

1

(g:yoy =1, ie., (g 4x) = |l4x|.
Therefore

I4x] = (g, Ax) = [(4*g, )| < A%l Ix < 1 4% gl Ixl = [.4*] =],
which implies

4l < [l 4*]. (16)
Comparing (15) and (16), we get (14). R

23.3. The adjeint operator in Hilbert space. Self-adjoint operators. Next
we consider the case where A is a bounded linear operator mapping a (rea
or complex) Hilbert space H into itself. According to the corollary to
Theorem 2, p. 188, the mapping = assigning the linear functional

()(x) = (x, )

to every y € H establishes an isomorphism between H and the conjugate
space H*.2 Let A* be the adjoint of the operator A. Then clearly the
mapping 4* = t14*r is a bounded linear operator mapping H into itself,
such that

(Ax> y) - (xa /T*)’) (17)
foral x,y € H. Moreover | 4*] = [ 4], since|4*| = || 4] and the mappings
7 and =~ are isometric.

We now establish the following convention: If Hisa Hilbert space, then
by the adjoint of an operator A mapping H into H, we mean the operator
A* defined by (17). Note that 4*, like A, maps H into H. To keep the
notation simple, we will henceforth drop the tilde, writing A* instead of
A*. Replacing A* by A* in (17), we get

(Ax,y) = (x, 4*y) (179
for al x,y € H.

2 Or a "' conjugate-linearisomorphism' in the case where Hi s complex (see Problem 6,
p. 194).
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Remark. It should be emphasized that this definition of A* differs from
the definition of the adjoint of an operator A mapping an arbitrary Banach
space E into itself, in which case A* is defined on the conjugate space E*
rather than on the space E itsaf. The context will always make it clear
whether A* is the operator defined by (11) or the operator defined by (17').

Let A bea bounded linear operator mapping a Hilbert space Hinto itself.
Then it makes sense to ask whether or not A = A*, since A and A* are
defined on the same space. This leads to the following

DeriniTION. A bounded linear operator A mapping a Hilbert space H
into itself issaid to be self-adjoint if A = A*, i.e., if

(Ax, y) = (x, 4y)
for all x,y € H.

Remark. Everything said above continues to hold if we replace H by the
real n-space R" or complex n-space C".

23.4. The spectrum of an operator. The resolvent. In the theory of linear
operators and their applications, a central role is played by the notion of
the "spectrum™ of an operator.® Let A be a linear operator mappingI a
topological linear space E into itself. Then a number hiscalled an eigenvalue
of A if the equation

Ax = A

has at least one nonzero solution, and every such solution x is called an
eigenvector of A (corresponding to the eigenvalue A). Suppose E is finite-
dimensional. Then the set of al eigenvaluesof A is called the spectrum of
A, and al other values of & are said to be regular (points). In other words,
h is regular if and only if the operator A — AJ is invertible. The operator
(A — a7t is then automatically bounded, like every operator on a finite-
dimensional space (cf. Problem 1, p. 226). Thustherearejust two possibilities
in the finite-dimensional case:

1) The equation Ax = Ax has a honzero solution, i.e., h isan eigenvalue
of A, so that the operator (A — AI)~! failsto exist;
2) The operator (A — »I)~* exists and is bounded, i.e., A is a regular
point.
However, in the case where E is infinite-dimensional, there is a third
possibility:
3) The operator (A — AI)™ exists (i.e., the eguation Ax = Ax has no
nonzero solutions), but is not bounded.

s | n talking about the spectrum of an operator, it will always be tacitly assumed that
the operator is defined on a complex space.
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T o describe this more general situation, we introduce some new terminology
and make an important modification in the definition of the spectrum.
Given an operator A mapping a (complex) topological linear space E into
itself, the operator R =@ — 18)

is called the resolvent of A. The values of A for which R, is definedfor all
E and continuous are said to be regular (points) of A, and the set of all other
values of 2 is called the spectrum of A. The eigenvaluesof A till belong to
the spectrum, sinceif (A — A)x = 0for some x # 0, then (18) fails to exist.
The set of all these eigenvaluesis now called the point spectrum, and the rest
of the spectrum is called the continuousspectrum. In other words, the con-
tinuous spectrum consists of all A for which (18) exists but fails to be
continuous. Thus there are now exactly three possibilitiesfor any given value
of A:

1) Aisaregular point;
2) A isan eigenvalue;
3) Aisapoint of the continuous spectrum.

The possibility of an operator having a continuous spectrum is a character-
istic feature of the theory of operators in infinite-dimensional spaces, dis-
tinguishing it from the finite-dimensional case.

THEOREM 6. Let A be a linear operator mapping a Banach space E
into irself. Thentheset A ¢ all regularpointsd A isopen (equivaently,
the complement & A is closed).

Proof. If nisregular, the operator (A — aI)~ existsand is bounded.
Hence, for sufficiently small 8, the operator (A — (x + 8)I)* also exists
and is bounded, by Theorem 3. In other words, the point » + 8is reg-
ular for sufficiently small 3. ]

THEOREM 7. If 4 is a boundedlinear operator mappinga Banach space
Einto itselfand T |A] = ||4]], then X isa regular point. In other words,
thespectrumd A iscontained in thedisk d radius| 4] with center at the
origin.

Proof. Obviously
A~XL:—%I~4y
A
and
_ 1 AT
Ri=A—-A)"=—~{I-%
p=(4 == — 1)

If |4] <A then [4/A]| <1, and hence R, exists and is bounded, by
Theorem 4. §
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Example . In the space C = C, ;;, consider the operator A defined by
Ax(t) = u(t)x(?),
where w.(t) is a fixed function continuous on [0, 1]. Then
(A — WDx(1) = (u(t) — Wx(D),

and
1

we) —
Hence the spectrum of A consists of all A such that u(¢) — A vanishesfor
somet in the interval [0, 1], i.e., the spectrum is the range of the function
p(2).
Example 2. Suppose u.(f) =t in the preceding example. Then the spec-

trum is just the interval [0, 1]. On the other hand, there are obviously no
eigenvalues. Thus the operator A defined by

Ax(t) = tx(¢)

(A — 2D x(1) = x(1).

is an example of an operator with a purely continuous spectrum.

Finally, for self-adjoint operatorsin aHilbert space, we havethefollowing
analogue of a well-known result for finite-dimensional Euclidean spaces

(proved in exactly the same way):

THEOREM 8. Let A be a self-adjoint operator mapping a (complex)
Hilbert space H into itself. Then all theeigenvaluesd A arereal, and two
eigenvectorsd A corresponding to distinct eigenvalues are orthogonal.

Proof. If
Ax=AC  (x#0),
then _
A(x, X) = (AX, X) = (X, AX) = (X, AY) = A(x, X),

and hence » = ». Moreover, if

Ax=2x, Ay=py (A,
then
7\("»}’) - (Ax’ y) - (x’ A.y) = (x’ H}’) = @(x:}’) = M(x,}’),
and hence
(x,}’) - 0,
i.e., the vectors x andy are orthogonal. §

Problem 1. Given two normed linear spaces E and E,, a linear operator
A from E to E;, with domain D, is said to be closedif x, € D4, x, — X,
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Ax, —y implies x € D,, AX =Y. Prove that every bounded operator is
closed.

Problem 2. Let E and E; be normed linear spaces, with norms ||| and
I-ll1, respectively. By the direct (or Cartesian) product of E and E;, denoted
by E X E;, we mean the set of al ordered pairs (x,Y), X € B,y € E,. Prove
that E X E; isanormed linear space when equipped with the norm

G, I = Ixll + liyl

(addition of elementsand multiplication of elementsby numbers being defined
in the obvious way). By the graph of a linear operator A from E to E; we
mean the subset of E X E; equa to

Ga={(x,)):x€ Dy, y = AX).
Prove that

a) G4 isalinear subspace of E X Ej;

b) G, isclosed if and only if the operator A is closed,

¢) If Eand E, are Banach spaces and if A is closed and defined for all
x € E, so that D, = E, then A is bounded (this is Banach's closed
graph theorem).

Hint. In c) apply Theorem 2 to the projection operator P carrying each
ordered pair (x, Ax) € G, into the element x € E.

Problem 3. Prove that if A is an invertible continuous linear operator
mapping a complete countably normed space E into another complete
countably normed space £, then theinverse operator A~ isitself continuous.
State and prove the closed graph theorem for countably normed spaces.

Problem 4. Let A be a continuous linear operator mapping a Banach
space E onto another Banach space E;. Provethat thereisa constant a=> 0
such if B € Z(E, E;) and |4 — B] < a, then B also mapsE onto (all of) E;.

Problem 5. Let A be an operator mapping a Hilbert space H into itself.
Then a subspace M < H is said to be invariant under A if x e M implies
Ax e M. Prove that if M isinvariant under A, then its orthogonal com-
plement M'=H o M is invariant under the adjoint operator A* (in
particular, under A itself if A is self-adjoint).

Problem 6. Let A and B be bounded linear operators mapping a complex
Hilbert space H into itself. Prove that

a) (xa + BB)* = gd* T BB*;

b) (4B)* = B*A*;

Q) (A*)* =A;

d) 1* = I, where | isthe identity operator.
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Problem 7. Give an example of an operator whose spectrum consists of
a single point.

Problem 8. Given a bounded linear operator A mapping a Banach space
E into itself, prove that the limit
r=lim V4"
exists. Show that the spectrum of A is contained in the disk of radius r
with center at the origin.

Comment. The quantity r is called the spectral radius of the operator A.
This result contains Theorem 8 as a special case, since | 4™ < ||41".

Problem 9. Let R, = (A — A)'and R, = (A — pI)™! be the resolvents
corresponding to the points A and .. Prove that R,R, = R, R; and

R, — R, = (0 — NRR,. 19)
Hint. Multiply both sides of (19) by (A — A)(4 — wD).

Comment. It follows from (19) that if A is a regular point of A, then
the derivative of R, with respect to A at the point 2, i.e., the limit

lim Rigran — Ry,
AA-O A\

(in the sense of convergence with respect to the operator norm) exists and
equals R .

Problem 10. Let A bea bounded self-adjoint operator mapping a complex
Hilbert space Hinto itself. Prove that the spectrum of A isa closed bounded
subset of the real line.

Problem 11. Prove that every bounded linear operator defined on a com-
plex Banach space with at least one nonzero element has a nonempty
spectrum.

24. Completely Continuous Operators

24.1. Definitionsandexamples. Wenow discussa classof operators which
closely resemble operators acting in a finite-dimensional space and at the
same time are very important from the standpoint of applications:

DerinITION. A linear operator A mapping a Banach space E into
itself is said to be completely continuous if'it maps every bounded set into
a relatively compact set.
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Remark |. If E is finite-dimensional, then every linear operator A
mapping E into E is completely continuous. In fact, A maps bounded sets
into bounded sets (recall Problem 1, p. 226) and hence maps bounded sets
into relatively compact sets (why?).

Remark 2. In an infinite-dimensional space, complete continuity of an
operator is a stronger requirement than merely being continuous (i.e.,
bounded). For example, the identity operator in an infinite-dimensional
space is continuous but not completely continuous (see Example 1 below).

LEMMA. Let x,, x,,... be linearly independent vectors in a normed
linear space E, and let E, be the subspace generated by the vectors
X540, X%. Thentherearevectorsy,,y,, ... suchthaty, € E,, |y, =1
and*

p(E'n-—Ia yn) = inf “x - ynu > %
aeHy—1

Proof. Sincethe vectorsx;, x,, . . . are linearly independent, we have
x, ¢ E,_, and hence

P(Ep_q, X,) = >0

recall Problem 5a, p. 141). Let X* be a vector in E,_, such that
p n

%, — x*[ <2a.
Then
P(Ep1s Xy — X¥) = 0,
and the vectors
y Xy y X, — x* ( 5 3 )
=—, g =S m— n=2,3,...
N Ix, — x*|

satisfy all the conditions of the lemma. g

Example 1. The identity operator 7 in an infinite-dimensional Banach
space E is not completely continuous. In fact, we need only show that the
closed unit sphere §'in E (which is obviously carried into itself by 1)is not
compact. Thisfollowsat once from the lemma, since ' contains a sequence
of vectors yy, y,, . . . such that

P(_yn-—h yn) > %1
and such a sequence clearly cannot contain a convergent subsequence.

Example 2. Let A be a continuous linear operator on an infinite-dimen-
sional Banach space E, where A is ""degenerate’ in the sense that it maps
Einto afinite-dimensional subspace of E. Then A iscompletely continuous,

¢ The quantity p(E,—,, y») iS, of course, jus the distance betweenthe st E,,_, and the
pointy, (cf.Problem9, p. 54).
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since it maps every bounded subset M < E into a bounded subset of a
finite-dimensional space, and hence into a relatively compact set.

Turning to the space Cy, 5 of functions continuous on the interval [a,b],
we now establish conditions under which the *"integral operator'* A defined
by

) = (AP = ["K(x, »)e0) dy (1)

is completely continuous.

THEOREM 1. Suppose the kernel K(x,y) is such that

1) K(x,y) is bounded onthe squarea < x < b, a<y < b;
2) The discontinuities @ any) of X(x, y) al lie on a finite number of
curves

.y=fk(x) (k::l"--’n)a
where the functions f;, are continuous.
Then (1) isa completely continuousoperator mapping Cig, 5y iNto Cg 3.
Proof. First we note that the conditions 1) and 2) guarantee the

existence of the integral (1) for every x € [a,b] ,s0 that {(x) is defined
on [a,b]. Let Rbethesquarea< x < b,a<y < b,and let

M = sup |K(x, y)|. )]
(z,9)e R

Moreover, let G be the set of al points (X, y) € R such that

g
12Mn

[y = fill)] <

for at least oneinteger k =1,...,n,and let F=R — G. Since Fis
compact (why?) and K(x, y) iscontinuouson F, givenany « > 0, thereis
a S > 0 such that

’ — 17" € 3
IKG,9) = KG9l < i 3

for any two points (X', y), (X",y) € Fsatisfying the condition

Ix" — x"| <3 “
(recall Theorem 1, p. 109).
Now suppose (4) holds. Then

46) = 4 < [PIKGe, ) — K Dl o)l dy. (5)
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To estimate the integral on the right, we divide theinterval a < y < b
into the set

"

=;£J {y ly — f(x) <E}\7} UU{y v = fi 12Mn }

and the complementary set Q = [a,b] — P. Using (2) and noting that
Pisa union of intervals of total length no greater than /3M, we have

[JKG ) = KG el dy < Z gl ©)
where, as usual,
el = sup eI

asY<h

On the other hand, it follows from (3) and (4) that
SIS 9) = G el dy < £ fell M

Comparing (5)-(7), we find that (4) implies

() — b(x")] < e el ®)

I'n particular, ¢ iscontinuous on [a,b], so that the operator A defined by
(1) actually maps the space Ci,.5; into itself. Moreover, it follows from
(8) and from the estimate.

14l = sup [¢()f < sup f [K(x, W e dy < M(b — a) | 9]

asae<h a<e<h

that A carries any (uniformly) bounded set of functions® < Ci, ,; into
a (uniformly) bounded equicontinuous set ¥ < C,, ,, (recall Definitions
3and 4, p. 102). But then ¥ isrelatively compact by Arzeld’s theorem
(Theorem 4, p. 102), and hence A is completely continuous. ]

Remark I. The requirement that the discontinuities of the kernel K(x, Y)
lie on a finite number of curves, each intersecting the lines X = const in a
single point, isessential. For example, let X(x, y) be the function
KGx. 3) 1 if x <4,
X, p) =
7 0 if x>4,
defined on thesquare 0 < x < 1,0 < y < 1. Then K{(x, ) is discontinuous
at every point of the line segment x = £, 0 < y < 1, and the operator (1)
with this kernel maps the function x(z) = 1 into a discontinuous function.

Remark 2. If K(x,y)= 0fory > x, then (1) takes the form

Ux) = (A9)(®) = [*KCx, v)e(y) dy.
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Suppose K(x, y) is continuous for y << x. Then it follows from Theorem 1
that the operator A, called a Volterra operator, is completely continuous.

24.2. Basic propertiesof completely continuousoperators. We begin with

THEOREM 2. Given a sequence{A,) of completely continuous operators
mapping a Banach space E intoitself, suppose{A,) convergesinnormtoan
operator A, i.e., suppose ||[4 — 4, -0 as n — co. Then A is itself
completely continuous.

Proof. To prove that A iscompletely continuous, we need only show
that the sequence {Ax,) contains a convergent subsequence whenever
the sequence{x,) of elements x, € E is bounded, i.e., such that

%l < M ©)

forsomeM>0and al » =1,2,... (why is A linear?). Since A, is
completely continuous, the sequence {4,x,} contains a convergent
subsequence. In other words, thereisa subsequence {x{'} of the sequence
{x,) such that {4,x!"’} converges. Similarly, since A, is completely con-
tinuous, the sequence {4,x"} in turn contains a convergent subsequence.
Thusthereisasubsequence {x?’} of the sequence {x{’} such that {4,x{?"}
converges. Then obviously {4,x!?} also converges. Continuing this
argument, we find a subsequence {x{¥'} of the sequence {x{*} such that
{A1x2}, {4,xP}, {4,x!®} al converge, and so on. Consider the
""diagona segquence"
M ML

The clearly each of the operators A, A, ..., A, ... maps this
sequence into a convergent sequence.

We now show that the sequence {Ax'")) also converges, thereby
completing the proof. Sincethe space Eiscomplete, it isenough to show
that {4x!™} isa Cauchy sequence. Clearly

I, — AxPl < Ax — AxP) + 1A — A

+ 4w — AxF. (10)
Given any ¢ = 0, first choose k such that

14 — 4, < ﬁ (11)

Next, using the fact that {4,x{»} converges and hence is a Cauchy
seguence, choose N such that

I Aext — A7) < 3 (12)
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for al n, * = N. Then it followsfrom (9)-(12) that

1Ax — Ax®) < S+ E+Z ¢
3 3 3

for all sufficiently large #» and n', i.e., {4x!*} isa Cauchy sequence. §

Not only is the set of completely continuous operators closed (algebra-
ically) under operator multiplication, but we have thefollowing much stronger
result:

THEOREM 3. Let A be a completely continuous operator and B a
bounded operator mapping a Banach space E intoitself. Thentheoperators
AB and BA are completely continuous.

Proof. If theset M < Eisbounded, then BM = {y:y = BX, x € M}
is also bounded. Therefore ABM is relatively compact, and hence AB
is completely continuous. Moreover, if M is bounded, then AM is
relatively compact, and hence BAM is also relatively compact by the
continuity of B, i.e., BA iscompletely continuous. g

CoroLLARY. A completely continuous operator A mapping a Banach
space E intoitself cannot have a bounded inverseif E'iSinfinite-dimensional.

Proof. If 4-1 were bounded, then, by Theorem 3, the identity
operator | = A~14 would be completely continuous. But this is im-
possible, by Example 1, p. 240. g

THEOREM 4. Let A be a completely continuous operator mapping a
Banach space Einto itself. Then theadjoint operator A* isalso completely
continuous.

Proof. We must show that A* carries every bounded subset of the
conjugate space E* into a relatively compact set. Since every bounded
subset of a nhormed linear space is contained in some closed sphere, it
is enough to show that A* maps every closed sphere into a relatively
compact set. Infact, by the linearity of A*, we need only show that the
image A*S* of the closed unit sphere S* = E* is relatively compact.

Now suppose we regard the elements of E* asfunctionals not on the
whole space E but only on the compactum [ AS]equal to the closure of
the image of the closed unit sphere under the operator A. Then theset @
of functionals on [ ASfcorresponding to thosein S* isuniformly bounded
and equicontinuous, since ¢}l < 1limplies

sup [e(x)| =sup[¢(x)| < [¢ll sup |Ax|| < [ 4]
d we[A8] xeAS xeS
an

lo(x) — e(x)] < llell Ix" — X" < Ix" — x”|I.
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Hence, by Arzela’s theorem (Theorem 4, p. 102), @ isrelatively compact
in the space C 4, Of @l continuous linear functionalson [ AS] .But the
set @, with the metric induced by the usual metric of C ¢, isisometric
to the set 4*S*, with the metric induced by the norm of the space E*.
Infact, if g4, g2 € S*, then

|A*gy — A*goll = sup |(A¥g; — A%gs, x)| = sup [(g; — g2, AX)|
zeS reS
=supl(g, — 82 2)| = sup (g — 82 2)| = (g1, &2)-
2cdS 2e[ 48]

Being relatively compact, the set @ is totally bounded, by Theorem 3,
p. 101. Therefore the set 4*S* isometric to @ is also totally bounded,
and hence relatively compact, by the same theorem. g

THEOREM 5. Let A be a completely continuous operator mapping a
Banach space E into itself. Then, given any ¢ = 0, there are only finitely
many linearly independent eigenvectors of A corresponding to eigenvalues
of absolute value greater than e.

Proof. Given nonzero eigenvalueA of A, let E, be the subspace of E
consisting of al eigenvectors of A corresponding to A.> Then E, is
finite-dimensional, since otherwise A would fail to be completely con-
tinuousin E, and hencein Eitself, by virtually the same argument asin
Example 1, p. 240. Therefore, to complete the proof, we need only show
that if {,} isany sequence of distinct eigenvaluesof A, then A — 0 as
n— co. Thisinturn will be proved oncewe show that there isnoinfinite
sequence{A) of distinct eigenvaluesof A such that the sequence {1/2,,}
is bounded.

Thus, suppose there is a sequence{A) of distinct eigenvalues of A
such that {1/x,} is bounded, and let x, be an eigenvector of A corre-

sponding to the eigenvalue A,  Then the vectors x, X,, ... are linearly
independent, by the same argument as in the case where E is finite-
dimensional.® Let E, be the subspace generated by x4, ..., X, ie., the
set of all elements of the form
Y :kzl X

For everyy € E,, we have

1 n LY\ n—1 A

y —— A4y =Eakxk *E S "Xk=2°ck(1 - “k)xka
A, p=1 =1y k=1 Ap

5 Notethat E, isinvariant under A inthe sensethat x € E, implies Axe E; (cf. Problem

5, p. 238).

¢ Seee.g., G. E. Shilov, op. cit., Lemma 1, p. 182.
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so that

1
y— K—AyeEn_l.

Let {y,} bea sequencesuch thaty, €E, Iy, =1and
(Epy, yo) = Inf [lx — y,l >4
axel,-1

(such a sequence exists by the lemma on p. 240). Then {y,/A,} is a
bounded sequencein E, since the numerical sequence {1/x,} is bounded.
But at the sametime the sequence {4 (y,,/A,)} cannot contain a convergent
subsequence, contrary to the complete continuity of A, since

CRG

fordl p>q, since

1
>.._
2

1 y
=y, ——dy, + 4 J)
[ = 5=, (&

.
Yo — ;“A_Vp + A(%) € E,.y.

‘o q

This contradiction proves the theorem. §

24.3. Completely continuous operatorsin Hilbert space. Specializing to
the case of completely continuous operators mapping a Hilbert space into
itself, we have

THEOREM 6. Let A be a linear operator mapping a Hilbert space H
into itself. Then A is completely continuousi and only i

1) A maps every relatively compact set in the weak topology into a
relatively compact set in the strong topology;

2) A mapsevery weakly convergent sequence into a strongly convergent
sequence.

Proof. To prove 1), we merely note that H is the conjugate of a
separable space, since H= H*, and hence, by Corollary 2, p. 205, a
subset of His bounded if and only if it is relatively compact in the weak
topology.

To prove 2), suppose A maps every weakly convergent segquence
into a strongly convergent sequence, and let M be a bounded closed sub-
set of H. Then M contains a weakly convergent sequence and hence AM
contains a strongly convergent sequence, i.e., AM is relatively compact
in the strong topology. It follows that A is completely continuous.
Conversely, if Aiscompletely continuous, let{x;} beaweakly convergent
sequence with weak limit x. Then (Ax} contains a strongly convergent
subsequence. At the same time, {Ax,) converges weskly to Ax, by the
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continuity of A, so that {Ax,) cannot have more than one limit point.
Therefore {Ax,) isastrongly convergent sequence. §

Let A be aself-adjoint operator in afinite-dimensional complex Euclidean
space, and suppose A has matrix |a,;l (recall Example 3, p. 222). Then it
will be recalled from linear algebra that |a,| can be reduced to diagonal
form with respect to a suitable orthonormal basis! We now generalize this
result to the case of a completely continuous self-adjoint operator in a (real
or complex) Hilbert space (see Theorem 7 below), after first proving two
preliminary lemmas:

Lemma 1. Let A be a completely continuous self-adjoint operator
mapping a Hilbert space H into itself, and let {x,} be a sequence in H
converging weakly to x. Then

(Ax,, x,) — (4x, x) (13)
as n— oo,

Proof. Clearly,
(A, X,) — (AX, ) < [(dx,, x,) — (4x, x,)] + [(4x, x,) — (4x, x)|.

But
[(Axp, x,) — (Ax, x )| < x5, 14(x, — X)),
and
[(dx, x,) — (Ax, x)| = |(x, Alx, — NI < Jx]| [4(x, — 0],
where the numbers | x,l|, » =1,2,... are bounded, by Theorem 2,
p. 196, and [ 4(x, — x)}} — 0 by Theorem 6. Therefore

I(Axn’ xn) - (Ax: -x)l g 0
asn — oo, Whichisequivalent to (13). ]

LemMmA 2. Given a bounded linear operator A mapping a Hilbert space
Hinto itself, let A be self-adjoint and suppose the least upper bound of the
functional

[Q(x)] = [(4x, x)|
on the closed unit sphere | x| < 1 isachieved at the point X = x,. Then
(X, ) =0 (14

implies
(AXO: )’) = (x(): A}’) = Q.
In particular, x, is an eigenvector of A.

"Se¢ e.g., V. |. Smirnov, Linear Algebra and Group Theory (trandlated by R. A.
Silverman), McGraw-Hill Book Co., New York (1961), Sec. 40. Dover reprint (19/0).
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Proof. Obviously,
%l = 1. (15)
Let
¥ = Xo + ay ,
V1 [al* y)
where a is an arbitrary complex number. Then |x|| = 1, because of
(14) and (15). Since

1 _ .
0(x) = TF 1200 + 2 Re Az, ) + 1412 0(),

we have
0(x) = Q(xp) T 2 Re a(dx,y, y) + O(laf?) (16)

for small |a|. Butitisclear from (16) that if (Ax,, y) £ 0, then a can be
chosen to make [Q(x)! = [Q(x,)|, contrary to the assumption that the
least upper bound of [Q(x)| on the closed unit sphere is achieved at the
point x = x. Therefore (Ax,, y) = 0 as asserted, i.e., A is orthogonal
to every vector orthogonal to x,. It follows that Ax, and x, are pro-
portional (why?), so that X, is an eigenvector of A. §

THEOREM 7 (Hilbert-Schmidt). Let A be a completely continuous self-
adjoint operator mapping a Hilbert space H into itself. Then thereisan
orthonormal system ¢, ¢, . .. Of eigenvectorsof A, with corresponding

nonzeroeigenvaluesiy, A, ..., suchthat everyelement x € H hasa unique
representationof the form®
x =2 ¢+ X, an
where X' satisfies the condition AX' = 0. Moreover
AX = 3 7uCr Py (18)
and
limA, =0

n= o

in the case where there are infinitely many nonzero eigenvalues.

Proof. Let
M, = sup |(4x, x)],
hef<t
weH
and let {x,} be a sequence of elements of H such that |x,]| = 1 and
‘(Axn’ xﬂ)l - Ml
asn — . Since the closed unit sphere in Hi s weakly compact (recall

8 As will appear in the course of the proof, the sumsin (17) and (18) may be finite or

infinite, and x' may vanish.
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Corollary 2’, p. 205), we can find a subsequence of {x,) which converges
weskly to an element y € H, where clearly ||y} < 1 By Lemmall,

|(4y, )| = M,

and hence, by Lemma 2, y is an eigenvector of A. Moreover ||y| = 1,
sinceif |{yl} <1, then choosing

' Y
y =
(571
we would have ||y'|| =1 and
14y, yOI > M,

contrary to the meaning of M,;. We choosey as our first eigenvector ¢,.
Let 2, be the corresponding eigenvalue, so that

Aoy = Moy
Then
| = (Aoq, ¢l = M.

Next let E, be the subspace of H consisting of all vectors of the form
agy, and let E; = H © E, be the orthogonal complement of E;. Clearly
E is again a Hilbert space, mapped into itself by the operator A (this
follows from Problem 5, p. 238 and the fact that A is self-adjoint). Let

M, = sup [(4x, x)|. (19)
Then, by the same argument as before, we can find an eigenvector ¢, of
A such that ¢, € E|, |9/l = 1. Let A be the corresponding eigenvalue,
so that
Apy = RaPe.
Then
Dol = [(A@s, @2)] = Mo,
and hence
Pl = el,
sinceH = E; implies
M, = sup [(4x, x)| > sup |(4x, x)| = M.
ol <1 (BTSS!
zeH ek
By its very construction, ¢, is orthogonal to ¢,.
To construct further eigenvectors of A, we argue inductively, re-

placing (19) by
M= Esup [(Ax, x)| (n=12,...),

fells1
ze K7,
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where E, = H © E, is the orthogonal complement of the subspace E,
generated by the previously constructed eigenvectors ¢y, ¢, .. - 5 @,,.
Then E;, isagain a Hilbert space mapped into itself by A, and thereisan
eigenvector ¢,,; € E, of unit norm, with corresponding eigenvalue
Moy SAtisfying the inequality
|7\n, > I>‘n+ll (i’l = 1’ 2’ - ')'
I nthisway, weconstruct an orthonormal system {¢,,} of eigenvectorsof A.
There are now just two possibilities, which we examinein turn:

Casel. Supposetheconstructionof thesequence{e,}terminatesafter
a finite number of steps, i.e., suppose there is a positive integer #, such
that (Ax,x)= 0 on E; . Then it follows from Lemma 2 that A maps
the whole space E; into the zero vector. According to Theorem 14,
p. 158, every element x € H has a unique representation of the form

X=h-+ X',
whereh e E,, X e E,. and hence of the form

x =3 ¢y + ¥,
where the sum isfinite (consisting of », terms) and AX = 0. Obviously
we have

AX =3 XCr®rs
thereby completing the proof in this case.

Case 2. Suppose the construction of the sequence {¢,} never termi-
nates, i.e., suppose (Ax,x)s£ 0 on E, foraln=1,2,.... Wethen
have infinitely many nonzero eigenvalues A, s, ..., %;,.... Clearly
A, - 0asn — «. Infact, the sequence {¢,} convergesweskly to zero,
like any sequence of orthonormal vectors (why?), and hence the se-
quence {4 ¢,} converges to zero in norm, so that | 4¢,| — 0 and hence
IN.®all = [A] = 0. Let E,, be the subspace of H generated by all the
eigenvectors @y, s, « « - , @, « « + , 1.€:, the set of all linear combinations
of the form

E.=HoE, =NE,

n=1
If E,, ={0),then H = E, and x obviously has a representation of the
form (17) withX = 0 (sothat AX = Otrivialy). If E,, == 0, let x beany
nonzero element of E,. Then
[(Ax, )] < [Aql %112

and let
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foraln=1,2,...,and hence (Ax,x) =0 on E. It follows from
Lemma 2 that A maps the whole space E, into the zero vector. Therest
of the proof is the same asin Case I, where (18) follows from (17) by
the continuity of A. B

COROLLARY. Let A be a completely continuous self-adjoint operator
mapping a Hilbert space H into itself. Then there is an orthonormal
system{y,,} of eigenvectorsof A such that every element x € # hasa unique
representation of the form

X = S: cnq)'n'

n=1

Moreover
-
Ax = le"cnq)m

where Ay, A, . . . are the eigenvalues corresponding to ¢y, s, - « . .

Proof. Noting that every element of £, or E;, isan eigenvector of A
corresponding to the eigenvalue x =0, let {{,} consist of the ortho-
normal system {¢,} constructed in the proof of Theorem 7, together
with an arbitrary orthonormal basisin £, or E;,. §

Problem 1. Prove that the projection operator of Example 4, p. 222 is
completely continuousif and only if the subspace H; isfinite-dimensional.

Problem?2. Prove that the operator A mapping the point

X =% Xgs v v g Xpsun ) E D
into the point
X X
Ax — (xl,—f,...,znfl,...) el
is completely continuous. More generally, suppose
AX - (alxl, AoXos o v w M dnx,,, e )

Under what conditions on the sequence {z,.} is A completely continuous?

Hint. Since every bounded set in /, is contained in some closed sphere,
it is enough to show that the images of spheres are relatively compact. I1n
fact, by the linearity of A, it need only be shown that the image of the unit
sphere is compact. In thisregard, recall Example5, p. 98.

Problem 3. Let 4 be the integral operator on Cy_, 4, defined by
) = (4@ =[" o) dy.

Prove that .4 maps the dosed unit spherein C_;,;; into a noncompact set.
Reconcilethis with Theorem 1.
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Hint. Let
0 if —1<x<0,
. 1
nx if 0<x<—,
@n(x): n
Lo 1
1 f —<x<1.
n
Then ¢, € Ci 4, lo,f = 1foral n, and
0 if —1<x<0,
1 5 . 1
- f 0 )
(%) = (Ao )(x) = { 3 hosxs
X — 1 if -1-<x< 1.

2n n
The sequence {{,,} convergesin C,_, ;; to the function

) 0 if —1<x<0O,
X)) =

v x if 0<x<l,

which, having a discontinuous derivative, cannot be the image under A of
any function in C_ y;.

Pvoblem 4. Let A be a completely continuous operator mapping a
reflexive Banach space E (e.g. a Hilbert space) into itself. Prove that A maps
the closed unit sphere in E into a compact set. Reconcile this with the pre-

ceding problem.
Hint. Use Theorem 6, p. 205.
Problem 5. Prove that

a) A linear combination of completely continuous operators is itself a
completely continuous operator;

b) The set ¥(E, E) of al completely continuous operators mapping a
Banach space E into itself is a closed subspace of the linear space
Z(E,E) of al bounded linear operators mapping Einto E

Problem 6. Let (£, E) and Z(E, E) be the same as in the preceding
problem. Prove that besides being a linear space, £ (E, E) is also a ring
when equipped with the usual operations of addition and multiplication of
operators. Prove that ¥(E, E) isatwo-sided ideal in Z(E, E).

Comment. By a two-sided ideal in a ring £ is meant a subring &/ < %
suchthat ae <, r e Z impliesar € &7, rae .

;
i
i
|
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Problem 7. Let ® and 4*S* be the same as in the proof of Theorem 4.
Show that @ is closed and hence compact. Deduce from this that 4*S* is
compact, even though as shown in Problem 3, the image of the closed unit
sphere under a completely continuous operator need not be compact.

Problem 8. Discuss the connection between Theorem 4 and the theory of
Sec. 20.4, in particular Corollary 1’, p. 204.

Problem 9. Let A be a bounded linear operator mapping a Banach space
Einto itself. Show that if A* iscompletely continuous, then sois A.

Problem 10. Prove that a linear operator A mapping a Hilbert space H
into itself is completely continuous if and only if its adjoint (in the sense
of Sec. 23.3) is completely continuous.

Problem 11. Give an example of a completely continuous operator A
mapping a Hilbert space H into itself, such that A has no eigenvectors.
Reconcile this with Theorem 7.

Hint. Let A be the operator in /, such that

Ax=A(x],x2,x3,...,x,,,...)=(O,xl,?ﬁg,...,ﬁ’:l—,...).
2 n—1
Then Ax = Ax implies
Ax, = 0, AXx, :xl,)\x3:x—2,...,Ax, — Zat e,
2 n—1

and hencex = 0.

Comment. This situation differs from the finite-dimensional case, where
every linear operator (self-adjoint or not) has at least one eigenvector.
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MEASURE

The concept of the measure u(E) of a set E isa natural generalization of
such concepts as

1) Thelength /(A) of aline segment A;

2) The area A(F) of a planefigure F;

3) The volume V(G) of a space figure G;

4) The increment ¢(b) — ¢(a) of a nondecreasing function ¢(¢) over a
half-open interval [a, b);

5) The integral of a nonnegative function over a set on the line or over
a region in the plane or in space.

Although the notion of measure first arose in the theory of functions of a
real variable, it was subsequently used extensively in functional analysis,
probability theory, the theory of dynamical systems, and other branches
of mathematics. In Sec. 25 we discuss the measure of plane sets, starting
from the notion of the area of a rectangle. Measure in general will then
be studied in Secs. 26 and 27. The reader will easily confirm that the con-
siderations in Sec. 25 are of a general nature and carry over to the case of
the more abstract theory without essential changes.

25. Measure in the Plane

25.1. Measure of elementary sets. Consider the system & of setsin the
xy-plane, each defined by one of the inequalities

a< x<b, a<<x<b; a< x<b, a<<x<b
254
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and one of theinequalities
cgy<d, c<y<d, c<y<id, c<y<d,

where a, b, ¢ and d are arbitrary real numbers. The setsin & will be called
rectangles. The closed rectangle defined by the inequalities

a<x<b c<y<d

isarectanglein the usual sense (including its boundary) if a << band ¢ < d,
a line segment (including its end points) if a=band ¢ <d or if a<band
c=d,apointifa=Db, c=d, oreventheempty setifa=borc¢>d. The
open rectangle

a<x<b, c<y<d

is either a rectangle in the usual sense (without its boundary) if a < b and
¢ <d or the empty set if a=b or c=>d. Each of the rectangles of the
remaining types will be called haf-open and is an ordinary rectangle minus
one, two or three sides, a line segment minus one or two end points, or
possibly the empty set.

In keeping with the concept of area familiar from elementary geometry,
we now define the measure of each set in & asfollows:

1) The measure of the empty set equals 0;
2) The measure of the nonempty rectangle (closed, open or half-open)
specified by the numbers a, b, ¢, and d equals

(b — a)(d — ©)

Thus with each rectangle Pe % we associate a number m(P), called its
measure, where clearly

1) m(P) isreal and nonnegative;
2) m(P) isadditivein the sense that if

P=UP, P.NnNP =g
k=1

then
m(P) = 3 m(Py).

=1
Our problem is to define the concept of measure for sets more general than
rectangles, while preserving these two properties. The first step in this
direction is to define measure for elementary sets, where by an elementary
set we mean any set which can be represented in at least one way as a union
of afinite number of pairwise digjoint rectangles. First we prove

THeEOREM 1. The union, intersection, difference and symmetric
difference & two elementary sets are again elementary sets.
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Proof. If
A=Up, B=UQg,
k i
are two elementary sets, then clearly
AnB=UP,nQ)

k,l
is also an elementary set, since each P, N Q, is obvioudy either a
rectangleor theempty set. Moreover, it iseasy to see that the difference
of two rectanglesis an elementary set. Hence, subtracting an elementary
set from a rectangle gives another elementary set (as an intersection of
elementary sets). Suppose A and B are elementary sets, and let P be a

rectangle containing both of them (such a rectangle obviously exists).
It followsfrom what has just been proved that

AUB=P— [(P—A) N (P — B)]
isan elementary set. It isthen an easy consequence of the formulas
A—B=A4AN(P—B),
AAB=(4VB)— (4 NBy

that the difference and symmetric difference of two elementary setsis
again an elementary set.

Remark. In other words, the system of all elementary setsis aring £,
as defined on p. 31

We now define measure for elementary sets:
DeriniTiON 1. Given an elementary set A, suppose
A - U Pk:
k

where the P, are pairwise digoint rectangles. Then by the measure of A,
denoted by %(A), is meant the number

#(4) = 2 m(Py), 6

k
where m(P,) is the measure of the rectangle P.

Remark. Clearly,#(4)isnonnegativeand additive. Moreover, in defining
m(A), we have tacitly relied on the fact that the sum (1) does not depend on
how A is represented as a union of sets. To verify this, suppose

A=Upr =UQ,
k i
where P, and Q, are rectangles such that
P.NP,=g, C.NnNQ, =2 @ #)h.

SEC. 25 MEASURE IN THE PLANE 257

Sincetheintersection P,, N @, of two rectanglesisitself arectangle, it follows
from the additivity of the measure of rectanglesthat

Z m(P,) = Z m(P, N Q) = ; m(Qy).

THEOREM 2. If A is an elementary set and{A} isa finite or countable
system of elementary sets such that
A<= UA,
then )
m(4) < 3 m(A). @

n

Proof. Givenany > 0, thereisa closed elementary set Kcontained
in A and satisfying the condition

M@>M@—§
Infact, to get 4 we need only replace each of thek rectangles 2; making
up A by a closed rectangle contained in P; of area no lessthan
L
2%k

Moreover, for each A, thereisclearly an open elementary set A, contain-
ing A, and satisfying the condition

m(P;) —

E
2n+1'

m(d,) < m(4,) T

Obviously,
A=UA,

Hence, by the Heine-Borel theorem (recall p. 92), there is a finite
system 4, , ..., 4, covering 4, where

w(A) < 3 m(A,),

=1

since otherwise 4 would be covered by a finite number of rectangles of
total area less than #(4), which isimpossible. Therefore

M

m(A) < m(d) + = < mdm+§<2WMH§

1 n

e

l

i

e ¢
2n+1 2

= :2 ﬁa(/4n) + &

n

< I md,) + 2

%

which implies (2), since« = 0 is arbitrary. §
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25.2. Lebesgue measure of plane sets. Elementary setsare, of course, far
from being the most general plane sets considered in geometry and analysis.
Thus we naturally arrive at the problem of extending the concept of measure
(while preserving its basic properties) to sets more general than finite unions
of rectangles with sides paralel to the coordinate axes. This problem is
solved in a definitive way by Lebesgue's theory of measure, in which we
consider countably infinite unions of rectangles, as well as finite unions.
To avoid sets of "infinite measure,"" we restrict our discussion to subsets
of the closed unit square E, defined by the inequalities

0<x<1l, O<y<i1
(this restriction is dropped in Remarks 2 and 3, p. 267).

DeriNnITION 2. By the outer measure of a set A < E is meant the
number

p*4) = inf 3 m(Py),
ACLkJPk K

where the greatest lower bound is taken over all coverings of A by a finite
or countable system of rectangles P,.

DerINITION 3. By the inrer measure of a set A < E is meant the
number
pa(d) =1 — p*(E — A).

THEOREM 3. The inequality

g (4) < 0*(4)
holdsfor any set A < E.

Proof. Suppose

g (A) > p*(4),
Le.,

wr) T usE - A <1
Then, by the definition of a greatest lower bound, there are systems of
rectangles {P,} and {Q,} covering A and E — A, respectively, such that
Zm(Py) + 2 m(Qy) < 1.
3 k
Let (R,} denote the union of the systems {#,} and {Q,}. Then
E<UR,
while ’
m(E) > 2 m(R)),
contrary to Theorem 2. § |
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DerINITION 4. A set Ais said to be (Lebesgue) measurablef
g (4) = p*(4),
ie., If itsinner and outer measures coincide.

DeriNITION 5. If & set A is measurable, the number 1.(4) equal to the
common value of p, (A)and 1*(4) is called the (Lebesgue) measure of A.

For outer measure, we have the following analogue of Theorem 2:

THEOREM 4. If A is any set and {A,) isa finite or countable system of
sets such that
A< U4,

then
wH(A4) < X v (4,). 2"
Proof. Given any £ > 0, for each 4, there is a finite or countable
system of rectangles{P,,} such that
An < U P’nk
13

and .

k
by the definition of outer measure. Then
A<UUP,
n &
and
pH¥A) < 3 3 m(Py) < 3 p*(4,) +

n k n

which implies (2'), since« = 0 isarbitrary. §

CoroLLARY. If A is any measurable set and (A,) is afinite or count-
able system of measurable sets such that

A<=U4,
then !
wA) < 2 w(4,). (29
Proof. Merely replace p* by win (2). g
Next we show that the Lebesgue measure of an elementary set coincides

with its measure as previously defined:

THEOREM 5. Everyelementaryset 4 < E ismeasurable, with Lebesgue
measure p.{4) equal to the measure 71{4) introduced in Definition 1.
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Proof. Suppose A is the union of the pairwise digoint rectangles
Py, ...,P, Then
k

m(A) :Z m(P)),

Fu=

by Definition 1. Therefore, since the rectangles 2,, . . . , P, obviously
cover A,

w (4) < 3 m(P;) = m(4), (3)

3
by Definition 2. Moreover, if {Q,) is any finite or countable system of
rectangles covering A, we have

m(4) < 3 mQ,)
by Theorem 2, and hence !
m(d) < pu*(4), “

by Definition 2 again. Comparing (3)and (4), we get
m(4) = p*(4).

Now E — Ais aso an elementary set, and hence

M(E — A)= u*(E — A).

But
%(E— A)=1— m(4),
while
RHE — A)=1— p(4).
It followsthat
m(A4) = i (4),
and hence

(d) = s (4) = p*(4). §
CoroLLARY. Theorem?2 isa special case of Theorem 4.
Proof. Merely replace p.* by 72 in (2') or & by #zin (2"). B
LeEmMMA. The inequality
lu*(4) — w*(B)| < uw*(4 a B) (5)
holds for any two sets A and B.

Proof. Since
A< BU(AAB

it follows from Theorem 4 that
w*(4) < p*(B) + u*(4 A B). (6)

S i
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This implies (5) if p*(4) > p*(B). If p*(4) < w*(B), we deduce (5)
from the inequality
w*(B) < u*(4) T u*(4 A B)

obtained by interchanging the rolesof Aand B in (6). §

THEOREM 6. A set A is measurable if and only if, given any ¢ =0,
there is an elementary set B such that

u*(4 A B) < e 0

Proof. Suppose that given any £ > 0, there is an elementary set B
such that (7) holds. Then, by the lemma,

[w*(4) — p*(B)| = u*(4) — m(B)| <e, ®

and similarly

[W*(E — A) — M(E — B)| <k, ®
since

(E-—A)A(E—-B)=AAB.
Bearing in mind that

m(B) + m(E — B) = m(E) = 1,
we deduce from (8) and (9) that

lw*(d) — p*(E — 4) — 1] <2,

and hence that
w*d) + p*E -4 =1, (10)

snce ¢ >0 is arbitrary. But then w,(4) =p*(4), so that A is
measurable.

Conversely, suppose Ais measurable, i.e., suppose (10) holds. Then,
given any e > 0, there are systems of rectangles {B,) and {C,} covering
Aand E — A, respectively, such that
3 m(B,) < u*(A) + 3, (11)

Im(C,) < pHE — A+ (12)
Moreover, since X m(B,) < oo, thereisan N such that

S m(B,) < Z,
n>N 3
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We now show that (7) holdsfor the elementary set

B=Us,
Clearly, the set !
P=U B,
contains A — B, whiletheset 7%
Q=U(Bnc,)
contains B — A, and hence ’
AAB<PUQ. (13)
Moreover,
W) < 3, m(B,) < §. (14)

To estimate p.*(Q), we note that

(LnJ Bn) U (Li «, — B)) ~E,

and hence
2 m(B,) + 3 #(C, — B) > 1. (15)
But (11) and (12)imply
I8+ Im(C) < pk) +uE -+ 14 F . 1g)
Subtracting (15) from (16), we get
S m(C) — 3 #(C, — B) = 3 #(C, N B) < 33?
ie., ! "
* 2e
r*Q) < 3 17

Finally, comparing (13), (16)and (17), we find that

pHA4 L B) < p* PV Q) < u*P)+u*Q) <= B

THEOREM 7. The union and intersection of a finite number of measurable
sets are again measurable sets.

Proof. Itisenough to prove the theorem for two sets. Thus suppose
A, and A, are measurable sets. Then, by Theorem 6, there areelementary
sets B; and B, such that

€
P4 AB) <5, wMdea B <z,

1
]
{
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Since
(A, U Ay} A (B U By) < (4y A B)) U (4, A By),
we have

¥4y U 4) & (B, U Byl < p*(4; A By) + p*(4s & By) <.

But B, U B, is an elementary set, and hence A, U A, is measurable, by
Theorem 6 again. Moreover, a set A is measurable if and only if

wH(A) + pHE — 4) =1,

and henceif Aismeasurable, sois E — A. Therefore the measurability
of A, N A, followsfrom that of A, U A, and the formula

A, NA,=E— [(E-A)V(E-A)]. §
CoroLLARY. The dzference and symmetric dzference of two measur-
able sets are again measurable sets.
Proof. Animmediate consequence of Theorem 7 and the formulas
Ay — Ay = 4, N (E — 4,),
A, A Ay = (Ady — A) U (4, — 4)). B
THEOREM 8. If A, . .. , Ay are pairwise digoint measurable sets, then

u(i{An) — glu(An).

Proof. Asin the proof of Theorem 7, we need only consider the case
n = 2. By Theorem 6, given any e = 0, there are elementary sets B;
and B, such that
p*(d4y A By) <, p¥(dy A By) < e (18)
Let
A= 4, UA,

Then A is measurable, by Theorem 7. Since A, and A, are digoint, we
have

B—=B, UB,

B, N By < (41 A By Y (4y A By),

and hence
m(B, NB) < 2e. 19)

Moreover, it follows from (18)and the lemma on p. 260 that
[A(By) — w*(d)] <e, [#1(By) — p*(4y)] < e (20)

Since measure is additive on elementary sets, it follows from (19) and
(20) that

W(B) = w(By) + m(By) — m(By N By) = p*(4y) + p*(4,) — 4.
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Noting also that
A AB< (4; A B) U (4, ABy),
we have

wH(A) > M(B) — p*(4 AB) > m(B) — 2¢ > p*(4y) + p*(dy) — be.

Therefore
u*(4) > p*(4y) T u*(4y), (1)

since e >> 0 can be made arbitrarily small. On the other hand, it follows
from A= 4, U A, and Theorem 4 that

pH(A4) < pH(d) T 4y (22)
Comparing (21) and (22), we get

wH(d) = p*(4y) + p*(4y),
where u.* can be replaced by u, since A,, A,, and Aare measurable. [

THEOREM 9. The union and intersection of a countable number of
measurable sets are again measurable sets.

Proof. Given a countable system of measurable sets{A,), let

A=UA,
and let !
n-1

Al = 4, A;:An—kl_JlAk (n=2,3,..)).

Then the sets 4;, are pairwise disjoint, and

A=U4,.

n=1
By Theorem 7 and its corollary, the sets 4;, are all measurable. More-
over, by Theorems4 and 8,

N N
Y =u( U ) < iy
forevery N=1,2,... . Therefore the series
glu(A;)

converges, and hence, givenany e = 0, thereisaninteger v > Osuch that

PRICOESS (23)
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Since the set
c=U4,

n=1
is measurable, being the union of a finite number of measurable sets,
there is an elementary set B such that
wHCaB) < (24)
Moreover, Since
AAB< (CABYU (UA;,),
n>v
it followsfrom (23) and (24)that
p*d A B)<e
Therefore Aismeasurable, by Theorem 6. Finally, since complements of
measurable sets are themselves measurable, the intersection
NA4,=E—U(E— 4,
n=1 =1
is measurable. "

Theorem 9 generalizesTheorem 7 to the case of a countable number of
measurable sets. The corresponding generalization of Theorem 8 is given by

THEOREM 10. If 4, Ay, ..., 4,, . .. are pairwise digoint measurable
sets, then
p.( u An) = 3 u(4,). 25)
n=1 n=1
Proof. Let
A=U4,
n=1
Then, since
N
A, < A4
n=1
foreveey N =1, 2,...,itfollowsfrom Theorem 8 and the corollary to
Theorem 4 that

n=1

N N
Su(4,) = p.( lglAn) < u(4).
Taking thelimit as N — «, we get

3 84 < (4). (26)
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On the other hand, since obviously
acUa,
n=L
it follows from the same corollary that
w(A) < 3 u(4,). (27)

n=1
Comparing (26)and (27), we get
or equivalently (25). n=t

The key property of the measure 1 expressed by (25) is described by
saying that u. is countably additive or o-additive.

THEOREM 11. Let {A,) be a sequence of measurable sets which is
decreasing in the sense that

A13A23...3A“3...
Then
where e
A=104,.
n=1

Proof. We need only consider the case A = @, to which the general
casereducesif A, isreplaced by A, — A. Clearly

A=A —A)U (A -4V -,
and

An = (A'n - An+l) Y (An+1 - An+2) U,
Therefore, by the o-additivity of .,

u(dy) = §u<Ak — ) (29)
and -
u(4,) :é, b(Ay — Ay, (30)

Sincetheseries (29)converges, its remainder (30)approaches0 asn — oo,
It follows that

limp(d,) =0=u(z). §

n~r
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CoroLLARY. Let {A,) be a sequence of measurable sets which is in-
creasing in the sense that

A1CA2C"'CA7;C'
Then
lim p(4,) = w(4), (289
n=m
where
A=U A,
n==1

Proof. Apply Theorem 11 to the complements of thesets A. [

The property of the measure . expressed by (28)and (28') is described
by saying that w is continuous.

Remark |. To recapitulate, starting from a measure m defined on the
class & of dl rectangles (with sides parallel to the coordinate axes), we
have succeeded in extending m first to a measure # defined on the larger
class &, of al elementary sets and then to a Lebesgue measure p. defined
on the still larger class &, of al measurable sets. The class &, is closed
under the operations of taking countable unionsand intersections. Moreover,
the measure . is o-additive on ..

Remark 2. So far we have required all our setsto be subsets of the closed
unit square
E={xn0<x<,0<y< 1}

It iseasy to get rid of thisrestriction. For example, representing the whole
plane as the union of the squares
Ep={,nym<x<m+ln<y<n+tl),

where m and n are arbitrary integers, we say that a plane set Ais measurable
if its intersection 4,,, = A N E,,, with every square E,,, is measurable as
previously defined and if the series

> (A

converges. The measure of A isthen defined as

WA = 2, (A pn)- (D)

7,

All the properties of measure proved above carry over to this more general
case in a straightforward way (give the details).

Remark 3. We might go till further, calling a set A measurable with
"infinite measure" if every A, ismeasurableand if the series (31) diverges.
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Alternatively, we can regard the whole plane as the union of the squares
E,={(x,p)i—n<x<n —n<y<n),

calling a plane set measurable, with (possibly infinite) measure

w(4) =lim p(4,) (32)
if its intersection 4, = 4 N E, with every square E, is measurable as
previously defined. As an exercise, prove the consistency of (31) and (32).

Problem 7. Let E be the closed unit square. Prove that

a) Every open subset of Eis measurable;

b) Every closed subset of E is measurable;

c) Every set obtained from open and closed subsets of E by forming no
more than a countable number of unions, intersections and com-
plementsis measurable.

Comment. There are measurable subsets of Ewhich are not of the type c).

Problem 2. Construct a theory of Lebesgue measure for sets on the line,
starting from intervals (closed, open and half-open) instead of rectangles.
Do the samefor

a) Setson the circumference of acircle;
b) Three-dimensional sets;
C) Setsin R".

Problem 3. Prove that the set of all rational points on the lineis measur-
able, with measure zero.

Problem 4. Prove that the Cantor set constructed in Example 4, p. 52
is measurable, with measure zero.

Problem 5. Prove that every set of positive measurein the interval [0, 1]
containsa pair of points whose distance apart is a rational number.

Problem 6. Show that the power of the set of all measurable subsets of
the interval [0, 1] is greater than the power of the continuum.

Problem 7. Let C beacircleof circumferencel, and let abeanirrational
number. Let al points of C which can be obtained from each other by
rotating C through an angle nax (wheren is any integer, positive, negative
or zero) be assigned to the same class. (Clearly, each such class contains
countably many points.) Let ®, be any set containing one point from each
class. Prove that @, is nonmeasurable.
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Hint. Let ®, be the set obtained by rotating ®o through the angle na.
Then
c=Uo,

n=—a

and
o, N0, =g (m # n).

If ®, were measurable, the congruent sets @,, would also be measurable.
This would imply

S w@) =1, (33)
by the o-additivity of w. But congruent sets must have the same measure,
i.e., if @, were measurable, then

w(@,) = (Do),
which contradicts (33).

26. General Measure Theory

26.1. Measure on a semiring. In Sec. 25 we constructed a theory of
measure of plane sets, starting from a measure (area) m defined on the class
&, of al rectangles (with sides parallel to the coordinate axes) and chen
extending m to a Lebesgue measure ¢ defined on the much larger class
of al measurable sets. Theexplicitformulafor the area of arectangle played
no rolein this construction. Infact, a moment's thought showsthat we only
used the following properties of the set function m:

1) The domain of definition %, of m, i.e., the class of al rectangles,
is a semiring;*

2) misreal and nonnegative;

3) mis additive in the sensethat if Pis a rectangle such that

n
P :liPka

where Py, ..., P, are pairwise digoint rectangles, then
n
m(P) =3 m(Py).

As will be shown in this section and the next, the construction given in
Sec. 25 for the case of plane sets can be carried out in an abstract setting,
whose very generality greatly enhancesits range of applicability.

1 We now draw freely from the material in Sec. 4, on systems of sets.
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Guided by the above properties of m, we introduce
DeriNniTiON 1. A set function u(4) is called a measure f

I) The domain of definition %, of w isa semiring;
2) w isreal and nonnegative;
3) w isadditive in the sense that if 4 isa set in &, such that

A=U 4,
Feael
where 4, ..., A, are pairwise digoint setsin ., then

u(4) :z p(Ap).

Remark. It followsfrom ¢ = @ U & that

w(2) = 2u(2),
and hence
p(z) = 0.

THeOREM 1. Let u be a measure on a semiring <, and suppose the
setsA A, ..., A, where4,, ..., A aredigoint subsetsof A, all belong
to &,. Then N

Z w(4y) < p(4).

k=1
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Proof. According to Lemma 2, p. 33, there is a finite system of
pairwise digoint sets By, . . . , B, belonging to <, such that each of the

sets A, A, ..., A hasafinite expansion
A=UB, 4,=UB,  (k=1,...,n
seMo seMy

with respect to certain of the sets B,, where each index s € M, belongsto
at least one of the sets M, (recall footnote 16, p. 33). Hence each term
in the sum

> u(By)

seMo

appears at least once in the double sum

2 2 By
k=1 se My
It follows that
WA =3 wB) <Y > wB)=2u4,). B
seMo k=1 se My =1

CoroLLARY. If 4 = A, then pu(4) < p(4").
Proof. Choosen =1. §
It will be recalled that the first step in constructing L ebesgue measure of

plane sets was to extend measure from rectangles to elementary sets, i.e., to
finite unions of digoint rectangles. We now consider the abstract analogue
of this process:

Proof. By Lemma 1, p. 33, there is afinite expansion

AZLSJAk (s}ﬂ)

k=1

with A, ..., A, asitsfirst » terms, where
Aye &, A, NA, =0 k#£1D
foral k,/=1,2,... . Hence

kzl w4y < )Zl w(A4z) = u(4),
since . is nonnegative and additive. g

THEOREM 2. Let p. be a measure on a semiring ,, and suppose the

sets A, 4,, ..., A all belongto &, and satisfy the condition
A< U 4,
k=1
Then

w(4) <k§1 (4.

DerINITION 2. A measure p. is called an extension of a measure m if
S, < &, and p(4) = m(4) for every Ae &,

THEOREM 3. Any measure m defined on a semiring <, has a unique
extension . defined on the ring Z(%,,), i.e., the minimal ring generated
by 4,

Proof. By Theorem 3, p. 34, every set Ae Z(¥,) has a finite
expansion

n
A - U B]C, (1)

k=1
where the sets By, . . . , B, are pairwise digoint and belong to %,,. Let
w(A) = 3 m(By). )

Then w is obviously real, nonnegative and additive. Moreover, the
quantity w.(4) defined by (2) isindependent of the expansion (1). Infact,
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suppose A has another expansion of the form

A=UCc, 19
1=1
wherethesetsCy, . .., C; arepairwise disoint and belong to %,. Then,

since the intersections B, N C, all belong to &%, it follows from the
additivity of the measure m that

S

n(B,) = 3 3 m(B, 0 C) = 3 m(C),

=1

and hence t

$

721 m(cl) = ‘L(A):
as asserted. This proves the existence of the extension p.. To prove the
uniqueness of w, suppose # has another extension p’, and let A be the
set (1). Then, by the additivity of p’,

W) = S0 (B) = Zm(B) = u(A).

Hence, sinceevery set A € Z(%,,) has a representation of the form (1),
the extensions i and .’ coincide. §

Remark. As already noted, the proof of Theorem 3 is a repetition in
abstract language of the extension of measurefrom the semiring of rectangles
to the minimal ring generated by this semiring, i.e., the class of elementary
sets.

26.2. Countably additive measures. Many problems in analysis involve
unions of countably many sets, as well as unions of only finitely many sets.
Correspondingly, the (finite) additivity imposed on measuresin Definition 1
turns out to be inadequate, and it is natural to introduce a stronger kind
of additivity:

DEFINITION 2. A measurey. With domain of definition Q' is said to be
countably additive or e-additive if

p(4) = 3 u(4,)
for all sets A, 4;, ..., A, ...e &, satisfying the conditions

A=UA AnA=25 (x).

n=1

Example. According to Theorem 10, p. 265, Lebesgue measure in the
plane is o-additive.
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THEOREM 4. Suppose a o-additive measure m on a semiring &, is
extended to a measure p. on the ring #(%,,). Then . isalso o-additive.

Proof. Suppose
Ae R(%), B,e %) (n=1,2,..)
and
A= UB,,
n=1
where

B,NnB =92 (kI

Then, by Theorem 3, p. 34, there exi<t finite expansions

A:UAj5 Bn:UBm"
7 i

where
A, NA, =9, B,,NB,=g k£ 1.

Let

Cm':i = Bwi N Aa
Then the sets C,,,; are pairwise digoint and

A:i = U U Cm':l"
Therefore

m(4;) = Z 4 m(Coi)s 3

since mis o-additive on %,, and moreover

w(d) = 3 m(4,), ()

4

by the definition of the measure .. Comparing (3)-(6), we find that
() =T mA) =TT X m(Cu;) = 3 X m(B,) = Z (B

(the sums over i and j are finite, while those over n are convergent). B
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Next we generalize Theorems 1 and 2 to the case of o-additive measures:

THEOREM 1. Let p be a o-additive measure on a semiring <, and
supposethesets A, A, ..., A, ...,whered,, ..., A, ...arepairwise
digoint subsets of A, all belong to #,. Then

3

]Zl w(4e) < w(A). (D

Proof. By Theorem 1,
Eu(Ak) - 1(4)
foraln=1,2,... . Taking thelimit as» — «, we get (7). i

THEOREM 2. Let u be a o-additive measure on a semiring ,, and

suppose the sets A, A, ..., A, ... al belong to &, and satisfy the
condition B
Ac UA.
Then !
wA) < Z w(4y). (8)

Proof. By Theorem 4, we can assume that p is defined on the ring
A(;), instead of just on the semiring .. Infact, if u is o-additive,
soisitsextension on #(<), which we continueto denote by ., and the
vaidity of (8) on (%) obviousy implies its vaidity on %, The sets

= (A ANA4,)= U A,
belong to #(%,) and cleariy satisfy the condltlons
A=UB, B,cd, B,NB=1v (k1)
=]
Therefore

Problem1. Let X = {xl, Xy, . . .} DE any countableset, and let p,, p,, ...
be positive numbers such that

nzlpn = 1.
On the set &, of all subsets of X, definea measure p. by the formula
wd) =2 r, (4= X),

where the sum is over al » such that x, € A. Prove that @ is a o-additive
measure, with u(X) = 1.
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Comment. This kind of measure arises quite naturally in many problems
of probability theory.

Problem 2. Let X be the set of all rational points in the closed unit
interval [0, 1], and let &, be the set of all intersections of the set X with
arbitrary closed, open and half-open subintervals of [0, 1], including the
degenerate closed intervals consisting of a single point. Prove that %, is a
semiring. Define a measure ¢ on <, by the formula

P‘(Aab) =b— a,

where A, is the intersection of X with any of the intervals [a,b],(a,b),
(a,b],[a,b). Prove that . is additive, but not o-additive.

Hint. Although w(X) = 1, Xisa countable union of single-element sets,
each of measure zero.

Problem 3. Let p. be a measure which is additive, but not o-additive.
Prove that

a) Theorem 1’ continuesto hold for u.;
b) Theorem 2 fails to hold for w.

Hint. Use Problem 2.
Problem 4. Given a measure . on a semiring ,, suppose
u(A4) <yz uw(A4y)

whenever the sets A, A, ...,
condition

A, ... dl belong to &, and satisfy the

Prove that p is o-additive.

Comment. It is often easier to verify that v has this property than to
prove the o-additivity of w directly.

27. Extensions of Measures

Any measure m defined on a semiring ., can be extended to a measure
defined on the ring #(%,,), i.e., the minimal ring generated by .%,. How-
ever, if mis o-additive, we can extend m to a measure defined on a much
larger class of sets than #(%,). This is done by the abstract analogue of
the procedure used in Sec. 25.2 to construct Lebesgue measurein the plane.
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Assuming that %, has a unit,? we begin with the analogues of Definitions
2-5, pp. 259-260.

DeriniTioN 1. Let m be a o-additive measure on a semiring &, With
a unit E. Then by the outer measure of a set A < E is meant the number

W) = Inf 3 m(By),
< % k

where the greatest lower bound is taken over all coveringsof A by a finite
or countable system of sets B, € %,.

DerINITION 2. By the inner measure of a set A < E is meant the
number

oy (4) = m(E) — p*(E — A).
Remark. By the exact analogue of Theorem 3, p. 258, it follows that
oy (4) < p*(4).
DeriNTION 3. A set A is said to be (Lebesgue) measurable if
pal(d) = u*(A),
i.e.,i itsinner and outer measures coincide.

DeriniTion 4. |f a set A is measurable, the number u(A4) equal to the
common value of ., (4) and w*(A) is called the Lebesgue measure of 4.2

Remark. Clearly, aset A < Eismeasurableif and only if

w*(d) + p*E — 4) = m(E). 1)
In particular, it follows from (1) that if A ismeasurable, soisE — A.

Treorem 1. If Ais any set and {A)) is any finite or countable system
of sets such that

Ac U4,
then ;
wWiA) < 2 u*(4,).
n

Proof. Exactly analogous to that of Theorem 4, p. 259. B

2 The case where %, fails to have a unit will be discussed later (after Theorem 7).

3 It turns out, of course, that w is a measure as defined in Sec. 26.1 (see Theorem 5,
where the additivity of w is proved). In particular, this justifies the use of the notation
&, for the system of all measurable sets.
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THEOREM 2. Every set A€ () is measurable, with Lebesgue
measure equal to #(4), where # is the extension of m from the semiring
&, tothering Z(%,).

Proof. Exactly analogous to that of Theorem 5, p. 259. §

THeorem 3. A set A is measurable if and only if, given any € > 0,
there isa set B € #(.%,) such that

p¥(d A B) <e.

Proof. Exactly analogous to that of Theorem 6, p. 261.
THEOREM 4. The system &, of all measurable setsis a ring.

Proof. Exactly analogous to that of Theorem 7, p. 262 and its
corollary. §

Remark. Obviously E is the unit of &, so that &, is an algebra of
sets (see p. 31).

THeEOREM 5. The set function p(4) is additive on .

Proof. Exactly analogous to that of Theorem 8, p. 263. §
Treorem 6. The set function w(4) is a-additive on .
Proof. Exactly analogous to that of Theorem 10, p. 265. §

Remark. Thus y. isa o-additive measure of the system , of all measur-
able sets. This measure is called the Lebesgue extension of the origina
measure m.

THEOREM 7. The system &, of all measurable sets is a Borel algebra
with unit E.

Proof. Recall from p. 35 that a Borel algebra is closed under the
operations of taking countable unions and intersections. The proof is
the exact analogue of that of Theorem 9, p. 264. §

It isinteresting to note that an arbitrary measurable set can be approxi-
mated to within a set of measure zero by a set of a very special kind:

THeOREM 8. Given any set A€ &, there are sets
B,.€ R(H,) (Byp © Bpa © o+ S By © 0 )
and corresponding sets

B»,,:UBMCE% (BIDBzD"'DB,ﬂD"')
k
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such that
A< B=(B8,
n
w(4d) = w(B).
Proof. Given any », we can cover A by a union
Cs = U An
of sets A, € &, such that ’
1
n
Let
B, =MNCcC,
k=1
so that, in particular, B, > B, > --, > B, o.... Then it is easy to
see that
B, =Us3,,
where $,,, € ,. Next let )
k
B, = U Sns,
so that, in particular, -
Bn = U Bnk
k

Then obviously B, € #(+,) and B, <B,<...c B, < ...
Moreover

A< B={B,
since B is an intersection of sets containing A. It follows that

w(d) < w(B). @
On the other hand, B = B, = C, for every », and therefore

w(B) < w(B,) < w(C,) < u(4) + *
n
Taking the limit as » — oo, we get
w(B) < w4),
which, together with (2), implies u.(4) = w(B). §

Our construction of the Lebesgue extension of a measure m defined on a
semiring %, must be modified somewhat if %, fails to have a unit. We
continue to use Definition 1 to define the outer measure p.*, but u* is now

SEC. 27 EXTENSIONS OF MEASURES 279

defined only on the system .. of all sets with coverings
U Bk (Blc € ym)

such that

> m(B,) < .

k
Since Definition 2 is meaningless in the absence of a unit, we now define
measurable sets by using the property figuring in Theorem 3:

DeriniTioN 3. A set A is said to be (Lebesgue) measurable if, given
any e > 0, there isa set B € Z(%,,) such that u*(4 A B)<e.

DerINITION 4. If a set A is measurable, the number w(A4) equal to
its outer measure p.*(4) is called the (Lebesgue) measure of A.

Remark. Note that Definitions 3" and 4' are equivalent to Definitions 3
and 4 if %, has a unit.

I n the case where %, has no unit, Theorems 4-6 continue to hold, since
the proofs of Theorems 5 and 6 do not require %, to have a unit, while the
proof of Theorem 4 can easily be freed of this requirement (see Problem 4).
However, Theorem 7 now takes a new form (see Problem 5). As before, the
a-additive measure p. on the system ., of al measurable sets is called the
Lebesgue extension of the original measure m.

Remark. Thereis an interesting analogy between the construction of the
L ebesgue extension of a measure m defined on a semiring .%,. and the process
of completing ametric space. Let 7 be the extension of m from the semiring
&, to the ring Z(%,), and suppose we regard #(4 @ B) as the distance
between the elements A, B € Z(+,). Then #(%,,) becomes a metric space
(in general, incomplete), whose completion, according to Theorem 3, is just
the system 7, of all Lebesgue-measurable sets. However, note that from a
metric point of view, two sets A, B e &, areindistinguishable if u.(4 A B) = 0.

Problem 1. Let m be a o-additive measure on a semiring %, with a unit
E, let . be the Lebesgue extension of m, and let . be an arbitrary a-additive
extension of m. Prove that @(4) = u(4) for every measurable set A on
which f is defined.

Hint. First show that g, (4) < @(4) < w*(A4).

Problem 2. Let m be the same as in the preceding problem, and let 7 be
the extension of m to a measure defined on %(.%,). Prove that the outer
measure of aset A < Eisgiven by

pH(A) = inf S (B
A4<

UBr k
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where the greatest lower bound is taken over all coverings of A by afinite
or countable system of sets B, € Z(%,).

Probkm 3. State and prove the analogues of Theorem 11, p. 266 and its
corollary for an arbitrary s-additive measure . defined on a Borel agebra
, with unit E.

Problem 4. Give a proof of Theorem 7 vaid in the case where <, fails
to have a unit.

Hint. Suppose 4;, A, € . Then A, U A, € &, by the same proof as
before (cf. p. 262). Moreover, there are sets By, B, € Z(.%,) such that

Ay A B) <L ph(dy 8 By) < .
But
(41 — 45) A (By — By) © (41 A B) U (4, A By),
and henceu*(4 A B) < ewhereB = B, — B, € %(%,). Therefore A, — A,
e . Toprovethat 4, N A,and A, A A, belongto ,, usetheformulas

A, N A, - Al - (A; - Al)’
Ay A Ay = (A — 45) Y (4 — 4)).

Problem5. Given a measure m on a semiring <, with no unit, let p.
be the Lebesgue extension of m and &, the corresponding system of all
measurable sets. Prove that

a) & isad-ring (see p. 35);
b) The set

A=UA e
belongs to , if and only if there isa constant C' > 0 such that

M(UAk) <C 3)
=1
foralln=1,2,...

Comment. The necessity of the condition (3) is obvious, since our
measures are always finite.

Problem 6. Let p. and &, be the same as in the preceding problem.

Prove that the system of al sets B e &, which are subsets of a fixed set
A€ &, isaBorel agebra with unit A.

Problem 7. A measure p. is said to be complete if every subset of a set
of measure zero is measurable, ie., if A = A, u(4) =0 implies A € &,
(If A e &, then obviously u(4") = 0.) Prove that the Lebesgue extension
of any measure mis complete.
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Hint. If A = A and pu(4) =0, then p*(4) =0. But @ £ #(,) and
(4’ a @) =u*4) =o0.

Problem 8. Let 7z be a measure defined on a ring #. For example,
might be the extension of a measure m originally defined on a semiring %,
to a measure defined on the minimal ring £ = %(Y,,) generated by %,
Then a set Ais said to be Jordan measurable if, given any =« > 0, there are
sets A', A' € & such that

AcAcA, mA - A)<e

Prove that the system #* of dl Jordan-measurable setsis a ring containing
X

Problem9. Let 7, £ and Z* be the same as in the preceding problem,
and let &7 be the system of all sets A such that thereisaset B e # containing
A. Givenany set Ae ., let

W(4) =infaii(B),

Be®
wd) = Sup m(B)
Be#

(since @ = A, Aawayscontainsa set in #%). Prove that
a) p(4) < u(4);
b) The ring #* coincides with the system of all sets Ae .« for which
() = @(4);
o) If n

A <4,
where A, 45, ..., A, al belong to &, then
BA) < TR
d) If 4,,..., 4, are pairwise digoint sets contained in a set A, then

W) > 3 Ay,

By the Jordan measure of a set A E Z*, we mean the number p(4) equal to

thecommon valueof u.(4) and .(4). Provethat p.isameasure on Z* = &,

Comment. The measure . is caled the Jordan extension of the measure
. If misitself an extension of a measure moriginally defined on a semiring
&, wewrite Z* = #*(%,) and cal p. the Jordan extension of the measure
m, as wdl as of the ""intermediate’ measure 7.
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Problem 10. Given two measures 7, and s, defined on rings %, and £,,
let y, and p, be their Jordan extensionsonto the larger rings Zf = &, and
#y = &,,. Provethat y; and ., coincideif and only if

I &, %(A) = p(d) for al Ae 2,
Ry =, y(A4) = py(A) for dl A e &,

Problem 11. Let # be the measure defined in Sec. 25.1 on the ring # of
al elementary sets (i.e., al finite unions of digoint rectangles with sides
parallel to the coordinate axes), and let w be the Jordan extension of 7.
Prove that p. does not depend on the particular choice of the underlying
rectangular coordinate system. In other words, prove that p (as wdl as
the corresponding ring #£* = ) does not change if all the setsin % are
subjected to the same shift and rigid rotation.

Problem 12. Wesay that aset Aisaset d uniquenessfor a measure s if

1) Thereisan extension of m defined on A;
2) If p, and p, are two such extensions, then p,(4) = p,(A4).

Prove that the system of sets of uniqueness of a measure m defined on a
semiring &, coincideswith thering W* = #£*(%,,) of setswhich are Jordan
measurable (with respect to m). In other words, prove that the Jordan ex-
tension of a measure m originally defined on a semiring %, is the unique
extension of m to a measure defined on Z* = #*(&,), but that the
extension of mz to alarger system is no longer unique.

Problem 13. Prove that if a set A is Jordan measurable, then

a) A is Lebesgue measurable;
b) The Jordan and L ebesgue measures of A coincide.

Prove that every Jordan extension of a a-additive measure is o-additive.

Problem 14. Give an example of a set which is Lebesgue measurable, but
not Jordan measurable.

Problem15. We say that a set A isaset d o-uniquenessfor a o-additive
measure m if

1) Thereis a o-additive extension of » defined on A;
2) If p; and u, are two such extensions, then p,(4) = p,(4).

Prove that the system of sets of o-uniqueness of a o-additive measure m
defined on a semiring &, coincides with the system of sets which are
L ebesgue measurable (with respect to rn).

Hint. To show that every Lebesgue-measurable set A is a set of o-
uniqueness for m, choose any e = 0. Then thereisa set Be # = Z(%)
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such that p*(4 A B) <e. If uisany extension of m defined on A (and on
%), then w(B) = m(B), where 7 is the unique extension of m onto £.
Moreover, p(4d AB) < p*(4 A B)<e, and hence |u(4) — m(B)| < .
Therefore {pu,(4) — pa(A)| < 2sif py and ., are two o-additive extensions
of m defined on A (and on Z). Hence w,(4) = uq(4), by the arbitrariness
of E.

Problem 16. Let m be a a-additive measure defined on a semiring %,
and let # be the domain of the Lebesgue extension of m. Let ' be a o-
additive extension of m to a semiring %, such that

‘fmc yfm'Cg’

and let %’ be the domain of the Lebesgue extension of m. Prove that
L =9.
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INTEGRATION

28. Measurable Functions

28.1. Basic properties of measurable functions. Given any two sets X and
Y, let & bea system of subsets of X and &’ a system of subsets of Y. Then
an abstract function y =f (x) defined on X and taking valuesin Y is said
to be (9, 9)-measurable if A e & impliesf(4) € &.

Example. Let X and Y both be the real line R%, so that y = f(x) isa
"function of a real variable." Moreover, let & and %’ both be the system
of al open (or closed) subsets of RY. Then our definition of measurability
reduces to that of continuity (recall Sec. 9.6). On the other hand, if we
choose both % and .%* to be the system #* of all Borel sets on the real line
(recall p. 36), our definition becomes that of a Borel-measurable (or simply
B-measurable) function.

In what follows, we will be primarily concerned with the notion of real
functions measurable with respect to some underlying measure p., this being
the case of greatest interest from the standpoint of integration theory. More
exactly, let X beany set and Y thereal line R*, with & = &, the domain of
definition of some s-additive measure p. and & the system ! of all Borel
sets B = R For simplicity, we assume that &, has a unit equal to X itself.
Moreover, since any o-additive measure can be extended onto a Borel algebra
(by Theorem 7, p. 277), we might as well assume from the outset that
isa Borel algebra. These considerations suggest

DeriniTION 1. Given a o-additivemeasure . defined on a Borel algebra
S, G subsetsd aset X, whereXistheunitd &, let y =f (x) be a real

284
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function defined on X, and let %* be theset ¢ all Borel sets on the real
line. Then thefunctionf issaid to be p-measurable (on X) if f*(4) € &,
for evary Ae &', or equivaently iff -1(%Y) < .

THeorReEm 1. Afunction f is p-measurable f and only f the set
{xf (x) < is p-measurable (i.e., belongsto < )for every real c.

Proof. Iff is p-measurable, then obviously so is{x:f (x) < ¢}, since
(— o, C)isaBord set. Conversely, let 2 bethe system of all semi-infinite
intervals (—o0, ), and suppose () < . Since #(X), the Borel
closure of X (see p. 36), coincides with the system %" of all Borel sets
on the line (why?), we have

[UBY =[HBE) = Z(D) = B(S)

(recall Problem 3e, p. 36). But #(,) = &,, since <, is a Borel

algebra, and hence
IRCOIE A

THEOREM 2. Let {f,} be a sequence d p-measurablefunctions on X,
and letf be afunction on X such that

S =1lim f,(x)

for every x € X. Thenf isitsdf p-measurable.
Proof. First we verify that

xif<cl=UUN x:fm(x)<c—]1{. (1)
k. nm>n
In fact, iff (X) <c, thereisan integer k > 0 such that
2
< — T
fe)<e—7

and then for thisk, thereis an integer n = 0 so large that
fal¥) <o @

for al m > n. Therefore every x belonging to the left-hand side of (1)

also belongs to the right-hand side. Conversely, if x belongs to the

right-hand side of (1), thereisa k such that (2) holdsfor all sufficiently

large m. But thenf (x) < c, i.e., x belongs to the left-hand side of (1).
Now, since the functions f,,, are p-measurable, the sets

Xifmlx) < c —i
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al belong to &, and hence so does the right-hand side of (1), since %,
is a Borel algebra. Therefore {x:f(x) <c)e <. But then f is p-
measurable, by Theorem 1. §

THeorem 3. A B-measurablefunction of a p-measurable function is
itself p-measurable.

Proof. Letf (X) = ¢[d(x)], where ¢ is B-measurable and ¢ is p-
measurable. If A = R'isany B-measurable set, then its preimage A' =
¢71(4) is B-measurable, and hence the preimage A" = {~(4") is p-
measurable. But A" = f~*(4), and hence f'is p-measurable. §

CoroLLARY. A continuous function of a p-measurable function is
itself p-measurable.

Proof. A continuous function is clearly B-measurable. (]

28.2. Simple functions. Algebraic operations on measurable functions.
A function f'is said to be smple if it is p-measurable and takes no more
than countably many distinct values. This notion clearly depends on the
choice of the measure p.

The structure of simple functions is clarified by

THEOREM 4. A function f taking no more than countably many distinct
vauesy,, Y,, ... iS p-measurable If and only f thesets

An:{X1f(X)=)’n} (n=1,2,..)
are p-measurable.

Proof. Since each single-element set {y,) is a Borel set, the set A,
being the preimage of {y,.}, ismeasurableif fismeasurable.r Conversely,
suppose the sets A, are all measurable. Then the preimage f—*(B) of any
Borel set B = R' is measurable, being a union

U4,
Yn€l3

of no more than countably many measurable sets A, But thenf is
measurable. §

Therelation between measurabl e functions and simplefunctionsisshown by

THEOREM 5. A function T is p-measurable if and only if it can be
represented as the limit of a uniformly convergent sequence of simple
Sfunctions.

tFor simplicity, we often say ""measurable’ instead of **p-measurable,”” omitting
explicit reference to the underlying measure .
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Proof. If fis the (uniform) limit of a convergent sequence of simple
functions, then f'is p-measurable by Theorem 2, since simple functions
are p-measurable by definition. Conversely, given any p-measurable
function £, let

m

n

it o< ) <22
n n

where m and » are positive integers. Then the functions f,, are simple
and moreover converge uniformly to fas»n — oo, since

(%) — £l <i. B

The next few theorems show that the class of measurable functions is
closed under the usual algebraic operations.

THEOREM 6. If f and g are measurable, then so isf + g.

Proof. First letf and g be simple functions, taking value y;, ys, . . .
and z;, z,, ..., respectively. Then the sum h = f+ g can only take the
values ¢;; = y; T z;, where each such valueis taken on a set of theform

Deh =c} = U (/00 = »d 0 {xzg =2 @3

There are no more than countably many vaues w of the function h =
f+ 9, and moreover each set {x:A(x) = c,) is measurable, since the
right-hand side of (3) is clearly measurable. Therefore h=f +gis a
simple function.

Now let fand g be arbitrary measurable functions, and let {f,} and
{g,) be sequences of simple functions converging uniformly to f and g,
respectively, asin the proof of Theorem 5. Then the sequence of simple
functions {f, + g,) converges uniformly tof+ g, and hencef + g is
measurable, by Theorem 5. B

THEOREM 7. If f is measurable, then so is cf, where ¢ is an arbitrary
constant.

Proof. Obviously, the product of a simple function and a constant is
again simple. But if {f,,} is a sequence of simple functions converging
uniformly to f, then {cf,} converges uniformly to ¢f, and hence ¢ is
measurable, by Theorem 5. [

THEOREM 8. If f and g are measurable, then so isf — g.
Proof. An immediate consequence of Theorems6and 7. [

THeorem 9. If fand g are measurable, then so isfg.
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Proof. Clearly,
|
=30+~ (/— 94

But the expression on the right is a measurable function, by Theorems
6-8 and the fact that the square of a measurable function is measurable
(thisfollows from the corollary to Theorem 3). i

THeEOREM 10. | ff is measurable, then so is 1/f, provided f does not
vanish.

Proof. We have

{x:]%x—) < c} = {x:f(x) > 5} U {x:f(x) < 0}

if ¢ >0,

if ¢ < 0, and {x:fr(l"_)<c}: {x:i<f(x)<0}

1
xi— <ci={x:f(x)<c¢
¥ m = = bv0 <9
if c = 0. But in each case the set on the right is measurable. i

CoroLLARY. | ffand g are measurable, then so isf/g, providedg does
not vanish.

Proof. An immediate consequence of Theorems 9 and 10. g

28.3. Equivalent functions. The values of a function can often be ne-
glected on a set of measure zero. This suggests

DerNiTION 2. Two functions f and g defined on the same set are said
to be equivalent (with respect to a measure p.) if

wlef () # g(x)} = 0.

A property issaid to hold almost everywhere (on E) if it holds at all points
(of E) except possibly on a set of measure zero. Thus two functionsf and g
are said to be equivalent (written f ~ g) if they coincide almost everywhere.

THEOREM 11. Given two functions f and g continuous on an interval E,
suppose f and g are equivalent (with respect to Lebesgue measure 1. on the
ling). Then f and g coincide.

Proof. Suppose f (x,) # g(x,) at some point x, € E, so that f (x,) —
g{xg) # 0. Since f — g is continuous, there is a neighborhood of x,
(possibly one-sided) in which f — g is nonzero. This neighborhood has
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positive measure, and hence
p{xf () # g(x)) > 0,
ie., f and g cannot be equivalent, contrary to hypothesis.

Remark. Thus two continuous functions cannot be equivalent if they
differ at even asingle point. However, discontinuousfunctions can obviously
be equivalent without being identical. For example, the Dirichlet function

1 if X isrational,

fx) =

0 if x isirrationa

is equivalent to the function g(x) = 0 (recall Problem 3, p. 268).

THEOREM 12. A function f equivalent to a measurable function g is
itself measurable.

Proof. It follows from Definition 2 that the sets {x:f(x) < ¢} and
{x:g(x) < ¢} candiffer only by a set of measurezero. Henceif the second
set is measurable, so is the first set. The proof is now an immediate
consequence of Theorem 1. §

28.4. Convergence almost everywhere. Since the behavior of measurable
functions on sets of measure zero is often unimportant, it is natural to
introduce the following generalization of the ordinary notion of convergence
of a sequence of functions:

DerINITION 3. A sequence of functions {f,(x)} defined on a space X
is said to converge almost everywhere to a function f (x) if

lim f,(x) = f(x) “

n—+oo

for almost all x € X, i.e., if the set of points for which (4) fails to hold is
of measure zero.

Example. The sequence {f,(x)} = {(—x)"} defined on [0, 1] converges
almost everywhereto thefunctionf (x) = 0, in fact everywhere except at the
point x = 1.

Theorem 2 now has the following generalization:

THEOREM 2. Let {f,} be a sequence of" p-measurable functions on X,
and let f be a function on X such that

f () =dim £, () ()
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almost everywhere on X. Then f is itself p-measurable, provided w is
complete.?

Proof. If Ais the set on which (5) holds, then (X — A)=0. The
functionf is measurableon A, by Theorem 2, and also on X — A, since
every function is measurable on a set of measure zero if u is complete

(why?). Hencefis measurable onthe wholeset X =A U (X— A). B

285. Egorov’s theorem. The following important theorem shows the

relation between the concepts of convergence almost everywhere and uniform
convergence:

THEOREM 12 (Egorov). Let {f,} be a sequence of measurable functions
converging almost everywhereon a measurableset E to a functionf. Then,
given any 8 > 0, there exists a measurableset E5 < E such that

1) w(Ey) > w(E) — 3;
2) {f,.} converges uniformly to f on E,.

Proof. The functionf is measurable, by Theorem 2'. Let
m 1
E, :D x: | fi(x) — f()] < I (6)
Thus, for fixed m and n, E is the set of all points x such that

1
. — < =
[fi(x) — f(2) -
holdsfor al i > n. Moreover, let

E"=UEnr
n=1

It followsfrom (6) that

?

EinCE;nc "‘CEﬁC
and hence, by the corollary to Theorem 11, p. 267,® given any m and
any 8 > 0, there is an ny(m) such that

8
P‘(Em - E;L'z)(m)) < z—m . (7)

Let

@
— m
EB - n E'/zo(m)
m=1

* Se Problem 7, p. 280.
2 S also Problem 3, p. 280.
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Then Ej satisfies the two conditions of the theorem. The fact that the
sequence {f,} is uniformly convergent on E; is almost obvious, since if
X €E, then,givenanym=1,2,...,

1) — ()] < =
m

for every i = ny(m).

T o verify condition 2), we now estimate the measure of theset E— E,,
noting first that w(E — E™) = 0 for every m. In fact, if x,€ E— E™,
then there are arbitrarily large values of i such that

filxo) = fGoall > -

which means that the sequence {f,} cannot converge to f at the point X.
Therefore w(E — E™) = 0, as asserted, since{f,} convergesto f almost
everywhere, by hypothesis. It follows from (7) that

m m m 8
\U'(E —_— Eno(m)) = V‘(E - Eno(m)) < 2.

Therefore @ @
w(E — Eg) = u(E —nglEZz"o(m)) = H( UE - E::;(m)))

me=1

© m 0 8
< z lJ‘(E - Eno(m)) < z —7; = 8’
m=1 m=1 2
and hence w(E;) > w(E) — 8.
Problem |. Prove that the Dirichlet function

1 if X isrational,

/)= 0 if x isirrationa
is measurable on every interval [a,b].
Problem 2. Do the same for the function

i if x = Eis rational,

0 ={4 q

0 if x is irrational.

Problem 3. Supposef (x) is measurable on [a,b] . IS g(x) = & measur-
ableon [a,b]?

Problem4. Prove that iff is measurable, then sois |f].

Problem 5. Let {f,} be a sequence of measurable functions converging
almost everywhere to a functionf. Prove that {f,} converges almost every-
where to a function g if and only if fand g are equivalent.
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Problem6. A sequence {f,} of p-measurable functionsis said to converge
in measure to a functionf if

lim .{x:|fu(x) —F ()] > 8) =0

for every 6> 0. Prove that if a sequence {f,} of measurable functions
converges tof almost everywhere, then it convergestof in measure.

Hint. Let A be the set (of measure zero) on which {f,} fails to converge
tof, and let

E() = {x: /100 — /0l = B},
R, = U L) ®

M=0 R,(3).
n=1

Then the sets (8) are al measurable (why?), and w.(R,(8)) — w(M) asn — «,
since R;(3) = Ry(8) @ .... Prove that M = A and hence that (M) =0
(as always, we assume that ¢ is complete). It follows that w(R,(3)) 0 as
n— . Now usethefact that E,(3) < R,(3).

Problem7. Let {f,} bea sequence of measurable functions converging in
measure to a functionf. Prove that {f,) convergesin measure to afunction
gif and only iff and g are equivalent.

Problem 8. Given any positive integer k, consider the function

i—

i i
<x < -,
FP(x) = TSk
0 otherwise,
defined on the half-open interval (0, 1]. Show that the sequence

£ (1) ¥ (2) ¥ (2) (k) &) (%)
Lo 1 9 2 sy f1 5/2 sy fp s

convergesin measure to zero, but does not converge at any point whatsoever.

Comment. Thus the converse of the proposition in Problem 6 is false.
Instead we have the weaker proposition considered in the next problem.

Problem 9. Prove that if a sequence {f,} of functions converges tof in
measure, then it contains a subsequence {f,} converging to f almost
everywhere.

Hint. Let {3,} be a sequence of positive numbers such that

lim 3§, = 0,

n=w
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and let {¢,} be a sequence of positive numbers such that

o
>e, < 0.
n=1

Let{n) be a sequence of positive integers such that n, > #n,_, and

wix:lfp,(x) —fO) > 8} <e,  (k=1,2,...).
Moreover, let

R, =kL_J_ {x: |fn,,(x) —f0)l = 3}, Q= 01 R;.
Then w(R) — w(Q) asi— =, Snce R, @ R, @ *... Ontheother hand,

m
{J‘(Ri) < Z €g»
k=1

and hence u(R;) — 0, so that u(Q) = 0. Now show that {/, } convergesto
fonE— Q.

Problem 10. Prove that a functionf defined on a closed interval [a, b] is
p-measurable if and only if, given any € = 0, there is a continuous function
© on [a,b] such that pu{x:f(X) # ¢(x)} <E

Hint. Use Egorov's theorem.

Comment. Thisresult, known as Luzin’s theorem, showsthat ameasurable
function " can be made continuous by altering it on a set of arbitrarily small
measure."

29. The Lebesgue Integral

The concept of the Riemann integral, familiar from calculus, applies
only to functions which are either continuous or elsedo not have "' too many"*
points of discontinuity. Hence we cannot form the Riemann integral of a
general measurable functionf. In fact,f may be discontinuous everywhere,
or it may even be meaningless to talk about the continuity off in the case
wheref is defined on an abstract set. For such functions, there is another
fully developed notion of the integral, due to Lebesgue, which is more
flexible that the notion of the Riemann integral.

Let f be a function defined on a closed interval [a, b] of the x-axis.
Then to form the Riemann integral off, we divide [a,b] into many sub-
intervals, thereby grouping together neighboring points of the x-axis. On
the other hand, as we will see below, the Lebesgue integral is formed by
grouping together points of the x-axis at which the functionf takes neigh-
boring values. In other words, the key idea of the theory of Lebesgue
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integration is to partition the range of the function f rather than its domain.
Thisimmediately makes it possible to extend the notion of integral to a very
large class of functions.

Another advantage of the Lebesgue integral is that it is constructed in
exactly the same way for functions defined on an abstract ' measure space'
(an arbitrary set X equipped with a measure) as for functions defined on the
real line. Thisisto becontrasted with the situation for the Riemann integral,
which is first introduced for functions of a single real variable and then
extended, with suitable modifications, to the case of functions of severa
real variables, but failsto make any sense at all for functions defined on an
abstract measure space.

In what follows, unless the contrary is explicitly stated, we will consider
a o-additive measure y. defined on a Borel algebra of subsets of a set X,
with X as the unit. We will assume that al sets under consideration are
p-measurable, and that all functions under consideration are defined and
p-measurable on X.

29.1. Definition and basic propertiesof the Lebesgueintegral. Let f be a
simplefunction, i.e., a p-measurable function taking no more than countably
many distinct values

yl:y29'..>_yn;-.. (1)
Then by the (Lebesgue) integral of f over the set A, denoted by
|60 du,
we mean the quantity
> va(A,) ®)

where
A, ={x:xe AT (X) =y},

provided the series (2) is absolutely convergent. If the Lebesgue integral
off exists, wesay thatf isintegrableor summable (with respect to the measure
w) on the set A.

Example. Obviously,
JA1 cdy = Jﬁdu = u(4).
We now get rid of the restriction that the numbers (1) be distinct:

Lemma. Given a simple function f defined on a set A, suppose A isa
union
A=UB,
k
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of pairwise disioint sets B, such that f takes only one valuec, on B, Then
f isintegrable on A If and only If the series

% CIcP'(Bk) 3

isabsolutely convergent, in which case

Lf(x) dp = Z cxiM(By).

Proof. Each set
A ={xixe AF(X) =y

is the union of the sets B, for which ¢, =Yy, Therefore?
Z Va(4,) = E Van Z w(B,) = % it By).

Cp=Yp

Moreover, since w is nonnegative, we have

z 'y'nl “‘(An) = % Iyn[cgy (J'(Bk) = z ‘ck| P*(Bk)’

so that the series (2) is absolutely convergent if and only if the series (3)
is absolutely convergent. §

THeOREM 1. Letf and g besimple functions integrable on a set A, and
let k beany constant. Thenf + g and kf are integrable over A, and

[ 176 + g1 du = [ 1) da + [ gx) d, )

[ Jif 1 dp. = k[ f(x) du. 5)

Proof. Supposef takes distinct values y; on sets F; = A, while g
takes distinct values z; on sets G; = A, wherei,j=1,2,... . Then

[ 16 du =3 yiuF), (6)

[ £ i =3 2,06, M

Clearly, f 4 g takes the values ¢;; = y; + z; (not necessarily distinct)
on the pairwise disjoint sets B;; = F; N G, It follows from

w(F) = 2 wF; N Gy, WGy =2 w(F; NGy

¢ The notation > calls for the sum over all k such that ¢ = yn.

Cr=Yn
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and the absolute convergence of the series (6) and (7) that the series

; 2 cir(Byy) =2 3 (v + zpu(F; N Gy)

is absolutely convergent. Hence, by the lemma, f + g is integrable on
A and

[ + gl dp = 33 (5 + z)ulF, 0 6
= ; Yau(Fy) + 2 z(G)- (®
Comparing (6)-(8), we get (4). The proof of (5) istrivial. §

THEOREM 2. Let f beabounded simple functionon A, where| f(x)| < M
if x€ A. Thenf isintegrable on A and

[ du‘ < Mu(4).
Proof. Iff takesvaluesy, onsets 4, < 4 (n=1,2,...), then

{ Lre du‘ = |2 ()

where we have incidentally proved theintegrability off on A (how?). g

< g lynl W(d,) < M 3 1(4,) = Mu(4),

Next we remove the restriction that f be a simple function:

DeriNniTiON. A measurable function f is said to be integrable (or
summable) on a set A T there exists a sequence {f,} of integrable simple
functions converging uniformly to f on A. The limit

lim JA f() du ®

is then called the (Lebesgue) integral off over the set A, denoted by

| S du.

This definition relies tacitly on the following conditions being met:

1) Thelimit (9) exists (and isfinite) for any uniformly convergent sequence
of integrable simple functions on A;

2) For any givenf, this limit isindependent of the choice of the sequence
{fnd;

3) For simplefunctions, the definitions of integrability and of theintegral
reduce to those given on p. 294.
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All these conditions are indeed satisfied. Condition 1) is an immediate
consequence of the estimate

| fulo0y dp = [ £.(x) du ' = I [ ) = ) dp
= w(4) sup | fr(x) — fu(®)],

implied by Theorem 1 and 2. To prove 2), suppose the sequences {f,} and
{f.¥} both converge uniformly to f, but

tim [ £,() dy #1lim [ rr

Let {¢,} be the sequence
ﬁ9fikaf27f2*9 e ,fnafn*: PR

Then {¢,} converges uniformly to f, but

lim [ ,(x) du
fails to exist, contrary to condition 1). Finaly, to prove 3), if fis simple,
we need only consider the trivial sequence {f,} with general term f,, = f.

THEOREM 1'. Theorem 1 continues to hold i ff and g are arbitrary
measurable functions integrable on A.

Proof. Animmediate consequence of Theorem 1, after taking suitable
uniform limits of integrable simplefunctions.

THeEOREM 3. If ¢ is nonnegative and integrable on A and if | f(x)| <
¢(x) almost everywhere on A, thenf is also integrable on A and

fA () dul| < L<p(x) dy.. (10)

Proof. Iff and ¢ are simplefunctions, then, by subtracting a set of
measure zero from A, we get a set A which can be represented as a
finite or countable union

A=U4,
of subsets A, = A' such that A

f&x)=a, o(x)=b,
foral xe 4, and
,an'<b, (}1:1,2,__.)_

Since ¢ isintegrable on 4, we have

Slaudu(4) < 3 bp(4) = [ e du= [ oG de (D
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(see Problem 3b). Therefore f isalso integrable on A, and

[ S| =| [ s ] =

Comparing (11) and (12), we get (10).

In the case where f and ¢ are arbitrary measurable functions, let
{/»} and {®,} be sequencesof simplefunctionsconverging uniformly tof
and ¢, respectively, constructed in thessame way as in the proof of
Theorem 5, p. 286. Then clearly

|fn(x)| < an(x) (I’l =1,2,.. )

on A'. Moreover each ¢, isintegrable, since ¢ isintegrable by hypoth-
eds. It followsthat each f, and hencef itself isintegrable, where

[0 do < [ 9,6) do.
Taking the limit as» — o, we again get (10). §

2 a,u(d,)

< 2 la,lu(4,). (12)

CoroLLARY. If fis bounded and measurable on A, then f is integrable
onA.

Proof. Choose ¢(x) = M, where

M = sup | f(x)].
zeAd

29.2. Some key theorems. We now prove some important properties of

the Lebesgueintegral, regarded as a set function

Fa)= [ fedp (13)

defined on a system of measurable sets (with the integrand f held fixed).
THEOREM 4. Let
4=U4,
n

be a finite or countable union ofpairwise disoint sets A,, and supposef is
integrable on A. Then f isintegrable on each A, and

[J@rde=3 ], fe)ap. (14)
wherethe serieson the right is absolutely convergent.

Proof. First let f be a simple function, taking the vauesy,, y,, ...,
and let

By ={x:xed,[(x) =y}, By ={x:x€d,, f(x) =y}

R
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Then
[ £69 do = 3 piaB) = 3 . 3 (B )
= Z 72 Vil (Bur) = 2, fA,, f(x)dp.  (15)

Sincef isintegrable on A, the series 2, y,u.(B;) converges absolutely, and
k

hence so do the other seriesin (15). (Here we use the nonnegativity of
the measure w.) In particular, f isintegrable on each set A,.

Next let f bean arbitrary measurablefunction integrableon A. Then,
given any £ > 0, there is a simple function g integrable on A such that

fx) g <  (xe4). (16)

For g we have
[gedu=3] e du. (17

asjust shown, where g isintegrable on each 4,, and the series converges
absolutely. Hence, by (16), f is also integrable on each A, and

2 ‘ fAﬂf(x) dp. — Lng(x) dy. l < 3 eu(d,) = su(4),

< eu(4),

' [fedu — [ o) du
which, together with (17), implies the absolute convergence of the series

3, S du
and the estimate

[fde =3[ fedu f < 2ep(4). (18)
But (18) implies (14), since e = O isarbitrary. g

CoroLLARY. | ff is integrable on A, then f is integrable on every
measurable subset A' < A.

Proof. Think of A astheunion of thedigoint setsA'and A — A §
Remark. A succinct way of expressing the property (14) is to say that

the set function (13) is s-additive.

THEOREM 5 (Chebyshev’s inequality). If fis nonnegative and integrable
on A, then

w{xix €A, f(x) > ¢} < ifAf(x) du.




Proof. If
A ={x:xeAT(X) > c),
then
[ferdu= [ fG)do+ [\ p frdu s o1 du> cu(a)
(see Problem 4a). §

COROLLARY. If
Jfeordu =0,

thenf (x) = 0 amost everywhere.
Proof. By Chebyshev's inequality,

u{x:x &4, 1/()] = i} < nf /Gl du =0

foraln=1,2,... . Therefore

p{x:x e 4, f(x) # 0} < glpn{x:xeA, Lf()] = 1} =0. B

n
Teorem 6. |f is integrableon a set A, then, given any = > 0, there
isa 6> 0 such that

UEf(x)du) <e
for every measurableset E < A ¢ measure less than 6.

Proof. The proof isimmediate iff is bounded, since then

[ 1o au \ < [l e < sup 60 ()

(see Problem 4c). In the general case, let
A ={xxed,n<|[f(x))<nti}

N
BN = U A,,,_,
n=0
Then, by Theorem 4,

[Jreotds =5 [ £ do.
Let N be such that

3 [ = | ireorde <.
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and let

0<d < —0—.
@ < <yn ¥
Then u(E) < & implies

‘ [ du ] — [reondn = \seotdu+ [ 170l de
<+ DuE) + [ 1f @l de <+ 2=

Remark. The property figuringin Theorem 6 is expressed by saying that
the set function (13) is absolutely continuouswith respect to the measure .
Problem I. Prove that the Dirichlet function
1 if X isrational,
f&x) =

0 if x isirrational

fails to have a Riemann integral over any interval [a, b]. Prove that the
Lebesgueintegral off over any measurable set A existsand equals zero.

Problem 2. Find the Lebesgue integral of the function

1 ifx:EisraIionaI,

Jfx) =14 q
1 if X isirrational
over theinterval [a, b].

Problem 3. Prove that
a) Iff isintegrable on a set Z of measure zero, then

JZ f(x)dy = 0;
b) Iff isintegrable on A, then
[ fedn=[ s dn
for every subset A' © A such that u(4 — A) =0.
Comment. We can regard a) as a limiting case of Theorem 6.

Problem 4. Prove that
a) Iff is nonnegative and integrable on A, then

J S0 du. > 0;
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b) Iff and g areintegrableon A andf (X) < g(x) amost everywhere, then

| fedu < [ o) dos

c) Iff isintegrable on A and m < T (x) < M amost everywhere, then

mu(4) < | f(x) dy. < Mu(4)

Problem 5. Prove that the existence of either of the integrals

J S@de, | 17G] du
implies the existence of the other.
Problem 6. Let
A=U4,

be a finite or countable union of pairwise disjoint sets A,, and suppose f
isintegrable on each A, and satisfies the condition

3], @l de < o (19)

Prove thatf isintegrable on A.
Hint. Iff is simple, with vauesy,, ys,..., let the sets B, and B,; be
the same as in the proof of Theorem 4. Then

J 7ol du = [ Iy w(BLo.
The absolute convergence of (19) implies the convergence of

2 2l (B = 2 [yl 2 w(Bu) = % il (B,

n k& k

and hence the integrability off on A. In the general case, let g be a simple
function approximating f, and show that (19) implies the convergence

RO
so that g, and hence f, is integrable on A.

Comment. Thisis essentialy the converse of Theorem 4.

Problem 7. Let i be a s-additive measure defined on a Borel algebra &,
of subsets of a given set X, and letf be nonnegative and integrable on X
(with respect to y). Prove that the set function

F(4) = [ f0x) dy
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is itself a o-additive measure on #,, with the property that F(4) =0
whenever u(4) = 0.

Problem 8. Supposef isintegrable on sets A,, A,, ..., A,, ... such that
Ay 2 4,2 ---DAnD...,
and let
A= 4,
Does i
or:
converge to
9
L F(x) d.?

30. Further Properties of the Lebesgue Integral

30.1. Passage to the limit in Eebesgue integrals. The problem of taking
limits behind the integral sign, or equivalently of integrating a convergent
series term by term, is often encountered in analysis. I n the classical theory
of integration, it is proved that a sufficient condition for taking such a limit
is that the series (or sequence) in question be uniformly convergent. We
now examine the corresponding theorems for Lebesgue integrals, which
constitute a rather far-reaching generalization of their classical counterparts.

THeoREM 1 (Lebesgue’s bounded convergence theorem). Let {f,} be a
sequence d functions converging to a limitf on A, and suppose

/a0 € o(x)  (xed,n=1,2,..)),
where ¢ isintegrable on A. Thenf is integrable on A and

tim [ £,00du = [, ) .

Proof. Clearly | f(x)| < ¢(x), and hencef isintegrable, by Theorem 3,
p. 297. Let
A = {xk — 1< o(x) <Kk),

B, =U 4, ={x:¢(x) > m}.
k=m
By Theorem 4, p. 298,
[prde =3[ o0 de, (n
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wheretheserieson the right isabsolutely convergent. By the sametoken,

[ 5000 do -3 [ et du.

Given any £ > 0, there is an integer m such that

€
mecp(x) dp. < 5

since the series (1) converges. Moreover, ¢(x) <m on A— B By

Egorov's theorem (Theorem 12, p. 290), A — B,, can be represented in
theform

A—B,=CuUD,
where {f,,} converges uniformly tof on C and
WD) < =

Sm
Let N be such that

| | fa(x) — f(x)] < L &-C)
onCif n>= N. Then

[ —rodu= [ fiedu— [ fe)du+ [ f.0du
— [ o du + [ 14,0 = 0l dp,

and hence
1 [ £ =] fo du ] — ' [ 150 = 01 du»l
< [ 1 de + [ 1l do+ [ 1/aG1 e
+ [elde + [ 1f.0 = (01 o

£ € e € A
= = —— —_ ——u(C) =c¢,
<SSt T o T MO =
which implies (1), sincez = 0 isarbitrary. [

CoroLLARY. If|f(x)| < M andf, —f, then
lim fA Fulx) du = L £(x) du.

Proof. Choose ¢(x) = M, noting that every constant is integrable
onA. §
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Remark. The values taken by a function on a set of measure zero have
no effect on itsintegral. Hencein Theorem 1 we need only assume that {7}
converges tof almost everywhere and that the inequality |f,(x}| < @(x)
holds almost everywhere.

THEOREM 2 (Lewi). Suppose

A < folx) <o < fulx) <L
on aset A, where thefunctions f,, are all integrableand
fA fo@du<M  (n=1,2,..) 2
for some constant M. Then the limit
f (%) =lim f(x)

n~m

exists (and is finite) Amost everywhere on 4.5 Moreover, T is integrable
and

tim [ £, d =, f3) .

Proof. It can be assumed that fi(x) > 0, since otherwise we need
only replace the f, by f,, — fi. Let

Q= {x:x €4, f,(x)— o}

a=nuay,

Then clearly

where
QY = {x:xe A fo(x) > 1}.

It followsfrom (2) and Chebyshev's inequality (Theorem 5, p. 299) that

w@) < 2.
r

Moreover
u(U Q‘J’) <M

n r

since
Q;T)C Qér)c PP ol Q;")c s

But

o<y

n

5 The function f can be defined in an arbitrary way on the set E where the limit (2)
fails to exist, for example, by settingf (x) = 0 on E.
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for any r, and hence

w(@) <Y,
r

Sincer can be arbitrarily large, this implies
w(Q) =0,

thereby showing that the sequence {f,,(x)} has a finite limit f (x) for
amost al x e A.
Now let
A={xr—1<f(x)<r),

and let ¢ be the simple function such that

p(x) =rif xe 4, (r=1,2,...).
Moreover, let

B, =UA.
r=1
Since the functions f,, and f are bounded on B, and since

o(x) < f(x)+ 1,
we have

[pee du < [ 76 du + ()
=lim | f,(x) du + w(4) < M + u(4),

n—>o0

where we use the corollary to Theorem 1. But

fgs@(X) du =3 ru(4,),

and hence ~
Sruld) < M+ u(4)
forals=1,2,.... Therefore
Zru(d) < o,

i.e., @ isintegrable on A, with integral
[ o0 du = 3 ru(a,).
r=1

Sincef,(x) < o(x), the validity of (3) is now an immediate consequence
of Lebesgue’s bounded convergence theorem (Theorem 1). g
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CoROLLARY. If ¢,(x) > 0 and
X) du < o0,
| 3 [t de
then the series
z CPL.(X)
k=1

converges almost everywhere on A and

é f | o(x) du. = fA (écpk(x)) dy.

Proof. Apply Theorem 2 to the functions

12 = 3 ()

THEOREM 3 (Fatou). Let {f,} be a sequence of nonnegative functions
integrable on a set A, such that

JAfn(x)dpL <M (n=1,2,..).

Suppose {f,,} converges almost everywhere on A to a functionf. Then f is
integrable on A and

L F(x) du < M.
Proof. Let
Pu(%) = ,'an Su(x)-
Then ¢, is measurable, since
{x:0,(x) < c} :kg {x:f(x) <c}.
Moreover
0 < 9,(%) < fu(),

and hence ¢,, isintegrable, by Theorem 3, p. 297, with

L ¢, (x) du < Lfn(x) du< M (n=1,2,,.).
Clearly
(%) < Po(X) < L < () < v
and
lim ¢,(x) =F (x)
almost everywhere. Applying Theorem 2 to the sequence {¢,}, we find
that f is integrable and

[ 760 du=lim [ o,(x) du = p.
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30.2. The Lebesgueintegral over a set of infinite measure. So far all our
measures have been finite (except for Remark 3, p. 267), and henceeverything
said about the Lebesgueintegral and its propertieshas been tacitly understood
to apply only to the case of functions defined on sets of finite measure.
However, oneoften dealswith functionsdefined on aset X of infinite measure,
for example, the real line equipped with ordinary Lebesgue measure. We
will confine ourselves to the case of greatest practical interest, where X can
be represented as a union

X=UX, wx)<ow 3)

of countably many sets X,,, each of finite measure with respect to some
o-additive measure p. defined on a o-ring of subsets of X (the sets of finite
measure). Such a measure is called o-finite. For example, Lebesgue measure
on the line, in the plane, or more generaly in n-space is o-finite. For
simplicity, and without loss of generality (why?), we will assume that the
sequence {X,} isincreasing, i.e., that

chch...anc...‘ (4)

A sequence{X,} satisfying the conditions (3) and (4) will be called exhaustive.
For example, thesequence{E,} in Remark 3, p. 267 isan exhaustive sequence
(with respect to ordinary Lebesgue measure), whose union is the whole
plane.

Now letf be a measurable function on X.¢ Thenf is said to be integrable

(or summable) on X if it is integrable on every measurable subset A < X
and if the limit

lim [ f(x)du 5)

T—r O

exists (and isfinite) for every exhaustive sequence {X,,}. Thelimit (5)isthen
called the (Lebesgue) integral off over the set X, denoted by

|, 760 du.

Remark 1. The limit (5) is independent of the choice of the exhaustive
sequence {X,,}. In fact, suppose

lim Jan(x) dy # lim JX f(x) du,

*
n

A real function y = f(x) is now said to be measurable if the set f-%(4) N X, is
measurable for every X, and every Borel set A (this being the obvious slight generalization
of Definition 1, p. 284).
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where {X*} is another exhaustive sequence. Define a new sequence {Q.}
such that

Q =X,
Q,, isany set of {X*} containing Q,;,_1,
Quprq iSany set of {X,) containing Qg
(why do such sets exist?). Then {Q,} is exhaustive, but
lim fQ f(x) dy.

falls to exist, contrary to hypothesis.

Remark 2. The integral of a simple function is defined in the same way
as on p. 294. It is clear that a necessary (but not sufficient) condition for
integrability of a simplefunctionf is that f take every nonzero value on a set
of finite measure.

30.3. TheLebesgueintegral vs. the Riemannintegral. Finally weexamine
the relation between the Lebesgue integral and the Riemann integral,
restricting ourselves to the case of ordinary Lebesgue measure on the line:

THeoREM 4. [If the Riemann integral
1= [’ f(x) dx
exists, thenf is Lebesgue integrable on [a, b] and
=], 6
S SO du =1 (6)

Proof. Introducing the points of subdivision

xk=a+§(b—a) (k=1,...,2",
we partition [a, b] into 2" subintervals. Let
2”
An = b aZMnk
k=1
— 2"
3, = b - az Mg
2 k=1

be the corresponding Darboux sums, where M., istheleast upper bound
and m,,,, the greatest lower bound on f on the subinterval x,_; < X < x;.
By the definition of the Riemann integral,

I =limA, =lim 8.

n—r w0 nr G
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Consider the functions
Su(X) = My, if g < X <3y,
Lo =m0 X <X <X,

Ful®) = £,8) = £ 0.

Then clearly

f[a,b] Fulx) dp = B, f[a,b] f"(x) dp = 3,. N
Moreover, i ) )

fl‘l(x) >f2()€) =0 >f”(x) > e >f(X),

AW <@ < <f0) < < £
and hence

lim Fu(%) = F(x) > f(x),
lim _fn(x) =_f(x) < f(x).

n—* o0

Using (7)and Theorem 2, we find that

[, 76 du= lim [, fa00du=limA =1

=limd. =lim [ fide= [, 1004 (@)

n=m

(see also Problem 2). Therefore

f[a’b] [F(x) — f()] dp = f[a’b] {f(x) — f)}du =0,
and hence

fx) —f(x) =0
almost everywhere, by the corollary on p. 300. In other words,
Fo) =f0) =f® ©)
almost everywhere. Comparing (8) and (9), we get (6). B
Problem 1. Prove that

tim [ £,6980) dit = [ £5) du(o)

if the sequence {f,} satisfies the conditions of Theorem 1 (as stated more
generally in the remark on p. 305) and if g is essentially bounded on A in
the sense that there is a constant M > 0 such that [g(x)| < M amost every-
where on A.
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Comment. If g is essentially bounded on A, then the quantity

ess sup 8] = inf { sup 59,
xed Z< 4 \vcd-Z
w(Z)=0
called the essential supremumof g on A, isfinite.

Problem?2. Prove that Theorem 2 remains valid if
fi) = fo(x) = 00> () > L
and if (2)isreplaced by the condition

| f@desM =12,

Problem 3. Consider the system & of al subsets of the real line con-
taining only finitely many points, and let the measure u(4) of aset A e &%
be defined as the number of pointsin A. Prove that

a) & isaring without a unit;
b) wisnot o-finite.

Problem4. Why do we talk about a o-ring rather than a o-algebra on
p. 308?

Problem 5. Prove that if a function f vanishes outside a set of finite
measure, then its Lebesgue integral as defined on p. 308 coincides with its
Lebesgue integral as previously defined.

Problem6. Show that the analogue of the definition on p. 296 cannot be
used to define the Lebesgue integral in the case where A is of infinite measure.

Hint. Give an example of a uniformly convergent sequence {f,} of
integrable simple functions such that

tim [/, du
failsto exist.

Problem 7. Which of the theorems of Sec. 2 continue to hold for
integrals over sets of infinite measure?

Hint. The corollary on p. 298 fails if A isof infinite measure.

Problem 8. Verify that Theorems 1-3 of Sec. 30.1 continue to hold for
integrals over sets of infinite measure.

Problem9. Given a nonnegative function f, suppose the Riemann integral

f;s f(x) dx
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exists for every e > 0 and approaches a finite limit as = — 0+, so that the
improper Riemann integral

[ 1y dx =tim [ px) dx (10)
@ g0 v ate
exists. Prove thatf is Lebesgue integrable on [a, 4] and

[, 70 du = [ 10 .

Comment. On the other hand, iff is of variable sign and if

lim |° 1f(x)| dx = oo,
g0 vate

then the Lebesgue integral off over [a, b]failsto exist, even if the improper
Riemann integral (10) exists. In fact, by Problem 5, p. 302, summability
off would imply that of | f].

Problem 10. Prove that the integral
f‘ 1 sin 1 dx
0 x x
exists as an improper Riemann integral, but not as a L ebesgue integral.

Problem 11. Supposef is Riemann integrable over an infinite interval
(such an integral can exist only in the improper sense). Prove that f is
Lebesgue integrable over the same interval if and only if the improper
integral converges absolutely.

Comment. For example, the function

fx)=—
X
is not Lebesgue integrable over (— %o, <o), since
On the other hand,f has an improper Riemann integral equal to

foo sin x
- — T
-0 X —_

sin x
——|dx = oo.

X

9

DIFFERENTIATION

Letf be a summable function defined on a space X, equipped with a
o-additive measure w. Then the (Lebesgue) integral

| 16 dus &)

exists for every measurable E < X, thereby defining a set function on the
system &, of al measurable subsets of X. If X is the real line, equipped
with ordinary Lebesgue measure ., and if E = [a, b]isa closed interval, we
write (1) smply as

JLre0 ax,

or equivaently as
[ as @

in terms of the new dummy variable of integration t (here we anticipate
subsequent notational convenience). Then (2) is clearly a function of the
lower limit of integration a and the upper limit of integration b. Suppose we
fix a, but leave b variable, indicating this by replacing b by the symbol x.
Then (2) reduces to the ""indefinite Lebesgue integral**

f:f(t) dt,

with its upper limit of integration variable.
Now letf be continuous, and let Fhave a continuous derivative. Then
it will be recalled from elementary calculus that the connection between

313
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the operations of differentiation and integration is expressed by the familiar
formulas

o d (s
~rrwar=reo, 3)

fn "F'(1) dt = F(x) — F(a). 4

Thisimmediately suggests two questions:

1) Does (3) continue to hold for an arbitrary summable function f?
2) What is the largest class of functions for which (4) holds?

These questions will be answered in Secs. 31-33. The study of the general
set function (1) will be resumed in Sec. 34.

31. Differentiation of the Indefinite Lebesgue Integral

31.1. Basic properties of monotonic functions. We begin our study of the
indefinite Lebesgue integral

F(x) = |7 f(0) dt (1)

asafunction of its upper limit by making thefollowing obvious but important
observation. If f is nonnegative, then (1) is a nondecreasing function.
Moreover, since every summable function f (t)is the difference

J@O) =f(0) — f@)

of two nonnegative summable functions (which?), the integral (1) is
the difference between two nondecreasing functions. Hence, the study of the
Lebesgue integral as a function of its upper limit is closely related to the
study of monotonic functions. Monotonic functions are interesting in their
own right, and have a number of simple and important properties which
we now discuss. Here al functions will be regarded as defined on some
fixedinterval [a,b] unlessthe contrary is explicitly stated.

DeriniTIOoN 1, A function f is said to be mondecreasing | X, < x,
implies f (x;) < f(x;) and nonincreasing if x; < x, impliesf(x,) > f(x,).
By a monotenic function is meant a function which is either nondecreasing
OF nonincreasing.

DerINITION 2. Given any function f, the limit

lim f(xy + ¢)
g0

e>0
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(provided it exists) is called the right-hand limit off at the point x,,
denoted by

f (xo + 0).
Smilarly, the limit

limf(x, — g

e=+0

>0

is called the left-hand limit off at x,, denoted by
f(xo — 0.
f(xo F0) =f(xo — 0),

then Clearly f is either continuous at x, or has a removable discontinuity
at x,.

Remark. If

DerINITION 3. A function f is said to be continuous from the right at

Xo if
f (xo) = f(xo + 0),

and continuous fromthe left at x, if
f(xo) = f(xo — 0).

DerINITION 4. By a discontinuity point of ¢hke first kind of a function f
ismeant apoint x, at which thelimitsf (x, + 0)andf(x, — O)exist but are
unequal. The difference

f o+ 0) —f(xo — 0)

is then called the jump of f at x,.

Example. Given no more than countably many points

x]_, xg, may X,,
in theinterval [a,b],let
By hgyooa g by
be corresponding positive numbers such that
> h, < co.
Then the function i
J&x) = Z< s (2

where the sum is over al » such that x, < x, is obviously nondecreasing.
A monotonic function of this particularly simple type is caled a jump
function. A jump function such that

xl<X2<"'<x”<"',
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is called a stepfunction. For an example of a jump function which is not
a step function, see Problem 1.

We now establish the basic properties of monotonic functions. To be

explicit, we will talk about nondecreasing functions, but clearly everything
carries over automatically to the case of nonincreasing functions.

THEOREM 1. Every nondecreasingfunction f on [a, b] is measurable
and bounded, and hence summable.

Proof. Sincef (x) <T (b) for al x € [a, b], T is obviousy bounded.
Consider the set
E, ={xf(x) <d.
If E, isempty, then E, is (trivially) measurable. If E, is nonempty, let
d be the least upper bound of al x € E,. Then E, is either the closed
interval [c, d], if de E,, or the half-open interval [a, d) if d¢ E,. In
either case, E, is measurable. ]

THEOREM 2. Every discontinuity point & a nondecreasingfunction is
d thefirst kind.

Proof. Let x be any point of [a b], and let {x,} be any sequence
such that X, < x,, x,, — x,. Then { f(x,)} is a nondecreasing sequence
bounded from above, e.g., by the number f(x,). Therefore lim f(x,)

exists for any such sequence, i.e., f(x, — 0) exists. The exi?é?nce of
f(x, -+ 0) is proved in the same way. B

Obviously, a nondecreasing function need not be continuous. However,
we have

THEOREM 3. Anondecreasingfunction can have no more than countably
many points d discontinuity.

Proof. The sum of the jumps off on theinterval [a, b] cannot exceed
f () —T (a). LetJ, bethe set of all jumps greater than 1/x, and let I be
the set of all jumps regardless of size. Then obviously

J=UJm

n=1
where each J, isafiniteset. Hence Jhas no more than countably many
cements. §

THEOREM 4. The jumpfunction (2) is continuousrom the left. More-
over, all thediscontinuitypointsdf ared the first kind, with thejumpat x,,
equa to h,

1 See the corollary on p. 298.
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Proof. Clearly,
fx=0)=lmf(x—¢)=Ilim 3 h.

e=+0 zy<—e

>0 >0
But if x, <X, then x, <x — ¢ for sufficiently small ¢ = 0. Therefore
lim ¥ h,=f(x),

£>0 g, <a—e

and hence

fx—0) =/
If x coincides with one of the points x,,, say with x,,, then

f(Geny F 0) = limaf(x,, + 5 = lim S h=2h,

e~0 x, z,.<a:n0
which implies
f(xn, +0) —f(x,, —0) =h,,. §

THEOREM 5. If f is continuous from the left and nondecreasing, then
f is the sum of a continuous nondecreasing function ¢ and a jump func-
tion 4.

Proof. If x, X,. ... are the discontinuity points off, with corre-
sponding jumps 4y, As, . . . , let
4 = It b

o(x) =F (x) — $(x).
Then

e(x") — o(x) = [f(x") —F ()] — (") — $(x))],

where the expression on the right is the difference between the total
increment off on the interval [x', x"] and the sum of its jumps on
[x', x"], i.e., p(x") — @(x") isthe measure of the set of values taken by
fat itscontinuity pointsin [x’, x"]. Thisquantity isclearly nonnegative,
and hence ¢ is nondecreasing. Moreover, given any point x € [a, b], we
have

o(x —0)=limf(x —¢) —limy(x —e) =f(x —0) — ¥ h,,
g0 g0 ap <k

£>0 >0
o(x + 0) = lim f(x + &) — lim Y(x +¢) = f(x + 0) — 3 h,,
: g0 g0 T2
>0 e>0

and hence
o(x +0) — g(x — 0) = f(x +0) — f(x — 0) — h =0,

where his the jump of ¢ at x. It followsthat ¢ is continuous at every
point xe[a b]. §
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31.2. Differentiation of a monotonic function. The key result of this
section (see Theorem 6 below) will be to show that a monotonic function f
dejned on an interval [a,b] has ajnite derivative almost everywhere on [a,b] .
Before proving this proposition, due to Lebesgue, we must first introduce
some further definitions and then establish three preliminary lemmas.

The derivative of afunction f at a point x, is defined in the familiar way
as the limit of the ratio

J&) =S (x)
X — X
as x - x,. Even if this limit fails to exist, the following four quantities
(which may take infinite values) always exist:

(3

1) The lower limit of (3) as x — x, from the left, denoted by »,;

2) The upper limit of (3) as x — x, from the left, denoted by A, ;2
3) Thelower limit of (3) as x — x, from the right, denoted by 25;
4) The upper limit of (3) as x — x, from the right, denoted by A .

These four quantities, with the geometric meaning shown in Figure 17, are
called the derived numbers of f at x,.2 It is clear that the inequalities

A <Ap Mp<Ap “)

always hold. If 2 and A exist and are equal, their common value is just
the left-hand derivative off at x,. Similarly, if 2z and A, exist and are
equal, their common value isjust the right-hand derivative off at x,. More-
over, f has a derivative at x, if and only if al four derived numbers ., A;,

|

|

I
o
|

%o

FiGure 17

2 Upper and lower limits are defined on p. 111.
* Todistinguish thesequantitiesfurther. wecan call A theleft-hand lower derivednumber,
A, the right-hand upper derived number, and so on.
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Ar and Ax exist and are equal at x,. Hence the italicized assertion at the
beginning of this section can be restated asfollows: For a monotonic function
defined on an interval [a,b] ,the formula

—'w<7\'L:A‘L:7\R:AR<+CO
holds almost everywhere on [a,b].

DerifiTioN 5. Let f be a continuous function dejned on an interval
[a,b] . Then a point x, € [a,b] is said to be invisible from the right (with
respect tof) f thereisa point £ suchthat x, < & < bandf (xy) <f (&),
and invisible from the left if there is a point 5such that a < £ < x, and

S(xo) < f(8).

Example. In Figure 18, the points belonging to the intervals [a,, ;) and
(a,, b) areinvisible from the right (interpret the word "invisible').

LemmAa 1 (F. Riéesz). The set of all points invisible from the right with
respect to a function f continuous on [a,b] is the union of no more than
countably many pairwise digoint open intervals (a,, b,),* such that

flag <fb)  (k=12,..). ®)

Proof. If x, is invisible from the right with respect to f, then the
same is true of any point sufficiently close to x,, by the continuity off.
Hence the set of al pointsinvisible from the right is an open set G. It
followsfrom Theorem 6, p. 51 that Gis the union of afinite or countable
system of pairwise digoint open intervals. Let (a, b)) be one of these

intervals, and suppose
f (@) >1 (5. ()

FrGure 18

* However, if a, = a (say), then in some cases (a,, b) should be replaced by the half-
open interval [a,, b,), asin Figure 18. Thisis permissible, since [a, 6,) ISopen relative to
la, b].
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Then there is an (interior) point x, € (a,, &,) such that f (xg) > f (b;).
Of the points X € (a,, ;) such that f(x)=f (x,), let x* be the one with
largest abscissa (x* may coincide with x,). Since x* belongsto (ay, 4;)
and hence is invisiblefrom the right, there is a point £ = x* such that
f (&) = f(x*). Clearly & cannot belong to (a,, b,), Since x* is the point
x with largest abscissafor whichf (x) = f (x,), while f (b,) <f(xy), s0
that £ € (a,, 5,) would imply the existence of a point x > x* such that
f(X)=F (x¢). On the other hand, the inequality £ > b, is aso im-
possible, sinceit would implyf (&,) <f (x,) <f (£) despite the fact that
b, is not invisible from the right. Thus (6) leads to a contradiction
(obviously & 5= b,). It followsthat f (a;) < f(b,). B

Lemma 1'. The set of all pointsinvisible from the left with respect to
a function f continuous on [a,b] is the union of no more than countably
many pairwise digoint open intervals (a,, &), such that

fla) =1y (k=12,..)).
Proof. Virtually the same as that of Lemma 1. ]

LemmA 2. Let f be a continuous nondecreasing function on [a,b] ,with
Az, and Ay as two of its derived numbers. Given any numbersc, C and p
such that

l

Ole

0<e<C< oo, ¢

let E, be the set
E, = (x:\ < ¢, Ap> Ch
Then
pix:x €E N (0, B)} < p(B — )
for every openinterval (a,B) = [a,b].
Proof. Let x, be a point of (a,B) for which 2, < ¢. Then thereisa
point & < x such that
f& —fe <,

£ — x

T (&) — ¢ > f(xp) — cx,.

Therefore x, is invisible from the left with respect to the function
f(x) — cx. Hence, by Lemma 1', the set of all such x, is the union of
no more than countably many pairwise digoint openintervas(a,, £,) <
(a, B), where

i.e., such that

f (o) — coaz =T (Br) — cBys
fBr) — [ < c(Br — o) @

or equivalently
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Let G, be the set of points in (a,, 8,) for which Az = C. Then, by
virtually the same argument together with Lemma1, G, isthe union of
no more than countably many pairwise disjoint open intervals (e, Bx.)s
where

B, — o, < —15 [fBe) — flo)] ®)

(why?). Clearly E, N (a,8) iscovered by the system of intervals (e, Bx,)-
Moreover, it followsfrom (7)and (8) that

3 (B — o) < % 3 [f(Be) = fa)]

< %z Lf®B) —fo)] < € F By — o) < o8 — ). B

We are now in a position to prove

THEOREM 6 (Lebesgue). A monotonic function f defined on an interval
[a,b] has « finite derivative almost everywhere on [a,b].

Proof. There is no loss of generality in assuming that f is non-
decreasing, sinceiff is nonincreasing, then obviously —f is nondecreas-
ing. But if —f has a derivative almost everywhere, then so does f. We
also assume that f is continuous, dropping this restriction at the end of
the proof. It will be enough to show that the two inequalities

Ap < 4w ©)
and
A > Ag (10)

hold amost everywhere on [a,b],for any continuous nondecreasing
function. Infact, settingf *(x) = —f(—x), we seethatf * is continuous
and nondecreasing, likef itself. Moreover, it is easily verified that

A=A AR =Ap

where A} and A% are the indicated derived numbers off *. Therefore,
applying (10) to f *, we get

AE s AR
or

Ip> AL, 1D

Combining the inequalities (10) and (11),we obtain

Ap <M < Ap < < Ap,
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after using (4). Thusif (9) and (10) hold almost everywhere, we have®
—w <A =Ap=hg=Ap <+

almost everywhere, and the theorem is proved.

To prove that A, < 400 amost everywhere, we argue as follows:
If A, = T oo at some point x,, then, given any constant C > 0, thereis
a point £ > x, such that

f(g) _ (xo)

£ — X
f(&) — f(x0) > C(E — x),

f(E) — C& > f(xy) — Cx,.

Thusx, isinvisible from the right with respect to thefunctmnf_i_x)
Hence, by Lemma 1, the set of all points x, at which A, |sthe
union of no more than countably many open intervals (a,, &,), whose
end points satisfy the inequalities

f(ay) — Cay, < f (b)) — Cb,

1e.,

or equivalently

or
f B — f(a) = Clb, — ap).
Dividing by C and summing over al the intervals (a,, b,), we get

But Ccan be madearbitrarily large. Hence the set of pointswhere A, =
+ oo can be covered by a collection of intervals the sum of whose lengths
isarbitrarily small. It follows that this set is of measure zero, i.e., that
A, < -0 amost everywhere.

To prove that A, > A, amost everywhere, let the numbers c, C,
e and the set E, be the same asin Lemma 2. It will then follow that
Az > A, amost everywhere if we succeed in showing that w(E,) =0,
since the set of points where »; < Ay can clearly be represented asthe
union of no more than countably many sets of the form E, (why?).
Let w(E,) = t. Then, given any ¢ > 0, there is an open set G, equal
to the union of no more than countably many open intervals (a, 4
such that E, < G and

Sy —ay)<t+e
-

& Note that A, cannot equal — <, since the difference quotient (3) is inherently non-
negativeiff is nondecreasing.
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(this follows from the very definition of Lebesgue measure on theline).
If
Iy = H[Ep N (ay, by,

t=1X ¢
But 7, < pfb, — a), by Lemma2. Hence
o 2 (by — ax) < p(t + ¢),
k

then

which implies t < p#, since ¢ > 0 is arbitrary. This in turn implies
t=0, since 0 <p <1 Therefore Ay > A, amost everywhere, as
asserted.

Finally, to drop the requirement that f be continuous, we need only
generalizeLemmasland 1' intheway indicated in Problem 6, noting that

the proof continuesto go through (check details).® §

Remark. Despite its apparent complexity, the proof of Theorem 6 is
based on simple intuitive ideas. For example, the finiteness of Az (and Ay)
almost everywhere is easily made plausible. In fact, let /" be continuous and
nondecreasing on [a,b] . Then f maps [a,b] into the interval [ f(e).f (b)] at
the same time subjecting a small interval [x, £] at x to a "magnification™
approximately equal to
JE) f )

£
But the interval [ fla), f(b)]isfinite, and hence y(x) cannot be infinite on a
set of positive measure. As for the part of the proof based on Lemma 2,
it merely saysthat if theintersection of asubset A < [a,b]with every interval
(a, B) has measure no greater than ¢(f — a) for some fixed number p < 1,
then A cannot have positive measure.

v(x) =

31.3. Differentiation of anintegralwith respecttoitsupper limit. Returning
to the problem of differentiating the indefinite Lebesgue integral, we have

THeEOREM 7. Let f be anyfuti an summable on [a,b]. Then
d (=«
— 1) dt 12
= [ (12)

exists and is finitefa almost all x.
Proof . As noted at the beginning of Sec. 31.1
f @) =£f0) -1,

$ For an alternative proof, see Problems 7-9.
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where f, and f_ are nonnegative summable functions, so that

Fe) = [*fyde= [ ar = [*£.(0dt = Fi() = Fulx)

is the difference between two nondecreasing functions £, and F,. But F;
and F, have finite derivatives amost everywhere, by Theorem 6, and
henceso doesF. B

We now evaluatethe derivative (12), thereby giving an affirmativeanswer

to the first of the two questions posed on p. 314:
THEOREM 8. Letf be any function summable on [a,b]. Then

d [«
= [rwai=re
almost everywhere.
Proof. Let

F(x) = fj‘f(t) d1.
Then it will be enough to show that
f(x) > F'(x) (13)

amost everywhere for any summable function. In fact, changing f (x)
to —f(x)in (13), we get
—f(x) > —F'(x)
f(x) < F'(x). (14)
But (13) and (14) together imply the desired result

and hence

f(x) = F(x) = (%(f;f (1) dt

(almost everywhere).
To prove (13), we observe that if

f(x) < F'(x),
then there are rational humbers a and $ such that
f(X)<a < B < F(x). (15)

Let E,, be the set of all x satisfying (15). Then, as we now show,
#(E,z) = 0. Since the number of sets £, is countable, this will imply

plx:f(x) < F'(x)} =0
and hence that (13) holds almost everywhere.
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To provethat p.(E,,) = 0, wefirst note that, givenany « > 0, thereis
a d > 0 such that p(E) < & implies

UEf(t)dt‘Q

(the existence of such a number 6 follows from the absolute continuity
of the Lebesgueintegral, proved in Theorem 6, p. 300).” Let G < [a,b]
be an open set, made up of no more than countably many pairwise
digoint open intervals (a,, &;), such that

Ep<=G, w6 <wEy+3,

and let x, be any point in G, = E,; N (a,, ;). Then
FE) — F(xo) >

& — X
for any point £ > x, sufficiently closeto x,. Writing (16)in the form
F(E) — BE > F(xq) — Bxo,

we see that the point x, is invisible from the right with respect to the
continuous function F(x) — Bx. It follows from Lemma 1 that G, is
the union of no more than countably many pairwise disjoint open
intervals (ay_, by, ), where

F (ak,,) — Bak,, < F (bk,,) + ﬁbkn’

e (16)

1.€.,
F(by,) — Flay,) > B(by, — a,),
or equivalently
[Por® di > pbs, — ai,). ()
If i
S = U (a,, by,
then clearly “

Ep<cSc<gq, w(S) < w(E,p) + 8.
Summing (17) over al theintervals (a,, b;, ), we get

[rwde=3 [Fnrde > 8 3 (5, — as) = BcS).

7 In particular, F(x) is continuous. In fact.

|F(') — F()| = ’ f:'f(:) dt( <e
if |x" — x| < 8.
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On the other hand,

fsf(t) dt = fEa;; f(t) dt + fS_Ean(t) dt
< ap(Eug) T e < ap(s) T 1oy 5 +e. (18)
Comparing (17) and (18), we get

() + ol 8 + & > Bu(S)
or
u(s) < E2LE
B—a
Therefore E,z iscontained in an open set of arbitrarily small measure (it
can be assumed that |«| 3 < e). It followsthat p(E,z) =0. §

Problem |. Let x;, X5, ...,X,, ... be the set of al rational points in
[a 5], enumerated in any way, and let 4, = 1/2". Prove that the jump
function

S =2 h,

Xn<
is discontinuous at every rational point and continuous at every irrational
point.
Problem 2. Suppose we define a jump function by the formula

fxy= > h, (19)

T
rather than by the formula (2). Prove thatf is continuous from the right,
rather than from the left asin Theorem 4.

Problem 3. Find the derived numbers of the function
x sn 1 if x>0,
f(x) = X

0 if x<0
at the point x = 0.

Problem 4. Find the points invisible from the left in Figure 18, p. 319.
Problem 5. In Lemma 1, show thatf (a) =f (5,) if &, == a.

Problem 6. Prove that the requirement thatf be continuouson [a, b] can
be dropped in Lemma 1, provided that

1) The discontinuity points off are all of thefirst kind,;
2) A point x, € [a, b] is said to be invisiblefrom the right (with respect
tof) if thereisa point £ such that x, < £ < band

max {f(xo — 0), f(xo), [ (%o T O} <f(£);
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3) Theinequality (5) is replaced by
f (@t 0) < max { /b, — 0.1 (6, £ (5 T 0)}.

State and prove the corresponding generalization of Lemma 1.

Problem 7. Let ©
2. @a(x) =F (%) (20)
be an everywhereconvergent series, whosegeneral term ¢,,(x) isnondecreasing

(alternatively, nonincreasing) on [a,b]. Provethat (20) can bedifferentiated
term by term almost everywhere, i.e., that

> 1) —F ')

almost everywhere.

Problem 8. Prove that every jump function has a zero derivative almost
everywhere.
Hint. Use Problem 7.

Problem 9. Prove that the assumption that f be continuous from the left
in Theorem 5 can be dropped if we define a jump function as a sum of a
"left jump function™ like (2) and a "right jump function™ like (19). Use
thisfact and Problem 8 to complete the proof of Theorem 6 without recourse
to Problem 6.

Hint. Use Problem 8 and Theorem 5.

Problem 16. Following van der Waerden, let

x if 0<x< 4,
Po(x) = .
1 —x if F<x<l,

and continue ¢, by periodicity, with period 1, over the whole x-axis. Then
let

1
4n

f() =3 0.

cP'rlf('x) - <P0(4nx) (n = 17 29 .. '),

Prove that
a) The functionf is continuous everywhere;
b) The derivative off failsto exist at every point x, € (— o, c0).

Hint. Consider the increments
1
£t ) = s

1
Yo

=+




|
i
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32. Functions of Bounded Variation

The problem of differentiating a Lebesgue integral with respect to its
upper limit has led us to consider functions that can be represented as
differences between two monotonic functions. We now give a different
description of such functions (independent of the notion of monotonicity),
afterwards studying some of their properties.

DerINITION 1. Afunction T defined on an interval [a, b] issaid to be
of' bounded variationf thereisa constant C > 0 such that

21/ = o)l < € (1)
for every partition -
a=xo<x1<"'<x,,=b (2)
d [a b] by pointsd subdivision xg, X1, .+ .+ , Xy

Example. Every monotonic function is of bounded variation, since the
left-hand side of (1) equals| f(b) —T (a)| regardlessof the choice of partition.

DerINITION 2. Letf be afunction ¢ bounded variation. Then by the
total varigtion of on [a, b], denoted by V2(f), is meant the quantity

Vo (f) = sup 3 1£ ) — FGanl, 3)

k=1
where the least upper bound is taken over all (finite) partitions (2) ¢ the
interval [a, b].

Remark 1. A functionf defined on the whole real line (— 0o, o) is said
to be of bounded variation if there is a constant C > 0 such that

vaf<c
for every pair of real numbers a and b (a < b). The quantity
lim V2(f)

a=-r—o
b

is then called the total variation off on (— o, ), denoted by ¥ =, (f).

Remark 2. It is an immediate consequence of (3) that
Va(ef) = lal Vo(f) €Y

for any constant a.
Theorem 1. |ff and g arefunctions d bounded variation on [a, b],
then so isf + g and
vast e < vt vie. )
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Proof. For any partition of theinterval [a, b], we have

Z L) + g(xe) —F (ex—y) — g(x,20)]
< z () —F (0l + Z lg(x;) — gle_pl.
Taking the |east upper bound of both sides over all partitions of
[a, b], and noting that
sup{x + y:x€d,yeB} < sup{xixed}+sup{y:ye B},
we immediately get (5). §

It followsfrom (4) and (5) that any linear combination of functions of
bounded variation isitself afunction of bounded variation. In other words,
the set of all functions of bounded variation on a given interva is a linear
space (unlike the set of all monotonic functions).

Treorem 2. Ifa<b< ¢, then
Vo) = VUL + VO ©)

Proof. First we consider a partition of theinterval [a, ¢] such that
bis one of the points of subdivision, say x, = b. Then

3176 =[x

=316 —fGadl + 3 176 =Sl < VAN + VI (D)

=r+1

Now consider an arbitrary partition of [a, c]. It isclear that adding an
extra point of subdivision to this partition can never decrease the sum

PAVICARS (MRS
Therefore (7) holds for any subdivision of [a, c], and hence

VI < VI T V). (8)

On the other hand, given any « = 0, there are partitions of theintervals
[a b] and [b, ], respectively, such that

€

; 1) — Sl > Va(f) — 5

S = S5l > Vi) = .
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Combining all points of subdivision x], x;, we get a partition of the
interval [a,c],with points of subdivision x;, such that

21 ) = fOal = 2 /(3D — fxIDI+ 2 1fGD — f(x-)]
k 7 3
> VNt Vi) -
Since e > 0 is arbitrary, it follows that
Vi) = Vi) + Vi) )
Comparing (8) and (9), we get (6). &

CoRroLLARY. The function

u(x) = Vi(f) (10)

is nondecreasing.

Proof. An immediate consequence of (6), since the total variation of
any function of bounded variation on any interval is nonnegative. [

THEOREM 3. Let f be a function of bounded variation on [a,b] ,and let
v be the function (10). Then i f f is continuousfrom the deft at apoint x*,
VisV.

Proof. Givenany € = 0, usethefact that f is continuousfrom theleft
to choose a 3 > 0 such that

/(%) — f(x)] < -; (11)

whenever x* — x < 3. Then choose a partition

AQ=Xg << X3 <" +r<Xx,=x*
such that

Ve () — éllﬂxk) — fsl <. (12)

Hereit can be assumed that
x* — Xpey < 85

since otherwise we need only add an extra point of subdivision which can
never increase the left-hand side of (12). It follows from (11) and (12)
that

VE(f) —i ) — Frl <,
and hence )
V) — V() <e

o(x*) = v(x,y) <E

afortiori, i.e.,
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But then, since v is nondecreasing,

o(x*) —ov(x) <ce
for al x suchthat x,_, < x < x*. In other words, v is continuous from
the left at x*, §

Remark. Virtually the same argument shows that iff is continuousfrom
the right at x*, then so is v. Together with Theorem 3, this shows that if
f is continuous at x*, or on the whole interval [a,b] ,then sois .

THEOREM 4. | ff is of bounded variation on [a,b] ,then f can be rep-
resented as the difference between two nondecreasing functions on [a,b] .

Proof. Let
v(x) = Va(f),

g=v—/
Then g is nondecreasing. In fact, if x” < x”, then
g(x") — g(x) = [o(x") — v(x)] — [Ax") — f(x)]. (13)
") = £ @) < o) — o),

by the very definition of v, and hence the right-hand side of (13)is
nonnegative. Writing

and consider the function
But

f=v—g,
we get the desired representation off as the difference between two
nondecreasing functions. §

CoroLLARY 1. Everyfunctionof boundedvariationhasa finite derivative
almost everywhere.

Proof. Animmediate consequence of Theorem 6, p. 321.
COROLLARY 2. | ff is summable on [a,b] ,then the indefinite integral

D(x) = f ft) dt
is a function of bounded variation on [a,b] .

Proof. Recall the remarks at the beginning of Sec. 9.1. g
Problem1. Prove that V2(f) = 0 if and only if f(x) = const on [a,b] .
Problem?2. Prove that the function

xmsin—lf3 if 0<x <1,
Sx) = x
0 if x=0
is of bounded variation on [0,1]if « > £ but not if « < .
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Problem 3. Supposef has a bounded derivative on [a, b], so that f’(x)
existsand satisfiesan inequality | f'(x)| < C at every point x € [a, b]. Prove
thatf is of bounded variation and

V) < C(b — a).

Problem 4. Prove that iff and g are functions of bounded variation on
[a b], then so isfg and

Vifg) < Vi) sup [g()] -+ Vo(g) sup [f(x).

Problem 5. Letf be a function of bounded variation on [a, b] such that
f(x)=>c>0.

Prove that 1/f is also afunction of bounded variation and

W@<§mﬁ

Problem 6. Prove the converse of Theorem 4.
Problem 7. Prove that a curve
y=fx) (@<x<b
is rectifiable, i.e., has finite length, as defined in Problem 3, p. 114, if and
only iff is of bounded variation on [a, b).
Problem 8. Letf be afunction of bounded variation on [a, b]. Prove that

LAl =vaH)

has all the properties of a norm (cf. p. 138) if we impose the extra condition
f(@=0.

Comment. Thus the space V7, ,; of al functions of bounded variation
on [a b] equipped with this norm and vanishing at x = a is a normed
linear space (addition of functions and multiplication of functions by

numbers being defined in the usual way).

Problem 9. Prove that the space V7, ,, defined in the preceding comment
is complete.

Problem 10. Does there exist a continuous function which is not of
bounded variation on any interval ?

Hint. Recall Problem 10, p. 327 and Corollary 1 above.
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33. Reconstruction of a Function from Its Derivative

33.1. Statement of the problem. We now address ourselvesto the second
of the problems posed on p. 314, i.e., welook for the largest classof functions
Fsuch that

| “F'(1) dt = F(x) — F(a), (0
or equivalently

F(x) = Fa) + [*F'(0) ar. @

(As we know from calculus, these formulas hold if F is continuously differ-
entiable.) From the outset, we must restrict ourselves to functions ¥ which
are differentiable (i.e., have a finite derivative) almost everywhere, since
otherwise (2) would be meaningless. Every function of bounded variation
has this property (see Corollary 1, p. 331). Moreover, the right-hand side of
(2) is afunction of bounded variation (see Corollary 2, p. 331). It follows
that the largest class of functions satisfying (2) must be some subset of the
class of functions of bounded variation. Since every function of bounded
variation is the difference between two nondecreasing functions (see Theorem
4, p. 331), we begin by studying nondecreasingfunctionsfrom the standpoint
of formula (2).

THeEOREM 1. Let F be a nondecreasingfunction on [a, b]. Then the
derivative F” is summable on [a, b] and

[P ar < Fo) - Fa. 3)
Proof. Let

O, (1) = n[F(t + %) — F(t)] n=1,2..)

where, to make ®,,(z) meaningful for all t& [a, b], we get F(¢) = F(b)
for b <t < b+ 1, by definition.® Clearly

F(t + 1) —F@)
F'(f) =lim " = 1lim®, (1)

n=> o0 n=r o0

n

almost everywhereon [a, b]. Since Fissummableon [a, 4], by Theorem

8 Verify that this does not affect the validity of the proof.
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1, p. 316, so isevery ®,. Integrating @,,, we get

b v 1 - b+ (1/n) e
L ¢, (Hdt= nfa [F(t 4 ;) — F(t):‘ dt= "Umun) F(o)dt L F(t)dtjl
_ n[ [P Ry de— [ "’F(t)dt] < F(b) — F(a),
where in the last step we use the fact that Fis nondecreasing. The
summability of F’and theineguality (3) now follow at oncefrom Fatou’s

theorem (Theorem 3, p. 307). §

Exanpl e 1. It is easy to find nondecreasing functions F for which (3)
becomes a strict inequality, i.e., such that

"F'(t) dt < F(b) — F(a). 4)
For example, let
0 if 0<t<i,
F(r) = .
1 if (<<

Then
0= fO‘F’(t) dt < F(1) — F(0) = 1.

Example 2( The Centor function). | nthe preceding example, F is discontin-
uous. However, it isalso possible tofind continuous nondecreasing functions
satisfying the strict inequality (4). To thisend, let

[V, 6] = [3 §]
be the middle third of the interval [0, 1], let
[af, b1 = [, 3, [af, o] = [§, §]

be the middle thirds sf the intervals remaining after deleting [V, 5] from
[0, 1], let

[ o) = (80§51 [0l b)) = [ =
[0, p) — 139, 297, Lo, b] = 3%, 3%
be the middle thirds of the intervals remaining after deleting [a{", 5{"],
[a®, 5] and [a{6{'} from [0, 1], and so on, with
[, b, . [al™, b7, . ket bgit)

being the 2~ intervals deleted at the nth stage. Note that the complement of
union of al theintervals [a{*, b1 is the set of alt "'pointsof the second
kind" of the Cantor set constructed in Example 4, p. 52, i.e., all points of the
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Cantor set except theend points

1 2 1 2 7 8
09135’§’§5§7§’—59'-~ (5)

of the deleted intervals (together with the points 0 and 1).
Now define a function

2k—1 . ,
F(t) = > if teay, b,
so that
Foy= % if <t<t,
1 f 1 2
4 1 9 < t< 9
F(t) = ’
.0 F<tgd,
¥ 0 S<r<S,
F(t) = f %f 77Z<t<%’
& if <t <is,
v if <<,

and so on, as shown schematically in Figure 19. Then Fi s defined everywhere
on [0, 1] except at points of the second kind of the Cantor set. Given any
such point t*, let {z,} be an increasing sequence of points of the type (5)
converging to t*, and let {z,} be a decreasing sequence of points of the same
type converging to t* (why do such sequences exist?). Then let

F(t*) =lim F(t,) =lim F(1})
(justify the equality of thelimits). Completing the definition of Pin this way,
we obtain a continuous nondecreasing function on the whole interval [0,11],
known as the Cantorfunction. (Fill in some missing details.) The derivative
F obviously vanishes at every interior point of the intervals [a{*, 5], and

FIGURE 19
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hence vanishes almost everywhere, since the sum of the lengths of these
intervals equals
bhd b =1
(the Cantor set is of measure zero). It follows that
0= fo YF(1) dt < F(1) — F(0) = 1.

33.2. Absolutely continuous functions. We have just given examples of
functions for which formula (1) does not hold. To describe the class of
functions satisfying (1), or equivaently (2), we will need the following

DerINITION. A function f defined on an interval [a,b] is said to be
absolutely continuouson [ a,b] if, givenany ¢ > 0, thereisa 6 = 0 such that

21/~ flan] <e
for every finite system of pairwise disjoint subintervals

(akabk)c[aab] (kzla-'-an)
of total length

=

1(bk — ay)

k:

less than 3.

Remark 1. Clearly every absolutely continuous function is uniformly

continuous, as we see by choosing a single subinterval (a, b)) < [a,b].

However, a uniformly continuousfunction need not be absol utely continuous.
For example, the Cantor function Fconstructed in Example 2 of the preceding
section is continuous (and hence uniformly continuous) on [0,1], but not
absolutely continuous on [0, 1]. In fact, the Cantor set can be covered by a
finite system of subintervals (a,, 4,) of arbitrarily small total length (why?).
But obviously

éwmwﬂmml

for every such system. The same example shows that a function of bounded
variation need not be absolutely continuous. On the other hand, an absolutely
continuous function is necessarily of bounded variation (see Theorem 2).

Remark 2. In the definition, we can change "'finite"" to "finite or count-
able." In fact, suppose that given any € > 0, there isa 6 > 0 such that

S170) — f@l << <e

for every finite system of pairwise digoint intervas (a,, b,) < [a,b] of total
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length less than 3, and consider any countable system of pairwise disjoint
intervals (a,, B;) < [a,b] of total length lessthan 8. Then obviously

k§1lf(Bk) — flel <&

for every n. Hence, taking the limit as » — oo, we get

SIf )~ Ol < & <.

THEOREM 2. If f is absolutely continuouson [a,b] ,then f is of bounded
variationon [a,b].

Proof. Given any € > 0, thereisa 6 > 0 such that

S1fb) ~ fla) <

for every system of pairwise digoint intervals (a,, b) < [a,b]such that
2(by — a) <3
k=1

Henceif [a,B]is any interval of length less than 8, we have

VEf) <.
La -
a=x <Xy < - <Xxp=0b

be a partition of [a,b]into N subintervals [x;_;, x,] al of length less
than 3. Then, by Theorem 2, p. 329,

VEf) < Ne < 0. ]

THeorem 3. | ff is absolutely continuouson [a,b] ,then so is «f, where
aisany constant. Moreover, i ff and g are absolutely continuouson [a,b] ,
then soisf f g.

Proof. An immediate consequence of the definition of absolute con-
tinuity and obvious properties of the absolute value. #

It followsfrom Theorems 2 and 3 (together with Remark ) that the set
of al absolutely continuous functions on [a,b] is a proper subspace of the
linear space of all functions of bounded variation on [a,b].

THeEOREM 4. | ffis absolutely continuouson [a,b] ,then f can be repre-
sented as the difference between two absolutely continuous nondecreasing
functions on [a,b].
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Proof. By Theorem 2, f'is of bounded variation on [a,b] ,and hence
can be represented in the form
f=v—g
where
(x)=Ve(f), g=v—f
are the same nondecreasing functions asin Theorem 4, p. 331. We now

verify that v and g are absolutely continuous. Givenany e = 0,let6 > 0
be such that

S1r0 - sl << <

for every finite system of pairwise disjoint subintervals (a,, b,) < [a,5]
of total length less than 8. Consider the sum

S lob) — olap] = [6(bs) — o(ap)

k=1

equal to the least upper bound of the sums -

3 S 10 — fCxma)l ©)

E=11=1
taken over all possiblefinite partitions

=X <X11 < ' < Xy pm = by,
Ay = Xpo < Xp1 < < Xpymy, = brs
an:xn,0<xn,l<"'<xn,Mn=bn

of theintervals (a,, &y), . . . , (a,, b,). Thetotal length of all theintervals
(X111, X3, 1) figuring in (6)is clearly lessthan 8, and hencethesum (6) is
lessthan ¢’, by the absolute continuity off. Therefore

kgllv(bk) —v(a)| < €' <k,

i.e., vis absolutely continuous on [a,5]. It follows from Theorem 3
that g = v — f isalso absolutely continuous on [a,b]. §

We now study the close connection between absolute continuity and the
indefinite L ebesgue integral:

THEOREM 5. The indefinite integral
Fx) = ["f (1) dr

of a summable function f is absolutely continuous.
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Proof. Given any finite collection of pairwise disjoint intervals
(a,, b)), we have

leF(bk) — Fla)l =kZI fab"f(t) dtl <k§% f:klf(t)l dt= f.u( - Lf(0)] dt.
fo= = x = ¢ b A\ Ok

But the last expression on the right approaches zero as the total length
of theintervals (a,, b) approaches zero, by the absolute continuity of
the Lebesgue integral (Theorem 6, p. 300). @

LEmmA. Let ¥ be an absolutely continuous nondecreasing function on
[a,b] such that f'(x) = 0 almost everywhere. Then f (x) = const.

Proof. Since fiscontinuous and nondecreasing, its rangeis the closed
interval [ f(e), f (b)].We will show that the length of thisinterval is zero
if f/'(x) =0 almost everywhere, thereby proving the lemma. Let E be
the set of points x € [a,b] such that f'(x) =0, and let Z = [a,b] — E,
where u(Z) = 0, by hypothesis. Given any € > 0, we find § > 0 such
that

2 1) — flay] <e (7

for any finite or countable system of pairwise digoint intervals (a,, b) <
[a,b] of length less than 6 (recall Remark 2, p. 336), and then cover Z
by an open set of measurelessthan 3 (thisis possible, since Z isof measure
zero). In other words, we cover Z by a finite or countable system of
intervals (a,, b)) of total length lessthan 8. It then followsfrom (7) that
the whole system of intervals, and hence (afortiori) the set

Z < U (ak’ bk)’

is mapped into a set of measure less than e But then u[ f{Z)] =0,
since e > 0 is arbitrary.
Next consider the set E= [a,b] — Z, and let x, € E. Then, since
f'(x4) = 0, we have
Fo) = /) <
X — Xq
for al x > x, sufficiently near x,, i.e.,

S — f(x0) <elx — xo)

exy — f(xg) <ex — f(X).

Therefore the point x, is invisible from the right with respect to the
function ex — f(x). It follows from Lemma 1, p. 319 that E is the
union of no morethan countably many pairwise disjoint intervals (e, 81),

or
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with end points satisfying the inequalities
eoy — f (o) < 2Py — F(By)

fBr) — o) < (B — ap).

or

But then
kz [ (Br) — fle)] < 3%(% — o) < b —q).

In other words, f maps E into a set covered by a system of intervals of
total length less than (b — a). Therefore u[f(E)] =0, since £ =0
is arbitrary.

We have just shown that the sets f(Z) andf (E) are both of measure
zero. But the interval [f(a), f(b)] is the union of f(Z) and f(E). It
follows that [ f(a), f(b)] is of length zero, i.e., that f(x) = const. E

We are now in a position to prove
THEOREM 6 (Lebesgue). If F is absolutely continuous on [a,b], then
the derivative F’ is summable on [ a,b] and
F(x) = F(a) - f F'(1) dt. (8)
Proof. We need only consider the case of nondecreasing F (why?).
Then F' is summable, by Theorem 1, and the function
O(x) = F(x) — [* F() dt (9)

is aso nondecreasing. In fact, if X' = x', then
O(x") — B(x') = F(x) — F(x) — [ “F(t)dt > 0,

where we again use Theorem 1. Moreover, @ is absolutely continuous,
being the difference between two absolutely continuous functions (recall
Theorems 3 and 5), and ®'(x) = 0 almost everywhere, by Theorem 8,
p. 324. It follows from the lemma that ®(x) = const. Setting x = a,
we find that this constant equals F(a). Replacing ®(x) by F(a) in (9),
weget (8). B

Remark. Combining Theorems 5 and 6, we can now give a definitive
answer to the second of the questions posed on p. 314 (see also p. 333):
The formula

[P ar= Fx) — Fra),
or equivalently,

F(x) = F(a) + ["F'(t) dt,

holdsfor all x € [a,b] if and only if F is absolutely continuouson [a,b].
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33.3. The Lebesgue decomposition. Let f be a function of bounded varia-
tion on [a,b]. Then it followsfrom Theorem 4, p. 331 and Problem 9, p. 327
that fcan (ingeneral) berepresented asa sum

f(x) = o(x) + ¢(x), (10)
where ¢ is a continuous function of bounded variation and ¢ is a jump
function.® Now let

w0 = ["e s, )

Pa(x) = @(x) — @u(x).

Then o, isabsolutely continuous, while ¢, isacontinuousfunction of bounded
variation such that

i) = ¥ — = [y ar =0
X

almost everywhere. A continuous function of bounded variation is said to
be singular if its derivative vanishes almost everywhere. For example, the
Cantor function F constructed in Example 2, p. 334 is singular. Combining
(10)and (11), wefind that a function f of bounded variation can (in general)
be represented as a sum

f(x) = 1(x) + 9a(x) + P(x) (12)
of an absolutely continuous function ¢;, a singular function ¢, and a jump
function . Formula (12)is known as the Lebesgue decomposition.

Remark. Differentiating (12), we get
f'x) = 9i(x)

almost everywhere. Thus integration of the derivative of a function of
bounded variation does not restore the function itself, but only its absolutely
continuous "' component,” while the other two components, i.e., the singular
function and the jump function, " disappear without a trace."

Problem 1. Prove that a function f is absolutely continuous on [a,b] if
and only if it is a continuous function of bounded variation mapping every
subset Z <[ a,b] of measure zerointo aset o measure zero.

9 Generalizing Problem 9, p. 327, by a jump function, we now mean a function of

theform
E hy - Z R,
mn<$ x,’,ga:
where the numbers 4, . . . , An, .. . and i, ..., By, . .. corresponding to the discon-
tinuity pointsX,, . .., *n, ... and x5, ..., Xs,... satisfy theconditions

Slhi<w, Ilhl<w
n n

(wenow allow negative Az, 7).
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Problem 2. Verify directly from the definition on p. 336 that the function

xsnd if x=0,
f(x) = x
0 if x=0
fails to be absolutely continuous on any interval [a, b] containing the point
X =0.

Problem 3. Prove that if afunctionf satisfies a Lipschitz condition

|f6e) = fG) < K Ix' — &
for all X', x" € [a, b],thenf is absolutely continuous on [a, b].

Problem 4. Prove that each of the terms ¢, ¢, and ¢ in the Lebesgue
decomposition (12) is unique to within an additive constant.

Comment. The stipulation ''to within an additive constant can be
dropped if we requirethefunctionf and its'* components' to vanish at x = a,
say, or if weagreeto regard all functions differing by a constant as equivalent.

Problem 5. Let A4}, ,, be the space of all absolutely continuous functions
T defined on [a, b], satisfying the condition f(a) = 0. Prove that 4}, is
a closed subspace of the space V7, ,, of al functions of bounded variation
on [a, b] satisfying the same condition, equipped with the norm|[f || = ¥2(f).

Comment. There is no need for the condition f(a) = 0 if we regard all
functions differing by a constant as equivalent. We then have |f || = 0 if
and only iff = const.

Problem 6. Starting from a locally summable function £, i.e., a function
summable on every finite interval, defined the corresponding generalized
functionf and generalized derivativef * by the formulas

(o) =[" S@e) dx,

(o) = — [ e x) dx

asin Sec. 21.2. (Here ¢ is any test function, i.e., any infinitely differentiable
function of finite support.) Provethat the generalized derivativef * determines
T to within an additive constant. Apply this to the case of the function

0 if x <0,
f(x) = {F(x) if 0<x<1,
1 if x>1,

where Fis the Cantor function constructed in Example 2, p. 334.
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Hint. See Theorem 1, p. 213.

Problem 7. Letf andf ' be the same as in the preceding problem, and
supposef is of bounded variation on {—o0, co). Thenf has an ordinary
derivative almost everywhere. Let f; be the generalized function corre-
sponding to d /dx, so that

© d
(fv0) = f_w d—{; ¢(x) dx.
Prove that

a) In generd, f; does not equal the generalized derivativef ’;

b) Iff isabsolutely continuous, then f; =f’;

c) Iff, =f’, thenf isequivalent to an absolutely continuous function®
and, in particular, is absolutely continuous if it is continuous.

Hint. In @), consider the function

1) 0 if x<0O,
X) =
I if x>0

Comment. Problems 6 and 7 further illustrate the situation discussed
on pp. 206-207. Tocarry out the operations of analysis (in this case, recon-
struction of afunction from itsderivative), we can either restrict the class of
admissible functions (by requiring them to be absolutely continuous) or else
extend the notion of function itself (at the same time, extending the notion
of a derivative).

34. The Lebesgue Integral as a Set Function

34.1. Charges. The Hahn and Jordan decompositions. As we now show,
the theory developed in Secs. 31-33 for functions defined on the real line
(— o0, o) continues to make sense in a much more general setting. Let X
be a space (i.e., some ""master s&t™") equipped with a measure ., and letf
be a p-summable function defined on X. Then f is summable on every
measurable subset E = X, so that the integral

E) = | f(x)du )

(for fixedf) defines a set function on the system # of all p-measurable
subsets of X. By Theorem 4, p. 298, ® is o-additive, i.e., if a measurable
set Eis afinite or countable union

E=UE,
n

10 T.e., coincides almost everywhere with an absolutely continuous function.
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of pairwise disoint measurable sets E,,, then
O(E) = 2, D(E,).
n

In other words, the set function (1) has al the properties of a o-additive
measure except that it may not be nonnegative in the case where f takes
negative values. These considerations suggest

DermNimion 1. A o-additive set function © defined on a o-ring (in
particular, a a-algebra) of subsets of a space X and in general taking
values of both signsis called a signed measure or charge (on X).

Remark. Thus the notion of a measure is equivalent to that of a non-
negative charge.

In the case of electrical charge distributed on a surface, we can divide
the surface into two regions, one carrying positive charge (i.e., such that
every part of the region is positively charged) and one carrying negative
charge. We will establish the mathematical equivalent of this fact in a
moment, after first introducing

DEerFINITION 2. Let @ be a charge defined on a o-algebra Y of subsets
of a space X. Thena set A = X issaid to be negative with respect to @
ifEn Ae & and @(ENn A) < O for every Ee &. Smilarly, Aissaid
to be positive with respect to ® if EN Ae % and @(EN A) = 0 for
every Ec O'.

THeorem 1. Given a charge @ on a space X, thereis ameasurable set
A- < X such that 4~ is negative and A+ = X — A- is positive with
respect to .

Proof. Let

a=inf @(A),

where the greatest lower bound is taken over all measurable negative
sats A. Let {A,)) be a sequence of measurable negative sets such that

lim®(4,) = A.

Then
A~ =U4,

is a measurable negative set such that
PA)=a

(why?). To show that A- is the required set, we must how prove that
A+ = X — A-ispositive. Suppose At+isnot positive. Then 4+ contains
a measurable subset B, such that ®(B,) < 0. However, B, cannot be
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negative, since if it were, the set A' = A- U B, would be a negative set

such that @(A") < a, whichisimpossible. Hence there is a least positive
integer k; such that B, contains a subset B, satisfying the condition

1
O(By) > =,
(B k.
Obviously B, # B,. Applying the same argument to the set B, — B;,
wefind a least positiveinteger k, such that B, — B, contains a subset B,
satisfying the inequality

1

O(B,) » —

(By) = k

(explainwhy &, = k,), aleast positiveinteger k; such that (B, — By) — B,
contains a subset B; satisfying theinequality

(ke > ky)

1

O(B;) > E‘ (ks > ks),
3

and so on. Now let

F=B,—UB,.
n=1

Clearly Fis nonempty, since ®(B,) < 0 while®(B,) > 0for al n> 1.
Moreover, Fis negative by construction (think things through). Hence
theset A"= A- U Fis again negativeand ®(4) < a, whichisimpossible.
This contradiction showsthat A+ = X — A- must be positive. §

Thus we can represent X as a union
X=dA* U 4 @
of two digoint measurable sets A+ and A-, where A+ is positive and 4™ is
negative with respect to the charge ®©. The representation (2) is called the
Hahn decomposition of X, and may not be unique. However, if
X = AT U 47, X =AF U AT

are two distinct Hahn decompositions of X, then

OE NAD) =DE N 4;), DOE NAD) =DE N 45 (3)
for every E€ &. Infact,

ENn(4y — 43 < ENA 4
and at the same time

EN(47 — 4;5) < En 4F. (5)
But (4)implies

@ENAG — A)) <0,
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while (5) implies

@EN(A; — 47) > 0.
Therefore

OE N (A; — 43) =0, (6
and similarly

OE N (A, — A7) =0. !

It followsfrom (6) and (7) that
DE N A) =DE N (A — A7) TOE N (47 N A))
=@EN 45 — A) T@EN(A N A)) =d(E N A),

which proves the first of the formulas (3). The second formula is proved

in exactly the same way.
Thus a charge © on a space X uniquely determines two nonnegative set

functions, namely
GHEY=DENAY), O (E)=—D(ENA4),

caled the positive variation and negative variation of @, respectively. It is
clear that
) o=0¢t — O
2) &+ and ®- are nonnegative o-additive set functions, i.e., measures;
3) The set function [®| = &+ + @, cadled the total variation of @, is
also a measure.

The representation

' DO = O+ — @-
a charge @ as the difference between its positive and negative variations
is called the Jordan decomposition of .

34.2. Classification of charges. The Radon-Nikodym theorem. We now
classify charges on a space X equipped with a measure:

DeriNITION 3. Let p. be a o-additive measure on a o-algebra <, of
(y-measurable) subsets of a space X, and let @ be a charge defined on &,
Then @ is said to be concentrated ona set A e 3; if ®(E)=0 for every
measurable set E < X — A.

DerINITION 4. Let u, &, X and @ be the same as in Definition 3.
Then @ is said to be

1) Continuous f ®(E)=0 for every single-element set E = X of
measure zero;
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2) Singular if ® is concentrated on a set of measure zero;
3) Discrete if @ is concentrated on a finite or countable set of measure

zero;
4) Absolutely continuous (with respect to w) if ®(E) =0 for every
measurable set E such that w(E) = 0.

Clearly, the Lebesgueintegral
D(E) = | o(x) dy

of a fixed summable function ¢ is absolutely continuous with respect to the
measure y.. As we will seein a moment, every absolutely continuous charge
can be represented in thisform. But first we need the following

LemmA. Let p be a o-additive measure defined on a o-algebra <, of
subsets of a space X, and let © be another such measure defined on .
Suppose D is absolutely continuous with respect to w. and is not identically
zero. Thenthereisapositiveinteger nandaset A € &, such that w(4) >0
and A is positive with respect to the charge ® — (1/n)y.

Proof. Let
X=4,04, m=12..)

be the Hahn decomposition corresponding to the charge ® — (1/n)y,
and let

Ay =445, Ay =4l
Then
NS B
D(4y) < ";H(Ao)

for all n=1,2,...,ie, ®(4;) =0, and hence ®(4¢) >0 since
X = A4; U 4§ and @ is not identically zero. But then p.(4F) = 0, by
the absolute continuity of w. Hence there is an » such that u(4%) >0
(why ?). Thisn and the set A = A4} satisfy the conditions of the lemma.

THEOREM 2 (Radon-Nikodym). Let . be a o-additive measure defined
ona o-algebra #, of subsets of a space X, and let @ be « charge defined on
;. Suppose @ isabsolutely continuous with respect to .. Then thereisa
u-summable function ¢ on X such that

O(E) = [ o(x) du ®)

for every Ee #,. The function ¢ Zs unique to within its values on a set
of p-measure zero.
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Proof. We can assume that @ is not identically zero, since otherwise
we need only choose ¢ to beany function equal to zero almost everywhere
(discuss the uniqueness of ¢ in this case). Let K be the set of dl p-
summable functions on X such that

[ 160 du. < 0(B)
forevery Ee &, and let

M = ing JXf (x) dp.

Moreover, let {f,} be a sequence of functions in K such that

lim | f,(x) dp. = M, ©)

and let
gal%) = max {fy(x), - .., f(%)}.
Then clearly
) <gp <., . <g.®<....

Moreover,

| &) du < O(B) (10)
for every E € . Infact, E can be written in the form

E-UE,
k=1

where the sets E;, ... , E, are pairwise disjoint and g,(x) = f,(x) on

E,, and hence
[ a0 du =3 | fi(x) du < SO(E) = B(B).
k=14 k=1
In particular, it follows from (10) that g, € K, so that

fX gux)dp < M.
But then

lim [ _g,(x)dp = M,

n-rw

since otherwise
lim [ () dy < lim [ g,(x) du < M,

contrary to (10). Writing

¢(x) = sup gu(x),
we find that "

¢(x) =lim g,(x),

n=-* 0
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and hence, by Levi's theorem (Theorem 2, p. 305),

Jotdp =lim [ g,00dp =M. (1

Next we show that ¢ is the required function, figuring in the repre-
sentation (8). By construction, the set function

NE) = O(E) — | o(x) du

is nonnegative and in fact is a o-additive measure. If A(E) =£ 0O, then,
by the lemma, thereisan ¢ > 0 and a set A € &, such that u(4) >0

and
ew(ENA) < MENA)

for every E€e . Let
hx) = o(x) T o),
wherel!
) 1 ifxed,
X) —
Xl 0 ifx¢d
Then

[ 1) du = [ oCo) du + <ulE 0 )

< [ 000 du+ OE N 4) < 0(B),

so that h belongs to the set K introduced at the beginning of the proof.
On the other hand, it follows from (11) that

J e du = [ 000 dis + eu(a) > M,

contrary to the definition of M. Therefore A(E) = 0, whichisequivalent
to (8).

Finally, to prove that ¢ is unique to within its values on a set of
measure zero, suppose

O(E) = [ o) di = [ 9*(x) du

foral £e 9'. Then, by Chebyshev's inequality (Theorem 5, p. 299),
we have

W) < m (o) — "0l dp = 0

1t ¥ iscalled thecharacteristicfunction of the set A.
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for every set

Ap = {x:cp(x) — o*(x) > i} m=1,2,...
m
and similarly

PL(Bn - 0
for every set

anlx:qa*(x)—cp(x)>%} (n=1,2,..).
But

{x10(x) # ¢*(x)} = (U Am) U (U Bn),
and hence " "’
pix:o(x) # e*(x)} = 0,

Le., ¢(x) = ¢*(x) amost everywhere. [

Remark |. The function ¢ figuring in the representation (8) is called the
Radon-Nikodym derivative (or simply the density) of the charge ® with
respect to the measure p, and is denoted

do
du.

Clearly, Theorem 2 is the natural generalization of Lebesgue's theorem
(Theorem 6, p. 340), which states that an absolutely continuous function
Fistheintegral of its own derivative F. However, in the case of a function
F defined on the rea line there is an explicit procedure for finding the
derivative of Fat a point x,, namely evaluation of the limit

lim AF _ jim FC F AX) = PG

Az—-0 AX Ap—0 Ax

whereas the Radon-Nikodym theorem only establishes the existence of the
derivative d®/dp., without telling how to find it. However, an explicit
procedure can be given for evaluating d®/dp. at a point x, € X by calculating
the limit
lim ,
&0 }J-(As)
where {A,) is a system of sets " converging to the point x,” ase— 0, in a
suitably defined sense.?

12 For the details, see G. E. Shilov and B. L. Gurevich, Integral, Measure and Deriv-
ative: A Unified Approach (translated by R. A. Silverman), Prentice-Hall, Inc., Englewood
Cliffs, N.J. (1966), Chap. 10.
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Remark 2. |t can also be shown?® that an arbitrary charge ® hasa unique
representation as the sum
D(E) — A(E) -+ S(E) T D(E)

of an absolutely continuous charge A, a singular charge .S and a discrete
charge D. This is the exact analogue of the Lebesgue decomposition on
p. 341

Problem 1. Given any charge ® defined on a o-algebra &, prove that
there is a constant M > 0 such that |®(E)| < M for all Ee <.

Problem 2. Give an example of two distinct Hahn decompositions of a
space X.

Problem 3. Prove that a charge @ vanishes identicaly if it is both
absolutely continuous and singular with respect to a measure .

Problem 4. Prove that if a charge @ is concentrated on a set A, then so
are its positive, negative and total variations.

Problem 5. Prove that

a) Every absolutely continuous charge is continuous;
b) Every discrete charge is singular.

Problem 6. Prove that if a charge @ is absolutely continuous (with
respect to a measure w), then so areits positive, negative and total variations.

Problem 7. Prove that if a charge @ is discrete, then there are no more

than countably many points X, X,, ..., x,,... and corresponding real
numbersh,, h,, ..., 4,,...suchthat w({x,}) = 0 and
®E)= 3 h,
wpeE

Write expressions for the positive, negative and total variations of @.

Problem 8. Let X be the square 0 < x < 1, 0 < ¥ < 1 equipped with
ordinary two-dimensional Lebesgue measure ., and let ®(E) be the ordinary
one-dimensional Lebesgue measure of the intersection of E with the interval
0 < x < 1. Prove that @ is continuous and singular, but not absolutely
continuous.

13 G. E. Shilov and B. L. Gurevich, op. cit., Chap. 9.
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MORE ON INTEGRATION

35. Product Measures. Fubini's Theorem

The problem of reducing double (or multiple) integralstoiterated integrals
playsan important rolein classical analysis. In the Lebesgue theory, the key
result along these lines is Fubini's theorem, proved in Sec. 35.3. En route
to Fubini's theorem we will need the preliminary topics treated in Secs. 35.1
and 35.2, which are also of interest in their own right.

35.1. Direct products of sets and measures. By the direct (or Cartesian)
product of two sets X and ¥, denoted by X X ¥, we mean the set of all
ordered pairs (x,y) where x EX,y € Y. Similarly, by the direct product of
nsets Xy, X, . .. , X, denoted by

X; X Xg X * 0 XX,, )
we mean the set of al ordered n-tuples (x;, X,, ..., X,), where x; € Xj,
X, € Xy, ..., X, EX,. In particular, if

XlEXQE"’:Xn:X,

we write (1) simply as x™, the "'nth power of X.”

Example 7. Rea n-space R" is the nth power of the rea line R, as
anticipated by the notation.

Example 2. The unit cube I in n-space, i.e., the set of all elements of R”
with coordinates satisfying the inequalities

O0<x, <1 k=1,2,...,n),
isthe nth power of the closed unit interval I* = [0, 1].
352
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Now let &, %, ..., <, be systems of subsets of the sets X7, X.,...
X, respectively. Then by
CE=FHAXFHX " x

we mean the system of subsets of the direct product (1) which can be
represented in the form

A=A X Ay X -+ X A,

where
A, e (k=1,2,...,n).
If
93_5%;:%::?’
then 6 isthe "' nth power of %, written
G = "

For example, the system of all closed rectangular parallelepipeds in R™ isthe
nth power of the system of all closed intervals in R

THEOREM 1. If &, &%,..., &, are semirings, then so is the set
E=FAX FKHLX xS

Proof. By thedefinition of asemiring (See p. 32), we must show that

a) If A,Be G, then ANBEG;
b) If AABES and B < A, then A can be represented as a finite
union

4=Ucw

k=1
of pairwise digjoint sets C**) € &, with B = C*V.

It is clearly enough to prove these assertions for the case n = 2. Thus
suppose A€ HA X %, B< S X S Then

A=A XA (4eH de )

2
B =B X B, (Bi€ A, B e &), @

and hence
ANB=(4; X 4;) N (B, X By) = (4, NA) x (A, NB,).

But 4, N B, E A, 4, N B, e %, since & and ¥ are semirings. It
followsthat A N Be % X . This proves a).
To prove b), suppose that

By < 4y, B, < 4,,

1 Note that the empty set & belongsto S, since g = & X & X ... X & (why?).
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in addition to (2). Then, since A and % are semirings, there are finite
expansions
A =B UBYuU...uUB®

A, =B, UB® U... UBY,

where the sets B, BV, . .., B{*) are pairwise disioint and belong to %,
while the sets B,, B{, ..., B! are pairwise dioint and belong to .%.
Therefore

A=A, X Ay=(B, X By) U(B; x B U--- U (B, x BY)
U(BY x B) UBY x BY)U... U(BY x BY)
U U(BYY X By) U(B? x B U--- U(BY x BY)

isthe desired finiteexpansion of 4; x A,, where B, x B, isthefirstterm
and the other terms are pairwise disoint and belong to & =
AX L B

Now let &, %4, ..., &, ben semirings, equipped with measures

Ay, pads), .5 aldy) (A€ &), €)

and let p be the measure on the semiring €= % X % X .- X &,
defined by the formula

w(4) = pr(Apa(4) - - - 1, (4,)

forevery A= A4, X A, X ... X 4,. Then piscalledthedirect (or Cartesian)
product® of the measures (3), and is denoted by

Bo=thy X g Xm0t X Wy,

To confirm that u isindeed a measure, we now show that w. is additive (w is
obviously real and nonnegative). It will again be enough to consider the

casen = 2. Suppose
t
A=A, x A, = U B"®, 4)
k=1
where

B(z’) ) B(a’) = & (l :/é])
and
B(k) — ng) % B;k)

According to Lemma 2, p. 33, there are finite expansions

r s
4,=Uc",  4,=Uc,

m=1 n=1

2 The term product measure Will be used with a different meaning below.
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each involving pairwise digoint sets, such that each B’ is a finite union

B¥ = U ¢cim
meM
of certain of the sets C{™, while each B{*' is a finite union
ng‘) — U C;n)
neNy

of certain of the sets C{™ (here M, denotes somesubset of theset{1, 2,...,r}
and N, some subset of the set {1, 2, . .., s)). But then, by the additivity of
4y and p, We have

WA) = n(ADpal4e) = 3 (™) 3 1a(CF7)

m=

t
=23 2 w(C™) % wa(CS™)

f=1 meMp neNg

t 1
=k§1 (B )ug(BE) :’gl w(By),

which, when compared with (4), shows the additivity of u = p; X p,.
Example 3. Thus the additivity of area of rectanglesin the plane follows
from the additivity of length of intervals on the line.
THEOREM 2. If the measures (., Qa, - . . , &, are c-additive, then 0 is
the measure u = @y X g X o0 X .

Proof. Again we need only consider thecasen = 2. Let A denotethe
Lebesgueextension of the measure v, and suppose

m
C=Ucg,
n=}
where the sets €, are pairwise disoint and the sets C, C, belong to

AXTie. o 4yp (Ade F, Be %),
C”:A, X B’ (A,Ex,BnE%).
Moreover, let
ue(B,) if x€An
Sax) = .
0 if X¢A4,.

We then have m

2 fu(x) = uslB) if xeA,
and hence, by the corollary on p. 307,
3 [ ) dn = [ walB) iy = 2()p(®)
= wy(ADpa(B) = p(O). (5
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But
[ 1200 s = a4, )us(B,) = w(C.. ©)
Substituting (6) into (5), we get

w0

w(C) =n§ wCy. §

Again let &, %,..., %, be n semirings, this time equipped with
o-additive measures (3). Then it follows from Theorem 2 that the measure®
mo= gy X fhg X 7 X Uy M

is o-additive on the semiring
S=FX KX xS

Therefore, as in Sec. 27, m has a Lebesgue extension w defined on a o-ring
&, = &. This measure y is called the product measure of the measures (3),
and is denoted by

L= @ ® @ Uy ®
The distinction between the meaning of the symbols < and ® in (7) and
(8) iscrucial.

Example4. Let
=M =""" =, =t}

where p! is ordinary Lebesgue measure on the line. Then the product
measure (8) is ordinary Lebesgue measurein n-space.

35.2. Evaluation of a product measure. Let G be a region in the xy-plane
bounded by the vertical linesx = a, x = b (a < b) and the curvesy =f (x),
y = g(x), wheref (X) < g(x). Then it will be recalled from calculus that the
area of G is given by the integral

[Mteto = 7 ax,

where the differenceg(x,) —f (X,) isjust the length of the segment in which
the vertical line x = x, intersects the region G. Aswe now show, the natural
generalization of this method can be used to evaluate an arbitrary product
measure:

THEOREM 3. Let p be the product measure

B= e ® Py

? We change to the symbol  here, to "free" w for usein formula (8).
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d two measures p, and g, such that

1) u, is o-additive on a Borel algebra &, ¢ subsetsd a set X;

2) p, is o-additiveon a Borel algebra y d subsetsd aset Y;

3) u, and p, are complete, in the sense ‘that B < A and i (4) =
impliesthat B is measurable (with measure zero), andsmllarlyfor

[
Then
p(A) = [ (o) d, = [ pi(4,) d, ©

for every p-measurableset A, where®
A, ={y:(x,y) e 4} {x fixed),
A ={x:(x,y)€A)  (rJixed).
Proof. We note in passing that the integral over X in (9) reducesto
an integral over the set of the form

U4g,cx
v

outside which p,(4,) vanishes (and similarly for the integra over Y).
It will be enough to prove that

p(A) = | _oa(x) du,, (10)
where
0.4(x) = 1y (4s),

since the other part of (9) is proved in exactly the same way. Observe
that implicitin the theorem isthe conclusion that the set A, is p,~-measur-
ablefor amost al x (in the sense of the measure ) and that thefunction
¢4(x) is u-measurable, since otherwise (10) would be meaningless.
The measure w. is the Lebesgue extension of the measure
M=ty Xty

defined on the semiring %, of al sets of the form

A:A,, XAzo (AE:?;),
where & is the Borel algebra of p-measurable subsets of X X Y. But
(10) obvioudly holds for all such sets, sincefor them

(4, it xed,,
Pa(x) = .
0 if x¢d4d,,.

4 The Lebesgue extension of any measure is complete (see Problem 7, p. 280).

51f Xis the x-axisand Y they-axis (so that X x Y is the xy-plane), then A,, isthe
projection onto they-axis of the set in which the vertical line x = x, intersectsthe set A
(and similarly for A,)).
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Moreover, (10) carries over at once to the ring %(%,,) generated by
4., since Z(4,,) isjust the system of all sets which can be represented
asfiniteunions of pairwise digoint setsof &, (recall Theorem 3, p. 34).

To prove (10) for an arbitrary set A € &, werecall from Theorem 8,
p. 277 that there are sets

B, € #(S,) (Bua G Bpa <+ "n S By < o0 )
and corresponding sets

anlkJBnke% (Bi»B;>--"2B,> )
such that

A< B=MNB,
w(4) = w(B). (11)
Clearly,
op,(x) = lim ¢p, (%), 0p,(%) < 0B, < .. < BB < o)
k-m
op(x) =lim @p (x), ¢5,(%) > 0p,(X)> > op(X) > -

Hencewecan invokel evi's theolremS toextend (10) from the ring #(.%,)
to the system of all setsB e 9" of the form

NUB, (Bu.e). (12)

n k

Moreover if u(4) = 0, then w(B) = 0, because of (I |), and hence
pp(x) = u,(B,) =0

almost everywhere. Therefore A, is measurable and
04(x) = py(4y) = 0

for almost al x, since A, < B,. But then

[ 2400 du, = 0 = (A,

In other words, (10) holds for all sets of measure zero, as well as for all
sets of the form (12). But, according to (I1), an arbitrary set A€ &,

can be represented as
A=B—2Z,

where B is of the form (12) and Z is of measure zero. Therefore
B=AUZ (ANZ= )

8 See Theorem 2, p. 305 and Problem 2, p. 311.
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It follows that

w(d) = e(B) = [ on(x) du,

= [ 04 due + [ 0200 dpo = [_au(x) dp.
i.e., (10) holdsfor every Ae <,. §

Example 1. Let M be any p,-measurable set, and letf be an integri.ble
nonnegative function. Moreover, let Y be they-axis, and let u, be ordinary
Lebesgue measure on the line. Consider the set

A={(x,»:xeM 0<y <f(x)}h (13)
Then
) ifxed,

= g (4) =
9 4(x) = w,(4,) {0 fxdd

and hence, by Theorem 3,

w) = [ @) du, = [ f(x) dp. (14)

This alows us to interpret the Lebesgueintegral of a nonnegative function
over aset M < X in terms of the p-measure of the set (13), where u =

Mo @ [y

Example 2. I n the preceding example, let X be the x-axisand let M be a
closed interval [a,b]. Moreover, supposef is nonnegative and Riemann-
integrable on [a,b]. Then (14) reduces to the familiar formula

w(d) = [!10x) dx
for the area under the graph of the functiony = f (x) between x = a and
x=h.
35.3. Fubini’s theorem. The next theorem is basic in the theory of
multiple integration:

THEOREM 4 (Fubini). Let u, and u, be the same asin Theorem 3, let
be the product measure v, ® v, and letf (x, y) be p-integrable on the set
Ac X X Y. Then

fAf(xa y)dM:fX (waf(x’ y)dw) d‘}'m:fY(ffiwf (x, y)dux’) dpy. (15)

Proof. Note that implicit in the theorem is the conclusion that the
"inner integrals in parentheses exist for amost all valuesof the variable
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over which they areintegrated (x in thefirst case, y in the second). We
begin by assuming temporarily that f (x,y) > 0. Consider the triple
Cartesian product
U=XXYXZ,

where Z is the real line, equipped with the product measure

oy = P @ 1ty @ W = 0 @ p! = 11 ® (1y ® 1Y)
(see Problem 3), where p! is ordinary Lebesgue measure on the line.
Moreover, consider the set W < U defined by

We={(x,y,2):x€ 4, y€ed,,0< z< f(x, )}

By (14),
wuW) = | f(x, y) dy. (16)
On the other hand, by Theorem 3,
b W) = | W) dye, (17
where
A - P«y ® [J'la

Wo={(y,2):(x,y,2) € W} (x fixed).
Using (14) again, we obtain
MW = |, f(x, ) dps. (18)

Comparing (16)—(18), we get part of (15). The rest of (15) is proved in
exactly the same way. To remove the restriction that f (x,y) be non-
negative, we merely note that

f (X, y) =f+(x7 y) _f_(x9 Y),

where the functions L Dl -+ £, )
X, X,
frx ) =22 - v,

— lf(x’ y)l —"f(x: y)
2

S (x)
are both nonnegative. g
Remark. Thus Fubini's theorem asserts that if the " double integral**

1= fepde (19)
exists, then so do the " iterated integrals™

lo= [ ([ /0 dw) dues 1= [ ([, 7609 do) i 0

and moreover | =1,, = 1,,.

SEC. 35 PRODUCT MEASURES. FUBINI'S THEOREM %61

Problem | . Give an example of a set in R? which is not a direct product
of any two setsin R

Problem 2. Prove that the direct product of two rings (or o-rings) need
not be aring (or c-ring).

Problem 3. Given three spaces X, Y and Z, equipped with measures
e 4y and ,, respectively, prove that (p, ® ¢,) ® @, and p, ® (4, ® 1)
areidentical measureson X x Y x Z.

Problem 4. Let A = [—1,1] x [—1, 1] and

_ X
[ = Sy
Prove that
a) Theiterated integrals (20) exist and are equal;

b) The double integral (19) failsto exist.
Hint. Since

f.llf(x’ y)dx — f_llf(x’ y) dy =0,

f_ll (f_ll J(x, ) dx) dy = f_ll( fjl f(x, 9 dy) dx = 0.

On the other hand, the double integral fails to exist, since

after transforming to polar coordinates.

we have

Problem5. Let A= [0, 1] X [0, 1] and

2n . 1 1 1 1
2 if o < x < Py > <y g
f&xp) = . 1 1 1 1
ntl = - —_
2 if on+l <X < on’ on <V on—1 ’
0 otherwise.

Prove that the iterated integrals (20) exist but are unequal.

Ans. fol(folf(x,y) dx) dy =0, J:(f:f(x, y) dy) dx = 1.

Problem 6. The preceding two problems show that the existence of the
iterated integrals (20) does not imply either the existence of the double
integral (19) or the validity of formula (15). However, show that the
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existence of either of the integrals

fX (wa |f(x, J’)| dy‘y) d“x? fY (fAu lf(X, y)l d“’x) dp(,y (21)
implies both the existence of (19) and the validity of (15).

Hint. Suppose the first of the integrals (21) exists and equals M. The
function

fﬂ(x’.y) - min {If(x’y)ls i’l}

ismeasurable and bounded, and hence summable on A. By Fubini's theorem,

Llfn(x, y) d{J‘ = fX (wan(x, y) dp,y) dp,x <M

Moreover, {f,(x,Y)) is a nondecreasing sequence of functions converging
to | f{x, y)l. Use Levi's theorem to deduce the summability of | f(x, y)|
and hence that off (x,y) on A.

Problem 7. Show that Fubini's theorem continues to hold for the case of
o-finite measures (cf. Sec. 30.2).

36. The Stieltjes Integral

36.1. Stieltjesmeasures. Let F be a nondecreasing function defined on a
closed interval [a, b], and suppose Fis continuous from the left at every
point of (a, b]. Let & be the semiring of al subintervals (open, closed or
half-open) of [a, b), and let m be the measure on & defined by theformulas

m(x, B) = F(B) — F(« + 0),
mla, 8] = F( +0) — F(a), 1
m(a, 8] = F(8 + 0) — F(o + 0), M
mla, B) = F(B) — F(a).
Finaly, let u, be the Lebesgue extension of m, defined on the o-algebra
&,, Of pp-measurable sets. In particular, &, contains all subintervals of
[a, b) and hence al Borel subsets of [a, b). Then pp is called the (Lebesgue-)

Stieltjes measure corresponding to the function F, and the function Fitself
is called the generatingfunction of .

Example 1. The Stieltjes measure corresponding to the generating func-
tion F(x) = x isjust ordinary Lebesgue measure on the line.

7 Toavoid confusion, weomit ** outer parentheses,” writing u.(«, ) instead of u((x, B)),
and similarly in the rest of the formulas (1). Moreover, in m{«, 8], we alow the case

a=2_§.
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Example 2. Let F be a jump function, with discontinuity points

Xy Xy +0sy %, ... and corresponding jumps 4, h,,...,h, ... . Then
every subset A < [a, b) is pp-measurable, with measure
p“F(A) = ZAhn‘ (2)

In fact, according to (1), every single-element set {x,,} has measure h,, and
moreover it is clear that the measure of the complement of the set {x,,
Xyy « o+ s X, - - .y 1S Z€ro. But then (2) holds, by the s-additivity of pz. A
Stieltjes measure w5 of this type, generated by a jump function, is said to be
discrete.

Example 3. Let Fbe an absolutely continuous nondecreasing function on
[a, b), with derivativef = F. Then the Stieltjes measure p.z is defined on
all Lebesgue-measurable subsets A < [a, b) and

pp(A) = | f(x)dx. 3)
Infact, by Theorem 6, p. 340,

wr(on B) = F(B) — F(o) = [* f(x) dx @

for every open interval (a, ). But then (3) holds for every Lebesgue-
measurableset A < [a, b) since aLebesgueextension of a s-additive measure
is uniquely determined by its values on the origina semiring.® A Stieltjes
mesasure p.5 of thistype, with an absolutely continuous generating function,
isitself said to be absolutely continuous.

Example 4. Let F be singular (and continuous) as on p. 341. Then the
corresponding Stieltjes measure u. is concentrated on the set of Lebesgue
measure zero where the derivative F is nonzero or fails to exist. A Stieltjes
measure of this type is said to be singular.

Example 5. By the Lebesgue decomposition (p. 341), an arbitrary
generating function Fcan be represented as a sum

F(x) = D(x) + A(x) + S(x) ®)

of a jump function D, an absolutely continuous function A and a singular
function S (verify that D, A and S are themselves generating functions).
Moreover, each of the' components™ D, A and Sis uniquely determined to
within an additive constant (see Problem 4, p. 342). But clearly

Pp = tp + g + g

8 Give a more detailed argument, recalling Problem 1, p. 279. Note that in this case
m(x, B) = mla, Bl = m(e, Bl = mlx, B).
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It follows that an arbitrary Lebesgue-Stieltjes measure can be represented
asasum of a discrete measure u.5,, an absolutely continuous measure p., and
asingular measure g, Moreover, this representation is unique (why?).

Remark. We can easily extend the notion of a Stieltjes measure on a
(finite)interval [a, b) tothat of a Stieltjesmeasure on thewholeline (— o, c0).
Let Fbe a bounded nondecreasing function on (— o, ), S0 that

m< Fx)y< M (—o0 < x < W)

Using the formulas (1) to define the measure of arbitrary intervals (open,
closed or half-open), not just subintervals of afixedinterval [a, b), wegeta
finite measure px on the whole line, called a (Lebesgue-) Stieltjes measure,
as before. In particular, we have

pu(—o0, ) = F(o0) — F(—0)
for the measure of the whole line, where
X—m a—+—a0

(the existence of the limits follows from the fact that Fis bounded and
monotonic).

36.2. The Lebesgue-Stieltjesintegral. Let wzx be a Stieltjes measure on
the interval [a, b), corresponding to the generating function 7, and letf be
a pp-summable function. Then by the Lebesgue-Stieltjesintegral off (with
respect to F), denoted by

[*reo ar), ©)
we simply mean the Lebesgue integral
f[ &) dug.

Exanmpl e 1. Let Fbe the jump function
F(x)= % h,,

Tp<x

so that w5 isa discrete measure. Then (6) reduces to the sum
2 f G
Exampl e 2 If Fisabsolutely continuous, then
210 aFe) = [* poF (v d, @
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where the right-hand side is the integral of fF’ with respect to ordinary
Lebesgue measure on the line. In the case where f(x) = const, this is an
immediate consequence of (4). Moreover, by the o-additivity of integrals,
(7) can be extended to the case of any simple function f which is wz-
summable. More generaly, let {f,} be a sequence of such simple functions
converging uniformly to f, so that {f,F'} converges uniformly to fF’. It can
be assumed without loss of generality that
A <) <. <filx)< .,

and hence that

JHXF(X) < filOF(x) < .. < fuOF) < * .7
Therefore, applying Levi's theorem (Theorem 2, p. 305) to both sequences
{fa} and {f,F"}, we get

J: f (%) dF (x) =i ﬁz” %) dF (x) = dim, fg” F()F'(x) dx = f * F(X)F'(x) dx.

Exanmpl e 3. Suppose
F(x) = D(x) + A(x),

where D is the jump function
D(x)= > h,

B <z

and A is absolutely continuous. Then it followsfrom Examples | and 2 that

P70 dF @) = 3 fexh, + [* f)4'(x) dx.

I n the case where F also contains a singular component, asin (5), thereisno
such representation of the L ebesgue-Stieltjesintegral (6) asthe sum of a series
and an ordinary Lebesgue integral.

Remark. We can easily extend the notion of a Lebesgue-Stieltjesintegral
with respect to a nondecreasing function F to that of a Lebesgue-Stieltjes
integral with respect to an arbitrary function of bounded variation ®. In
fact, asin Theorem 4, p. 331, let

D =0v—g,
where v, the total variation of ® on the interval [a, x], and g=v — @ are
both nondecreasing. We then set

[1760 d40) = [ (0 dutx) — [ (o) dgCo) ®
by definition (see Problem 2).

36.3. Applications to probability theory. The Lebesgue-Stieltjesintegral
is widely used in mathematical analysis and its applications. The concept
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plays a particularly important role in probability theory. Given a random
variable £,° let

F(x) = P{€ <x},

ie., let F(x) be the probability that # takes a value less than x. Then F is
clearly nondecreasing and continuous from the left. Moreover, F satisfies
the conditions

F(—0) =0, F(w)=1
(why?). Conversely, every such functionf can be represented as the prob-
ability distribution of some random variable .

Two basic numerical characteristics of a random variable £ are its
mathematical expectation or mean (value)

Ef = foomx dF(x), )

and variance

DE = f_"’w(x — EE)*dF(x) (10)

(however, see Problem 5).

Example 1. A random variable £ is said to be discrete if it can take no
more than countably many values x;, X,, ..., x,, ... . For example, the
number of calls received on a given telephone line during a given time
interval is a discrete random variable. Let

P =P =x} n=1,2,..)

be the probability of the random variable £ taking the value x,. Then the
distribution function of £ is just the jump function

F(x)= 3 pn

In this case, the integrals (9) and (10) for the mean and variance of & reduce
to the sums

EE) = z XnPro
n

Df =3 (x, — a)p, (a= EE).

I3

Example 2. A random variable £ is said to be continuousif its distribu-
tion function F is absolutely continuous. The derivative

p(x) = F'(x)

® We presuppose familiarity with the rudiments of probability theory. Seee.g., Y. A.
Rozanov, Introductory Probability Theory (translated by R. A. Silverman), Prentice-Hall,
Inc., Engiewood Cliffs, N.J. (1969).
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of the distribution function is then called the probability density of &. It
follows from Example 2, p. 364 that in this case the integrals (9) and (10)
for the mean and variance of £ reduce to the following integrals with respect
to ordinary Lebesgue measure on theline:

EE = [“uxp(x)dx,

DE = f_ww(x —a)¥p(x)dx  (a = EE).

36.4. The Riemann-Stieltjesintegral. Besides the Lebesgue-Stieltjesinte-
gral introduced in Sec. 36.2 (which is in effect nothing but the difference
between two ordinary L ebesgueintegrals with respect to two measures onthe
real line'®), we can also introduce the Riemann-Stieltjes integral, defined
as a limit of certain approximating sums, analogous to those used to define
the ordinary Riemann integral. To thisend, letf and @ be two functionson
[a, b], where @ is of bounded variation and continuous from the left, and let

=Xy <Xy <Xy < '+ <x,=0b

be a partition of the interval [a, 6] by points of subdivision xg, %1, X2, . . . ,
X. Choosing an arbitrary point £, in each subinterval [x,_;, x,], we form
the sum

kz f EQD(xy) — P(x;_0)]- (11)
=1
Suppose that as the partition is " refined," i.e., as the quantity

Max {X; — Xo» X3 — X35+ 0, X, — X1} (12)

(equal to the maximum length of the subintervals) approaches zero, the sum
(12) approaches a limit independent of the choice of both the points of
subdivision x, and the "intermediate points" &,. Then this limit is called
the Riemann-Stieltjesintegral off with respect to @, and is denoted by

fa” £(x) dD(x)

(just asin the case of the Lebesgue-Stieltjesintegral).
Remark. If ® = @, + ®,, then

[P 760 d0(x) = [* £(3) A1) + [ 1G0) dPa() (13)

(provided the integrals on the right exist). In fact, we need only write the

10 Recall formula (8).
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identity
kzl SEND(x,) — B(x,4)]

=3 FEI0(x) — O] + 3 FENDx) — Pulx L
and then pass to the limit as the quantity (12) approaches zero.

THeorReM 1. | ff is continuous on [a,b], then its Riemann-Sieltjes
integral exists and coincideswith its Lebesgue-Stieltjes integral.

Proof. Thesum (11) can beregarded asthe L ebesgue-Stidltjesintegral
of the step function

Sa) =8 if X < X<2x (k=1,...,n).
Asthe partition of [a,b]isrefined, the sequence{f,} convergesuniformly

to f (why?). Hence, by the very definition of the Lebesgue integral
(recall p. 294),

lim f” Ful%) dx = 1,

n—> o0

where | is the Lebesgue-Stieltjes integral off over [a,b). But then

lim 3 fOI@(x) — Plxp)] = I,

n—ooi=|
where the limit on the left is the Riemann-Stieltjes integral off over

[a,0]. R
THeorem 2. | ff is continuouson [a,b],then
4 b
‘ fa f) d‘D(X)| < Vi) max | f(0)l, (14)
where V(@) isthe total variation of @ on [a,b].

Proof. The inequality
3 e — o)

< 317100 — O )|

< max |f(x)] glq)(xk) — Ol ) < V() max || ()]

ese<sh a<rsh

holds for any partition of the interval [a, b]. Taking the limit of the
|left-hand side as max {X, — xo, . .+, X, — X, 1} — 0, we get (14). §

Remark. If ®(x) = x, (14) reduces to the familiar estimate

| [P e dx | < (b~ @) max| ()

for the ordinary Riemann integral.
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THeorem 3. Let @ bea function of boundedvariationon [a,b] different
from zero at no more than countably many points ¢y, ¢z, « « « 5 €y o« + IN
(a,b). Then

[’ () d®(x) = 0 (15)
for any function f continuouson [a,b].

Proof. The assertion is obviousif @ is nonzero at only a single point
¢ € (a,b), since then

k;f (xNP(xy) — B(x-1)] = 0
for an " arbitrarily fine" partition
a=x,<x3 < " <Xx,=0>,

i.e., a partition for which the quantity (12)is arbitrarily small, provided
we make sure that ¢, is nhot one of the points of subdivision x,, x;, .. .,
x,.t Hence, by (13), the assertion is aso true if @ is nonzero at only
finitely many pointsin (a,b). Now suppose @ is different from zero at
countably many points

C15Co5ann 3Cpsnnn
in (a,b),and let

Yu = (D(Cn)'
Then

Igllyni < o,

since® isof bounded variation. Givenany ¢ = 0, wechoose N such that

<«

2 Iyl <=,
. . n=N+1
and write @ in the form
O = Dy + O*, (16)
where @ takes the values y;, .. ., yx at the points ¢, ..., ¢y and is
zero elsewhere, while @* takes the values yy,1, yy1e, - - - at the points
Cn+1> Cvges - - - @Nd is zero elsewhere. Then, as just shown,
f: £(x) dDp(x) — 0. (17)

Moreover

fvel

<2M S |yl < 2Me,

n=N-+1

3 EI@ - 00

1 Note that here we rely on the fact that ¢, is not an end point of [a,b].
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where
M = max | f(x)],

ALY
or

| ! 1) dorco) | < 2me

after taking the limit as m-—- oo. Thisin turn implies

[ £ dogo = o, (18)

since e > 0 is arbitrary. Formula (15) now follows at once from (13)
and (16)-(18). &

36.5. Helly’s theorems. In Sec. 30.1 we found conditions insuring the
validity of passing to the limit in Lebesgue integrals, i.e., conditions under

which v
tlim [ £ da= [, fG)d, (19

where {f,} is a sequence of functions converging (almost everywhere) to a
function f and the integrals are all with respect to a fixed measure p. In
the case of Stieltjes integrals, we now ask a closdly related but somewhat
different question: Under what conditions does the formula

lim f: J) d®,(x) = [* f(x) dd(x) (20)

hold, wheref is continuous and {®,} is a sequence of functions of bounded
variation converging (everywhere) to a function ®? (Note that here, unlike
(19), the functionf isfixed, and it is the function @,,, or the corresponding
Stieltjes measure, which varies.) The answer to this question is given by

THEOREM 4 (Helly’s convergencetheorem). Let {®,} beasequenced
functions ¢ boundedvariationon [a, b], convergingto afunction @ at every
point ¢ [a, b]. Suppose the sequence ¢ total variations {V2(®,)} is
bounded, so that

Vo)< C  (n=12...) (21)
for some constant € = 0. Then ® isalso ¢ bounded variation on [a, 5],
and (20) holdsfor everyfunction fcontinuous on [a, by.

Proof. Let
=Xy <Xy <'° " <Xp=2b

beany partition of theinterval [a, b] by points of subdivision xy, x;, . + .« ,
X,. Then

kgl@(xk) = P(x)| = lim g D, (%) — (Dn(xk——l)l < C,

n>w k=1
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and hence
V@) < C, (22)

ie., @ isof bounded variation on [a, b], as asserted.
Next we show that (20) holds iff isa step function. Suppose

f(X)="h, if X1 <X <xg
Then

[ 700 d,(x) = 3 m®o(x) — @y )] (23)

and!?

J! 1) 40 = 3 @) — D), (24)

where obviously (23) approaches (24) asn — co. Now letf becontinuous
on [a, b]. Given any £ > 0, choose a step function f, such that

O =<5z @sx<b (25)
(why is this possible?). Then

| [P 700 a0 — [ 1) d®, (0| < I+ 1061+ 101 (26)
where

1 = [ f() doogx) — [ 1) o),
Iy L” £i(x) dD(x) _ fa" FA(x) dD,(x),

I = [ 1.0 d0,(x) — [ 1(x) d®, ).

By theinequality (14), which clearly holdsfor Lebesgue-Stieltjesintegrals
as well asfor Riemann-Stieltjes integrals (why ?), we have

Il < 1) = )1 d00) < S V@) < 3, |
. . 27)
RCE [1760 = sl d0,00 < Vi@ < £,
after using (21), (22) and (25). Moreover, as just shown,
I <= (28)

3
12 Think of (23) and (24) as Lebesgue-Stieltjesintegrals.
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for sufficiently large n. It followsfrom (26)-(28)that

| [*169 d0ce) — 100 d )| <,
which implies (20), sincee = 0 is arbitrary. §

Theorem 1 gives conditions under which we can take the limit of a se-
guence {®,} of functions of bounded variation inside a Stieltjes integral.
The next theorem gives conditions guaranteeing the existence of a sequence
{®,} meeting the requirements of Theorem 4.

THEOREM 5 (Helly’s selection principle). Let @ bea family of functions
defined on an interval [a,b] and satisfying the conditions

Vie) < C, sup lo(x)| < M (29)

LAY AN

for suitable C and M. Then @ contains a sequence which converges for
every x € [a,b].

Proof. Itisenough to prove the theorem for nondecreasing functions.
Infact, let

=08,
where v isthe total variation of ¢ on [a, x] . Then the functionsv corre-

sponding to all ¢ € ® are nondecreasing and satisfy the conditions of
the theorem, since

Vi) = Vi(e) < C, sup fv(x)| < C.
a<e=b

Assumingthat the theorem holdsfor nondecreasingfunctions, we choose
a sequence {v,} from ® such that », convergesto a limit v* on [a,b].
Then the functions

8n =Un — Pn
are also nondecreasing and satisfy the conditions of the theorem (why?).
Therefore {¢,} contains a subsequence {¢, } such that {g, } converges
to a limit g* on [a,b]. But then

lim @,,(x) = ¢*(x),

0

¢*(x) = v*(x) — g*(x)-

Thus we now proceed to prove the theorem for nondecreasing
functions. Let ry,r,, ...,r,,... be the rational points of [a,b].It
followsfrom (29) that the set of numbers

o)  (p€®)

where
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is bounded. Hence there is a sequence of functions {¢'} converging at

n

the point r,. Similarly, {¢{*'} contains a subsequence {¢*} converging

n n

at the point r, as well as at r,, {¢} contains a subsequence {¢¥}
convergingat the point rgaswell asat r; andr,, and soon. The"" diagonal

sequence”
{4} = {i

will then converge at every rational point of [a,b]. The limit of this
sequence is a nondecreasing function ¢, defined only at the points
My Fasvn-stgs -+ . We complete the definition of ¢ at the remaining
points of [a, b] by setting

d(x)= lim () if x isirrational.
ro>ax—0
r rational

The resulting function ¢ is then the limit of {{,} at every continuity
point of ¢. Infact, let x* be such a point. Then, givenany € = 0, there
isa 6> 0 such that

40" — 4l < 2 (30)
if
Jx* — x| < 3.
Let r and r' be rational numbers such that
x* — 3 <r<x*<r <x*+3,

and let » be so large that
[9a) = 40N <25 190" = 40D < 2. 31)
It follows from (30) and (31) that
a0 — )] < 2.

Since ¢,, is a nondecreasing function, we have

ba(r) < dn(x¥) < 4, (),

and hence

(™) — G, (M < (™) — SO+ 1) — () )
N * £, B <€
F () — (™) < 6+6+ 3
Therefore
lim §,,(x*) = $(x*),

-

. . . n
sncee > 0 is arbitrary.
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Thus we have constructed a sequence {{,,} of functions in ® con-
verging to a limit function $ everywhere except possibly at discontinuity
points of ¢. Since there are no more than countably many such points
(why?), we can again use the ""diagonal process' to find a subsequence
of {,} which converges at these points as well, and hence converges
everywhereon [a,b]. &

36.6. The Riesz representation theorem. Next we show how Stieltjes
integrals can be used to represent the general linear functional on the space
Cia.»y Of all functions continuous on the interval [a,b]:

"THEOREM 6 (F. Riesz). Every continuous linear functional ¢ on the
space Cy,,; Can be represented in the form

o) = [ () dO(), (32)
where @ is a function of bounded variationon [a,b],and moreover
ol = Va(®). (33)

Proof. The space Ci,,;; can be regarded as a subspace of the space
My, Of al bounded functions on [a,b], with the same norm

I fIl = sup | f(x)]
oash
asin Cp, 1. Let ¢ be a continuous linear functional on Ci, 5. By the
Hahn-Banach theorem (Theorem 5, p. 180), ¢ can be extended without
changing its norm from C, »; onto the whole space M, ,;. | n particular,
this extended functional will be defined on all functions of the form

1 if x<m, ( b (34)
X) = a << T < .
S 0 if x>r7

Let
O(v) = ¢(f2)- 35)
Then @ is of bounded variation on [a,b]. In fact, given any partition
a=Xxy <Xy < '+ <x,=0b (36)
of [a,b] let
o, = sgn [OCGe) — D)) (k=1,...,n),
where
1 if x>0,
sgnx=¢( 0 if x=0,
-1 if x<0.
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Then

n

21065) — 005 )] = Zl00xy) — D )]

Te=1

élakcp(ka —fo) = cp( Sty ——fo))

< lol g(f — fo)

But the function
kzl OCk(f @ - f wk—l)

can only take the values 0, -1, and hence its norm equals 1. Therefore

Z1000) — O] < ol
Since thisis true for any partition of [a,b], we have

Va(®@) < gl (37
i.e., ® isof bounded variation on [a, b] ,as asserted.

We now show that thefunctional ¢ can berepresented in theform of a
Stieltjes integral with respect to the function @ just constructed. Let f
be any function continuous on [a,b]. Given any e >0, let § > ¢ be
such that |x" — x"| <3 implies |fAx") —f(x")| <e Suppose the
partition (36) issuch that each subinterval [x,_,, x,] isof length lessthan
3, and consider the step function

F9%) = f(x) if xea<x<x, (k=1,...,n),

which can obvioudly be written in the form
) = 3 ) ~ o L (38)
where £, is the function defined by (34). Clearly,
1f(x) — O] <

foral xe [a,b],2% i.e.,

If =0 <e. (39
It follows from (35) and (38) that

CP(f(E)) :kéf(xk)[@(fak) - q’(ﬁ)‘—-l)] :kgﬂlf(xk)[q)(xk) — q)(xlc-—l),]a

* We complete the definition of £(=) by settingf )(b) = f (x,) =f (b) for every ¢ > 0.
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L.e., o(f ) is an " approximating sum' of the Riemann-Stieltjes integral

3 F(x) d2().
Therefore

| o) — [ 1x) do() | < e
for a "sufficiently fine'" partition of the interval [a, b]. On the other
hand,
19() — o(fD o ol If —fl < llole
because of (39). But then

| o(n) — ! 1) 40| < (el + D,

which implies (32), since ¢ > 0 is arbitrary. To prove (33), we merely
combine (37) with the opposite inequality

lell < VYD),

whichisan immediate consequence of Theorem 2 and the representation

32). §

Problem |. Let . be an arbitrary finite o-additive measure on the real
line (— o, c0). Represent . as the Stieltjes measure corresponding to some
generating function

Hint. Let F(x) = u(—a, x).

Comment. Thus the term “Stieltjes measure’ does not refer to a special
kind of measure, but rather to a special way of constructing a measure (by
using a generating function).

Problem 2. Let @ be a function of bounded variation with two distinct
representations® = v — g, ® = v* — g* intermsof nondecreasi ngfunctions
v, g, v* and g* (give an example). Prove that

[re aveo — [0 dg) = ['10) doreo) — [* ) dg().

Comment. Thus in the definition (8) of the Lebesgue-Stieltjes integral
with respect to afunction of bounded variation @, the particular representa-
tion of ® as a difference between two nondecreasing functions does not
matter, i.e., » need not be the total variation of @ on [a, X].
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Problem 3. Let & be the number of spots obtained in throwingan unbiased
die. Find the mean and variance of &.

Ans. B =1, DE =45
Problem 4. Find the mean and variance of the random variable £ with
probability density
p) =} (—0 <x < o0),

Problem 5. Let £ be the random variable with probability density

S
n(l + x%) -
Prove that E£ and D fail to exist.

p(x) == (—oo < x < o)

Problem 6. Discuss random variables which are neither discrete nor
continuous.

Problem 7. Given a random variable & with distribution function K,
consider the new random variable v = ¢(£), where ¢ isafunction summable
with respect to the Stieitjes measure u, generated by F. Express E¢ and
DE interms of F.

Hint. Consider the problem of changing variablesin a Lebesgueintegral.
Ans. For example, E£ = f_"; @(x) dF(x).
Problem 8. Prove that iff is continuous on [a, b], then the Riemann-
Stieltjes integral
2760 doco) (40)
does not depend on the valuestaken by @ at its discontinuity pointsin (a, b).
Hint. Use Theorem 3 and formula (13).

Comment. Hence iff is continuous, we need not insist that ¢ be con-
tinuous from the left at its discontinuity pointsin (a, b). In fact, @ can be
assigned arbitrary values at these points.

Problem 9. Write formulas for the Riemann-Stieltjes integral (40) in the
case wheref is continuous and

a) @ isajump function;

b) @ is an absolutely continuous function with a Riemann-integrable
derivative.
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Problem 10. Evaluate the following Riemann-Stieltjes integrals:

0 if x=—1,
8) [* x dF(x), where F(x) = it _1<x<2
if 2<x<3;
if 0<x<i,
x <3,

b) [ x* dF(x), where F(x) = \

[ 87 N o e = [EEY
= =
= noj
| A

=
e
*
AN
o}

=N

o
NoA
*®

A

2oj

L
&) [} x* dF(x), where F(x) = fa_set

® I x
AN

Problem 11. Develop a theory of Riemann-Stieltjes integration on the
whole red line (— o, ).

Problem 12. Extend Theorem 4 to the case wherea= — o or b= o
(or both), assuming thatf (x) approaches a limit asx — - co.

Problem 13. Let {®,} be the same as in Theorem 4, and let {f,} be a
sequence of continuous functions on [a, b] converging uniformly to a limit f.
Prove that

lim fa" F(x) dD(x) = ja” 1(x) dD(x).

Problem 14. Prove that there is a one-to-one correspondence between
the set of al continuous linear functionals ¢ on Ci, ;; and the space V3 ,;
of Problem 8, p. 332, provided we identify any two elements of ¥{¢ ,, which
coincide at all their continuity points. Prove that the inequality

Vo(@) < lel

need not hold for every ® € V2 ,, corresponding to a given functional
9 € Ca 57> DUt that there is always at least one such element @ for which

the inequality holds.

37. The Spaces L, and L,

37.1. Definition and basic properties of L,. Let X be a space equipped
with a measure @, where the measure of X itself may be either finite or
infinite. Then by L;(X, p), or smply L;, we mean the set of all real functions
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T summable on X (however, see Problem 1). Clearly L, is a linear space
(with addition of functions and multiplication of functions by numbers
defined in the usual way), since a linear combination of summable functions
is again a summable function. To introduce a norm in Z;, we define

1f1 = | 1f)] de, )

where, asin therest of thissection, the symbol § by itself denotes integration
over the whole space X. Of the various properties of a norm (see p. 138),
it followsat once from (1) that

If1l =0,
lof | = leel I1£1I-
TR ARRTARATAR

and we need only verify that |If || = 0 if and only iff = 0. To insure this,
we agree to regard equivalent functions (i.e., functions differing only on
a set of measure zero) as identical elements of the space L,. Thus the
elements of L, are, to, be perfectly exact, classes of equivalent summable
functions.** In particular, the zero element of L, is the classconsisting of al
functions vanishing amost everywhere. With this understanding, we will
continue to talk (more casually) about **functionsin £,.”
InL,, asin any normed linear space, we can use the formula

e(fs8) =1f gl

to define a distance. Let {/,} be a sequence of functions in L,. Then {£,}
issaid to convergein the mean to afunction fe Ly if o(f,,f) —0asn— co.

THeOReEM 1. The space L; is complete.
Proof. Let {f,} be a Cauchy sequencein L;, so that
| fn — ful =0 as m2, n — o0,

Then we can find a sequence of indices {n,} (Wheren; <n, <-.. <
n, < .--)such that

1
”fﬂk “f"k-!—l” = f !f'ﬂk(x) _—f”k+1(x)| dl“' < E;c (k =1,2,.. )
It followsfrom the corollary to Levi's theorem (see p. 307) that the series
o) 4 oy = fol F 0

14 Thus the precise definition of addition of two elements ¢,, ¢, & L, is thefollowing:
Let £, and f; be “representatives” of @, and 9., respectively, ie., let f; € @1, f2 € 9,. Then
91 T @, isthe class containing f; + f; (this classclearly does not depend on the particular

choice of f; and f£3).
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converges almost everywhere on X. Therefore the series

fnl +fn, _fnl + e
also converges almost everywhere on X to some function

J6) =1lim f,,(x).

But {f,,} convergesin the mean to the same functionf. In fact, given
any ¢ > 0,
J 10 = fu)) d < 2 6)

for sufficiently large k and /, since {f,} is a Cauchy sequence. Hence,
by Fatou's theorem (Theorem 3, p. 307), we can take the limit as/— o
behind the integral signin (2), obtaining

J 1) = £l dp < =.

Itfollowsthatf e L, (why?) and that f,, —f inthemean. Butif aCauchy
sequence contai ns a subsequence converging to alimit, then the sequence
itself must converge to the same limit. Hence f,, —f in the mean. §

According to the definition of the Lebesgue integral (see p. 296), given
any functionf summable on X and any € > 0, there is a summable simple
function ¢(x) such that

[17) = s1 <=

Moreover, the Lebesgue integral of a summable simple function ¢ taking
values yi, V2, . . . ON SEtS E;, E,, . . . isdefined as the sum of the series

2, yub(Eyr)

(assumed to converge absolutely). Thereforeevery summable simplefunction
can be represented as the limit in the mean (i.e., as the limit in the sense of
convergence in the mean) of a sequence of summable simple functions,
each taking only finitely many values. In fact, given any ¢ =0, let N be
such that

2 yalw(E,) <s,
n=N-+1

and let!s
y if xeE,1l<k<N,

x fr—
() 10 otherwise.

15 Note that ¢y isa finite linear combination of characteristic functions, namely

Px(x) = yaxz, (%) -+ + yaxz, (%)
(seefootnote 11, p. 349).
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Then

J1et) = ex@lde < 3 1pilulE) <.
n=N+
In other words, the set of all simplefunctions taking only finitely many values
is everywhere densein the space L.

THEOREM 2. Let X bea metric space equipped with a measure . such
thar®

1) Every open set and every closedset in X i s measurable;
2) Ifaset M < X is measurable, then

w(M) = inf u(G), (3)
McG
where the greatest lower bound is taken over all open sets G < X
containing M.
Then the set d all continuousfunctions on Xi s everywheredensein
Ly(X, w).

Proof. We need only show that every simple function taking only
finitely many valuesis thelimit in the mean of a sequence of continuous
functions. But every simple function taking only finitely many valuesis
afinitelinear combination of characteristicfunctions of measurable sets,
and hence we need only show that every such characteristic function
¥ (x) is the limit in the mean of a sequence of continuous functions.
If M < Xismeasurable, then (3) impliesthat givenany ¢ > 0, thereisa
closed set F,,; and an open set G, such that

Now et Fyp o M < Gy, w(Gpp) — p(Fy) <e. 4
ow le

® (x) — p(X - GM? x)
Then : o(X — Gy, x) + (F 3, X)

0 if xeX— Gy,
P.(x) = .
1 lf X EFM.

Moreover, ¢, is continuous, since p(#,,, x) and (X — G,,, X) are both
continuous functions, with a nonvanishing sum. But |y,, — ¢,| does not
exceed 1 on Gy — Fyy, and vanishes outside this set. Using (4), wefind that

[ o) — @)l du <. |

1 These conditions are satisfied by ordinary Lebesgue measure in n-space, and in
many other casesof practical interest.

17 Asusual, p(4, x) denotes the distance between theset A and the point x (see Problem
9, p ).
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The space L,(X, ) depends on the choice of both the space X and the
measure p. For example, L, (X, ) is essentially a finite-dimensional space
if u is concentrated on a finite set of points (why?). In analysis, we are
mainly interested in the case where L, is infinite-dimensional but has a
countable everywhere dense subset.’® To characterize such spaces, we
introduce the following concept, stemming from general measure theory:

DEerINITION. Suppose a space X equipped with a measure v has a
countable system .7 of measurable subsets A,, A,, .. . such that given any
¢ > 0 and any measurablesubset M < X, thereis aset A, € < satisfying
the inequality

pMAA) <e

Then y. issaid to have a countable base, consisting of the sets A, A, ...

Example. Let p be a Lebesgue extension of a measure m originaly
defined on a countable semiring ,,. Then the ring #(%,) is obviousy
itself countable, and hence, by Theorem 3, p. 277, is a countable basefor .
In particular, ordinary Lebesgue measure on the line has a countable base,
since we can choose the original semiring <, to consist of all intervals (open,
closed and half-open) with rational end points.

THeorReM 3. Let X be a space equipped with a measure p., andsuppose
p has a countable base A,, A, ... . Then L,(X, u) has a countable
everywhere dense subset.

Proof. We will show that the set M of al finitelinear combinations
of theform

S, )

where f; is the characteristicfunction of A, and the numbers ¢y, ..., ¢,
arerational, formsacountable everywheredense subset of L, = L, (X, ).
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Now, according to the definition, given any « = 0, there are sets
A,, ..., A, suchthat

Lot wl(E, — 4)) VA, —EYl<e (k=1,...,n).
A,'C=Ah-—UA,~ (k=1,...,n),

and define a function =

. (ve if xed,,
f(x):io it xex U4l
k=1

Then clearly
plxsf () # (),

and hence the left-hand side of
[1/G) = F*@)l du < 2 (max [y, Duxf () # £ (0},

can be made arbitrarily small by choosing ¢ = 0 sufficiently small. This
proves the theorem, since/* is a function of the form (5). i

37.2. Definition and basic properties of L,. As we have seen, the space
L, = L,(X, ) is a Banach space, i.e., a complete normed linear space.
However, L; is not Euclidean, since its norm cannot be derived from any
scalar product. This follows from the ** parallelogram theorem' (Theorem
15, p. 160). For example, if X = [0, 2=] and wisordinary Lebesgue measure
on theline, then the condition

If+ g2+ 1/ — gl =271 T 1gl?)

fails for the summable functionsf (x) = 1, g(x) = sin x.® To get a function

space which is not only a normed linear space but also a Euclidean space,

The countability of M is obvious, and we need only show that M is
everywheredensein L,. Asaready noted, the set of all simplefunctions
taking only finitely many valuesiseverywheredensein ;. But every such
function can be approximated arbitrarily closely by afunction of the same

we now consider the set of functions whose squares are summable.

Thus let X be a space equipped with a measure 1, where we temporarily
assume that .(X) < 0. Then by Ly(X, w), or simply L,, we mean the set of
all real functions f whose squares are summable on X, i.e., which satisfy

type taking only rational values. Hence we need only show that every the condition

function f taking rational vaues y,, ..., y, on pairwise digoint sets .

Ey, ..., E, (with X as their union) can be approximated arbitrarily ff (x) dy < 0

closly in the L,-metric by functions of the form (5). Clearly, there is : e
no loss of generality in assuming that the base A,, A,, .. .isclosed under (however, see Problem 6). As in the case of L,, we do not distinguish

between equivalent functions (i.e., functions differing only on a set of

the operations of taking differences and forming finite unions and measure zero).

intersections (why?).

18 Sp that L4 is separable, as defined on p. 48. 19 As an exercise, show that the same kind of counterexample works quite generally.
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THEOREM 4. If fand g belong to L,, then so do «f; f + g, and fg, where
aisan arbitrary constant. In particular, L, isalinear space.

Proof. Obvioudy af € L,, since
[1af P du = o[ £ dw < m,
The fact that fg L, follows from the inequality
If@e)] < 30 T &) (6)
and Theorem 3, p. 297.2° But then f-} g€ L,, since
[/6x) T g@F < /2 + 21 fg@)] + g20),
where each term on the right is summable. §
Next we define a scalar product in L,, setting

(o= Jf(x)g(x) dy.

This choice obviously has all the properties of a scalar product listed on
p. 142:

1) (f,f)> 0 where (ff) = Oif and onlyiff = 0;

2) (f,8) =&/

3) (W, 8) =M/s 8)

4) (fig1+g) = (i g0 + (. go)-

(In asserting that (f, f) = 0 if and only iff =0, we rely on the fact that
every function vanishingalmost everywhereisidentifiedwith the zero element
of L,.) Thus L, is a Euclidean space, with the norm defined by the usual
formula

Il =~ U1 (7
(recall Theorem 1, p. 142). In the case of L,, (7)takes the form

111 = [

By the same token, the distance between two elementsf, g € L, isjust

)= 1/ =gl = [[17) ~ 5P s

The quantity
[Ure) — g@PFdu =11 — gl?

is called the mean square deviation of the functions f and g (from each other).

20 Setting g(x) = 1in (6), wefind thatf € L, impliesf € L, (provided that Xisof finite
measure).
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Let {f,.} be a sequence of functionsin Z,. Then {f,} is said to convergein
the mean square to a function f € Ly if p(f,,f)— 0asn-— co.
InL,, asinany other Euclidean space, we have the Schwarz inequality

1A < ILFI gl

which here takes the form

| [ g0 du| < \/ [ £ du \/ [ &) du. ()
The L,-version of the triangle inequality
IF+glh <1 fl+ gl

\/ U + gCor du < \/ [rie ant / [ &) du.
In particular, replacing f by | f| and setting g(x) == 1in (8), we get

isclearly

[ 171 dp < VuK) / [ £ au, (9)

from which it is again apparent (cf. footnote 20) that f € L, impliesf e L,
if W(X) << m.

THEOREM 5. The space L, is complete.

Proof. Let {f,} be a Cauchy sequencein L,, so that
| fw—full =0 as m,n-— oo,

Then, by (9), given any £ > 0, we have

[ 1) = 1) s < Ju—(?r—)\/ [ 1) = £,COT s < ()

for sufficiently large m and n, i.e., {f,) isalso a Cauchy sequencein the
L,-metric. Repeating theargument giveninthe proof of thecompleteness
of L,, we choose a subsequence {f,.} from {f,} converging almost
everywhereto some function f. Clearly, given any « = 0, we have

1) = fu0P du <« (10)

for sufficiently large k and /. Hence, by Fatou's theorem (Theorem 3,
p. 307), we can take the limit as | — m behind the integral signin (10),
obtaining

[U) = FOF du < .
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Itfollowsthatf e L, (why?)and that £, +fin the mean square. But if
a Cauchy sequencecontains a subsequenceconverging to alimit, then the
sequence itself must converge to the same limit. Hence £, +f in the
mean square. §

We now drop the restriction w(X) < a, alowing X to have infinite
measure. In the case w(X) = &, it is no longer true that f €L, implies
f eL,, afact deduced from (6) or (9) in the case w(X) < a. For example,
let X be the real line equipped with ordinary Lebesgue measure, and let

f(x) = —=
Jit
Then f belongsto L, but not to L,, since
[ dx o foogiz_z:n@o,
— \/1 _]__ x2 —x 1 + X

Moreover, if a sequence {f,} converges to a limit f in the L,-metric, it
follows from (9) that {f,} also convergestof in the L,-metric if u(X) < oo.
However, this conclusion failsif u(X) = a, as shown by the example

. % it 1xl <,
'nx =
0 if |x| > n,

where {f,,} approaches no limit in L; but approaches the zero function in L,
(give the details). Despite al this, we have?!

THEOREM 5. The space L, is complete even i w(X) = o, provided
that p. is o-finite.

Proof. Asin Sec. 30.2, let
x=Ux, wX,)<oo,
where
chch.-.anc.-.
Moreover, given any function ¢ on X, let
(x) if xeX,,
o) = |
0 if xé¢X,,

* Note that in the proof of the completeness of L, (Theorem 1), X can have either
finite or infinite measure.
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so that
[o00 dn = [ o) dp = lim [ o) d lim [ o) dy,

if ¢ issummable on X. Let {/,} be a Cauchy sequencein L,, so that,
given any « = 0,

U0 — AP dp < =
for al sufficiently large k and I. Then

lim [ (f7°6) — /W0 de = [IA) — (0P du <,

and hence, afortiori,
J ) = rreof du <. (1)

But L,(X,,, ) is complete, by Theorem 5, since u(X,) < . Therefore
{£"} convergesin the metric of Ly(X,,, ) to afunction /™ e Ly(X,,, w).
Taking the limit as | +— a behind the integral signin (11), we get

[ 70 = f7 0P de < ¢ (12)

(why is this justified?). Since (12) holds for every n, we can now take
the limit as n—+ oo, obtaining

Jm, fx,,[f V) — PP du < . (13)
Now let
f)=F™x) if xeX,
Then (13) implies

U — £ d < <.
It followsthat f e Lo(X, u) and £, —T in the mean square. §

Problem 1. A complex function is said to be summable if its real and
imaginary parts are summable. Show that the considerations of Sec. 37.1
carry over verbatim to the case where L, consists of all complex summable
functions (defined on X).

Problem 2. Prove that if each of the measures y; and p, has a countable
base, then so does their direct product . = p; X w,.

Comment. In particular, Lebesgue measure in the plane (or more
generally in n-space) has a countable base.
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Problem 3. Let X be the interval [a, b],and let u be ordinary Lebesgue
measure on the line. Prove that the set & of all polynomials on [a, b] with
rational coefficientsis everywheredensein Ly(X, w).

Hint. Use Theorem 2 and the fact that every function continuous on
[&, b] can be approximated in the mean (or even uniformly) by elements of &.

Problem 4. Prove that L,(X, ) isseparable, i.e., has a countable every-
where dense subset, if ¢ has a countable base.

Comment. Thus Ly(X, w) is a Hilbert space if u has a countable base
(we disregard the case where L,(X, w) is finite-dimensional). It followsfrom
Theorem 11, p. 155 that all such spaces are isomorphic, in particular, that

Ly (X, p) isisomorphic to the space /, of all sequences (X,, X,, « 5 X,y -+
such that

ixf < oo.

n=1

(in fact, /; corresponds to the case where the measure . is concentrated on a
countable set of points).

Problem 5. Prove that every continuous linear functiona ¢ on Ly(X, w),
where 1. has a countable base, can be represented in the form

o() = | f()g(x) dy,
where g is afixed element of L,(X, p).
Hint. Recall Theorem 2, p. 188.

Problem 6. Show that the considerations of Sec. 37.2 carry over verbatim
to the casewhere L, consists of all complex functionsf satisfyingthe condition

[1/e)dy < oo,

provided the scalar product of two such functionsf and g is how defined as

(f & = [ f(98() d.

Show that the resulting space L, is a complex Hilbert spaceif the measure .
has a countable base (again disregard the finite-dimensional case).

Problem 7. Let {f) be a sequence of functions defined on a space X
equipped with a measure . such that ©(X) < oo. Prove that

a) If {f) converges uniformly, then {f,} convergesin the mean and in
the mean square;

b) If {f,} convergesin the mean or in the mean square, then {f,} con-
vergesin measure (as defined in Problem 6, p. 292);
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¢) If {f,.} convergesin the mean or in the mean square, then {f,,} contains
a subsequence {1, } which converges aimost everywhere.

Hint. SeeProblem 9, p. 292. Alternatively, recall the proof of Theorem 1.

Pvoblem 8. Prove that the sequence of functions constructed in Problem
8, p. 292 convergestof (x) = 0 in the mean and in the mean square, without
converging at a single point.

Problem 9. Give an example of a sequence of functions {f,} which con-
verges everywhereon [0, 11, but does not convergein the mean.

fn(x) ! ( /n)

otherwise.

Problem 10. Give an example of a sequence of functions {f,) which
converges uniformly, but does not converge in the mean or in the mean
square.

Hint. According to Problem 7a, we must have u(X) = <. Let

1
ful¥) = {Jn

0 if x| >n.

if x| < n,

Problem 11. Show that convergencein the mean need not imply con-
vergence in the mean square, whether or not u(X) < co.

Problem 12. Let L,(X, 1) be the set of all classes of equivalent (rea or
complex) functionsf such that

[ifrde<oeo  (1<p<o),

equipped with the norm
1/p
17l = ( firr du)

Prove that L,(X, w) is a Banach space.
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A

Absolutely continuous charge, 347
Absolutely continuous function, 336
Absolutely summable sequence, 185
Adjoint operator, 232
in Hilbert space, 234
Aleph null, 16
Alexandroff, P. S., 90, 97
Algebra of sets, 31
Algebraic dimension, 128
Algebraic number, 19
Almost everywhere, 288
Angle between vectors, 143
Arzeld’s theorem, 102
generdizationof, 107
Axiom of choice, 27
Axiom of countability:
first, 93
second, 82
Axiom of separation:
first, 8
Hausdorff, 85
second, 85

B

Baire's theorem, 61
B-agebra(see Bord algebra)
Banach, S., 138, 229, 233
Banach space, 140
Bas, 81

countable, 382

neighborhood (local), 83
Basis, 121

dual, 185

Basis (cont.):
Hamel, 128
orthogonal, 143
orthonormal, 143
BesH's inequality, 150, 165
Bicompactum, %6
Binary relation(see Relation)
Birkhoff, G ,28
Bolzano-Weierstrass theorem, 101
Bord algebra, 3
irreducible, 36
minimal, 36
Bord closure, 36
Bord sats, 36
Bounded linear functional, 177
norm of, 177
Bounded red function, 110
Bounded set, 65, 141, 169
locally, 169
strongly, 197
weakly, 197
B-st (see Bord set)

C

Cantor, G., 0
Cantor function, 335
Cantor set, 52
points of thefirst kind of, 53
points of the second kind of, 53
Cantor-Bernstein theorem, 17
Cardina number, 24

Cartesian product (see Direct product)

Cauchy criterion, 56
Cauchy sequence, 56
Cauchy-Schwarzinequality, 38
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Chain, 28
maximal, 28
Characteristic function, 349
Charge, 344
absolutely continuous, 347
concentrated, on a set, 346
continuous, 346
density of, 350
discrete, 347
negative, 344
negative variation of, 346
positive, 344
positive variation of, 346
Radon-Nikodym derivative of, 350
singular, 347
total variation of, 346
Chebyshev's inequality, 299
Choice function, 27
Classes, 6
equivalence, 8
Closed ball (see Closed sphere)
Closed graph theorem, 238
Closed set(s), 49
in a topological space, 79
on thereal line, 51
unions and intersections of, 49
Closed sphere(s), 46
center of, 46
nested (or decreasing) sequence of,
59
radius of, 46
Closure, 46, 79
Closure operator, 46
properties of, 46
Codimension, 122
Cohen, P. J., 29
Compact space, 92
countably, 95
locally, 97
Compactness, 92
countable, 95
relative, 97
relative countable, 97
Compactum, 92, 96
metric, 96
Complement of a set, 3
Complete limit point, 97
Complete measure, 280
Completely continuous operator(s), 239 ff.
basic properties of, 243-246
in Hilbert space, 246-251
Completely regular space, 92

Completion (of a metric space), 62
Component (of an open set), 55
Conjugate space, 185
of a normed linear space, 184
second, 190
strong topology in, 190
third, 190
weak topology in, 200
weak* topology in, 202
Connected set, 55
Connected space, 84
Contact point, 46, 79
Continuity, 44, 87
from the left, 315
from the right, 315
uniform, 109
Continuous charge, 346
Continuous linear functional(s), 175ff.
order of, 182
sufficiently many, 181
Continuum, 16
power of, 16
Contraction mapping(s), 66 ff.
and differential equations, 71-72
and integral equations, 74-76
and systems of differential equations,
72-74
principle of, 66
Convergenceamost everywhere, 289
Convergencein measure, 292
Convergencein the mean, 379
Convergencein the mean square, 385
Convergent sequence:
in a metric space, 47
in a topological space, 84
Convex body, 129
Convex functional, 130, 134
Convex hull, 130
Convex set, 129
Convexity, 128
Countability of rational numbers, 11
Countable additivity, 266, 272
Countable base, 382
Countable set, 10
Countably compact space, 95
Countably Hilbert space, 173
Countably normed (linear) space, 171
complete, 173
Cover, 83
closed, 83
open, 83
Covering (see Cover)

Curve(s):
in a metric space, 112-113
length of, 114, 115
sequence of, 115

rectifiable, 332
D
Decomposition of a set into classes, 6-9
d-algebra, 35
6-ring, 35

Delta function, 124, 208
Dense set, 48
everywhere, 48
nowhere, 48, 61
Density, 350
Derived numbers, 318
left-hand lower, 318
right-hand upper, 318
Diameter of a set, 65
Difference between sets, 3
Differentiation:
of a monotonic function, 318-323
of an integral with respect to its upper
limit, 323-326
Dimension, 121
algebraic, 128
Dini's theorem, 115
Direct product, 238, 352
of measures, 354
Directed set, 29
Dirichlet function, 289, 291, 301
Discontinuity point of thefirst kind, 315
Discrete charge, 347
Discrete space, 38
Digoint sets, 2
pairwise, 2
Distance:
between a point and a set, 54
between two sets, 55
properties of, 37
symmetry of, 37
Domain (of definition), 4, 5, 221
Domain (open connected set), 71

E

Egorov's theorem, 290
Eigenvalue, 235
Eigenvector, 235
Elementary set, 255
measure of, 256
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Empty set, 2
e-neighborhood, 46
e-net, 98
Equicontinuous family of functions, 102
Equivalence classes, 8
Equivalencerelation, 7
Equivalent functions, 288
Equivalent sets, 13
Essential supremum, 311
Essentially bounded function, 310
Euclidean n-space, 38, 144
Euclidean space(s), 138, 142 ff.
characterization of, 160
complete, 153
norm of vector in, 164
orthogonal elements of, 164
components of elements of, 149
normin, 142
separable, 146
Euler lines, 105
Exhaustive sequence of sets, 308
Extension of a functional, 132
Extension of a measure, 271,277, 279
Jordan, 281

F

Factor space, 122
Fatou's theorem, 307
Field, 37
Finite expansion, 33
Finite function, 208
Finite set, 10
First axiom of countability, 83
First axiom of separation, 85
Fixed point, 66
Fixed point theorem, 66
Fourier coefficients, 149, 152, 165
Fourier series, 149, 165
Fractional part, 8
Fraenkel, A. A., 25, 27
Fredholm equation, 74
homogeneous, 74
kernel of, 74
nonhomogeneous, 74
Friedman, A., 212
Fubini's theorem, 359
Function space, 39, 108
Functional(s), 108, 123
addition of, 183
additive, 123
bounded linear (see Bounded linear
functional)
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Functional(s) (cont.):
conjugate-homogeneous, 123
conjugate-linear, 124
continuous, 175
continuous linear (see Continuous linear

functionals)
convex, 130, 134
extension of, 132
homogeneous, 123
linear, 124, 175ff.
Minkowski, 131
null space of, 125
product of, with a number, 183
separation of sets by, 136

Function(s), 4 ff.
absolutely continuous, 336
Borel-measurable, 284
bounded (red), 110, 207
Cantor, 335
characteristic, 349
continuous, 44, 79

from the l€eft, 315
from the right, 315
uniformly, 109
delta, 124, 208
domain (of definition of), 4, 5
equivalent, 288
essentially bounded, 310
finite, 207
genera, 5
generalized (see Generalized functions)
generating, 362
infinitely differentiable, 169
integrable, 294, 296, 308
locally, 208
inverse, 5
jump, 315, 341
jump of, 315
left-hand limit of, 315
lower limit of, 111
lower semicontinuous, 110
measurable, 284 ff.
monotonic, 314
nondecreasing, 314
nonincreasing, 314
of bounded variation, 328-332
one-to-one, 5
oscillation of, 111
range of, 4, 5
real, 4
right-hand limit of, 315
simple, 286

Function(s) (cont.):

singular, 341

step, 316

summable, 294,296, 308

test, 208

uniformly continuous, 109

upper limit of, 111

upper semicontinuous, 110
Fundamental functions (see Test functions)
Fundamental parall€elepiped, 98
Fundamental sequence (see Cauchy se-

quence)

Fundamental space (see Test space)

G

General measure theory, 269 ff.
Generalized function(s), 124, 206 ff.
and differential equations, 211-214
complex, 215
convergence of, 209
definition of, 208
derivative of, 210
of several variables, 214-215
on thecircle, 216
operations on, 209-210
product of, with a number, 209
product of, with an infinitely differenti-
able function, 210
regular, 208
singular, 208
sum of, 209
Godel, K., 209
Graph, 238
Greatest lower bound (in a partially ordered
set), 30
Gurevich, B. L., 350, 351

H

Hahn decomposition, 345
Hahn-Banach theorem, 132, 180
complex version of, 134, 181

Hamel basis, 128
Hausdorffaxiom of separation, 85
Hausdorff space, 85

Hausdorff’s maximal principle, 28
Heine-Borel theorem, 92

Helly's convergence theorem, 370
Helly's selection principle, 372
Hereditary property, 87

Hilbert, D., 155

Hilbert cube, 98
Hilbert space(s), 155 ff.
complex, 165
countably, 173
isomorphic, 155, 165
linear manifold in, 156
closed, 156
subspace(s) of, 156
direct sum of orthogonal, 159
(mutually) orthogonal, 158
orthogonal complement of, 157
Hilbert-Schmidt theorem, 248
Holder's inequality, 41
homogeneity of, 42
Holder's integral inequality, 45
Homeomorphic mapping, 44, 89
Homeomorphic spaces, 44, 89
Homeomorphism, 44, 89
Hyperplane, 127

I

Ideal, two-sided, 252
Image:
of an element, 5
of aset, 5
Infimum, 51
Infinite set, 10
Initial section, 25
Inner measure, 258, 276
Integrable function, 294, 296, 308
Integral part, 8
Interior, 128
Interior point, 50
Intersection of sets, 2
Into mapping, 5
Invariant subspace, 238
Inverse function, 5
Invisible point:
from the left, 319
from theright, 319
Isolated point, 47
Isometry, 44
Isomorphism, 21, 120, 155, 165
conjugate-linear, 194, 234
Isomorphism theorem, 155, 165

J

Jordan decomposition, 346
Jordan extension, 281
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Jordan measurable set, 281
Jordan measure, 281
Jump, 315
Jump function, 315, 341

K
Kelley, J. L., 87, 90, 92, 97
Kernel, 74

L
Lattice, 30
Least upper bound (in a partially ordered

set), 30

L ebesgue decomposition, 341, 351, 363
L ebesgue extension, 277, 279
Lebesgue integral, 293 ff.
absolute continuity of, 300-301
as a st function, 343-351
indefinite, 313 ff.
of a general measurable function, 296,
308
of asimplefunction, 294
over a set of infinite measure, 308
vs. Riemann integral, 293-294, 309-310
Lebesgue-integrable function (see Inte-
grable function)
Lebesgue-Stieltjesintegral, 364
vs. Riemann-Stieltjesintegral, 368
Lebesgue's bounded convergence theorem.
303
Lebesgue's theorem:
on differentiation of a monotonic func-
tion, 321
on integration of the derivative of an
absolutely continuous function, 340
Left-hand limit, 315
Levi's theorem, 305
Limit of a sequence:
in a metric space, 47
in a topological space, 84
Limit point, 47, 79
complete, 97
Linear closure, 140
Linear combination, 120
Linear dependence, 120
Linear functional, 175ff.
bounded (see Bounded linear func-
tional)
continuous .(see Continuous linear fanc-
tional~)
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Linear hull, 122
Linear independence, 121
Linear manifold, 140, 156
Linear operator, 221
bounded, 223
norm of, 224
spectral radius of, 239
closed, 237
completely continuous (see Completely
continuous operators)
graph of, 238
Linear space(s), 118 ff.
basisin, 121
Hamel, 128
closed segment in, 128
complex, 119
countably normed, 171
dimension of, 121
algebraic, 128
finite-dimensional, 121
functionals on (see Functionals)
infinite-dimensional, 121
isomorphic, 120
linearly dependent elements of, 120
linearly independent elements of, 121
n-dimensional, 121
normed (see Normed linear spaces)
open segment in, 128
real, 119
subspace, 121
proper, 121
topological (see Topological linear space)
Linearly ordered set (see Ordered set)
Lipschitz condition, 55
Locally integrable function, 208
Lower limit, 111
Lower semicontinuous function, 110
Luzin's theorem. 293

M

Mapping, 5ff.

continuous, 44, 87

contraction, 66

fixed point of, 66

into, 5

natural, 191

one-to-one, 5

onto, 5

order-preserving, 21
Mathematical expectation, 366
Mathematical induction, 28

Mean square deviation, 384
Mean (value), 366
Measurable function, 284 ff.
integration of, 294, 296, 308
Measurable set(s), 259 ff, 267
decreasing sequence of, 266
increasing sequence of, 267
Jordan, 281
Measure(s), 254 ff.
additivity of, 255, 263
complete, 280
continuity of, 267
countably (c-) additive, 266, 272
direct product of, 354
extension(s) of, 271, 275-283
inner, 258, 276
Jordan, 281
Lebesgue, 259, 276,279
of an elementary set, 256
of a plane set, 259, 276
of arectangle, 255
on a semiring, 270
outer, 258, 276
product, 354
afinite, 308
signed, 344
Stieltjes (see Stieltjes measure)
with a countable base, 382
Measure space, 294
Method of successive approximations, 66,
67
Metric (see Distance)
Metric space(s), 37 ff.
complete, 56
completion of, 62
continuous curvesin, 112-113
length of, 114, 115
sequence of, 115
continuous mapping of, 44
convergencein, 47
incomplete, 56
isometric, 44
isometric mapping of, 44
real functions on, 108
equivalent continuous, 113
uniformly continuous, 109
relatively compact subsets of, 101
separable, 48
subspace of, 43
total boundedness of, 97-99
compactness and, 99-101
Metrizable space, 90

Minkowski functional, 131
Minkowski's inequality, 41
Minkowski's integral inequality, 45
Monotonic function, 314

N

n-dimensional simplex, 137
k-dimensional face of, 137
vertices of, 137

n-dimensional (vector) space, 119

Negative set, 344

Neighborhood, 46, 79

Neighborhood base, 83
at zero, 168

Nested sphere theorem, 60

Noncomparable elements, 21

Nondecreasing function, 314

Nonincreasing function, 314

Nonmeasurable set, 268

Normal space, 86

Normed linear space(s), 138
bounded subset of, 141
complete, 140
complete set in, 140
conjugate space of, 184
direct product of, 238
subspaces of, 140

Norm(s), 138, 142, 163
compatible, 171
comparable, 172
equivalent, 141, 172
of a bounded linear functional, 177
of a bounded linear operator, 224
properties of, 138
stronger, 172
weaker, 172

n-space, 119

Null space, 125

O

One-to-one correspondence, 5, 10, 13
One-to-one function, 5
Onto mapping, 5
Open ball (see Open sphere)
Open set(s), 50
component of, 55
in a topological space, 78
on thered line, 51
unions and intersections of, 50
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Open sphere, 45
center of, 46
radius of, 46
Operator(s), 221 ff.
adjoint, 232
in Hilbert space, 234
continuous. 221
degenerate, 240
domain (of definition) of, 221
eigenvalue of, 235
eigenvector of, 235
identity (or unit), 222
inverse, 228
invertible, 228
linear (see Linear operator)
product of, 225
with a number, 225
projection, 223
resolvent of, 236
self-adjoint, 235
spectrum of, 235
sum of, 225
zero, 222
Order type (see Type)
Ordered product, 23
Ordered set, 21
Ordered sum, 22
Order-preserving mapping, 21
Ordinal, 24
transfinite, 24
Ordina number(s), 24
comparison of, 25
Orthogonal basis, 143
Orthogonal complement, 157
Orthogonal system, 143
complete, 143
Orthogonal vectors, 143
Orthogonalization, 148
Orthogonalization theorem, 147
Orthonormal basis. 143
Orthonormal system, 143
closed, 151
complete, 143
vs. closed, 151
Oscillation, 111
Oyter measure, 258, 276

P
Parseval's theorem, 151

Partial ordering, 20
Partialy ordered set(s), 20
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Partially ordered set(s) (cont.):
isomorphic, 21
maximal element of, 21
minimal element of, 21
noncomparable elements of, 21
Partition of a set into classes, 6-9
Peano’s theorem, 104
Petrovski, 1. G., 76
Picard’s theorem, 71
Polygonal line, 55
Positive set, 344
Power:
of aset, 16
of the continuum, 16
Preimage:
of aset, 5
of an element, 5
Principle of contraction mapping, 66
Probability density, 367
Product measure, 354, 356
evaluation of, 356-359
Projection operator, 223
Proper subspace, 121

Q

Quotient space (see Factor space)
R

Radon-Nikodgm derivative, 350
Radon-Nikodym theorem, 347
Random variable, 366
continuous, 366
discrete, 366
mathematical expectation of, 366
mean (value) of, 366
probability density of, 367
variance of, 366
Range. 4,5
Rectangle, 255
closed, 255
half-open, 255
measure of, 255
open, 255
Rectifiable curve, 332
Reflexive space, 191
Reflexivity, 7
Relation, 7
antisymmetric, 7
binary, 7
equivalence, 7

Relation (cont.):
reflexive, 7
symmetric, 7
transitive, 7
Relatively compact subset, 97
Relatively countably compact subset, 97
Residue class, 122
Resolvent, 236
Riemann integral, 293
vs. Lebesgue integral, 293-294, 309-310
Riemann-Stieltjes integral, 367
vs. Lebesgue-Stieltjesintegral, 368
Riesz lemma, 319
Riesz representation theorem, 374
Riesz-Fischer theorem, 153
Right-hand limit, 315
Ring of sets, 31
minimal, generated by a semiring, 34
minimal, generated by a system of sets, 32
Rozanov, Y. A., 366

S

Scalar product, 142

complex, 163
Schwartz, L., 212
Schwarz's inequality, 40, 142
Second axiom of countability, 82
Second axiom of separation, 85
Self-adjoint operator, 235
Semireflexive space, 191
Semiring of sets, 32

finite expansion in, 33

minimal ring generated by, 34
Separable (metric) space, 48
Set of a-uniqueness, 282
Set of uniqueness, 282
Set theory, 1-36

naive vs. axiomatic, 29
Set(s), 1 ff.

algebra of, 31

bounded, 65, 141

totally, 98

Cantor. 52

closed, 49

closure of, 46

complement of, 3

connected, 55

contact point of, 46

convex, 129

countable, 10

curly bracket notation for, 1

Set(s) (cont.):
decomposition of, 6
dense, 48

everywhere, 48
nowhere, 48, 61
diameter of, 65
difference between, 3
direct product of, 352
directed, 29
digoint, 2
pairwise, 2
duality principlefor, 4
elementary, 255
elements of, 1
empty, 2
equivalent, 13
exhaustive sequence of, 308
finite, 10
infinite, 10
interior of, 128
mterior point of, 50
intersection of, 2
isolated point of, 47
Jordan measurable, 281
(Lebesgue) measurable, 259, 267, 276,
279
limit point of, 47
complete, 97
measure of, 259, 267, 276, 279
negative, 344
nonmeasurable, 268
of uniqueness, 282
of a-uniqueness, 282
open, 50
operations on, 2ff.
ordered, 21
partially ordered, 20
partition of, 6
positive, 344
power of, 16
ring of, 3L
semiring of, 32
subset of, 1
proper, 2
sum of, 2
symmetric, 171
symmetric difference of 3, 4
systems of,, 31-36
totally bounded, 98
uncountable, 10
union of, 2
well-ordered, 23

INDEX 40!

Shilov, G. E., 147, 155,245, 350, 351
aradditivity (see Countable additivity)
a-algebra, 35

a-finite measure, 308

aring, 35

Signed measure, 344

Silverman, R. A., 76, 140, 147, 247, 350,

366

Simple function, 286

Simplex (see n-dimensional simplex)

Simply ordered set (see Ordered set)

Singular charge, 347

Singular function, 341

Smirnov, V. 1., 247

Space:

c, 120

c, 120

Cla.n)» 39, 57

Ca,n). 40, 59

cn, 119

C(, R), 113

of isolated points, 38, 56
of rapidly decreasing sequences, 172
Iy 39,57

Iy, 43

L,, 378

L,, 383

m, 41, 120

R*, 38, 56

R», 38, 57

R*, 120

Rz, 41

Spectral radius, 239

Spectrum, 235
continuous, 236
point, 236
regular point of, 235

Step function, 211, 316

Stereographic projection, 14

Stieltjes integral (see Lebesgue-Stieltjes

integral)

Stieltjes measure, 362, 364
absolutely continuous, 363
discrete, 363
generating function of, 362
singular, 363

Strong convergence, 195

Strong topology, 184
in conjugate space, 190

Subcover, 83

Subset, 1
proper, 2
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Subspace, 121
closed, 140
generated by a set, 122
invariant, 238
proper, 121
Successive approximations, method of, 66,
67
Sum of sets, 2
Summable function, 294, 296, 308
complex, 387
Supremum, 41, 51
Symmetric difference, 3, 4
Symmetric set, 171
Symmetry, 7
System of sets, 31
centered, 92
trace of, 80
unit of, 3L

T

Test functions, 208
convergenceof, 208
Test space, 208,216
Tolstov, G. P., 140, 145
Topological linear space, 138, 167 ff.
bounded subset of, 169
continuous mapping of, 87
functionals on, 175
continuous, 175
continuous linear. 1751F,
linear, 175
locally bounded, 169
locdly convex, 169
neighborhood base at zero of, 168
normable, 169
weak topology in, 195
Topological space(s), 78 ff.
base for, 81
bicompact, 96
closed sets of, 79
compact, 92
completely regular, 92
connected, 84
convergencein, 84
countably compact, 95
cover (covering) of, 83
hereditary property of, 87
locally compact, 97
metrizable, 90
normal, 86
open sets of, 78

Topological space(s) (cont.):
points of, 79
real functions on, 108
relatively compact subset of, 97
relatively countable compact subset of, 97
with a countable base, 82
Topology, 78
generated by a system of sets, 80
relative, 80
strong, 184, 190
stronger, 80
weak, 195,200
weak*, 202
weaker, 80
Total variation, 328, 346
Totally bounded set, 98
Transcendental number, 19
Transfinite induction, 29
Transfinite ordinal, 24
Transitivity, 7
Triangle inequality, 37, 138
T;-space, 85
T,-space, 85
Two-sided ideal, 252
Tychonoff space, 92
Type(s), 22
ordered sum of, 23
ordered product of, 23
VS. power, 22

U

Uncountability of real numbers, 15
Uncountable set, 10

Uniform continuity, 109

Uniformly bounded family of functions, 102
Union of sets, 2

Unit (of a system of sets), 31

Upper bound (ina partially ordered set), 28
Upper limit, 111

Upper semicontinuousfunction, 110
Urysohn's lemma, 91

Urysohn's metrization theorem, 90

v

van der Waerden, B. L., 327
Variance, 366
Variation:

bounded, 328

negative, 346

positive, 346

total, 328, 346

Vector space (see Linear space)
Volterra equation, 75
Volterra operator, 243

w

Weak convergence, 195
of functionals, 200
Weak* convergence, 202
Weak topology, 195
in conjugate space, 200
Weak* topology, 202
Weierstrass' approximation theorem, 140
145

"

INDEX

Well-ordered set, 23
(initial) section of, 25
order type of, 24
remainder of, 25
smallest element of, 23

Well-ordering theorem, 27

Z

Zermelo, E., 27
Zero element, 118
Zorn's lemma, 28
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